数学:321《古典概型-古典概率》(新人教A必修3)
高中数学 3.2.1古典概型及其概率计算(一)课件 新人教A版必修3
4
(1)从装有 4 个球的口袋内摸出 2 个球,基本事件总数为 6.
(2)事件“摸出 2 个黑球”={(黑 1,黑 2),(黑 2,黑 3),(黑 1,黑 栏
3)},共 3 个基本事件.
目 链
(3)基本事件总数 n=6,事件“摸出两个黑球”包含的基本事件 接
数 m=3,故 P=12.
完整版ppt
5
P(A2)=P(B1∪B2∪B3)=P(B1)+P(B2)+P(B3)=35.
完整版ppt
9
点评:1.本题关键是通过分析得出公式中的 m、n,即某事件所 包含基本事件和事件总数,然后代入公式求解.
2.含有“至多”,“至少”等类型的概率问题,从正面突破较困 难,可考虑其反面,即对立事件,然后应用对立事件的性质 P(A)=1 -P(-A )进一步求解.
即 P(C)=396=14.
完整版ppt
16
点评: 单独看本题不简单,但通过形象、直
栏
观地表格将36种结果列举出来后问题就简单了, 目
列举时常用的还有坐标轴等,另外不借助图表
链 接
直接列举时,必须按某一顺序做到不重复、不
遗漏.
完整版ppt
17
►跟踪训练
3.任意说出星期一到星期日中的两天(不重
栏 目
完整版ppt
3
解析:在古典概型下,每一个基本事件出现的概 率均为.因此,要求P(A)关键是求出事件A中所包含 的基本事件的个数m,然后套用公式
P(A)=事件A包基含本的事基件本的事总件数的n 个数m
求得古典概型的概率. 由于4个球的大小相等,摸出每个球的可能性是 均等的,所以是古典概型.
完整版ppt
用列表法表示基本事件求概率
人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共15张PPT) (2)
2021年1月16日10时0分
7
古典概型 你能举出一个古典概型的例子吗?
2021年1月16日10时0分
8
随机事件的概念
随机事件的概率 随机事件概率的意义
概率
概率的基本性质
古典概型
特殊概率问题的求法
2021年1月16日10时0分9 Nhomakorabea 古典概型
问题:在古典概型下,任意随机事件的概率如何计算?
(2`)掷一枚质地均匀的骰子,出现的点数不大 于4的概率是多少? (3`)从A、B、C、D4名大学生中任意选3人做 上海世博会的志愿者,选中A的概率是多少?
(2)掷一枚质地均匀的骰子
(3)从A、B、C、D4名大学生中任意选3
人做上海世博会的志愿者
(4)甲乙两人做石头、剪子、布的出拳游戏
(5)甲乙丙三人排成一排照相
(6)从所有整数中任取一个数
(7)向一个圆面内随机地投射
一个点
(8)如图,某同学随机地向
一靶心进行射击
2021年1月16日10时0分
6
基本事件有哪些特点呢?
普通高中课程标准实验教科书 人教A版数学必修3 第三章 概率
2021年1月16日10时0分
1
随机事件的概念
随机事件的概率 随机事件概率的意义
概率
概率的基本性质
2021年1月16日10时0分
2
表1:掷硬币试验结果统计
小组
正面向上的次数 反面向上的次数
总数
1
56
44
100
2
60
40
100
3
40
60
100
6 100
3
15 15 15 15 20 20 100
人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共15张PPT)_2
(3)从A、B、C、D4名大学生中任意选3
人做上海世博会的志愿者
(4)甲乙两人做石头、剪子、布的出拳游戏
(5)甲乙丙三人排成一排照相
(6)从所有整数中任取一个数
(7)向一个圆面内随机地投射
一个点
(8)如图,某同学随机地向
一靶心进行射击
2020/11/3
6
基本事件有哪些特点呢?
2020/11/3
7
古典概型 你能举出一个古典概型的例子吗?
2020/11/3
10
古典概型
(4`)甲乙两人做石头、剪子、布的出拳游戏, 出现平局的概率是多少?
(5`)甲乙丙三人排成一排照相,甲站在中间的 概率是多少?
2020/11/3
11
古典概型
巩 例1 单选题是标准化考试中常用的题型,一般是 固 从A,B,C,D四个选项中选择一个正确答案。如 练 果考生掌握了考察的内容,他可以选择唯一正确的 习 答案。假设考生不会做,他随机的选择一个答案,
问他答对的概率是多少?
思 (1)如果是双选题,即A,B,C,D四个选项中只 考 有两个是正确的,那么猜对的难度是否加大了呢,
为什么?
