2020年广东省惠州市中考数学试卷

合集下载

广东省惠州市2020年中考数学试卷D卷(新版)

广东省惠州市2020年中考数学试卷D卷(新版)

广东省惠州市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·临川月考) 的相反数是()A .B .C . ﹣3D . 32. (2分)(2018·连云港) 右图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A .B .C .D .3. (2分) a是有理数,则多项式﹣a2+a﹣的值()A . 一定是正数B . 一定是负数C . 不可能是正数D . 不可能是负数4. (2分) (2017七上·黑龙江期中) 在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2018八上·桥东期中) 如图,AB∥CD,AD∥BC,EF过点O,图中全等三角形共有()A . 2对B . 4对C . 6对D . 8对6. (2分)已知一组数据有80个,其中最大值为143,最小值为50,取组距为10,则可分成().A . 10组B . 9组C . 8组D . 7组7. (2分)化简﹣的结果是()A . a+bB . aC . a﹣bD . b8. (2分)(2020·河南模拟) 不等式组的最大整数解是()A . -1B . 0C . 1D . 29. (2分)已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A . 25海里B . 30海里C . 35海里D . 40海里10. (2分)(2017·东河模拟) 如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为()A . 1﹣πB . ﹣C . 2﹣D . 2﹣π二、填空题 (共6题;共15分)11. (1分) (2017七上·汕头期中) 某种商品每袋4.8元,在一个月内的销售量是m袋,用式子表示在这个月内销售这种商品的收入________.12. (1分) (2016八下·安庆期中) 等腰△ABC中,BC=8,若AB、AC的长是关于x的方程x2﹣10x+m=0的根,则m的值等于________.13. (1分)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是________度.14. (1分) (2016八上·扬州期末) 如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是________.15. (1分) (2016九上·武汉期中) 一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为________.16. (10分)(2019·贵港模拟) 关于x的一次函数y=ax+b与反比例函数y=(x>0)的图象交于点A (m,4)和点B(4,1).(1)求m的值和反比例函数的解析式;(2)求一次函数的解析式.三、解答题 (共8题;共68分)17. (5分)(2018·广安) 计算:()﹣2+| ﹣2|﹣+6cos30°+(π﹣3.14)0 .18. (5分) (2017七下·敦煌期中) 先化简,再求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy+4,其中x=10,y=﹣.19. (5分)如图,高速公路路基的横断面为梯形,高为4m,上底宽为16m,路基两边斜坡的坡度分别为i=1∶1,i′=1∶2,求路基下底宽.20. (8分) (2020九上·广东开学考) 我市某中学举行“校园好声音”歌手大赛,初、高中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:(1)求出表格中 =________; =________;c= ________(2)小明同学已经算出高中代表队决赛成绩的方差是160,请你计算出初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.21. (10分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识解决下列问题.(1)求△ABC的面积;(2)判断△ABC是什么形状,并说明理由.22. (15分)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地A村(元/辆)B村(元/辆)车型大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23. (10分)(2019·金昌模拟) 如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC =∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB.24. (10分) (2018八下·花都期末) 如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共15分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共8题;共68分) 17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、第11 页共11 页。

广东省惠州市2020年中考数学试卷(I)卷

广东省惠州市2020年中考数学试卷(I)卷

广东省惠州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)一个数的相反数等于它本身,这样的数一共有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2020·黄冈模拟) 下列计算中,正确的是()A .B .C .D .3. (2分) (2018九上·台州期末) 下列图形是中心对称图形的是()A .B .C .D . .4. (2分)(2016·东营) 东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A .B .C .D .5. (2分)(2019·德惠模拟) 近年来,国家重视精准扶贫,收效显著,据统计约人脱贫,用科学记数法可表示为()A .B .C .D .6. (2分) (2019七下·长春期中) 一个多边形的每一个外角都等于,则这个多边形的边数等于()A . 8B . 10C . 12D . 147. (2分)(2018·崇明模拟) 已知两圆的半径分别为2、5,且圆心距等于3,则两圆位置关系是()A . 外离B . 外切C . 相交D . 内切8. (2分)如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是()A . 2EF=AD+BCB . 2EF>AD+BCC . 2EF<AD+BCD . 不确定9. (2分) (2020七上·通榆期末) 如图,图1和图2中所有的正方形都相同,将图1的正方形放在图2中①②③④某一位置,所组成的图形不能围成正方体的位置是A . ①B . ②C . ③D . ④10. (2分)(2017·临泽模拟) 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<011. (2分) (2019八下·襄城月考) 梯形ABCD中,AD// BC ,AB=3,BC=4,CD=2, AD=1,则梯形的面积为()A .B .C .D .12. (2分)边长分别为a和2a的两个正方形按如图的样式摆放并连线,则图中阴影部分的面积为()A . 3a2B .C . 2a2D .二、填空题 (共6题;共7分)13. (2分)(2017·河北模拟) 若 =﹣,则x=________;若 =6,则x=________.14. (1分)(2018·吴中模拟) 分解因式:a2-4a+4=________15. (1分) (2015九上·宜春期末) 将油箱注满k升油后,轿车行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S= (k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶760千米,当平均耗油量为0.08升/千米时,该轿车可以行驶________千米.16. (1分)(2017·锡山模拟) 体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是S甲2=6.4,乙同学的方差是S乙2=8.2,那么这两名同学跳高成绩比较稳定的是________同学.17. (1分)(2017·鄞州模拟) 如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为________(结果保留π).18. (1分) (2019九上·福田期中) 如图,已知点A是反比例函数y=的图象在第一象限上的动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC使点C落在第二象限,且边BC交x轴于点D,若△ACD 与△ABD的面积之比为1:2,则点C的坐标为________.三、解答题 (共8题;共83分)19. (5分)(2a+3b)(a﹣2b)﹣(2b﹣a)(2a+3b).20. (10分)(2018·南通)(1)计算:;(2)解方程: .21. (5分)为了测量旗杆的高度AB,在离旗杆10米的C处,用高1.2米的测角仪CD测得旗杆顶部A的仰角为40°,求旗杆AB的高.(精确到0.1米)(供选用的数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)22. (20分)(2017·北海) 小华是某校八年(1)班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.频率分布表分组频数频率150≤x<15510.03155≤x<160120.40160≤x<16580.27165≤x<170a0.20170≤x<1753b请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为多少?(2)小明班上男生身高的极差是多少?(3)身高的中位数落在哪个分组?(4)若身高165cm(含165cm)以上的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?23. (15分)在直角坐标系中,二次函数图象的顶点为A(1、﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)当﹣3<x<3时,函数值y的增减情况;(3)将抛物线怎样平移才能使它的顶点为原点.24. (7分)(2017·河南模拟) 2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)1057.5平均每吨货物可获例如(百元)5 3.64(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有________艘,乙型货轮有________艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?25. (10分) (2016八上·阳新期中) 已知A(0,2),B(4,0).(1)如图1,连接AB,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;(2)如图2,在(1)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y 轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由.26. (11分) (2019九上·海珠期末) 如图,AB为⊙O的直径,且AB=m(m为常数),点C为的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P ,弦CD交AB于点E .(1)当DC⊥AB时,则=________;(2)①当点D在上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当时,求的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共83分)19-1、20-1、20-2、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、。

2020年广东省惠州市中考数学试卷-含详细解析

2020年广东省惠州市中考数学试卷-含详细解析

2020年广东省惠州市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2020年广东省惠州市中考数学试卷(有详细解析)

2020年广东省惠州市中考数学试卷(有详细解析)

