氨基酸分析原理和色谱条件
氨基酸的纸色谱实验报告
一、实验目的1. 了解纸色谱法的基本原理和操作技术。
2. 掌握氨基酸纸层析法的实验步骤和注意事项。
3. 通过纸色谱法分离和鉴定氨基酸混合物中各个氨基酸的化学成分。
二、实验原理纸色谱法是一种以纸为载体的色谱分离技术,主要用于分离和鉴定混合物中的各种化合物。
在纸色谱法中,固定相为纸纤维上吸附的水分,流动相为不与水相溶的有机溶剂。
将试样点在纸条的一端,然后在密闭的槽中用适宜溶剂进行展开。
由于各组分在两相中分配系数不同,最终形成互相分离的斑点。
通过比移值(Rf值)与已知样品比较,进行定性分析。
氨基酸是一类含有氨基和羧基的有机化合物,是构成蛋白质的基本单元。
在纸色谱法中,氨基酸在固定相和流动相之间的分配系数不同,导致其在滤纸上移动的距离不同,从而实现分离。
三、实验材料与仪器1. 实验材料:(1)氨基酸混合物:甘氨酸、丙氨酸、亮氨酸、苯丙氨酸、色氨酸等。
(2)层析滤纸(3)正丁醇、乙酸、水(混合液作为展开剂)(4)显色剂:三酮溶液2. 实验仪器:(1)层析缸(2)点样毛细管(3)小烧杯(4)培养皿(5)量筒(6)喷雾器(7)吹风机(8)直尺及铅笔四、实验步骤1. 准备层析滤纸:将层析滤纸裁剪成适当大小,用铅笔在滤纸的一端标记原点位置。
2. 点样:用点样毛细管将氨基酸混合物点在距滤纸一端约2~3cm的原点位置。
3. 展开剂准备:将正丁醇、乙酸、水按一定比例混合,作为展开剂。
4. 展开操作:将点好样的滤纸放入层析缸中,加入适量展开剂,确保展开剂液面高出滤纸上的样点。
5. 展开过程:密闭层析缸,待溶剂前沿线到达预定位置时取出滤纸。
6. 显色:将滤纸晾干,用喷雾器喷洒三酮溶液,在室温下晾干,观察显色结果。
7. 结果分析:根据各氨基酸斑点在滤纸上的位置,计算Rf值,与已知氨基酸的Rf值比较,进行定性分析。
五、实验结果与分析1. 氨基酸斑点在滤纸上分离,且各氨基酸斑点位置明显。
2. 通过计算Rf值,与已知氨基酸的Rf值比较,鉴定出各氨基酸。
高效液相色谱法氨基酸标样的分析实验
一、目的要求1、熟悉高效液相色谱仪的结构、分离原理和操作程序。
2、掌握氨基酸标样的分析方法、原理。
二、实验原理氨基酸与PITC发生反应生成的衍生物,在254nm处有最大吸光值。
氨基酸衍生物进高效液相色谱仪,经反相色谱分离后,根据保留时间和峰面积可进行定性和定量。
该方法是柱前衍生法中的一种。
PITC方法的反应方程式如下图所示:三、实验仪器和试剂1、仪器:高效液相色谱仪(带紫外检测系统和记录系统)。
2、材料:氨基酸标样3、试剂:衍生液:异硫氰酸苯酯:甲醇:三乙胺:水(V/V)=1:7:1:1正己烷、乙腈、乙酸、乙酸钠以上试剂中乙腈为色谱醇,水为二次蒸馏水,其它为分析醇。
四、实验步骤1、柱前衍生步骤:(1)将100ul衍生液加入100ul氨基酸标样或样品中,震荡使混合均匀,室温放置1小时。
(2)反应液中加入200ul正己烷,充分震荡后放置使分层。
(3)取下层溶液用一次性滤膜过滤器(0.45ul)过滤。
(4)取滤液5ul注入HPLC。
2、分离条件的设定(1)色谱柱:Shim-pack VP-ODS 4.6mm x 15cm保护柱:Shim-pack GVP-ODS4.6 mm x 1cm(2)流动相:A液:0.1M乙酸钠pH6.50(用乙酸调整,500ml乙酸钠中约加2滴乙酸)。
B液:乙腈/水=4/1(3)流量:1ml/min柱温:36℃检测波长:254nm(4)梯度洗脱程序:TIME(min) FUNC VALUE0.01 BCONC 103 BCONC 1021 BCONC 3921.01 BCONC 8025 BCONC 8025.01 BCONC 1035 STOP STOP3、数据采集打开real-time CS analysis软件采集数据并对数据进行分五、实验数据及处理结果六、实验讨论:1、本次实验的注意事项有哪些?结果:①、流动相必须用HPLC级的试剂,使用前过滤除去其中的颗粒性杂质和其他物质(使用0.45um 或更细的膜过滤)。
氨基酸分析仪的基本分析原理
氨基酸分析仪的基本分析原理
氨基酸分析仪是一种用于定量分析样品中各种氨基酸的仪器。
其基本分析原理是通过将样品中的氨基酸分离、检测和定量,从而确定样品中各种氨基酸的含量。
首先,样品中的氨基酸需要被分离出来。
一种常用的方法是利用离子交换色谱技术。
离子交换色谱是通过样品中氨基酸的酸性基团和碱性基团与固定在色谱柱上的阴、阳离子交换剂之间的离子交换作用进行分离的。
通过调整溶剂和柱温等条件,可以实现对氨基酸的选择性分离。
其次,分离出的氨基酸需要被检测。
最常用的检测方法是紫外吸收检测。
氨基酸在紫外区域有特定的吸收峰,对应着特定的波长。
通过测量样品在不同波长下的吸光度,可以得到吸收峰的强度。
根据吸光度和吸光度与浓度之间的关系,可以计算出样品中各种氨基酸的浓度。
最后,根据样品中氨基酸的浓度,通过一定的计算公式,可以定量地确定样品中各种氨基酸的含量。
通常,会利用标准曲线法,即利用已知浓度的氨基酸标准溶液制备一系列浓度不同的标准曲线。
将样品中各种氨基酸的吸光度值与标准曲线进行比较,就可以得到各种氨基酸的浓度。
综上所述,氨基酸分析仪通过分离、检测和定量的步骤,可以对样品中的氨基酸进行分析,从而确定样品中各种氨基酸的含量。
高效液相色谱化学发光检测法测定氨基酸
高效液相色谱化学发光检测法测定氨基酸1氨基酸氨基酸是类似于蛋白质的有机化合物,也是人体代谢过程中不可或缺的物质,具有重要的生理功能,人们发现它对人体健康有重要作用。