(2)假设有20道单选题,如果有一个考生答对了 17道题,他是随机选择的可能性大,还是他掌握了 一定知识的可能性大?
2020/11/3
12
古典概型
巩 例2 同时掷两个骰子,计算:向上的点数之和是5 固 的概率是多少? 练 习 弄清
2020/11/3
8
随机事件的概念
随机事件的概率 随机事件概率的意义
概率
概率的基本性质
古典概型
特殊概率问题的求法
2020/11/3
9
古典概型
高中数学 3.2.1 古典概型课件2 新人教A版必修3
探要点、究所
探然究点一:与顺序有关的
古典概型 例 1 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是 5 的结果有多少种? (3)向上的点数之和是 5 的概率是多少?
概型公式,所求的概率是多少? 答 如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别,这时,所有可能的
结果将是(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)
(4,5)(4,6)(5,5)(5,6)(6,6)共有 21 种,和是 5 的结果有 2 个,它们是(1,4)(2,3),所求 的概率为 P(A)=A所包基含本的事基件本的事总件数的个数=221.
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
探要点、究所
探然究点一:与顺序有关的
古典概型 由表中可知同时掷两个骰子的结果共有 36 种.
(2)在上面的结果中,向上的点数之和为 5 的结果有 4 种,分别为(1,4),(2,3),(3,2),(4,1).
解 (1)掷一个骰子的结果有 6 种,我们把两个骰子标上记号 1,2 以便区分,由于 1 号骰子的结果都可以与 2 号骰子的任意一个结果配对,我们用一个“有序实数 对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示 1 号骰子 的结果,第二个数表示 2 号骰子的结果.(可由列表法得到)
人教A版数学必修3 3.2.1 古典概型 课件(79张)
(2)因为事件B={(1,2,3),(1,2,4),(1,2,5),(1,3,4), (1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}, 所以事件B包含的基本事件数m=9. 所以P(B)= m 9 .
n 10
【素养·探】 本题主要考查计算古典概型的概率问题,突出考查了数 学抽象与数学运算的核心素养. 本例条件不变,若事件C={三个数字的和不小于10},求 事件C的概率.
12
概率.
(2)若甲、乙两人每人停车的时长在每个时段的可能
性相同,求甲、乙两人停车费之和为28元的概率.
【思维·引】(1)利用互斥事件的概率公式求解. (2)利用古典概型的概率公式求解.
【解析】(1)设“一次停车不超过1小时”为事件
A,“一次停车1到2小时”为事件B,“一次停车2到3小
时”为事件C,“一次停车3到4小时”为事件D.
(3)某人买彩票,是否中奖是古典概型. ( )
(4)一个古典概型的基本事件数为n,则每一个基本事件
出现的概率都是 1 . ( )
n
提示:(1)×.区间[0,6]上的有理数有无数个. (2)√.基本事件为(甲、乙),(甲、丙),(乙、丙),共3个. (3)×.中奖、不中奖的可能性不相同,不中奖的可能性 较大. (4)√.古典概型中每个基本事件出现的概率相同.
由已知得P(B)= 1 ,P(C+D)= 5 .
3
12
又事件A,B,C,D互斥,所以P(A)=1-1- 5 =1 .
3 12 4
所以甲的停车费为6元的概率为 1 .
4
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2), (1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3, 2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 而“停车费之和为28元”的事件有(1,3),(2,2),(3,1), 共3个,所以所求概率为 3.
(最新整理)数学:3.2.1《古典概型古典概率》PPT课件(新人教A版必修3)
【其中1+2+6、2+3+4同理也有各有6种情况】
⑵对于2+2+5来说,连抛三次可以有(2,2,5)、 (2,5,2)、(5,2,2)共三种情况,
【其中1+4+4同理也有6种情况】
3张彩票中有一张奖票,2人按一定的顺序从中 各抽取一张,则: (1)第一个人抽得奖票的概率是__1_/_3_____; (2)第二个人抽得奖票的概率是__1_/_3___.
