最新五年级奥数-速算与巧算2
五年级小数的速算与巧算2
小数的巧算2小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数。
在某种意义上讲,“化整”是小数运算技巧的灵魂。
当然,根据小数的特点,在乘除运算中灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变(如0.8×1.25=8×0.125);两数相除,两数中的小数点同向移动相同的位数,其商不变(如0.16÷0.04=16÷4),也是常见的简化运算方法。
另外,某些特殊小数相乘化整,应熟记于心,如上面的8×0.125=1;0.5×2=0.25×4=1;0.75×4=3;0.625×16=10等等。
同学们在平时做题时留心积累这些“窍门”会大大提高自己的运算能力。
一、例题讲解小数点的移位法则例1:计算2005×18-200.5×80+20050×0.1例2:计算75×4.7+15.9×25练习(1)计算1.25×3.14+125×0.0257+1250×0.00229 (2)计算22.8×98+45.6换成相同的乘数例3:999.90.280.666680⨯+⨯ 例4:计算999.9×0.28-0.6666×370练习1、999.90.27 6.66630.5⨯-⨯2、5.211111666660.8⨯+⨯3、3.631.443.9 6.4⨯+⨯找相同的乘数例5:计算7.816×1.45+3.14×2.184+1.69×7.816 练习:3.73 2.638.37 3.73 3.73⨯+⨯-添括号或去括号凑整数例6:320÷1.25÷8 例7: 18÷(31.25×0.9)+99.36练习:1、220÷0.25÷42、520÷12.5÷83、8÷(21.25÷1.25)4、40×(31.25×0.75)整体表示小数的和或者差1、(20.450.56)(0.450.560.84)(20.450.560.84)(0.450.56) ++⨯++-+++⨯+2、(5 2.12 4.53)(2.12 4.53 6.8)(2.12 4.53)(5 2.12 4.53 6.8) ++⨯++-++++凑整和分解数1、1.1 2.2 3.3 4.4 5.5 6.67.78.89.911.1113.1315.1517.1719.19+++++++++++++2、2012201.220.12 2.012+++二、课堂练习1、计算37.5-1.53-0.25-1.222、计算2.5×1.25×3.23、计算3.74×2.85+8.15×3.74-3.744、计算2.4×7.6+7.6×6.5+7.6×1.15、计算8÷(31.25×0.4)+99.366、计算20.05×39+200.5×4.1+40×10.0257、计算:15.48×35-154.8×1.9+15.48×84 8、计算:0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 9、计算2006+200.6+20.06+2.006 10、计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7)11、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1912、计算(2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32)×(3.15+5.87)13、计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)作业:1.计算:100-9.9-8.8-7.7-6.6-5.5-4.4-3.3-2.2-1.1 2.计算 1.25×17.6+36÷0.8+2.64×12.5。
五年级奥数:第2讲--速算与巧算(二)
第2课 小数的速算与巧算(二)【知识概述】若干个数排成一列称为“数列”,数列中的每一个数称为一项,其中第一项称为首项(1a ),最后一项称为末项(n a )。
从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d ),数列中的数的个数称为项数(n )。
对于等差数列,我们要熟练运用三个公式:通项公式:第n 项=首项+(项数-1)×公差,n a =1a +(n -1)×d项数公式:项数=(末项-首项)÷公差+1,n =(n a -1a )÷d +1求和公式:和=(首项+末项)×项数÷2,和=(1a +n a )×n ÷2例1 计算8.376÷3.2÷2.5 7.68÷2.5÷0.4例2 计算(4.8×7.5×8.1)÷(2.4×2.5×2.7) 1.1÷(1.1÷1.2)÷(1.2÷1.3)÷(1.3÷1.4)例3 已知等差数列0.2,0.5,0.8,1.1,1.4,…。
(1) 这个数列的第13项是多少?(2) 4.7是其中的第几项?1、有一列数0.1,0.5,0.9,1.3,1.7,…。