氨基酸分为线粒体氨基酸和细胞质氨基酸,它们可以通过液相色谱(HPLC)和其他技术进行测定。
2高效液相色谱化学发光检测法高效液相色谱化学发光检测法(HPLC-FLD)是一种非常常用的检测方法,是在液相色谱的基础上添加了化学发光探测器。
它具有高灵敏度、高分离度和快速分析等优势,得到了广泛应用。
在研究氨基酸中,HPLC-FLD可以较为准确地检测和分离氨基酸,从而实现对氨基酸浓度的准确测定及调整。
3工作原理HPLC-FLD工作过程是:在分析柱内,将水,乙腈,乙醇等溶剂混合,氨基酸将在柱中混有不同的动力学行为。
当氨基酸离开柱时,经测量氨基酸在化学发光探测器上发出的发光信号,可以计算出它们的相对浓度,从而判断氨基酸含量。
4检测步骤(1)样品准备:样品中含有氨基酸的各种溶液,需经过提取,稀释或洗脱处理等,以便于之后的检测。
(2)色谱层析:把样品按照一定的色谱层析方式,分离不同的成分,从而使不同的成分分离出来。
(3)发光测定:在这一步,人们可以利用HPLC-FLD测定氨基酸。
首先,样品将通过有机溶剂组合作用,激活发光反应,然后将样品通过化学发光探头的发光状态记录下来,并计算概率密度,最终得出样品中氨基酸的含量和比例。
5优势HPLC-FLD在检测氨基酸中有很多优势:(1)可以快速准确地检测氨基酸;(2)可实现高灵敏度和高分离度;(3)化学发光探头具有长寿命、可靠以及易于操作等优势;(4)可克服外界因素对分析结果的影响;(5)可以长时间连续检测,勤奋节约成本。
6结论HPLC-FLD是一种高效的技术,在检测氨基酸方面具有较高的准确性和效率,它不但能够用于氨基酸的检测,还可用于其他有机物分离和测定,在生物和药物领域都有广泛应用。
有机化学氨基酸分析
有机化学氨基酸分析1.色谱法色谱法是一种广泛使用的氨基酸分析方法,主要包括气相色谱法(GC)和液相色谱法(LC)。
气相色谱法:气相色谱法主要适用于描绘和鉴定原料氨基酸的种类、含量和结构等信息。
在该方法中,氨基酸样品首先通过酸水解生成对应的酸,然后酸再经甲醇酯化生成甲酯化酸。
最后通过气相色谱分离并检测酸甲酯化物。
液相色谱法:液相色谱法主要适用于定量分析氨基酸含量。
液相色谱法将氨基酸样品进行衍生化反应,如酰氯化反应或酸酐酯化反应,生成稳定的色氨酸酰胺衍生物,然后分离并检测各个衍生物。
2.光谱法主要包括紫外-可见吸收光谱法、红外光谱法和核磁共振光谱法等。
这些方法可以用于研究和确定氨基酸的结构和功能。
紫外-可见吸收光谱法:氨基酸溶液在特定波长范围内对紫外或可见光的吸收程度可以用来定量分析氨基酸的含量。
红外光谱法:红外光谱法可以用来研究氨基酸分子中的官能团和结构信息。
核磁共振光谱法:核磁共振光谱法可以提供关于氨基酸分子中原子的化学位移和耦合常数等信息。
3.电化学法电化学法主要包括电位滴定法和电化学发光法。
电位滴定法:通过测定氨基酸溶液的电化学行为,如氧化还原电位的变化,可以定量分析氨基酸的含量和测定其在酸碱条件下的酸解离常数。
电化学发光法:氨基酸在特定条件下通过电化学反应发光,凭借发光的强度可以定量分析氨基酸的浓度。
4.质谱法质谱法主要包括质子化时间飞行质谱法(PIT-TOFMS)和质子化辅助激光解吸电离质谱法(PALDIMS)等。
质子化时间飞行质谱法:PIT-TOFMS可以在非常短的时间内通过氨基酸分析样品中的氨基酸类型和含量。
该方法的优势在于可以同时测定样品中的多种氨基酸。
质子化辅助激光解吸电离质谱法:PALDIMS利用激光对氨基酸样品进行解离和电离,然后通过质谱仪进行质量分析。
该方法可以提供对氨基酸的结构、组成和含量等信息。
综上所述,有机化学氨基酸分析方法包括色谱法、光谱法、电化学法和质谱法等。
这些方法可以用于氨基酸的种类、含量、结构和功能的研究和分析。
氨基酸分析仪原理
氨基酸分析仪基本原理及应用
氨基酸分析仪法与HPLC法比较
近年来常见常用的检测氨基酸的液相方法不少,主 要介绍以下几种常用的方法与氨基酸分析仪法进行比较: (一)OPA法(邻苯二甲醛)(反应机理略) 最大的不足之处是:做全分析时需配以其他技术一起使 用,方可与带有仲氨基团的氨基酸进行反应。赖氨酸及 胱氨酸衍生物荧光较弱,灵敏度低。因为OPA是快速反应 剂,有些氨基酸反应极其不稳定,特别是甘氨酸、赖氨 酸衍生物的信号衰减很快,一天变化很大。从以往我们 做的实验来看此方法的变异系数CV%一般为5%左右,个 别的氨基酸如组氨酸可达9%左右,尤其对带有盐分的饲 料氨基酸类样品特别不适合,因样品中带有的盐分直接 影响衍生(紫外法基线不好)。
L-8900 AAA的分析原理
1、样品中的氨基酸在低PH的条件下都 带有正电荷,在阳离子交换树脂上均被 吸附,但吸附的程度不同,碱性氨基酸结 合力最强其次为中性氨基酸、酸性氨基 酸结合力最弱。 2、按照氨基酸分析仪设定的洗脱程 序,用不同离子强度、PH值的缓冲液依 次将氨基酸按吸附力的不同洗脱下来, 3、分离后的氨基酸与茚三酮试剂在高 温反应器中进行衍生反应,生成可以被 分光光度计检测的有色物质,然后在检 测器中被检测出来。
+ H + H -
R
C H
N H 2
C O O
-
_
-
R
C H + N H 3
氨基酸分析原理与方法
氨基酸分析原理与方法氨基酸是构成蛋白质的基本组成单位,它们的结构包含一个氨基基团(NH2)、一个羧基(COOH)以及一个特定的侧链基团(R)。
氨基酸分析的原理是通过特定的化学反应将氨基酸转化为可检测的化合物,然后利用不同的方法进行测定。