2021/7/26
19
小结
求古典概型概率的步骤:
⑴求基本事件的总数; ⑵ ⑶求 代事 入件 计算A包公含式的:基P (本A )事 件m 的个数;
第
二 6 7 8 9 10 11 12
次 抛
5
67
8
9
10 11
建立模型
掷 后
4
56
7
8
9 10
向3 4 5 6 7 8 9
解:由表可 知,等可能基
上 的 点 数
2 1
3 2
4 3
5 4
6 5
7 6
8 7
本事件总数为
12345 6
36种。
2021/7/26
第一次抛掷后向上的点数
13
第
二6
次 抛
5
7 8 9 10 11 12 6 7 8 9 10 11
如果某个事件A包含了其中 m 个等可能基本事件,
那么事件A发生的概率为:
PA m
n
2021/7/26
6
例1(摸球问题):一个口袋内装有大小相同的5个红球和3个黄球, 从中一次摸出两个球。
人教A版高中数学必修三第三章概率3.2《古典概型》教案
黑龙江省大庆外国语学校高中数学 第三章《概率》《3.2 古典概型》教案 新人教A 版必修3一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。
2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.三、学法:与学生共同探讨,应用数学解决现实问题;通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯. 四、教学过程:3、例题分析: 课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点) 所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点), 其包含的基本事件数m=3 所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点: (1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和,(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 2,a 2)。
高中数学第三章概率321古典概型课件新人教A版必修3(00001)
第一步求所有的基本事件;第二步求所求事件包含的基本事
件;第三步利用公式求概率.
方法归纳
求古典概型概率的步骤 (1)判断是否为古典概型. (2)算出基本事件的总数 n. (3)算出事件 A 中包含的基本事件个数 m. (4)算出事件 A 的概率,即 P(A)=mn .
(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先 后顺序不同,所以(a1,b),(b,a1)不是同一个基本事件.
跟踪训练 3 一个盒子中装有 4 个形状大小完全相同的球,球 的编号分别为 1,2,3,4.
(1)从盒子中不放回随机抽取两个球,求取出的球的编号之和不 大于 4 的概率.
(2)先从盒子中随机取一个球,该球的编号为 m,将球放回盒子 中,然后再从盒子中随机取一个球,该球的编号为 n,求 n<m+2 的概率.
(1)若从这 6 个国家中任选 2 个,求这 2 个国家都是亚洲国家的 概率.
(2)若从亚洲国家和欧洲国家中各任选 1 个,求这 2 个国家包括 A1,但不包括 B1 的概率.
【解析】 (1)由题意知,从 6 个国家中任选 2 个国家,其一切 可能的结果组成的基本事件有{A1,A2},{A1,A3},{A2,A3},{A1, B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3, B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共 15 个.
复习课件
高中数学第三章概率3.2.1古典概型课件新人教A版必修3
2021/4/17
高中数学第三章概率321古典概型课件新人教A版必修 3(00001)
人教A版高中数学必修三3.2.1古典概型 ppt
P(A)=
A所包含的基本事件的个数 基本事件的总数
=
2 21
例5(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数.
问:⑴两数之和是3的倍数的结果有多少种?
两数之和是3的倍数的概率是多少?
⑵两数之和不低于10的结果有多少种?
两数之和不低于10的的概率是多少?
第
二 次
6
78
9 10 11 12
抛 5 6 7 8 9 10 11
练一练
0.5 1、掷一颗骰子,则掷得奇数点的概率为
2、盒中装有4个白球和5个黑球,从中任取
一球,取得白球的概率为 4
3、一枚硬币连掷三次,至少出9 现一次正面
的概率为 7
4、掷两颗骰子8,掷得点数相等的概率
为
16 ,掷得点数之和为7的概率为
1 6
典例精析
例2 从含有两件正品 a, b 和一件次品c 的3件产品中
掷 后
4
5 6 7 8 9 10
向3
上 的
2
456789 345678
点 数
1
234567
1 234 5 6
第一次抛掷后向上的点数
⑵记“两次向上点数之和不低于10”为事件B,
则事件B的结果有6种, 如(4,6)、(6、4)、(5,5)等,
因此所求概率为: P(B) 6 1 36 6
第
根据此
二6
为__6_的_1_概2__率。为朝__上_1的_6_点_。数朝为上0的的概点率数为为_奇_0_数_的__概,率朝为上
的点数大于3的概率为___1_2__。 3、袋中有5个白球,n个红球,从中任意取一个球,
恰好红球的概率为 2 ,求n= __1__0__ 。
高一数学 3.2.1 古典概型 1 新人教A版必修3
2(1.古)如典果概试型验的的概基率本公事式件的总数为n,A表示一P (个A )基 本1n .事件,即
(2)对于古典概型,如果试验的所有结果(基本事件)数为n,随机事件A 包含的基本事件数为m,则由互斥事件概率的加法公式可得
所以,在古典概型P中(A, )111m, nn n n
PAA包 含 基 的 本 基 事 本 件 事 的 件 总 的 数 个 数 .