(1) 它的第1000项数是多少?(2) 492.1是它的第几项?2、一只小虫沿着笔直的树干往上跳。
它每跳一次都能升高0.04米。
它从离地面0.1米处开始跳,如果把这一处称为小虫的第一次落脚点,那么它第100个落脚点正好是树梢。
这棵树高多少米?例4 如果一个等差数列的第4项为2.1,第6项为3.3,求它的第8项。
1、如果一个等差数列的第5项是11.9,第8项是16.1,求它的第11项是多少?2、在12.4和24.5之间插入10个数以后,使它们成为一个等差数列,插入的10个数中,最小的是几?最大的是几?例5 计算:0.3+0.7+1.1+…+9.9(1)计算:0.1+0.2+0.3+…+7.7+7.8 (2)计算:200-0.3-0.6-0.9―…―5.1-5.4例6 算式0.1+0.3,0.3+0.6,0.5+0.9,…是按一定规律排列的,求它的第2000个算式的和。
小学奥数--速算巧算方法(二)
小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。
第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。
比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。
五年级奥数速算与巧算
速算与巧算知识导航我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。
分数、小数四则混合运算常用的方法、技巧如下:1.运算法则:先乘除后加减;先算小括号,再算中括号;同级运算从左到右依次计算。
2.运算定律与性质: 加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++; 乘法交换律:a b b a ⨯=⨯ 乘法结合律:)(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:c a b a c b a ⨯±⨯=±⨯)( 减法的性质:)(c b a c b a +-=--除法的性质:)(c b a c b a ⨯÷=÷÷3.灵活运用通分和约分4.分数、小数化成统一的形式再计算,一般是分数化成小数。
5.凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的数再计算。
我们通常是利用运算律将一些数凑成整一、整十或整百再计算。
凑整技巧主要有:①分组凑整;②加补凑整;③基准凑整。
6.分组分解法:利用交换律和结合律对式子进行分组求解,最后再综合求解。
7.综合方法:计算比较复杂的式子时要多种方法一起用。
精典例题例1:25.697241283675.01000÷⎥⎦⎤⎢⎣⎡⨯+-⨯)(计算: 思路点拨注意运算的先后顺序,同时要注意乘法分配律的应用。
模仿练习125.019158861915886625.025.01915886194113⨯+⨯+⨯+计算:例2:计算:⎪⎭⎫⎝⎛+++÷⎪⎭⎫ ⎝⎛+++649537425313654543432321思路点拨先将带分数化成假分数,再利用乘法分配律。
模仿练习)()计算:(111933139911115933539951++÷++例3:9.0195105375.119484⨯+⨯计算: 思路点拨84和105有公因数21,可以把84和105分解,然后计算。
五年级奥数(教案)第1讲:速算与巧算(二)
=2×3×3
=18
练习2:[8分]
计算:
[1]16÷3.2÷2.5
[2]12.5×36.8÷3.68
[3][7.5×5.1×8.4]÷[1.7×4.2×2.5]
[4]9.3×3.2÷3.23×6.46÷1.6÷3.1
分析:
[1][2]两个题目主要是利用除法的性质来解题。[3][4]两个题目跟例题的类型也是一样的,先变成有倍数关系的两个数相除,然后再把结果相乘,最后得出结果。
是不是也需要花相当长的时间呢?那么对于这种类型的题目有没有更简便
的方法呢?思考一下。
生:老师我发现,被除数里数字与除数里的数字存在着倍数关系。
师:谁和谁存在倍数关系?
生:4.8与2.4,7.5与2.5,8.1与2.7。
师:是的,正好存在三对倍数关系的数。从这里出发,我们可以怎么去思考呢?
生:我们可以分别相除,然后再把结果相乘,这样和原来的结果是一样的。
一、复习导入[3分]
师:同学们,上节课我们学了什么?
生:速算与巧算。
师:是的,主要学了哪些速算的方法呢?
生:特殊的数字相乘能够凑整。
师:是的,特殊的数字,比如说25和4相乘等于100,125和8相乘等于1000。
这些特殊的数字,其实在小数里也是适用的。所以当看到特殊数字的时候,
我们可以直接将它们凑在一起,使计算变得简便,如果没有这样的两个数,
师:这个就是解题的关键。现在会做了吗?
生:最后我们可以利用乘法分配律的逆运算来解答,[7.2+2.8]×11.11=10×
11.11=111.1。
师:这是第一小题,接下来看第二小题,不仅有乘法,加法,还有减法,对吗?