样品的预处理是为了去除样品中可能存在的干扰物质,例如油脂、无机盐以及非氨基酸的有机物。
常用的方法包括浸提、溶解、离心沉淀等。
蛋白质的水解是将蛋白质分解为氨基酸的过程。
水解反应一般使用强酸、强碱或酶类催化剂来进行。
其中,酶法水解是一种常用的方法,特点是反应条件温和,水解效率高。
氨基酸的衍生反应是将氨基酸中的羧基或氨基基团转化为可以检测的化合物。
常用的方法有酸衍生、碱衍生、甲酰化、丙酰化等。
例如,酰化反应可以将氨基酸中的氨基基团转化为酰基氨基酸,它在紫外光下有特征的吸收峰,便于测定。
衍生物的分离和定量测定是通过分析仪器进行的。
常用的方法包括高效液相色谱(HPLC)、气相色谱(GC)、毛细管电泳(CE)等。
其中,HPLC是最常用的方法,它可以根据不同的分离柱和检测器选择,实现对氨基酸的定量测定。
1.离子交换色谱法:利用离子交换树脂将氨基酸与其他离子区分开,然后通过温度梯度或者梯度洗脱的方法进行分离和定量。
2.薄层色谱法:将衍生后的氨基酸样品沿着特定的固定相(通常是硅胶或者聚脱氢乙烯等)的薄层上进行分离。
然后通过显色剂的染色或者紫外检测器检测颜色变化或吸收峰进行定量。
3.毛细管电泳法:利用毛细管内的电泳作用将氨基酸分离。
根据不同氨基酸的电荷、大小、疏水性等理化性质的差异,通过改变电流、电压、电泳缓冲液的pH值和离子强度等条件,实现氨基酸的分离和定量。
4.气相色谱法:首先将氨基酸进行酯化反应,然后通过气相色谱进行分离和定量。
气相色谱法具有高分辨率、灵敏度高等特点,适用于分析含有少量氨基酸的样品。
综上所述,氨基酸分析是通过将氨基酸转化为可检测的化合物,然后利用不同的方法进行分离和定量的过程。
测定氨基酸的方法以及试剂
一采用氨基酸自动分析仪测定氨基酸1.氨基酸测定原理:食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。
2.测定氨基酸所用仪器:真空泵;恒温干燥箱;水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30mL。
用去离子水冲洗干净并烘干;真空干燥器(温度可调节);氨基酸自动分析仪。
3.测定氨基酸所用试剂及其配制方法:3.1试剂:全部试剂除注明外均为分析纯,实验用水为去离子水。
浓盐酸(优级纯);苯酚(须重蒸馏); 混合氨基酸标准液(仪器制造公司出售):0.00250mol/L; 不同pH值柠檬酸钠缓冲液;氢氧化锂(LiOH·H2O);冰乙酸(优级纯);二甲基亚砜(C2H6OS);水合茚三酮(C9H4O3·H2O);还原茚三酮(C18H10O6·2H2O);NaOH;高纯氮气(纯度99.99%);冷冻剂:市售食盐与冰按1∶3混合。
3.2试剂配制方法:3.2.1. 6mol/L盐酸∶浓盐酸(3.1)与水1∶1混合而成。
3.2.2. pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7·2H2O)和16.5mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2。
pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至3.3。
pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。
pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。
3.2.3. 茚三酮溶液pH5.2的乙酸锂溶液:称取氢氧化锂(LiOH·H2O)168g,加入冰乙酸(优级纯)279mL,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至5.2。
氨基酸分析原理和色谱条件
氨基酸分析原理和色谱条件氨基酸分析是一种常用的生物化学分析方法,用于确定样品中各种氨基酸的含量和种类。
氨基酸是构成蛋白质的基本单位,对于研究蛋白质的结构和功能具有重要意义。
氨基酸分析的原理是通过分离、定量和鉴定各种氨基酸,从而获得样品中氨基酸的信息。
在样品前处理中,首先需要将蛋白质样品水解为氨基酸。
水解反应可以通过酸、碱或酶的作用来实现。
其中,最常用的水解试剂是6M盐酸和6M氢氧化钠。
将样品加入到水解试剂中,通常在110°C下加热8-24小时,使蛋白质完全水解为氨基酸。
水解反应后,通常使用酸或碱中和水解液,保证pH值在中性附近。
在分析测定中,最常用的方法是色谱法。
色谱法根据氨基酸的化学性质,将其分离并定量。
常用的色谱方法有两种,分别是离子交换色谱和手性色谱。
离子交换色谱是氨基酸分析的传统方法之一,其基本原理是利用氨基酸的带电性质,在离子交换树脂上发生吸附和洗脱。
在离子交换色谱中,通常使用强阳离子交换树脂和弱酸模式进行分析。
样品在酸性条件下通过样品加载装置,然后在逐渐提高pH值的梯度条件下进行洗脱。
各种氨基酸根据其酸碱性质的不同,以不同的速率洗脱出来,从而实现氨基酸的分离和定量。
手性色谱是分析氨基酸的另一种方法,其基本原理是利用氨基酸的手性性质进行分离。
氨基酸是手性分子,大部分氨基酸都有两种手性异构体,即L-型和D-型。
手性色谱使用手性固定相,如手性萃取剂、手性离子对等,可以将L-型和D-型氨基酸分离开来,并进行定量。
色谱条件对氨基酸分析的结果具有重要影响。