2020年广东省惠州市中考数学试卷班级:___________姓名:___________得分:___________ 一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A. 8B. 2√2C. 16D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 210. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE ⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的3.5(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别相交于点为A,C.反比例函数y=kxD,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B两点,6点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.A解:9的相反数是−9,2.C解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.3.D解:点(3,2)关于x轴对称的点的坐标为(3,−2).4.B解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.5.B解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.6.A解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.7.C解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.8.D解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,9.D解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.10.B解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,11.x(y−1)解:xy−x=x(y−1).故答案为:x(y−1).12 4解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.13.1解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,14.7解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,15.45°解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=1(180°−∠A)=75°,2由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,16.13解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,,则扇形的弧长为:120π×1180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:13.17.2√5−2解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.18.解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,{∠ABE=∠ACD ∠A=∠ABE=CD,∴△ABE≌△ACD(AAS), ∴AB =AC ,∴△ABC 是等腰三角形.21. 解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12;(2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22. (1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°, ∴∠OEC =∠OBC , ∵CO 平分∠BCD , ∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC ,∴△OCE≌△OCB(AAS), ∴OE =OB , 又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示: 则四边形ABFD 是矩形, ∴AB =DF ,BF =AD =1, ∴CF =BC −BF =2−1=1, ∵AD//BC ,∠DAB =90°, ∴AD ⊥AB ,BC ⊥AB , ∴AD 、BC 是⊙O 的切线, 由(1)得:CD 是⊙O 的切线, ∴ED =AD =1,EC =BC =2, ∴CD =ED +EC =3,∴DF =√CD 2−CF 2=√32−12=2√2, ∴AB =DF =2√2, ∴OB =√2,∵CO 平分∠BCD , ∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.23 解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.24.2解:(1)设点B(s,t),st=8,则点M(12s,12t),则k=12s⋅12t=14st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA−S△OAD=12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,12m),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得{2m =ms+n1 2m =4ms+n,解得{k =−12m 2b =52m, 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG , 则FG//BD ,故四边形BDFG 为平行四边形.25. 解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE ,∴BCCD =BOOE ,∵BC =√3CD ,BO =3,∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3), ∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2, ∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN ,∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP,∴BPBD =BQAB,∴BQ=4√33×42√3+2=4−4√33,∴点Q(−1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,∴BPAD =BQBD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).。

广东省惠州市2020年中考数学试卷(I)卷

广东省惠州市2020年中考数学试卷(I)卷

广东省惠州市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)下列运算结果是a6的式子是()A . a2•a3B . (﹣a)6C . (a3)3D . a12﹣a62. (2分) (2016九上·牡丹江期中) 在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则b3的值为()A . ﹣B .C . ﹣8D . 83. (2分)(2018·高阳模拟) 一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是()A . 平均数B . 众数C . 中位数D . 方差4. (2分)如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A . 6月1日B . 6月2日C . 6月3日5. (2分) (2017九上·深圳期中) 若方程 (m−3)xm2−7−x+3=0 是关于x的一元二次方程,则方程()A . 无实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 有一个根6. (2分)如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则y的最大值是()A . 55B . 30C . 16D . 157. (2分)如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图甲中的阴影部分拼成了一个如图乙所示的矩形,这一过程可以验证()A . a2+b2-2ab=(a-b)2B . a2+b2+2ab=(a+b)2C . 2a2-3ab +b2=(2a-b)(a-b)D . a2-b2=(a+b)(a-b)8. (2分)圆锥的底面面积为,母线长为,则这个圆锥的侧面积为()A .B .C .二、填空题 (共8题;共8分)9. (1分)(2018·罗平模拟) 分解因式:x2y+2xy2+y3=________.10. (1分)如图,四边形BCDE是正方形,数轴上点A表示的实数是________.11. (1分)(2016·历城模拟) 如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.12. (1分)小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是________元。

2020惠州中考数学试题及答案

2020惠州中考数学试题及答案

2020惠州中考数学试题及答案一、选择题1. 已知等差数列的首项为2,公差为3,求第10项的值是多少?A. 2B. 29C. 29D. 322. 若正方形的边长为a,求其对角线的长度。

A. aB. a√2C. 2aD. 2a√23. 甲乙两个数的和是60,甲的数比乙多10,求甲、乙两个数分别是多少?A. 25,35B. 30,30C. 35,25D. 40,204. 若两个数的和是150,差为60,求这两个数分别是多少?A. 90,60B. 75,75C. 100,50D. 80,705. 若一个数的平方根加上这个数的一半等于35,这个数是多少?A. 45B. 35C. 10D. 70二、填空题1. x+5 > 10,求x的取值范围。

答案:x > 52. 若2x + 3 = 9,求x的值。

答案:x = 33. (4x + 6) ÷ 2 = 7,求x的值。

答案:x = 74. x² - 5x + 6 = 0,求x的值。

答案:x = 2 或 x = 35. 若a:b = 2:3,b:c = 4:5,求a:b:c的比值。

答案:a:b:c = 8:12:15三、解答题1. 已知三角形ABC,AB = 5 cm,AC = 8 cm,BC = 6 cm,求三角形ABC的面积。

解答:根据海伦公式,设半周长为s,s = (AB + AC + BC) / 2 = (5 + 8 + 6) / 2 = 9.5 cm。

根据面积公式S = √(s(s - AB)(s - AC)(s - BC)),代入数值计算得到S ≈ 14.7 cm²。

2. 一个数的3倍加上4等于16,求这个数。

解答:设这个数为x。

根据题目,可以列方程3x + 4 = 16。

将方程化简得到3x = 12,再解得x = 4。

因此,这个数是4。

3. 某公司的年销售额从2010年到2019年的变化趋势如下表所示,请根据数据回答以下问题。

2020惠州中考数学试题及答案

2020惠州中考数学试题及答案

2020惠州中考数学试题及答案2020年惠州中考数学试题及答案一、选择题(每题3分,共30分)1. 若a<0,则|a|=()A. aB. -aC. 0D. 1答案:B2. 下列运算中,正确的是()A. 3a-2a=aB. 3a+2a=5aC. 3a×2a=6a²D. 3a÷2a=1.5答案:B3. 下列方程中,是一元一次方程的是()A. x²+3x-4=0B. 2x-3y=5C. 3x-5=0D. x/2+y/3=1答案:C4. 下列不等式中,解集为x>2的是()A. x-2>0B. 2x-4>0C. 3x-6>0D. 4x-8>0答案:A5. 下列函数中,是正比例函数的是()A. y=2x+3B. y=-2xC. y=x/2D. y=x²答案:B6. 下列说法中,正确的是()A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 两直线平行,同旁内角互补D. 两直线平行,同位角互补答案:C7. 下列说法中,错误的是()A. 等腰三角形的两个底角相等B. 等边三角形的三个内角都相等C. 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合D. 等腰三角形是轴对称图形答案:C8. 下列说法中,正确的是()A. 圆的半径扩大2倍,面积扩大4倍B. 圆的半径扩大2倍,面积扩大8倍C. 圆的周长扩大2倍,半径扩大2倍D. 圆的周长扩大2倍,面积扩大4倍答案:B9. 下列说法中,正确的是()A. 样本的频率分布直方图中,每个小矩形的高表示频数B. 样本的频率分布直方图中,每个小矩形的高表示频率C. 样本的频率分布直方图中,每个小矩形的面积表示频数D. 样本的频率分布直方图中,每个小矩形的面积表示频率答案:D10. 下列说法中,正确的是()A. 一组数据的平均数就是众数B. 一组数据的中位数就是众数C. 一组数据的众数就是平均数D. 一组数据的众数就是中位数答案:D二、填空题(每题3分,共30分)11. 若|a|=3,则a=______。