五年级《速算与巧算》奥数教案
板书:
原式= + + +
=2
练习2:(5分)
计算: + + + -
分析:
将算式中的分数先化成最简分数,然后会发现化简后每个分数都是 。
板书:
原式= + + + -
=1
三、小结:(5分)
整数的加法交换律、结合律对分数的加减计算同样适用。
第二课时(50分)
师:那么我们可不可以将式子写成这种形式。
板书:
原式=(1- )+( - )+( - )+……+( - )
=1- + - + - +……+ -
=1-
=
师:从式子中我们发现中间的分数都是一加一减刚好抵消的。将数列中的每一
项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,我们
把这种解题方法叫做裂项相消法。
生: ,老师,我知道了,给式子加上一个 ,再在最后减去一个 ,
+ = , + = , + = ,最后式子变成1+2+3+4+5+ + - 。
师:恩恩,同学的反应能力很快,那么请你将过程板书到黑板上。
板书:
原式=1+2+3+4+5+ + + + +( + )-
=15+ + + +( + )-
=15+ + +( + )-
练习1:(5分)
计算: - + +
分析:
(完整版)奥数知识点速算与巧算
速算与巧算引导:1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算(改变运算顺序)10-9+8-7+6-5+4-3+2-15、计算(带着“+”、“-”号搬家)1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10的技术题1、计算1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
题2、计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:题3、计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:题4、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
题5、计算:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 解:由例2和例3,已经知道从1开始的前10个单数之和及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。
小学五年级奥数速算与技巧、包含与排除
小学五年级奥数题——速算与巧算在平常生活和解答数学识题时,常常要进行计算,在数学课里我们学习了一些简易计算的方法 ,但假如擅长察看、勤于思虑 ,计算中还可以找到更多的奇妙的计算方法 ,不单使你能算得好、算得快 ,还可以够让你变得聪慧和机警 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来没法用数学课中学过的简算方法计算,可是 ,这几个数每个数只需增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”此后,就简单计算了.自然要记住 ,“凑整”时增添了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,挨次减少0.01, 直到最后一个数是0.01, 所以 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的次序摆列的 .因为数的摆列、运算的摆列都很有规律,依据规律能够考虑每 4 个数为一组添上括号 ,每组数的运算结果能否也有必定的规律?能够看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分红 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1假如能够灵巧地运用数的互换的规律,也能够按下边的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的摆列像一个等差数列,但认真察看 ,它实质上由两个等差数列构成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后边每一个数都比前一个数多0.1,而 0.10+ 0.11 +0.12++ 0.19+ 0.20 是第二个等差数列,后边每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列乞降的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数减小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 能够分红0.99+ 1 的和 ,这样变化此后 ,计算比较简易.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346固然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,不过小数点的地点不一样 ,假如把此中一个乘法的两个因数的小数点.按相反方向挪动相同多位,使这两个数变为相同的,就能够运用乘法分派律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数固然是一个等差数列,但算式不是乞降,不可以用等差数列乞降的方法来计算这个算式的结果.平常注意累积计算经验的同学或许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只需把这个三位数连续写两遍就是它们的积,比如 578× 1001=578578,这一题参照这个方法计算,能奇妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算以下各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算以下各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包括与清除1、某班有40 名学生 ,此中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩宣布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 挨次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:此刻面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,此中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:此刻面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则以下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其余标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳索 ,从一端开始每隔后将标有记号的地方剪断.