在离子交换色谱中,选择合适的离子交换树脂和洗脱缓冲液的pH值,以及合适的梯度条件,都对结果产生影响。
在手性色谱中,选择合适的手性固定相,以及优化洗脱条件和检测方法,也对结果产生重要影响。
总之,氨基酸分析是一种重要的生物化学分析方法,可以对样品中的氨基酸进行分离、定量和鉴定。
通过合适的样品前处理和选择适当的色谱方法和条件,可以获得准确和可靠的氨基酸分析结果。
高效液相色谱法测定氨基酸含量的优化及应用
高效液相色谱法测定氨基酸含量的优化及应用一、前言氨基酸是构成生物体蛋白质的基本单元,具有重要的生物学功能,如构建细胞结构、参与免疫反应以及转运、储存等多种生命活动。
而测定氨基酸含量的方法有很多种,其中,高效液相色谱法(HPLC)具有高灵敏度、高分辨率、快速分离、定量准确、重现性好等特点,因此被广泛应用于氨基酸分析领域。
本文重点介绍了高效液相色谱法测定氨基酸含量的原理、优化及应用。
二、方法原理高效液相色谱法是利用固体相、液相以及流动相间相互作用的分离技术,它通过改变固体相和液相的化学性质和物理性质,通过不同流动相的渗透能力与氨基酸分子的分子量、极性、结构特征等因素的相互作用,实现对氨基酸化合物分离、检测和定量的目的。
三、优化方案1.色谱柱的选择色谱柱的选择直接影响着 HPLC 法测定氨基酸含量的敏感度和分离效果。
常用的色谱柱有离子交换柱、反相柱、手性柱。
2.氨基酸样品的制备氨基酸的提取方法主要有:硫酸-氯化氢法、热酸解法和酶切法。
其中前两种方法操作简单,容易控制,常用于高精度测定。
3.流动相的优化流动相中添加适量的酸或碱,有利于提高分离度和氨基酸的稳定性。
同时加入有机物质类的前处理,在未来进行样品的提取、清洗等操作,有助于减少基础样品产生。
4.色谱条件的优化尽量缩短柱温度,降低流速,减少相互扰动,提高分辨率。
通常,正向向柱洗液的浓度可逐渐提高,也可采用反向洗液以加速洗脱。
四、实验结果分析实验结果显示,优化后的 HPLC 法测定氨基酸含量其灵敏度、准确度、重现性等指标均有了明显的提高,特别是样品前处理及流动相的优化方案都有利于提高样品的稳定性和可检出性。
五、应用展望高效液相色谱法测定氨基酸含量的优化方案在氨基酸分析领域具有广泛的应用前景。
在临床医学、食品安全、环境污染等领域,测定氨基酸含量对于人类健康与生产活动具有重要意义,因此优化后的 HPLC 法测定氨基酸含量将被广泛应用于相关领域。
总之,高效液相色谱法测定氨基酸含量的优化方案既有理论指导又有实验可行性,为实现准确测定氨基酸含量提供了新思路和新途径。
氨基酸常用的检测方法和原理
氨基酸常用的检测方法和原理氨基酸是构成蛋白质的基本组成单元,对于研究蛋白质结构和功能具有重要意义。
因此,准确、快速地检测氨基酸的方法和原理是科学研究和实际应用中的关键问题之一。
本文将介绍几种常用的氨基酸检测方法及其原理。
一、纸层析法纸层析法是一种简单、快速的氨基酸检测方法。
其原理是根据氨基酸在纸上的迁移速度差异来分离和检测氨基酸。
首先,将待测样品与色谱溶剂混合,然后将混合液滴在纸上,待溶剂上升至一定高度后,根据不同氨基酸的迁移距离和颜色变化,可以判断样品中是否含有特定的氨基酸。
二、高效液相色谱法(HPLC)高效液相色谱法是一种精确、灵敏的氨基酸检测方法。
其原理是利用氨基酸在液相中的分配系数差异来实现分离和检测。
首先,将待测样品通过色谱柱进行分离,然后通过检测器检测样品中各种氨基酸的浓度。
由于不同氨基酸的分配系数不同,它们在色谱柱中的停留时间也不同,从而实现了氨基酸的分离和检测。
三、毛细管电泳法毛细管电泳法是一种高效、快速的氨基酸检测方法。
其原理是利用氨基酸在电场作用下在毛细管中的迁移速度差异来实现分离和检测。
首先,将待测样品注入毛细管中,然后施加电场,通过检测器检测样品中各种氨基酸的浓度。
由于不同氨基酸的电荷性质和大小不同,它们在电场作用下的迁移速度也不同,从而实现了氨基酸的分离和检测。
四、质谱法质谱法是一种高精确度、高灵敏度的氨基酸检测方法。
其原理是利用氨基酸分子在质谱仪中的质量-电荷比差异来实现分离和检测。
首先,将待测样品通过质谱仪进行分离,然后通过检测器检测样品中各种氨基酸的质量-电荷比。
由于不同氨基酸的分子量不同,它们在质谱仪中的质量-电荷比也不同,从而实现了氨基酸的分离和检测。
纸层析法、高效液相色谱法、毛细管电泳法和质谱法是常用的氨基酸检测方法。
每种方法都有其独特的原理和优势,可以根据实际需要选择合适的方法进行氨基酸的检测。
这些方法的应用不仅在科学研究中具有重要意义,也在食品、医药等领域有着广泛的应用前景。
氨基酸液相检测方法
氨基酸液相检测方法引言:氨基酸是构成蛋白质的基本组成单元,对于研究蛋白质结构和功能具有重要意义。
液相检测方法是一种常用的氨基酸分析方法,它具有灵敏度高、分辨率好、操作简便等优点。
本文将介绍氨基酸液相检测方法的原理、步骤和应用。
一、原理氨基酸液相检测方法是利用液相色谱技术实现的。
液相色谱是一种将混合物分离成各个组分的方法,其原理是根据各个组分在色谱柱中的保留时间来进行分离。
在氨基酸液相检测中,常采用离子交换色谱柱或手性色谱柱进行分离。
离子交换色谱柱是利用固定在柱子上的离子交换剂与氨基酸分子间的静电作用进行分离,根据氨基酸的电荷性质进行选择性吸附和洗脱。
而手性色谱柱则是利用固定在柱子上的手性选择性吸附剂与氨基酸分子的手性结构进行分离,根据氨基酸的手性性质进行选择性吸附和洗脱。
二、步骤氨基酸液相检测方法的步骤主要包括样品制备、色谱条件设定、色谱分离和检测等。
1. 样品制备:将待测样品进行适当处理,如酸水解或碱水解,以使氨基酸分子释放出来。