广东省惠州市2020年中考数学试卷B卷

广东省惠州市2020年中考数学试卷B卷

广东省惠州市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·临海模拟) 方程=0的解为()A . ﹣2B . 2C . 5D . 无解2. (2分)在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A . 0.13×105B . 1.3×104C . 1.3×105D . 13×1033. (2分) (2018七上·宿迁期末) 如图所示,下列图形绕直线l旋转360°后,能得到圆柱的是()A .B .C .D .4. (2分)(2016·资阳) 下列运算正确的是()A . x4+x2=x6B . x2•x3=x6C . (x2)3=x6D . x2﹣y2=(x﹣y)25. (2分) (2019八下·南沙期末) 某鞋店试销一种新款女鞋,销售情况如下表所示:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A . 平均数B . 众数C . 中位数D . 方差6. (2分)(2020·河南模拟) 如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,FG平分∠EFD交AB 于点G,若∠BEF=70°,则∠AGF的度数为()A . 35°B . 45°C . 55°D . 65°7. (2分)(2018·定兴模拟) 如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连接AC,CB,BD,DA,则四边形ACBD的面积等于()A . 2B . 2C . 4D . 48. (2分)二次函数y=﹣x2﹣2x+3的图象与x轴交于A、B两点(A在B的左边),它的顶点为C点.连接AC、BC,则tan∠CAB的值是()A .B .C .D . 29. (2分) (2020九上·长兴期末) 如图,抛物线y=x2+2x与直线y= x+1交于A,B两点,与直线x=2交于点D将抛物线沿着射线AB方向平移2 个单位在整个平移过程中,点D经过的路程为()A .B .C .D . 610. (2分)(2020·滨江模拟) 已知二次函数(为常数,且)的图像过点,,若的长不小于2,则的取值范围是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)若32x+1=1,则x=________.12. (1分)(2019·青海模拟) 如图,a∥b,∠1=110°,∠3=40°,则∠2=________°.13. (1分)(2017·南岗模拟) 在一个不透明的袋子里,有5个除颜色外,其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是________.14. (1分) (2018七下·市南区期中) 小明在爬一小山时,第一阶段的平均速度为v所用时间为t1;第二阶段的平均速度为,所用时间为t2,下山时平均速度保持为4v,已知小明上山的路程和下山的路程是相同的,那么小明下山用时________.15. (1分) (2018八上·顺义期末) 已知,则代数式的值为________.16. (1分) (2018九上·丹江口期末) 如图,正方形ABCD中,AB=3cm,以B为圆心,1cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为________cm.三、解答题 (共9题;共90分)17. (5分) (2017九上·黑龙江开学考) 先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.18. (5分)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠A=∠F.19. (10分)小娜家购买了4个灯笼(外观完全一样),灯笼上分别写有“欢”“度”“春”“节”.(1)小娜从四个灯笼中任取一个,取到“春”的概率是多少;(2)小娜从四个灯笼中先后取出两个灯笼,请用列表法或画树状图法求小娜恰好取到“春”“节”两个灯笼的概率.20. (10分) (2017八上·云南期中) 已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21. (10分) (2019七下·固阳期末) 在平面直角坐标系中,点A、B在坐标轴上,其中A(0, )、B( ,0)满足:(1)求A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(-2,t),如图(1)所示.若三角形ABC的面积为9,求点D的坐标.22. (10分)(2020·鹿邑模拟) 如图,是的直径,点C在上,点D为弦的中点,射线与圆周及切线分别交于点M和点E,连接 .(1)求证:直线是的切线;(2)若直径,填空:①连接,当 ________ 时,四边形是菱形;②当ME=________时,四边形是正方形.23. (10分) (2019九上·延安期中) 小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?24. (15分) (2017九上·东莞月考) 小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为________.(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C 的长度和为多少?(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)25. (15分)(2020·滨州) 如图,抛物线的顶点为A(h,-1),与y轴交于点B ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共90分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

广东省惠州市2020版中考数学试卷C卷

广东省惠州市2020版中考数学试卷C卷

广东省惠州市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的 (共10题;共30分)1. (3分)在-1、3、0、四个实数中,最大的实数是()A . -1B . 3C . 0D .2. (3分)(2017·和平模拟) 如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A .B .C .D .3. (3分) (2018七上·郑州期中) 乐乐从资料上了解到我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A . 0.13×108B . 1.3×107C . 1.3×108D . 1.3×1094. (3分)如图,AB//CD,∠E=27°,∠C=52°,则∠EAB的度数为()A . 25°B . 63°C . 79°D . 101°5. (3分) (2020八上·徐州期末) 在平面直角坐标系中,点(1,﹣3)关于y轴对称的点的坐标为()A . (﹣1,3)B . (﹣1,﹣3)C . (1,3)D . (-3,1)6. (3分)计算(−)2008×0.82009得()A . 0.8B . -0.8C . +1D . -17. (3分)分别写有0,2﹣1 ,﹣2,cos30°,3的五张卡片,除数不同外其他均相同,从中任意抽取一张,那么抽到负数的概率是()A .B .C .D .8. (3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A . 12B . 6C . 6D .9. (3分)抛物线y=3(x-1)2+1的顶点坐标是()A . (1,1)B . (-1,1)C . (-1,-1)D . (1,-1)10. (3分) (2019九上·上海月考) 下列命题一定正确的是()A . 两个等腰三角形一定相似B . 两个等边三角形一定相似C . 两个直角三角形一定相似D . 两个含有30°角的三角形一定相似二、填空题(本题共6小题,每小题3分,共18分) (共6题;共18分)11. (3分) (2018八上·裕安期中) 如图,函数与的图象相交于点A(m,2),则关于x 的不等式-2x≤ax+3的解集是________.12. (3分)(2020·大邑模拟) 某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为________元.13. (3分)(2017·临沂模拟) 某药品原价是95元,经连续两次降价后,价格变为60.8元,如果每次降价的百分率是一样的,那么每次降价的百分率是________.14. (3分)(2017·仙游模拟) 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是________.15. (3分) (2018九上·西安月考) 如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为________.16. (3分) (2017八下·富顺竞赛) 已知⊿ 中, ,点在上,则点到另外两边的距离之和是________ .三、解答题(本题共4小题,其中17、18、19题各9分,20题1 (共4题;共39分)17. (9分)(2019八上·沙坪坝月考) 先化简,再求值:当,求的值.18. (9分)(2018·重庆模拟) 计算:(1) 3a(a+1)﹣(3+a)(3﹣a)﹣(2a﹣1)2(2)(﹣x+2)÷ .19. (9分)如图,已知:∠1=∠2, AB=AC, 请你自己添加一个适当的条件,并用“SAS”证明△ABD≌△ACE。

广东省惠州市2020年(春秋版)中考数学试卷A卷

广东省惠州市2020年(春秋版)中考数学试卷A卷

广东省惠州市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·麒麟模拟) 据worldometers实时数据显示,截止今年北京时间5月1日8时30分,全球新冠病毒感染病例突破330万例,死亡病例超过23万例.330万用科学记数法表示为m×10n.则m、n的值分别是()A . 3.3,6B . 3.3,5C . 0.33,7D . 3.3,72. (2分)(2018·肇庆模拟) 某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .3. (2分)下列计算中,正确的是()A .B .C .D .4. (2分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A .B .C .D .5. (2分)下列叙述正确的有()个①内错角相等②同旁内角互补③对顶角相等④邻补角相等⑤同位角相等A . 4B . 3C . 1D . 06. (2分)(2019·紫金模拟) 已知数据:2,1,4,6,9,8,6,1.则这组数据的中位数是()A . 4B . 5C . 6D . 4和67. (2分)下列语句正确的是()A . 反向延长线段AB,得到射线BAB . 取直线AB的中点C . 延长线段AB到C,使BC=ACD . 连接A,B两点,并使直线AB经过C点8. (2分) (2018八上·昌图月考) 如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2015次跳动至点A2015的坐标是()A . (-503, 1008)B . (503, 1007)C . (-504, 1007)D . (504, 1008)9. (2分)如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A . ①B . ②C . ③D . ④10. (2分) (2019八下·吉安期末) 一个多边形的每个内角均为120°,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 八边形11. (2分)(2017·邹平模拟) 不等式组的解在数轴上表示为()A .B .C .D .12. (2分)解方程﹣3去分母得()A . 1=1﹣x﹣3(x﹣2)B . 1=x﹣1﹣3(2﹣x)C . 1=x﹣1﹣3(x﹣2)D . ﹣1=1﹣x﹣3(x﹣2)二、填空题 (共6题;共6分)13. (1分)若y是x的反比例函数,并且当x<0时,y随x的增大而增大,则它的解析式可能是________.(写出一个符合条件的解析式即可)14. (1分)(2017·广州) 如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是________(填写所有正确结论的序号).15. (1分) (2019九上·温州月考) 将抛物线y=x2-12x+16作关于X轴对称.所得抛物线的解析式是________。