问绳索共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳索中间实质有记号 59+44-14=89 个 .剪 89 次 ,变为 89+1=90 段答:绳索共被剪成了 90 段 .6、东河小学画展上展出了很多幅画,此中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其余年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总合有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其余年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,此中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不可以被 5 除尽 ,又不可以被7除尽的数有多少个?1000/355 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被 5 除尽 ,又不可以被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人起码参加一项 .此中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求暗影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2暗影部分面积=73-( 6+8+5) +2*2=58答:暗影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书馆有 100 本书 ,借阅图书者需要在图书上署名.已知在 100 本书中有甲、乙、丙署名的分别有 33,44 和 55 本 ,此中同时有甲、乙署名的图书为29 本 ,同时有甲、丙署名的图书有25 本,同时有乙、丙署名的图书有36 本 .问这批图书中最罕有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总合看过最多有42+25=67(本) ,都没看过的书最罕有100-67=33 (本)答:这批图书中最罕有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条相同长的线段拼成了一个五角星.假如每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最罕有多少个?五条线上右发有 5*1994=9970 个红点 ,假如全部交错点上都放一个红点,则红点最少 ,这五条线有 10 个交错点 ,所以最罕有9970-10=9960 个红点答:在这个五角星上红色点最罕有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最罕有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最罕有46-42=4(盆)答: 3 人都浇过的花最罕有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不可以被5 除尽 ,又不可以被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被5除尽 ,又不可以被7 除尽的数有686 个 .题中的除尽应当是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。
2022-2023学年小学五年级奥数(全国通用)测评卷01《速算和巧算》(解析版)
【五年级奥数举一反三—全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.3÷0.08÷1.25=()A.230 B.23 C.2.3 D.0.23【分析】根据除法的性质简算即可.【解答】解:2.3÷0.08÷1.25=2.3÷(0.08×1.25)=2.3÷0.1=23故选:B.2.(2009•华罗庚金杯)下面有四个算式:①0.6+=②0.625=③+===④3×4=14其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与中的循环节中的1相加,答案不正确.②把分数化成小数,用分子除以分母5÷8=0.625;或把小数0.625化成分数并化简是,答案正确.③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:①0.6+=不正确;②0.625=正确;③+===不正确;④3×4=14正确.故选:B.3.(2003•创新杯)2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1的计算结果是()A.2002 B.2003 C.2004 D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002÷2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002﹣2001=2004.【解答】解:2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1=2003+(2002﹣2001)+(﹣2000+1999)+(1998﹣1997)+…+(6﹣5)+(﹣4+3)+(2﹣1)=2003+1﹣1+1+…+1﹣1+1=2003+1=2004故选:C.4.0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(a+b)×c=a×c+b×c所以0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的分配律.故选:C.5.与0.456×2.1的结果相同的算式是()A.4.56×21 B.21×0.0456 C.45.6×0.21 D.456×0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456×2.1=4.56×0.21=0.0456×21=45.6×0.021=456×0.0021故选:B.6.与61.2÷3.4计算结果相同的是()A.6.12÷0.34 B.612÷0.34C.0.612×0.034 D.612÷34【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.2÷3.4=612÷34故选:D.7.105×18=100×18+5×18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105×18=(100+5)×18=100×18+5×18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018•其他模拟)计算:3﹣5+7﹣9+11﹣13+…+1995﹣1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3﹣5+7﹣9+11﹣13+……+1995﹣1997+1999=1999﹣1997+1995﹣1993+……+11﹣9+7﹣5+3=(1999﹣1997)+(1995﹣1993)+……+(11﹣9)+(7﹣5)+3=2+2+2+……+2+3=2×499+3=10019.