然后将样品进行过滤和稀释,以便进行后续的色谱分离和检测。
2. 色谱条件设定:选择合适的色谱柱和流动相,根据样品特性和分离要求进行条件设定。
对于离子交换色谱柱,可以选择不同的离子交换剂和缓冲剂,调节pH值和离子浓度等;对于手性色谱柱,可以选择不同的手性选择性吸附剂,调节流动相的组成和流速等。
3. 色谱分离:将样品注入色谱柱,利用色谱柱内固定相的选择性吸附作用,将各个组分分离开来。
根据各个氨基酸的特性,调节流动相的条件,使目标氨基酸在适当的保留时间内分离出来。
4. 检测:利用检测器对分离出的氨基酸进行检测。
常用的检测器有紫外检测器和荧光检测器。
紫外检测器可以根据氨基酸的吸收特性来进行检测,荧光检测器则可以根据氨基酸的荧光特性来进行检测。
三、应用氨基酸液相检测方法在生物医药、食品安全等领域有着广泛的应用。
在生物医药领域,氨基酸液相检测方法可以用于蛋白质结构和功能研究,如氨基酸序列分析、蛋白质修饰研究等。
氨基酸分析仪概况
氨基酸分析仪概况氨基酸分析仪是一种用于测定氨基酸含量和氨基酸序列的仪器。
由于氨基酸在生命体内的重要作用,氨基酸分析在药物研发、蛋白质结构研究、食品安全检测等领域具有广泛的应用。
本文将对氨基酸分析仪的原理、类型、应用和发展进行详细介绍。
一、氨基酸分析仪的原理1.色谱法原理色谱法是使用气相色谱或液相色谱进行氨基酸的分离。
其中,气相色谱法(GC)是最常用的方法之一,其原理是将氨基酸样品蒸发成气体,通过柱子进行分离,再利用检测器来检测分离出的氨基酸。
液相色谱法(HPLC)则是将样品通过柱子进行分离,再利用检测器进行检测。
2.质谱法原理质谱法是使用质谱仪来分析氨基酸的含量和序列。
其中,质谱仪可分为两类:质谱-质谱仪(MS/MS)和飞行时间质谱仪(TOF-MS)。
MS/MS是通过将氨基酸样品进行离子化,并在质谱仪中进一步分离与检测。
TOF-MS则是利用分子在质荷比与时间之间的关系进行分析。
二、氨基酸分析仪的类型根据氨基酸分析仪的原理和应用领域的不同,可以将氨基酸分析仪分为多种类型。
1.色谱法氨基酸分析仪色谱法氨基酸分析仪主要包括气相色谱仪和液相色谱仪。
气相色谱仪主要适用于挥发性氨基酸的分析,其优点是分辨率高、分离效果好。
液相色谱仪则适用于非挥发性氨基酸的分析,可以根据实际需求选择柱子和检测器。
2.质谱法氨基酸分析仪质谱法氨基酸分析仪主要包括质谱-质谱仪(MS/MS)和飞行时间质谱仪(TOF-MS)。
MS/MS可用于测定氨基酸中的特定氨基酸,如赖氨酸和精氨酸等,同时还可以用于测定氨基酸序列。
TOF-MS则适用于氨基酸含量的分析,其分辨率高,可以同时分析多个氨基酸。
三、氨基酸分析仪的应用1.药物研发氨基酸在药物研发中起着重要的作用,例如生物合成药物中的氨基酸序列是其药效的决定因素之一、氨基酸分析仪可以用于药物研发过程中的质量控制,确保药物质量稳定。
2.蛋白质结构研究蛋白质是由氨基酸构成的,因此氨基酸分析是蛋白质结构研究的重要一环。
薄层色谱法氨基酸
薄层色谱法氨基酸薄层色谱法是一种常用的分离和检测技术,广泛应用于化学、生物化学和药学等领域。
本文将介绍薄层色谱法在氨基酸分析中的应用。
1.薄层色谱法原理薄层色谱法基于分配作用和吸附作用实现物质的分离。
其原理可以简单概括为:样品溶液在固定相上经过分配和吸附作用,不同成分会因相互作用力的不同而在固定相上表现出不同的迁移速度,从而实现分离。
在薄层色谱法中,通常使用硅胶或者氧化铝作为固定相,涂布在玻璃、铝板或塑料片等载体上形成薄层。
样品溶液通过毛细管作用被带上薄层,然后放置在合适的溶剂系统中,待溶剂沿薄层上升至一定高度后,取出晾干,最后使用染色剂或显色剂进行可视化检测。
2.氨基酸分析中的薄层色谱法应用薄层色谱法在氨基酸分析中得到广泛应用,其主要包括以下方面:2.1氨基酸定性分析薄层色谱法可以用于氨基酸的定性分析。
首先,将待测样品中的氨基酸经过适当的前处理步骤(如水解、衍生化等),得到能够在薄层上显示明显色斑的化合物。
然后,在薄层色谱板上涂布固定相,并将样品溶液加在起点处。
通过与已知标准氨基酸进行比较,根据色斑的位置和颜色来确定待测样品中存在的氨基酸种类。
2.2氨基酸含量测定薄层色谱法也可用于氨基酸的含量测定。
这需要事先制备一系列含有不同浓度氨基酸的标准曲线。
然后,将待测样品和标准曲线的氨基酸溶液分别涂布在薄层上,并使用相同的溶剂系统进行开发。
通过比较待测样品和标准曲线上色斑的相对强度,可以计算出待测样品中各种氨基酸的含量。
2.3氨基酸纯度检验薄层色谱法还可用于检验氨基酸的纯度。
将纯净氨基酸和待测样品溶液分别涂布在薄层上,并使用相同的溶剂系统进行开发。
比较两者的色斑位置和颜色,如果一致则说明待测样品为纯净氨基酸,否则可能存在杂质或其他成分。
3.TLC与其他方法的比较与其他氨基酸分析方法相比,薄层色谱法具有以下优点:快速:薄层色谱法分析时间短,通常只需要数分钟至数小时。
灵敏度高:对于某些氨基酸,薄层色谱法的检测限可以达到微克甚至亚微克的级别。
氨基酸纸色谱实验报告
氨基酸纸色谱实验报告实验目的,通过氨基酸纸色谱实验,了解氨基酸的分离和鉴定方法,掌握氨基酸的色谱分离技术。
实验原理,氨基酸是生物体内重要的有机化合物,它们具有氨基和羧基,是生物体内蛋白质的组成单位。
氨基酸纸色谱是利用氨基酸在纸上移动的速度差异,通过色素显色和色谱分离的方法,对氨基酸进行分离和检测。
实验仪器和试剂,氨基酸标准品、纸色谱板、色谱槽、显色剂(如二硝基苯胺溶液等)。