广东省惠州市2020年中考数学试卷B卷

广东省惠州市2020年中考数学试卷B卷

广东省惠州市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2019七上·东台期中) 绝对值小于4的所有的正整数的和是()A . 0B . 1C . 3D . 62. (2分) (2017七上·灌云月考) 关于 x 的方程 ax+3=4x+1 的解为正整数,则整数 a 的值为()A . 2B . 3C . 2或3D . 1或23. (2分)若-3xy2m与5x2n-3y8的和是单项式,则m、n的值分别是()A . m=2,n=2B . m=4,n=1C . m=4,n=2D . m=2,n=34. (2分)(2019·武汉模拟) 统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为()A . 13、15、14B . 14、15、14C . 13.5、15、14D . 15、15、155. (2分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A .B .C .D .6. (2分)下列计算正确的是()A . =±5B . =C . -=1D . -=17. (2分) (2015七上·龙华期末) 在2015年深圳高交会上展出了现实版“钢铁侠”战衣﹣﹣马丁飞行喷射包,可连续飞行30分钟,载重120公斤,其网上预售价为160万元,数据160万元用科学记数法表示为()A . 1.6×104元B . 1.6×105元C . 1.6×106元D . 0.16×107元8. (2分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A . 当AB=BC时,它是菱形B . 当AC=BD时,它是正方形C . 当AC⊥BD时,它是菱形D . 当∠ABC=90°时,它是矩形9. (2分)在⊙O中,已知=2,则下列结论正确的是()A . AB>2CDB . AB=2CDC . AB<2CDD . 不能确定AB与2CD的大小关10. (2分) (2015八上·永胜期末) A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A .B .C . +4=9D .11. (2分)一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为()A .B .C .D .12. (2分) (2018九上·台州期中) 如图,A , B , C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC 的度数为()A . 100°B . 110°C . 125°D . 130°13. (2分)如图,将三角形ABC沿BC方向平移到三角形DEF,若AD=1,CE=3,则梯形ABFD的面积与三角形ABC的面积比是()A . 2:1B . 3:2C . 4:3D . 不能确定14. (2分) (2019九下·温州竞赛) 如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A . 2个B . 3个C . 4个D . 5个二、填空题 (共4题;共4分)15. (1分)计算:(﹣2)100+(﹣2)99=________16. (1分)(2016·鄞州模拟) 如图,点A是双曲线y= (x>0)上的一点,连结OA,在线段OA上取一点B,作BC⊥x轴于点C,以BC的中点为对称中心,作点O的中心对称点O′,当O′落在这条双曲线上时,=________.17. (1分) (2016八上·义马期中) 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为________.18. (1分)如图在梯形ABCD中,AB=DC=10cm,AC与BD相交于G,且∠AGD=60°,设E为CG的中点,F为AB的中点,则EF的长为________ cm.三、解答题 (共6题;共65分)19. (10分)计算:(1)(2)化简:.20. (11分)(2017·和平模拟) 中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=________%,并补全条形图;(2)求本次调查获取的样本数据的平均数,众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?21. (15分)(2013·丽水) 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.22. (5分)为进一步建设秀美、宜居的生态型环境,某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙、丙三种树每棵的价格之比为2∶2∶3,甲种树每棵200元.现计划用210 000元资金,购买这三种树共1 000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵数是乙种树的2倍,且恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10 120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买多少棵?23. (7分)(2019·自贡) 如图(1)如图1,是正方形边上的一点,连接,将绕着点逆时针旋转90°,旋转后角的两边分别与射线交于点和点 .①线段和的数量关系是________;②写出线段和之间的数量关系________.(2)当四边形为菱形,,点是菱形边所在直线上的一点,连接,将绕着点逆时针旋转120°,旋转后角的两边分别与射线交于点和点 .①如图2,点在线段上时,请探究线段和之间的数量关系,写出结论并给出证明;②如图3,点在线段的延长线上时,交射线于点;若 ,直接写出线段的长度.24. (17分) (2017八下·东台期中) 我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=________°,∠D=________°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共65分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、24-1、24-2、24-3、。

惠州市2020年中考数学试卷C卷

惠州市2020年中考数学试卷C卷

惠州市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择 (共12题;共24分)1. (2分)(2017·仪征模拟) 是()A . 整数B . 无理数C . 有理数D . 自然数2. (2分)下列计算正确的是()A . a2+a2=a4B . (2a2)3=6a6C . a8÷a2=a4D . a3•a4=a73. (2分)(2011·宁波) 不等式x>1在数轴上表示为()A .B .C .D .4. (2分)(2019·贵港模拟) 6.8×105这个数的原数是()A . 68000B . 680000C . 0.000086D . ﹣6800005. (2分)已知P(3,4)与Q(x,y)关于原点对称,则线段PQ=()A . 6B . 8C . 10D . 76. (2分)(2017·大祥模拟) 如图中几何体的主视图是()A .B .C .D .7. (2分)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有()A . 4条B . 5条C . 6条D . 7条8. (2分)(2020·韩城模拟) 如图,,点在的延长线上,若,则的度数为()A .B .C .D .9. (2分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A . 5米B . 6米C . 8米D . (3+ )米10. (2分)底面半径为4,高为3的圆锥的侧面积是()A . 12πB . 15πC . 20πD . 36π11. (2分)如图所示,为的内接三角形,则的内接正方形的面积为()A . 2B . 4C . 8D . 1612. (2分)今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是()A . -7xyB . 7xyC . -xyD . xy二、填空题 (共6题;共6分)13. (1分)(2017·石家庄模拟) 27的立方根为________.14. (1分)(2020·温州模拟) 因式分解: ________.15. (1分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是________.(填“甲”或“乙”)16. (1分)(2017·景泰模拟) 把函数y=﹣2x2的图象向左平移1个单位,再向上平移6个单位,所得的抛物线的函数关系式________.17. (1分) (2019八上·扬州月考) 如图,∠BAC=θ(0°<θ<90°),现只用4根等长的小棒将∠BAC 固定,从点A1开始依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1 ,则角θ的取值范围是________.18. (1分)(2019·道真模拟) 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B (0,6)分别在x轴,y轴上,反比例函数y= (x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.三、解答题 (共8题;共71分)19. (5分) (2015七下·深圳期中) 先化简再求值:(2a﹣1)2+(2a﹣1)(a+4),其中a=﹣2.20. (5分) (2020·太仓模拟) 一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?21. (5分) (2016八上·中堂期中) 如图是未完成的上海大众的汽车标志图案,该图案是以直线L为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分.(要求用尺规作图,保留痕迹,不写作法.)22. (15分)(2017·中原模拟) 滴滴打车为市民的出行带来了很大的方便,小亮调查了若干市民一周内使用滴滴打车的时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示C组的扇形圆心角的度数,并补全条形统计图;(3)若全市的总人数为666万,试求全市一周内使用滴滴打车超过20分钟的人数大约有多少?23. (10分)(2017·滨湖模拟) 已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.(1)试说明DF=CE;(2)若AC=BF=DF,求∠ACE的度数.24. (10分)(2018·贺州) 某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B 型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?25. (11分)(2017·昆都仑模拟) 已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:________;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)26. (10分)(2017·丹江口模拟)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB 的延长线于点P,且∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)如图2,点M是的中点,连接DM,交AB于点N,若tan∠A= ,求的值.参考答案一、选择 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共71分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

惠州市2020版中考数学试卷(II)卷

惠州市2020版中考数学试卷(II)卷

惠州市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018七上·武邑开学考) |﹣2|的倒数是()A . 2B . ﹣2C .D . -2. (2分) (2016八上·宁海月考) 下图中几何体的左视图是()A .B .C .D .3. (2分) (2018七上·沙洋期中) 我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为()A . 4.6×109B . 46×108C . 0.46×1010D . 4.6×10104. (2分)(2018·商河模拟) 在下列交通标志中,即是轴对称图形,又是中心对称图形的是()A .B .C .D .5. (2分)下列说法正确的是()A . 两条直线被第三条直线所截,同位角相等B . 相等的角是对顶角C . 同旁内角相等,两条直线平行D . 内错角相等,两直线平行6. (2分) (2017七下·黔东南期末) 不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2016七上·肇庆期末) 小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A . 10x+20=100B . 10x-20=100C . 20-10x=100D . 20x+10=1008. (2分) (2016八上·江宁期中) 如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A . SSSB . ASAC . AASD . SAS9. (2分)(2019·鹿城模拟) 下列选项中,可以用来证明命题“若a2>b2 ,则a>b“是假命题的反例是()A . a=﹣2,b=1B . a=3,b=﹣2C . a=0,b=1D . a=2,b=110. (2分) (2017八下·洛阳期末) 甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()队员平均成绩方差甲9.7 2.12乙9.60.56丙9.70.56丁9.6 1.34A . 甲B . 乙C . 丙D . 丁11. (2分)如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=8,OC=4,则点A1的坐标为()A . (4.8,6.4)B . (4,6)C . (5.4,5.8)D . (5,6)12. (2分)已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D 点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=(x>0);④,其中正确的结论有()个。