(3)用集合的P观( A)点 来m 考查A的概率,有利于帮助学生生动、形象地理 解事件A与基本n事件的关系,有利于理解公式
.如右上图所示,把一次试验中等可能出现的几个结果组成一个集合I, 其中每一个结果就是I中的一个元素,把含m个结果的事件A看作 含有m个元素的集合,则事件A是集合I的一个子集,则有
取法包括(1,5),(1,6),(2,5)(2,6),(3,5P),((3B,)6),(48,5. ),(4,6)共8个. ∴取出的两个球一个是白球,另一个是红球的概1 5率为
规律技巧:取出两球的结果数15还可以这样计算,从袋中6个球中任 取两球,并按抽取顺序(x,y)记录结果,由于随机抽取,因此x有6种,y 有5种,共有5×6=30种,但在记录的结果中有些是重复的,如 (1,2),(2,1)是30种中的两种,它们在“从袋中取出2球”这件事上, 是同一种情况,从而应有5×6÷2=15种情况.
(2)有记:“(红摸、球红3、次黑所)、(得红总、黑分、为红5P)”、(的(A黑)事、红件83、为. 红A),,事则件事A件包A含包3含个的基基本本事事件件,
列事件的概率: (1)A:取出的两球都是白球; (2)B:取出的两球1个是白球,另1个是红球. 分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件
A:取出的两球都是白球的总数和事件B:取出的两球1个是白球, 而另1个是红球的总数.套用公式求解即可.
人教A版高中数学必修三3-2-1《古典概型》课件
将一枚骰子先后抛掷两次,则: (1)一共有几个基本事件? (2)“出现的点数之和大于8”包含几个基本事件?
[解析]
解法一(列举法):
(1)用(x,y)表示结果,其中x表示第1枚骰子出现的点 数,y表示第2枚骰子出现的点数,则试验的所有结果为: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
解法二(列表法): 如下图所示,坐标平面内的数表示相应两次抛掷后出现 的点数的和,基本事件与所描点一一对应.
(1)由图知,基本事件总数为36. (2)总数之和大于8包含10个基本事件(已用虚线圈出). 解法三(树形图法): 一枚骰子先后抛掷两次的所有可能结果用树形图表 示.如下图所示:
(1)由图知,共36个基本事件. (2)点数之和大于8包含10个基本事件(已用“√”标出).
下列概率模型中,是古典概型的个数为( (1)从区间[1,10]内任取一个数,求取到1的概率; (2)从1~10中任意取一个整数,求取到1的概率;
)
(3)在一个正方形ABCD内画一点P,求P刚好与点A重合 的概率;
(4)向上抛掷一枚不均匀的硬币,求出现反面朝上的概 率. A.1 C.3 B.2 D.4
①本摸球事件中共有5个球,其中3个白球,2个黑球. ②题目中摸球的方式为一次摸出两个球,每个球被摸取 是等可能的. 解答本题可先列出摸出两球的所有基本事件,再数出均 为白球的基本事件数.
[解析]
(1)方法一:采用列举法:分别记白球为1,2,3
高中数学 3.2.1 古典概型课件 新人教A版必修3
有4种.
由于所有36种结果是等可能的,因此,由古典概型的概率计 算公式可得
4 1 P(A) . 36 9
思考:你能列出这36个结果吗?
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
(2,1)(2,2)(2,3)(2,4)(2,5)(2,6) (3,1)(3,2)(3,3)(3,4)(3,5)(3,6) (4,1)(4,2)(4,3)(4,4)(4,5)(4,6) (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
我们一般用列举法列出所有基本事件的结果.
画树状图是列举法的基本方法.
分步完成的结果(两步以上)可以用树状图进行列举.
古典概型 上述试验和例1的共同特点是:
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等. 我们将具有这两个特点的概率模型称为古典概率模型, 简称古典概型.
(A,B),(A,C),(A,D),(B,C),(B,D),(C,D), (A,B,C),(A,B,D),(A,C,D),(B,C,D), (A,B,C,D).
1 答对的概率为 0.066 7 0.25. 15
假设有20道单选题,如果有一个考生答对了17道题,他 是随机选择的可能性大,还是他掌握了一定知识的可能
1.一枚硬币连掷3次,只有一次出现正面的概率是( A )
3 2 1 1 A B C D 8 3 3 4
解:一枚硬币连掷3次,共有8种可能性,只有一次出现正 面的情况有3种,故所求概率为 P 3 .
1 P(“正面朝上”)=P (“反面朝上”)= . 2
掷骰子中,出现各个点的概率相等, P(“1点”)=P(“2点”)=P(“3点”) =P(“4点”)=P(“5点”)=P(“6点”). 利用概率的加法公式,我们有 P(“1点”)+P(“2点”)+P(“3点”)