实验步骤:1. 将纸色谱板切成适当大小,用氨基酸标准品在纸板上均匀涂抹。
2. 将涂有氨基酸的纸板放入色谱槽中,加入适量显色剂。
3. 观察显色情况,记录氨基酸在纸板上的色谱图谱。
4. 根据色谱图谱,计算氨基酸的Rf值,并进行鉴定。
实验结果与分析:通过实验,我们成功地分离了氨基酸,并得到了色谱图谱。
根据色谱图谱,我们计算出了各个氨基酸的Rf值,并进行了鉴定。
实验结果表明,氨基酸在纸色谱板上的移动速度存在差异,可以通过色谱分离的方法进行检测和鉴定。
实验结论:氨基酸纸色谱实验是一种简单、有效的氨基酸分离和鉴定方法。
通过本次实验,我们掌握了氨基酸纸色谱的操作技术,并对氨基酸的分离和检测有了更深入的了解。
实验注意事项:1. 在实验操作过程中,要注意纸色谱板的处理,避免污染和损坏。
2. 显色剂的选择和使用要准确,避免影响实验结果。
3. 实验后要及时清洗实验仪器和试剂,保持实验环境的整洁。
通过本次氨基酸纸色谱实验,我们对氨基酸的分离和检测方法有了更深入的了解,这对于进一步开展相关研究具有重要的意义。
希望本次实验能够为相关领域的学习和研究提供参考和帮助。
气相色谱法检测蛋白质中的氨基酸
气相色谱法检测蛋白质中的氨基酸氨基酸是构成蛋白质分子的基本组成单元,具有重要的生物学功能。
了解蛋白质样品中氨基酸的组成及含量对生物医学研究、药物研发和食品安全等领域具有重要意义。
气相色谱法(Gas Chromatography,GC)是一种常用的分离和定量分析方法,广泛应用于蛋白质中氨基酸的检测。
一、气相色谱法原理气相色谱法利用气态载气作为溶剂,通过样品挥发性物质在固定相柱上的分离,进而实现定量检测。
对于氨基酸的分析,需要先将蛋白质样品水解为氨基酸,并进行衍生化处理以提高检测灵敏度。
常见的氨基酸衍生化方法包括甲氧基化、甲胺基化等。
二、气相色谱仪器设备气相色谱法检测蛋白质中的氨基酸需要使用气相色谱仪。
一般而言,气相色谱仪由进样系统、分离系统和检测系统组成。
进样系统负责将衍生化后的氨基酸溶液注入气相色谱柱,分离系统通过柱上固定相的特异性分离,将不同的氨基酸成分进行纵向分离。
检测系统则利用检测器对分离后的组分进行定量检测。
三、气相色谱法的优点相比于其他分析方法,气相色谱法在氨基酸分析中具有一些明显的优势。
首先,气相色谱法分离效果好,能有效地分离复杂的氨基酸混合物。
其次,气相色谱法具有较高的灵敏度和准确度,可以实现对微量氨基酸的检测。
此外,气相色谱法的操作相对简便,且分析速度快,适用范围广。
四、气相色谱法在蛋白质氨基酸分析中的应用气相色谱法在蛋白质氨基酸分析中有着广泛的应用。
首先,气相色谱法可以通过对不同蛋白质样品中氨基酸组成和含量进行分析,来评估蛋白质的相对含量及质量。
其次,气相色谱法可以用于鉴定蛋白质样品中氨基酸的结构和序列,为蛋白质结构及功能的研究提供重要信息。
在药物研发领域,气相色谱法可以用于检测药物中的氨基酸残基,帮助确定药物的结构和纯度。
对于食品安全方面,气相色谱法可以用于检测蛋白质食品中的氨基酸含量,判断食品的质量和安全性。
总结:气相色谱法作为一种常用的分离和定量方法,在蛋白质中氨基酸的检测中发挥了重要的作用。
06薄层色谱法定性分析氨基酸
薄层色谱法分析氨基酸一、实验目的1 了解利用硅胶G薄层色谱法分离氨基酸的原理;2 掌握薄层色谱的操作技术。
二、实验原理将一定粒度的吸附剂均匀的涂铺在表面光洁的玻璃或朔料平板上,制成薄层板。
然后把待分析试样的溶液滴加在薄层板一端的起始线上。
再把点样后的薄板放在层析缸中,使薄层板的底端浸入适当的溶剂,展开剂在薄层的毛细管作用下。
缓慢的在薄层上向前移动,当展开剂经过原点时,就带着试样组分一起向前移动,在展开的过程中,组分在俩相之间发生多次的吸附-解吸平衡,由于吸附剂对不同组分的吸附能力不同。
展开一定时间后,不用组分互相分离。
各组分在薄层板上的距离用比移值Rf表示。
公式 Rf=a/c(a 为原点中心至斑点中心的距离,c 为原点中心至溶剂前沿的距离)R f 值相差越大则分离越好。
一般在0.2~0.8之间,各组分的Rf值之差应大于0.05。
三、仪器与试剂仪器:层析缸、硅胶板、玻璃毛细管、研钵、干燥箱玻璃喷雾器试剂:、展开剂(正丁醇:乙酸:蒸馏水=3:1:1)、甘氨酸、色氨酸、HCl溶液(0.01mol/L)、显色剂(茚三酮)四、实验步骤1 点样在薄层板一端距离边缘2cm处作起始线。
用玻璃毛细管吸取待测液点在起始线中央处,同法将标准液点在样点一侧,相邻斑点之间距离1-1.5cm,斑点直径控制在2~3mm左右。
2层析在层析缸中倒入适量展开剂(展开剂深度约1.0-1.2cm),加盖密封0.5小时,使展开槽内展开剂蒸汽饱和。
然后把点好样的薄层板近垂直放到层析缸中,点样端倾入层析液约0.5cm(注:样点不能浸入到溶液中)。
展开适当时间后取出硅胶板,并标出前沿位置,吹干,均匀地喷洒茚三酮显色剂,吹干后置于烘箱中(40度)烘干,使斑点显色,用铅笔尖标出斑点中心位置。
3定性分析测量各斑点的“原点中心至斑点中心”和“原点中心至溶剂前沿”的距离,分别计算出各自的R f值。
将展开后的样品斑点与氨基酸标准斑点比较,Rf值相等或相近的斑点为同一种氨基酸。
氨基酸分析仪的原理
氨基酸分析仪的原理氨基酸分析仪是一种用于分析和测定样品中氨基酸含量的仪器。
它采用了高效液相色谱技术(HPLC),通过检测和分离样品中的氨基酸,然后使用特定的检测方法来确定各个氨基酸的浓度。
氨基酸分析仪的工作原理基于氨基酸的特性。