惠州市2020版中考数学试卷C卷

惠州市2020版中考数学试卷C卷

惠州市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中是负数的是()A .B .C .D .2. (2分)(2019·朝阳模拟) 电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为()A . 9.5×104亿千米B . 95×104亿千米C . 3.8×105亿千米D . 3.8×104亿千米3. (2分)(2016·鄞州模拟) 下列运算正确的是()A . a2×a3=a6B . a2+a2=2a4C . a8÷a4=a4D . (a2)3=a54. (2分)(2019·朝阳模拟) 八年级(2)班学生积极参加献爱心活动,该班50名学生的捐款情况统计如表,则该班学生捐款金额的平均数和中位数分别是()金额/元5102050100人数4161596A . 20.6元和10元B . 20.6元和20元C . 30.6元和10元D . 30.6元和20元5. (2分) (2008七下·上饶竞赛) 如图,AB∥ED,∠B+∠C+∠D=()A . 180°B . 360°C . 540°D . 270°6. (2分)(2018·福建模拟) 如图,所示的几何体的主视图是()A .B .C .D .7. (2分)(2017·东莞模拟) 一元二次方程x2﹣4x+5=0的根的情况是()A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定8. (2分)(2017·深圳模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分)(2013·河池) 如图,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是()A .B .C .D .10. (2分)(2017·武汉模拟) 如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为()A . 4B . 3C . 2D .二、填空题 (共5题;共5分)11. (1分)(2018·东胜模拟) 分解因式:3x3-6x2+3x=________.12. (1分) (2016八上·无锡期末) 在平面直角坐标系中,线段AB的端点A的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A对应点A′的坐标为________.13. (1分) (2018八上·重庆期末) 函数y=的自变量x的取值范围为________.14. (1分) (2016九下·杭州开学考) 已知△ABC中,AB=AC=5,BC=8.⊙O经过B、C两点,且AO=4,则⊙O 的半径长是________.15. (1分)(2016·十堰) (2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 ,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0 ,使得x0=﹣,其中结论错误的是________ (只填写序号).三、解答题 (共9题;共90分)16. (5分)(2017·南山模拟) 计算:2﹣1﹣tan60°+(﹣1)0﹣|2﹣ |.17. (5分)(2017·南通) 先化简,再求值:(m+2﹣)• ,其中m=﹣.18. (5分) (2017八下·德州期末) 已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.19. (10分) (2017九上·灌云期末) 甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是多少?;(2)随机选取2名同学,求其中有乙同学的概率.20. (5分)(2017·裕华模拟) 如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)21. (15分)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.22. (15分)如图,直线与轴交于点B,与双曲线交于点A,C,其中点A在第一象限,点C在第三象限.(1)求B点的坐标.(2)若 ,求A点的坐标.(3)在 (2)的条件下,在坐标轴上是否存在点P,使△AOP是等腰三角形?若存在,有几个符合条件的点P?23. (15分)(2017·河北) 平面内,如图,在▱ABCD中,AB=10,AD=15,tanA= ,点P为AD边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在▱ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)24. (15分)(2019·东台模拟) 如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x 轴的垂线,交x轴于G,交直线l:y=- x-1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共90分)16-1、17-1、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。

惠州市2020年(春秋版)中考数学试卷D卷

惠州市2020年(春秋版)中考数学试卷D卷

惠州市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共26小题,共78.0分) (共26题;共78分)1. (3分)若a,b互为相反数,则下面四个等式中一定成立的是()A . a+b=0B . a+b=1C . |a|+|b|=0D . |a|+b=02. (3分)世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A . 20、20B . 30、20C . 30、30D . 20、303. (3分) (2019七下·兰州期中) 如图,在一个长为,宽为的长方形地面上,四个角各有一个边长为的正方形草坪,其中阴影部分为花坛,则花坛的面积为()A .B .C .D .4. (3分)(2017·临高模拟) 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字()A . 的B . 中C . 国D . 梦5. (3分)若|x﹣2y|+=0,则xy=()A . -4B . 2C . 5D . 86. (3分)(2019·盘锦) 2018年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为()A . 6×10B . 0.6×10C . 6×10D . 6×107. (3分) (2019七下·南通月考) 在A(﹣5,3)、B(﹣3,3)、C(﹣5,﹣3)、D(5,3)四个点中,由其中两个点确定的直线与y轴平行的是()A . 点A、BB . 点B、DC . 点A、CD . 点C、D8. (3分)(2012·柳州) 你认为方程x2+2x﹣3=0的解应该是()A . 1B . ﹣3C . 3D . 1或﹣39. (3分)(2018·苏州模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结,,,…得到螺旋折线(如图),已知点(0,1),(,0),(0,),则该折线上的点的坐标为()A . (,24)B . (,25)C . (,24)D . (,25)10. (3分) (2018七上·汉阳期中) 若a<0,b>0,化简|a|+|3b|﹣|a﹣2b|得()A . bB . 5b﹣2aC . ﹣5bD . 2a+b11. (3分)(2018·嘉兴模拟) 如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D 重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当时,DE的长为()A . 2B .C .D . 412. (3分)某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有多少人()A . 27B . 28C . 29D . 3013. (3分) (2019八上·武汉月考) 如图,在三角形纸片ABC中,∠B=32°,点D在BC上.沿AD将该纸片折叠,使点C落在AB边上的点E处.若∠EAC=76°,则∠AED=()A . 64°B . 72°C . 76°D . 78°14. (3分)一个不透明的盒子中,放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀,从中随机的抽出一张卡片,则“该卡片上的数字大于”的概率是()A .B .C .D .15. (3分)动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到长方形的边时,点P的坐标为()A . (1,4)B . (5,0)C . (6,4)D . (8,3)16. (3分)某地电力公司的用电收费标准如图,x(度)表示用户每月的用电量,y(元)表示每月应付的电费,看图可知,当用户一个月的用电量超过50度时,超过部分的收费标准是每度()A . 0.96元B . 0.78元C . 0.60元D . 0.3元17. (3分)如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A . 40 cm2B . 20 cm2C . 25 cm2D . 10 cm218. (3分)某商店有两个进价不同的计算器都以64元卖出,其中一个盈利60℅,另一个亏本20℅,则该商店在这次买卖中()A . 不赔不赚B . 赚了8元C . 赔8元D . 赚32元19. (3分)如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连PC交⊙O于点D,若BD∥AC,则tan∠ACP的值是()A .B .C .D .20. (3分)为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A .B .C .D .21. (3分)仓库有存煤m吨, 原计划每天烧煤a吨, 现在每天节约b吨, 则可多烧的天数为()A .B .C .D .22. (3分) (2019八下·邓州期中) 如图,边长为2的正方形的中心与坐标原点重合,轴,将正方形绕原点顺时针旋2019次,每次旋转,则顶点的坐标是()A .B .C .D .23. (3分)如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为()A . 7B . 8C . 9D . 1024. (3分) (2016九上·达州期末) 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A .B .C . 4D . 825. (3分)在平面直角坐标系中,已知点A(3,0),点B(0,-4),则tan∠OAB的值为().A .B .C .D .26. (3分)(2019·台湾) 若正整数a和420的最大公因数为35,则下列叙何者正确?()A . 20可能是a的因数,25可能是a的因数B . 20可能是a的因数,25不可能是a的因数C . 20不可能是a的因数,25可能是a的因数D . 20不可能是a的因数,25不可能是a的因数二、解答题(本大题共2小题,共16.0分) (共2题;共16分)27. (8分)(2017·柘城模拟) 杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)28. (8分)(2019·昭化模拟) 如图,在△ABC中,AB=AC ,以AB为直径作⊙O交BC于点D .过点D作EF⊥AC ,垂足为E ,且交AB的延长线于点F .(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=3.求BF的长.参考答案一、选择题(本大题共26小题,共78.0分) (共26题;共78分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、26-1、二、解答题(本大题共2小题,共16.0分) (共2题;共16分) 27-1、27-2、28-1、28-2、第11 页共11 页。