(2018•其他模拟)a=4,b=25,则a+b=,a×b=,a÷b=.【分析】根据题意可知我们运用加法的分配律、乘法的交换律和结合律即可解答.【解答】解:a+b=[(a+b)×]÷=(40+25)÷=a×b=[(a×)×(b×)]÷(×)=(40×25)÷=a÷b=(a×)÷(b×)=40÷25=故:答案见上面的计算结果.10.(2017•育苗杯)计算39.07﹣22.78÷3.4=32.37.【分析】这题有减法,有除法,要先算除法,再算减法.【解答】解:39.07﹣22.78÷3.4=39.07﹣6.7=32.3711.(2018•迎春杯)算式(20.17﹣12.02÷6)×6的计算结果是109.【分析】根据乘法的分配律简算即可.【解答】解:(20.17﹣12.02÷6)×6=20.17×6﹣12.02÷6×6=121.02﹣12.02=109故答案为:109.12.(2017•其他杯赛)计算:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=14070.【分析】应用加法交换律、加法结合律和减法的性质,求出算式的值是多少即可.【解答】解:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=2016+2014+2012+2010+2008+2006+2004=2010×7=14070故答案为:14070.13.(2016•其他杯赛)计算:91.5+19.8+80.2=191.5.【分析】应用加法结合律,求出算式的值是多少即可.【解答】解:91.5+19.8+80.2=91.5+(19.8+80.2)=91.5+100=191.5故答案为:191.5.14.(2016•其他杯赛)计算:(102.4+89.6﹣38×5)×(2016﹣126×16)=0.【分析】首先根据126×16=2016,求出2016﹣126×16的值是0;然后根据:0和任何数相乘都得0,可得:算式的值是0.【解答】解:(102.4+89.6﹣38×5)×(2016﹣126×16)=(102.4+89.6﹣38×5)×(2016﹣2016)=(102.4+89.6﹣38×5)×0=0故答案为:0.15.(2018•陈省身杯)计算200﹣(16+17+18+…+23+24)=20.【分析】凑整计算,通过移多补少将16~24求和,变为9个20求和,据此解答即可.【解答】解:200﹣(16+17+18+…+23+24)=200﹣9×20=200﹣180=2016.(2018•其他模拟)计算:53.3÷0.23÷0.91×16.1÷0.82=5000.【分析】通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.【解答】解:53.3÷0.23÷0.91×16.1÷0.82=(53.3÷0.82)×(16.1÷0.23)÷0.91=65×70÷0.91=13×5×10×7÷0.7÷1.3=10×5×10×10=5000故答案为:5000.17.(2007•迎春杯)计算:379×0.00038+159×0.00621+3.79×0.121= 1.59.【分析】先把算式变形为379×0.00038+379×0.00121+159×0.00621,再运用乘法的分配律进行简算即可.【解答】解:379×0.00038+159×0.00621+3.79×0.121=379×0.00038+379×0.00121+159×0.00621=379×(0.00038+0.00121)+159×0.00621=379×0.00159+159×0.00621=0.00379×159+159×0.00621=(0.00379+0.00621)×159=0.01×159=1.59;故答案为:1.59.三.计算题(共6小题,满分18分,每小题3分)18.(2016•中环杯)计算:(20.15+40.3)×33+20.15.【分析】先把403变形为20.15×2,再根据乘法的分配律简算即可.【解答】解:(20.15+40.3)×33+20.15=(20.15+20.15×2)×33+20.15=20.15×3×33+20.15=20.15×(3×33+1)=20.15×100=201519.计算(1)24×2×125×25(2)125×32×25×2013【分析】根据乘法的交换律与结合律简算即可.【解答】解:(1)24×2×125×25=3×(8×125)×(2×25)=3×1000×50=150000(2)125×32×25×2013=(125×8)×(4×25)×2013=1000×100×2013=20130000020.(2018•学而思杯)2.8×27+28×2.9+2.8×44【分析】首先把28×2.9化成2.8×29,然后应用乘法分配律,求出算式的值是多少即可.【解答】解:2.8×27+28×2.9+2.8×44=2.8×27+2.8×29+2.8×44=2.8×(27+29+44)=2.8×100=28021.(2017•春蕾杯)计算①0.8÷9+0.1÷9=0.1;②201.7×4.5+2017×0.35+20.17×20=2017;③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=0.4.【分析】①根据除法的性质简算即可.②首先把2017×0.35、20.17×20分别化成201.7×3.5+201.7×2,然后根据乘法分配律计算即可.③首先计算小括号里面的算式,然后计算乘法和减法即可.【解答】解:①0.8÷9+0.1÷9=(0.8+0.1)÷9=0.9÷9=0.1②201.7×4.5+2017×0.35+20.17×20=201.7×4.5+201.7×3.5+201.7×2=201.7×(4.5+3.5+2)=201.7×10=2017③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=1×1.6﹣2×0.6=1.6﹣1.2=0.422.计算:2015+201.5+20.15+985+98.5+9.85.【分析】应用加法结合律、乘法分配律,求出算式的值是多少即可.【解答】解:2015+201.5+20.15+985+98.5+9.85=(2015+201.5+20.15)+(985+98.5+9.85)=(20.15×100+20.15×10+20.15)+(9.85×100+9.85×10+9.85)=20.15×(100+10+1)+9.85×(100+10+1)=20.15×111+9.85×111=(20.15+9.85)×111=30×111=333023.