当样品进入仪器后,首先需要进行样品的预处理,以提取目标氨基酸。
常用的预处理方法包括酸水解、酶解和固相萃取等。
经过预处理后,得到的样品将注入进高效液相色谱柱。
高效液相色谱柱是氨基酸分析仪中的核心部件。
它使用特殊的填料材料来分离混合样品中的各个氨基酸。
填料材料通常是一种多孔材料,具有高比表面积和特定的化学结构,可以与氨基酸发生相互作用。
当样品通过填料时,不同氨基酸会因为其特定的物化性质而在填料中发生吸附和解吸附过程,从而被有效地分离。
在色谱柱中,样品中的氨基酸以一定的顺序进入和离开柱。
为了分离和检测各个氨基酸,需要选用适当的移动相(溶剂)和梯度程序。
移动相通常是一种或多种有机溶剂和缓冲液的混合物,根据氨基酸的亲水性和亲油性进行调节。
在柱后的检测器中,氨基酸被逐个检测并测量。
常用的检测方法包括紫外吸收检测器和荧光检测器等。
例如,紫外吸收检测器可以根据不同氨基酸的吸收光谱特征,通过测量其在特定波长下的吸光度来定量分析各个氨基酸的浓度。
最后,通过数据处理和分析软件,可以对检测到的各个氨基酸的峰进行定量分析和结果解释。
这样就可以得到样品中各个氨基酸的含量和相对比例。
总的来说,氨基酸分析仪利用高效液相色谱技术对样品中的氨基酸进行分离和测定,通过特定的预处理、样品注入、分离、检测和数据处理等步骤,实现对氨基酸含量的精确测量。
氨基酸分析仪原理
氨基酸分析仪原理
氨基酸分析仪的原理可以分为两个基本部分:色谱分离和检测。
首先是色谱分离。
氨基酸分析仪使用液相色谱法进行氨基酸的分离。
将待测样品中的氨基酸与特定的试剂反应生成衍生化合物,提高氨基酸的稳定性和检测性能。
然后,样品溶液经过进样装置进入液相色谱柱。
液相色谱柱是由高效分离固定相填充的管状设备。
不同氨基酸根据其化学性质和物理性质在固定相上的分配系数不同,因此会以不同的速率通过色谱柱,实现氨基酸的分离。
其次是检测。
液相色谱柱通过检测器与数据处理系统连接。
最常用的检测方法是紫外光检测法。
在紫外线的激发下,氨基酸会发生吸收,产生特定的吸收峰。
检测器可以测量样品中吸收光强的变化,并转化为电信号,通过数据处理系统进行处理和分析,最终得到各个氨基酸的浓度。
在氨基酸分析仪中,还可以使用其他检测方法,如荧光检测法或融合球束电泳等,以满足不同实验需求。
但无论采用何种检测方法,氨基酸分析仪的核心原理仍然是通过色谱分离和检测来实现氨基酸的定量分析。
氨基酸 hplc
氨基酸 hplc
氨基酸HPLC分析是指使用高效液相色谱法(High Performance Liquid Chromatography,HPLC)对氨基酸进行分析的方法。
HPLC是一种分离和检测复杂混合物中特定成分的高效技术,广泛应用于生物、制药、食品和化工等领域。
氨基酸HPLC分析的原理是利用不同氨基酸在固定相和流动相之间的吸附、分配和疏水性等相互作用的不同,实现氨基酸的分离。
通过与标准品进行比较,可以确定不同氨基酸的种类和浓度。
在进行氨基酸HPLC分析时,通常需要将样品进行前处理,以去除杂质和提高分离效果。
常用的前处理方法包括柱前衍生化、溶剂萃取、固相萃取等。
其中,柱前衍生化是将氨基酸转化为可被HPLC检测到的衍生物,以提高检测灵敏度。
氨基酸HPLC分析具有高分离效能、高灵敏度和高分辨率等特点,可以同时分离多种氨基酸,并对其进行定性和定量分析。
此外,HPLC还可以与其他检测器联用,如紫外检测器、荧光检测器和电化学检测器等,以提高检测灵敏度和选择性。
在实际应用中,氨基酸HPLC分析主要用于食品、生物制品、药品等领域的氨基酸分析。
例如,在食品工业中,可以用于检测食品中的氨基酸成分,以评估其营养价值和品质。
在生物制药领域,可以用于药物中氨基酸的含量测定和质量控制。
总之,氨基酸HPLC分析是一种高效、灵敏和准确的氨基酸分析方法,具有广泛的应用前景。
随着技术的不断发展和完善,氨基酸HPLC分析将在更多领域发挥重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析原理和色谱条件
一、氨基酸分析的须知:
(一)样品要求:样品应有代表性,固体样品必须过60目筛;液体样品需有一定的流动性;
办固体状的样品要保证能在称量纸上不流动。
对不难采集并需要我们处理的样品,常规样品一般固体样品5克左右,液体样品15ml左右;对难以收集的样品(如:酶、肽等)液体样蛋白含量应大于300μg/ml,体积不少于4ml;固体重量应不少于500μg。
(二)自己处理样品的同学和老师,应根据自己的样品状态,严格按照本室要求样品的处理方法处理样品。
并讲处理好的样品在星期二下午3点前送到测试中心氨基酸分析室,处理好的样品要同时送两份(两个盛有蒸干样品的25ml小烧杯),并提供样品的蛋白质含量、称样量、定容体积、加0.02NHCl体积等有关数据。
(样品处理方法见本附件)。
(三)因氨基酸分析需要柱后(或柱前)衍生,分析时间长,所以对氨基酸分析的上机浓度要求严格。
请各位老师和同学无论是自己处理样品还是需要氨基酸分析室处理样品都应准确知道自己所测样品的蛋白含量(或氨基态氮含量)。
如果需要本实验室处理样品时,提供的蛋白质含量的误差应控制±5%。
如20%的蛋白含量,提供的数据应为(18-22)%。
(四)氨基酸分析室仪为学校所有需要氨基酸分析的同学和老师服务,为了保证仪器能长期处于良好的运行状态除了我们机台的工作人员的努力外,还需要各位同学和老师的大力合作。
样品的浓度过高极易造成分离柱的污染和反应盘管爆裂(每个反应盘管3000元左右)并且测定的数据也不准确;样品的浓度过低直接影响分析结果的准确性。