广东省惠州市2020年中考数学试卷C卷

广东省惠州市2020年中考数学试卷C卷

广东省惠州市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·下陆月考) 下列各数中互为相反数的是()A . 和B . 和C . 和D . 和2. (2分)(2019·郴州) 如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)下列运算正确()A . a•a5=a5B . a7÷a5=a3C . (2a)3=6a3D . 10ab3÷(-5ab)=-2b24. (2分) (2015七上·罗山期中) 钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A . 634×104B . 6.34×106C . 63.4×105D . 6.34×1075. (2分) (2019·百色) 下列几何体中,俯视图不是圆的是()A . 四面体B . 圆锥C . 球D . 圆柱6. (2分) (2019八下·寿县期末) 在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是()A . 5B . 6C . 7D . 107. (2分) (2019九下·临洮月考) 如图,,,则()A .B .C .D .8. (2分) (2019九上·江岸月考) 已知x=1是方程x2﹣2x+c=0的一个根,则实数c的值是()A . ﹣1B . 0C . 1D . 2二、填空题 (共8题;共8分)9. (1分) (2019七上·洮北月考) 写出一个在和1之间的负整数:________.10. (1分)若分式无意义,且,那么=________.11. (1分) (2017九下·盐城期中) 分解因式: =________.12. (1分)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2cm的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________ m213. (1分)(2020·雅安) 如图,与都相交,,则 ________.14. (1分)(2018·南海模拟) 如图,已知点A在反比例函数y= 上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为________.15. (1分) (2018九下·尚志开学考) 一个扇形的弧长是 4 ,半径是6,则这个扇形的圆心角度数是________.16. (1分) (2017九上·淅川期中) 如图,在△ABC 中,∠C=90°,BC=6,D,E分别在AB、AC 上,将△ABC 沿DE折叠,使点A落在点处,若为CE的中点,则折痕DE的长为________.三、解答题 (共11题;共102分)17. (5分) (2019七下·北京期中) 计算: ;18. (5分) (2020七下·长春期中) 解不等式:,并把解集在数轴上表示出来.19. (5分)(2018·滨州模拟) 已知x是一元二次方程x2+3x﹣1=0的实数根,求代数式:的值.20. (10分)(2018·云南) 将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.21. (6分)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即________,可使四边形ABCD为矩形.请加以证明.22. (11分)(2020·青白江模拟) 某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图(1)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)23. (10分) (2018九上·广州期中) 某花圃销售一批名贵花卉,平均每天可售出20盆,每盆盈利40元,为了增加盈利并尽快减少库存,花圃决定采取适当的降价措施,经调查发现,如果每盆花卉每降1元,花圃平均每天可多售出2盆.(1)若花圃平均每天要盈利1200元,每盆花卉应降价多少元?(2)每盆花卉降低多少元时,花圃平均每天盈利最多,是多少?24. (10分)(2020·陕西) 某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?25. (15分)(2017·洛宁模拟) 如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.26. (10分) (2019八上·潮安期末) 在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD 关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.27. (15分)(2020·吉林模拟) 如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD、CD.设点D的横坐标为m,△BCD的面积为S.求S关于m的函数解析式及自变量m的取值范围,并求出S的最大值;(3)已知M为抛物线对称轴上一动点,若△MBC是以BC为直角边的直角三角形,请直接写出点M的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共102分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。

广东省惠州市2020年中考数学试卷A卷

广东省惠州市2020年中考数学试卷A卷

广东省惠州市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2014·钦州) 如果收入80元记作+80元,那么支出20元记作()A . +20元B . ﹣20元C . +100元D . ﹣100元2. (2分) (2018八上·梁子湖期末) 下列运算正确的是A .B .C .D .3. (2分)(2019·凉山) 如图,,AE与BD交于点C,,则的度数为()A .B .C .D .4. (2分)已知b>0,化简的结果是()A .B . -C .D .5. (2分) (2020七下·延庆期末) 新型冠状病毒(2019-nCoV)通过突起接触人类细胞表面,与血管紧张转化酶作用钻入细胞内部,复制出更多的病毒RNA侵占人的肺部.某病毒研究所公布了它在电子显微镜下的图象,新型冠状病毒粒子形状并不规则,最大的直径约0.00022毫米.0.00022用科学记数法表示()A . 2.2×10-3B . 2.2×10-4C . 2.2×10-5D . 22×10-66. (2分)(2011·盐城) 某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A . 平均数为30B . 众数为29C . 中位数为31D . 极差为57. (2分)(2020·淄博) 李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A . 4,5B . 5,4C . 5,5D . 5,68. (2分)(2017·江阴模拟) 如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A .B .C .D .9. (2分)如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现:点P与正六边形六个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P 有()A . 9个B . 10个C . 11个D . 12个10. (2分)(2020·海南) 如图,在矩形中,点在边上,和交于点若,则图中阴影部分的面积为()A .B .C .D .11. (2分)不等式组的非负整数解有()A . 6个B . 5个C . 4个D . 3个12. (2分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到A . 点C处B . 点D处C . 点B处D . 点A处二、填空题 (共5题;共5分)13. (1分) (2018七下·来宾期末) 分解因式:n2(x﹣y)﹣9(x﹣y)=________.14. (1分) (2018九上·泰州期中) 实数x,y满足|x﹣y|=7,则实数x,y的方差为________.15. (1分) (2017八下·藁城开学考) 大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则(a+b)5=________.16. (1分) (2016八上·腾冲期中) 已知P点是等边△ABC两边垂直平分线的交点,等边△ABC的面积为15,则△ABP的面积为________.17. (1分) (2019九上·北京期中) 如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是________.三、解答题 (共6题;共72分)18. (10分)(2020·温州模拟)(1)计算:;(2)解方程: +2= .19. (10分) (2019八下·南县期中) 如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.20. (12分)某中学为了解该校九年级学生对观看“中国诗词大会”节目喜爱程度,对该校九年级学生进行了随机抽样调查,(调查时,将喜爱程度分为四级:A级(非常喜欢),B级(喜欢),C级(一般),D级(不喜欢)).根据调查结果,绘制成如下两幅不完整的统计图.请你结合图中信息解答下列问题:(1)本次调查共抽取________名学生,在扇形图中,表示A级的扇形的圆心角为________°;(2)若该校九年级共有学生300人,请你估计不喜欢观看“中国诗词大会”节目的有多少人?并补全条形图;(3)已知在A级学生中有3名男生,现要从本次调查中的5名A级学生中,选出2名参加全市中学生诗词大会比赛,请用“列表”或“树形图”的方法,求选出的2名学生中至少有1名女生的概率.21. (15分) (2020八下·偃师期末) 如图,一次函数y= x+b的图象与y轴交于点B(0,2),与反比例函数y=(x<0)的图象交于点D.以BD为对角线作矩形ABCD,使顶点A、C落在x轴上(点A在点C的右边),BD与AC交于点E.(1)求一次函数的解析式;(2)求点D的坐标和反比例函数的解析式;(3)求点A的坐标.22. (10分) (2019八下·深圳期末) 某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.(1)求活动中典籍类图书的标价;(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm ,宽为15cm ,厚为1cm ,请直接写出该包书纸包这本书时折叠进去的宽度.23. (15分)(2017·泸州模拟) 如图1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,(1)求证:BE是⊙O的直径且OP⊥AB;(2)若AB=BC=8,AE=6,试判断直线DC与⊙O的位置关系,并说明理由;(3)如图2,若AB=10,BC=8,⊙O与DC边相交于H,I两点,连结BH,当∠ABE=∠CBH时,求△ABE的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共6题;共72分)18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。