对提供的原始数据不准确的样品,在上机分析时造成仪器损坏或氨基酸峰过低由送样人员负责。
因提供原始数据不准确的样品需要重新上机的样品,则需另收上机费。
(五)氨基酸的分析需要柱前或柱后衍生,衍生化试剂对分析结果会有一定的影响,对需要做影响因素分析的样品,应妥善保管好不同时间采集样品,待样品收集全后,一起处理、一起做。
这样更有利于对实验结果的分析。
(六)每做一个样品的氨基酸全分析(17种氨基酸),对仪器都是一次的严重的磨损。
为了使仪器能更好地为大家服务,请各位老师和同学根据自己的科研、论文的实际需
要和经费的情况合理安排样品的测定数量。
本科生、研究生的样品需要征得导师的同意后再送样(最好有导师的电话或书面通知)。
(七)氨基酸分析室对样品的测定结果负责,对数据有疑问的分析结果,我们共同探讨。
对有必要重做的样品我们可以重做,如果是分析测试的问题,我们不收任何费用。
如果是样品本身的问题则按实际费用收取测试费。
(八)氨基酸分析室的工作人员在样品分析好后,及时通知各位老师和同学。
在接到样品分析好后,请各位老师带好经费卡(或已到财务处划好帐的单子—第二联)。
我们在收到转账单后给出分析图谱。
对经常需要分析氨基酸样品的老师和同学,可以先记账,一个季度结一次。
(九)有关氨基酸分析的其他问题,我们将与有关老师和同学共同探讨。
二、游离氨基酸分析样品前处理方法(除蛋白)
固体样品:精确称取样品__mg加入10ml5%的磺基水杨酸沉淀2小时。
吸取一定的量于10000rpm/min离心15分钟。
取一定体积的上清液调pH至2左右定容(参考方法一份上清液加3份水),用0.45μm微膜过滤至样品杯中上机测定。
液体样品:精确精确吸取样品__ml加入等体积的10%的磺基水杨酸沉淀2小时。
吸取一定的量于10000rpm/min离心15分钟。
取一定体积的上清液调pH至2左右定容(参考方法一份上清液加3份水),用0.45μm微膜过滤至样品杯中上机测定。
附:游离氨基酸分析送样要求
1、样品应澄清,无可见渣子,放置或离心后不产生沉淀。
2、样品液应无色或仅为淡黄色。
色深样品必须经过脱色处理。
3、含盐量低。
样品液中的总离子强度不应大于0.5N。
含盐量过高必须经过脱盐处理。
4、含蛋白或多肽类物质必须除去。
样品需经0.45微米的滤膜过滤。
pH应控制在2左右。
三、水解氨基酸样品预处理
(一)蛋白质样品的前处理
(1)准确称取一定量的样品于特制的水解管底部,缓慢加入8ml6NHCl轻轻转动水解管,保证样品全部在试管底部并保证样品得到全部润湿,抽真空,维持10分钟后,在酒精喷灯上封口。
(2)110℃±1℃水解24小时。
(3)切开水解管用去离子水全部转移到__容量瓶中、定容,双层滤纸过滤,取滤液1ml 置于25ml小烧杯中,在加NaOH的真空干燥器中蒸干(水浴加热不超过45℃),加入__mlpH2.2的盐酸溶解后,溶液转移到样品瓶中备用。
(二)碱水解测定色氨酸样品前处理
精确称取一定量的样品放入已编号的特制水解管中,加入含5%SnCl2的5NNaOH__ml,抽真空封口110℃水解20小时,冷却、全部转移至__ml容量瓶中用6NHCl中和至中性,定容至刻度、摇匀、用双层滤纸过滤,上机测定水解样品中的色氨酸含量。
附:
5、单体氨基酸标样的配制:
氨基酸的分子量/20,即为称样量(mg),溶解后定容到500ml。
酸的纯度测定
用紫外做单一氨基酸的纯度测定时,用目的氨基酸的分子量/2,即为称样量(mg),溶解后定容到250或500ml.
碱水解测定色氨酸的样品称样量是酸水解的2倍,其余相同
四、酶蛋白、糖蛋白、肽等微量样品的氨基酸分析样品要
求:
1、样品中不含有盐或经酸水解后会形成结晶的组分。
2、酶蛋白、糖蛋白等样品的17种氨基酸定量分析,样品中的蛋白绝对含量应不低于200
μg;需另外测定色氨酸时样品的需求量要增加一倍。
若只做氨基酸的定性分析样品的需求量可减至定量分析样品需求量的三分之一左右。
样品若为液体时,在保证蛋白绝对含量的同时,其体积不得超过4ml。
3、肽类样品的氨基酸分析的样品要求参照酶蛋白的氨基酸分析的样品要求,肽样品中的氨
基酸残基数低于8个,则对样品的需求量可相应降低一倍。
4、液相色谱做氨基酸分析,用紫外检测器时,标样的浓度是100ppm左右(视氨基酸分子
量而定),定量分析的最低浓度应控制在10ppm左右;用荧光检测器时其浓度均降低10倍。
定性分析样品浓度可在各自相应浓度的基础上再降低5倍左右。
5、无论是定量分析还是定性分析,样品量越多,测定的数据越准确。
所以在对微量样品的
氨基酸分析时,在不影响其他测定项目和实验的前提下,尽量提供多一些样品。
五、分析原理和色谱条件
(一)安捷伦1100液相色谱分析氨基酸的工作原理(柱前衍生):具有不同R基团的氨基酸与邻苯二甲醛(OPA)自动衍生化反应后,不同的氨基酸都能生成唯一的衍生
物(产物具有紫外和荧光吸收)。
衍生物经C18柱分离、检测,外标法定量。
*脯氨酸是与氯甲基茐甲酯(FMOC)反应。
(二)H835-50氨基酸分析仪工作原理(柱后衍生):利用氨基酸在不同pH溶液中所带的正负电荷不同这一两性特点,只要在不同时间内流经离子交换柱的缓冲液的pH不同,氨基酸的带电情况就会发生变化,因而与离子交换树脂的结合能力也就不断地在变化,而达到分离的目的。
经柱分离的单一氨基酸与茚三酮在100水浴反应后、比色,外标法测定样品中氨基酸的含量。
(三)色谱条件。