广东省惠州市2020年(春秋版)中考数学试卷A卷(精编)

广东省惠州市2020年(春秋版)中考数学试卷A卷(精编)

广东省惠州市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各式成立的是()A . ﹣(+1.5)>﹣1.5B . 0>﹣(﹣0.74)C . ﹣>﹣D . ﹣>﹣2. (2分)计算3x3•(﹣2x2)的结果是()A . ﹣6x5B . ﹣6x6C . ﹣x5D . x53. (2分)(2017·邵阳模拟) 如图,已知:n为正整数,点A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直线y=x﹣1上,点B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn (mn , pn)均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,A3B3⊥x轴,…,AnBn⊥x轴,BnAn+1⊥y轴,若点A1的横坐标为﹣1,则点A2017的坐标为()A . (﹣1,﹣2)B . (2,1)C . (,﹣)D . (,﹣2)4. (2分)小华五次跳远的成绩如下(单位:m):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A . 极差是0.4B . 众数是3.9C . 中位数是3.98D . 平均数是3.985. (2分)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A . 内切B . 相交C . 外切D . 外离6. (2分)估算(误差小于0.1)的大小是()A . 8B . 8.3C . 8.8D . 8.0~8.17. (2分) (2019八上·遵义期末) 已知等腰三角形的一个外角是80°,则它的顶角是()A . 20°B . 100°C . 20°或100°D . 20°或80°8. (2分) (2019八下·奉化期末) 如图,直角梯形 ABCD 中,AD∥BC,AB⊥BC,AD=3,BC=4.将腰 CD 以D 为旋转中心逆时针旋转90°至 DE,连结 AE,则△ADE 的面积是()A .B . 2C .D . 不能确定二、填空题 (共10题;共11分)9. (1分) 2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为________.10. (1分)(2020·宜城模拟) 一个菱形的边长是方程x2﹣7x+10=0的一个根,其中一条对角线长为6,则该菱形的面积为________.11. (1分) (2016七上·宁德期末) 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.12. (2分) (2017·东城模拟) 北京市2012﹣2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2017年北京市常住人口增量约为________万人次,你的预估理由是________.13. (1分)(2019七下·汽开区期末) 如图,六边形ABCDEF内部有一点G,连结BG、DG. 若,则∠BGD的大小为________度.14. (1分) (2019九上·蓬溪期中) 如图:△ABC中,AB=4,AC=6,AD平分∠BAC ,BD⊥AD , E是BC 中点,那么DE=________.15. (1分)(2017·靖远模拟) 一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是________.16. (1分) (2018九上·丹江口期中) 已知二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是________.17. (1分) (2019八下·乌兰浩特期中) 已知,则 =________18. (1分)(2016·宝安模拟) 将边长为1的正方形纸片按图1进行二等分分割,其阴影图形面积为S1 ,继续将图2剩下空白部分二等分分割的图形面积为S2 ,…,按此方法如图3第n次分割后得到的图形面积为Sn ,求S1+S2+S3+…+Sn=________.三、解答题 (共10题;共95分)19. (10分)观察下列各式及验证过程:验证:= 验证:验证:(1)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2的自然数)表示的等式,并进行验证.20. (5分) (2019九上·云县期中) 已知关于x的一元二次方程x2-kx-2=0,求证:无论k为何值,方程总有两个不相等的实数根.21. (15分)(2016·呼和浩特模拟) 分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.22. (10分)(2017·高安模拟) 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩.请你根据下面回答者对甲、乙两人回答的内容进行分析,(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?23. (10分)(2017·龙岩模拟) 如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B.(1)请你在图中把图补画完整;(2)求C′B的长.24. (5分)一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得到的分数为原来数的倒数.求这个分数.25. (10分) (2020九上·莘县期末) 如图,在R△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省惠州市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 9的相反数是()A.−9B.9C.19D.−19【答案】A【考点】相反数【解析】根据相反数的定义即可求解.【解答】9的相反数是−9,2. 一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【答案】C【考点】中位数【解析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.3. 在平面直角坐标系中,点(3, 2)关于x轴对称的点的坐标为()A.(−3, 2)B.(−2, 3)C.(2, −3)D.(3, −2)【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】点(3, 2)关于x轴对称的点的坐标为(3, −2).4. 若一个多边形的内角和是540∘,则该多边形的边数为()A.4B.5C.6D.7【答案】B【考点】多边形内角与外角【解析】根据多边形的内角和公式(n−2)⋅180∘列式进行计算即可求解.【解答】设多边形的边数是n,则(n−2)⋅180∘=540∘,解得n=5.5. 若式子√2x−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠−2【答案】B【考点】二次根式有意义的条件【解析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.6. 已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.4【答案】A【考点】三角形中位线定理【解析】根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.7. 把函数y=(x−1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x−1)2+1C.y=(x−2)2+2D.y=(x−1)2+3【答案】C【考点】二次函数图象与几何变换【解析】先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】二次函数y=(x−1)2+2的图象的顶点坐标为(1, 2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2, 2),∴所得的图象解析式为y=(x−2)2+2.8. 不等式组{2−3x≥−1,x−1≥−2(x+2)的解集为()A.无解B.x≤1C.x≥−1D.−1≤x≤1【答案】D【考点】解一元一次不等式组【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,9. 如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60∘.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.√2C.√3D.2【答案】D【考点】翻折变换(折叠问题)正方形的性质【解析】由正方形的性质得出∠EFD=∠BEF=60∘,由折叠的性质得出∠BEF=∠FEB′=60∘,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.【解答】∵四边形ABCD是正方形,∴AB // CD,∠A=90∘,∴∠EFD=∠BEF=60∘,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60∘,BE=B′E,∴∠AEB′=180∘−∠BEF−∠FEB′=60∘,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.10. 如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【答案】B【考点】抛物线与x轴的交点二次函数图象与系数的关系【解析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b=1,可得b=−2a,2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.分解因式:xy−x=________.【答案】x(y−1)【考点】因式分解-提公因式法【解析】直接提取公因式x,进而分解因式得出答案.【解答】xy−x=x(y−1).如果单项式3x m y与−5x3y n是同类项,那么m+n=________.【答案】4【考点】同类项的概念【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.若√a−2+|b+1|=0,则(a+b)2020=________.【答案】1【考点】非负数的性质:偶次方非负数的性质:算术平方根非负数的性质:绝对值【解析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,已知x=5−y,xy=2,计算3x+3y−4xy的值为________.【答案】7【考点】列代数式求值【解析】由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.【解答】∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,AB的长为半径,分别以点A,B为圆心作如图,在菱形ABCD中,∠A=30∘,取大于12弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为________.【答案】45∘【考点】作图—基本作图菱形的性质线段垂直平分线的性质【解析】根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=1(180∘−∠A)=75∘,2由作图可知,EA=EB,∴∠ABE=∠A=30∘,∴∠EBD=∠ABD−∠ABE=75∘−30∘=45∘,有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90∘,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为________.【答案】2√5−2【考点】直角三角形斜边上的中线点与圆的位置关系【解析】如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.【解答】如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90∘,MN=4,EM=NE,∴BE=1MN=2,2∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.(也可以用DE≥BD−BE,即DE≥2√5−2确定最小值)三、解答题(一)(本大题3小题,每小题6分,共18分)先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.【答案】(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【考点】整式的混合运算—化简求值【解析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2当x=√2,y=√3时,原式=2×√2×√3=2√6.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】x=120−(24+72+18)=6;=1440(人),1800×24+72120答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【考点】用样本估计总体【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】x=120−(24+72+18)=6;1800×24+72=1440(人),120答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE 与CD相交于点F.求证:△ABC是等腰三角形.证明:∵ ∠ABE =∠ACD ,∴ ∠DBF =∠ECF ,在△BDF 和△CEF 中,{∠DBF =∠ECF∠BFD =∠CFE BD =CE,∴ △BDF ≅△CEF(AAS),∴ BF =CF ,DF =EF ,∴ ∠FBC =∠FCB ,∴ ∠ABC =∠ACB ,∴ AB =AC ,即△ABC 是等腰三角形.【考点】等腰三角形的判定全等三角形的性质与判定【解析】先证△BDF ≅△CEF(AAS),得出BF =CF ,则∠FBC =∠FCB ,得出∠ABC =∠ACB ,则AB =AC .【解答】证明:∵ ∠ABE =∠ACD ,∴ ∠DBF =∠ECF ,在△BDF 和△CEF 中,{∠DBF =∠ECF∠BFD =∠CFE BD =CE,∴ △BDF ≅△CEF(AAS),∴ BF =CF ,DF =EF ,∴ ∠FBC =∠FCB ,∴ ∠ABC =∠ACB ,∴ AB =AC ,即△ABC 是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15 的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【答案】由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解, 解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; 当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵ (2√3)2+(2√3)2=(2√6)2,∴ 以2√3、2√3、2√6为边的三角形是等腰直角三角形.【考点】二元一次方程组的解根与系数的关系一元二次方程的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15 的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.【解答】由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解, 解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; 当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵ (2√3)2+(2√3)2=(2√6)2,∴ 以2√3、2√3、2√6为边的三角形是等腰直角三角形.如图1,在四边形ABCD 中,AD // BC ,∠DAB =90∘,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.【答案】证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90∘,∵ AD // BC ,∠DAB =90∘,∴∠OBC=180∘−∠DAB=90∘,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCBOC=OC,∴△OCE≅△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC−BF=2−1=1,∵AD // BC,∠DAB=90∘,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90∘,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【考点】直角梯形解直角三角形圆周角定理切线的判定与性质【解析】(1)证明:作OE⊥CD于E,证△OCE≅△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】证明:作OE⊥CD于E,如图1所示:则∠OEC=90∘,∵AD // BC,∠DAB=90∘,∴∠OBC=180∘−∠DAB=90∘,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCBOC=OC,∴△OCE≅△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC−BF=2−1=1,∵AD // BC,∠DAB=90∘,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90∘,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;建造这90个摊位的最大费用是10520元【考点】分式方程的应用一元一次不等式的实际应用【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=________;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【答案】2△BDF的面积=△OBD的面积=S△BOA−S△OAD=12×8−12×2=3;设点D(m, 2m ),则点B(4m, 2m),∵点G与点O关于点C对称,故点G(8m, 0),则点E(4m, 12m),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得{2m=ms+n 12m =4ms+n并解得:直线DE的表达式为:y=−12m2x+52m,令y=0,则x=5m,故点F(5m, 0),故FG=8m−5m=3m,而BD=4m−m=3m=FG,则FG // BD,故四边形BDFG为平行四边形.【考点】反比例函数综合题【解析】(1)设点B(s, t),st=8,则点M(12s, 12t),则k=12s⋅12t=14st=2;(2)△BDF的面积=△OBD的面积=S△BOA−S△OAD,即可求解;(3)确定直线DE的表达式为:y=−12m2x+52m,令y=0,则x=5m,故点F(5m, 0),即可求解.【解答】设点B(s, t),st=8,则点M(12s, 12t),则k=12s⋅12t=14st=2,故答案为2;△BDF的面积=△OBD的面积=S△BOA−S△OAD=12×8−12×2=3;设点D(m, 2m ),则点B(4m, 2m),∵点G与点O关于点C对称,故点G(8m, 0),则点E(4m, 12m),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得{2m=ms+n 12m =4ms+n并解得:直线DE的表达式为:y=−12m x+52m,令y=0,则x=5m,故点F(5m, 0),故FG=8m−5m=3m,而BD=4m−m=3m=FG,则FG // BD,故四边形BDFG为平行四边形.如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标. 【答案】∵ BO =3AO =3,∴ 点B(3, 0),点A(−1, 0), ∴ 抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32,∴ b =−3+√33,c =−3+√32;如图1,过点D 作DE ⊥AB 于E ,∴ CO // DE , ∴ BCCD =BOOE ,∵ BC =√3CD ,BO =3, ∴ √3=3OE ,∴ OE =√3,∴ 点D 横坐标为−√3,∴ 点D 坐标为(−√3, √3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b ,解得:{k =−√33b =√3, ∴ 直线BD 的函数解析式为y =−√33x +√3;∵ 点B(3, 0),点A(−1, 0),点D(−√3, √3+1),∴ AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵ 直线BD:y =−√33x +√3与y 轴交于点C ,∴ 点C(0, √3), ∴ OC =√3, ∵ tan ∠CBO =COBO =√33, ∴ ∠CBO =30∘,如图2,过点A 作AK ⊥BD 于K ,∴ AK =12AB =2,∴ DK =√AD 2−AK 2=√8−4=2, ∴ DK =AK , ∴ ∠ADB =45∘,如图,设对称轴与x 轴的交点为N ,即点N(1, 0),若∠CBO =∠PBO =30∘,∴ BN =√3PN =2,BP =2PN , ∴ PN =2√33,BP =4√33,当△BAD∽△BPQ,∴BPBA =BQBD,∴BQ=4√33×(2√3+2)4=2+2√33,∴点Q(1−2√33, 0);当△BAD∽△BQP,∴BPBD =BQAB,∴BQ=4√33×423+2=4−4√33,∴点Q(−1+4√33, 0);若∠PBO=∠ADB=45∘,∴BN=PN=2,BP=√2BN=2√2,当△DAB∽△BPQ,∴BPAD =BQBD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1−2√3, 0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=√2×2√22√3+2=2√3−2,∴点Q(5−2√3, 0);综上所述:满足条件的点Q的坐标为(1−2√33, 0)或(−1+4√33, 0)或(1−2√3, 0)或(5−2√3, 0).【考点】二次函数综合题【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30∘,∠ADB=45∘,分∠ABP=30∘或∠ABP=45∘两种情况讨论,利用相似三角形的性质可求解.【解答】∵BO=3AO=3,∴点B(3, 0),点A(−1, 0),∴抛物线解析式为:y=3+√36(x+1)(x−3)=3+√36x2−3+√33x−3+√32,∴ b =−3+√33,c =−3+√32;如图1,过点D 作DE ⊥AB 于E ,∴ CO // DE , ∴BC CD=BO OE,∵ BC =√3CD ,BO =3, ∴ √3=3OE ,∴ OE =√3,∴ 点D 横坐标为−√3,∴ 点D 坐标为(−√3, √3+1),设直线BD 的函数解析式为:y =kx +b , 由题意可得:{√3+1=−√3k +b 0=3k +b ,解得:{k =−√33b =√3,∴ 直线BD 的函数解析式为y =−√33x +√3;∵ 点B(3, 0),点A(−1, 0),点D(−√3, √3+1),∴ AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵ 直线BD:y =−√33x +√3与y 轴交于点C ,∴ 点C(0, √3), ∴ OC =√3, ∵ tan ∠CBO =COBO =√33, ∴ ∠CBO =30∘,如图2,过点A 作AK ⊥BD 于K ,∴AK=12AB=2,∴DK=√AD2−AK2=√8−4=2,∴DK=AK,∴∠ADB=45∘,如图,设对称轴与x轴的交点为N,即点N(1, 0),若∠CBO=∠PBO=30∘,∴BN=√3PN=2,BP=2PN,∴PN=2√33,BP=4√33,当△BAD∽△BPQ,∴BPBA =BQBD,∴BQ=4√33×(2√3+2)4=2+2√33,∴点Q(1−2√33, 0);当△BAD∽△BQP,∴BPBD =BQAB,∴BQ=4√33×42√3+2=4−4√33,∴点Q(−1+4√33, 0);若∠PBO=∠ADB=45∘,∴BN=PN=2,BP=√2BN=2√2,当△DAB∽△BPQ,∴BPAD =BQBD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1−2√3, 0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=√2×2√22√3+2=2√3−2,∴点Q(5−2√3, 0);综上所述:满足条件的点Q的坐标为(1−2√33, 0)或(−1+4√33, 0)或(1−2√3, 0)或(5−2√3, 0).试卷第21页,总21页。

相关文档
最新文档