(2003•创新杯)计算:0.79×0.46+7.9×0.24+11.4×0.079.【分析】先把算式变形为0.79×0.46+0.79×2.4+1.14×0.79,再根据乘法的分配律简算即可.【解答】解:0.79×0.46+7.9×0.24+11.4×0.079=0.79×0.46+0.79×2.4+1.14×0.79=0.79×(0.46+1.14+2.4)=0.79×4=(0.8﹣0.01)×4=0.8×4﹣0.01×4=3.2﹣0.04=3.16四.解答题(共6小题,满分31分)24.(5分)(2015•奥林匹克)计算:(12×21×45×10.2)÷(15×4×0.7×51)【分析】运用除法性质及乘法交换律、结合律简算.【解答】解:(12×21×45×10.2)÷(15×4×0.7×51)=(12÷4)×(21÷0.7)×(45÷15)×(10.2÷51)=3×30×3×0.2=5425.(5分)(2018•学而思杯)903+899+902+897+904+898【分析】方法一:应用加法交换律和加法结合律,求出算式的值是多少即可.方法二:首先把每个加数都化成900与某个数的和(或差)的形式;然后应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:方法一:903+899+902+897+904+898=(903+897)+(902+898)+(899+904)=1800+1800+1803=5403方法二:903+899+902+897+904+898=(900+3)+(900﹣1)+(900+2)+(900﹣3)+(900+4)+(900﹣2)=(900+900+900+900+900+900)+(3﹣1+2﹣3+4﹣2)=5400+3=540326.(5分)(1996•其他杯赛)376+385+391+380+377+389+383+374+366+378=3799.【分析】将给出的数字写成以380为标准的数,再相加减即可求解.【解答】解:376+385+391+380+377+389+383+374+366+378=380×10﹣(4+3+6+14+2)+(5+11+9+3)=3800+28﹣29=3799.故答案为:3799.27.(5分)(1995•其他杯赛)0.×0.=.【分析】通过0.101×0.19=0.01919,0.0101×0.019=0.0001919,0.00101×0.0019=0.000001919,可以发现小数与小数相乘,积的0的个数等于每个因数零的个数(零的个数是指到第一不为零的之前所有的0,包含小数点前的那一个零)之和,所以该题继而解决.【解答】解:0.×0.=故答案为:.28.(5分)(2015•春蕾杯)(1)10.44÷1.2×0.3= 2.61;(2)[0.5×(6+0.6)﹣0.5]÷2.5= 1.12.【分析】(1)根据除法的性质计算即可.(2)根据乘法运算定律和除法的性质计算即可.【解答】解:(1)10.44÷1.2×0.3=10.44÷(1.2÷0.3)=10.44÷4=2.61(2)[0.5×(6+0.6)﹣0.5]÷2.5=[0.5×(6+0.6﹣1)]÷2.5=0.5×5.6÷2.5=0.5÷2.5×5.6=0.2×5.6=1.12故答案为:2.61、1.12.29.(6分)(2017•学而思杯)(1)解方程:3(15﹣2x)+12=85﹣10x (2)计算:4.02×16+33×4.02﹣4.9×20.2.【分析】(1)根据等式的性质解方程即可;(2)根据乘法的分配律简算即可.【解答】解:(1)3(15﹣2x)+12=85﹣10x45﹣6x+12=85﹣10x10x﹣6x=85﹣574x=28x=7(2)4.02×16+33×4.02﹣4.9×20.2=4.02×(16+33)﹣49×2.02=4.02×49﹣49×2.02=49×(4.02﹣2.02)=49×2=98。
小学生奥数速算与巧算题五篇(最新)
1.小学生奥数速算与巧算题【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(2)812-593+193=812-(593-193)=812-400=412(1)286+879-679=286+(879-679)=286+200=868练习:计算下面各题。
1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+286)6.756+1478+346-(256+278)-2462.小学生奥数速算与巧算题【例题】计算9+99+999+9999【思路】这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习:1、计算99999+9999+999+99+92、计算9+98+996+99973、计算1999+2998+396+4974、计算198+297+396+4955、计算1998+2997+4995+59946、计算19998+39996+49995+699963.小学生奥数速算与巧算题1、用2、3、4、6这四张牌进行计算,使最后得数等于24。
2、怎样用3、7、8、8四个数进行计算,使最后得数等于24?3、用两个2和两个8计算,使最后得数等于24。
4、现在有三个数:2、6、8,怎样用这三个数进行计算,使计算结果等于24?5、小明从一副扑克牌中摸出2、3、6、9这四张牌,怎样用这四个数进行计算,使结果等于24?6、有四个数:1、3、5、9,请你进行计算,使最后得数等于24。
五年级奥数专题 速算与巧算二(学生版)
学科培优数学速算与巧算二学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
五年级奥数第2课时:速算与简算
第二讲速算与巧算一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×42.分解因数,凑整先乘。
例 2计算① 24×25②56×125③125×5×32×53.应用乘法分配律。
例3 计算① 175×34+175×66②67×12+67×35+67×52+6例4 计算① 123×101② 123×994.几种特殊因数的巧算。
例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。
如:15×10=15015×100=150015×1000=15000 例6一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=12×99=12×999=例7一个偶数乘以5,可以除以2添上0 如:6×5=16×5=116×5=例8 一个数乘以11,“两头一拉,中间相加”。
如2222×11=2456×11=例9一个偶数乘以15,“加半添0”.24×15例10个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=625自己尝试往下写:二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
五年级奥数小数的巧算学生版
速算与巧算巧算也是简便运算,在数的运算中根据数的特点及数与数之间的特殊关系,恰当地利用四则运算中的定律、性质或利用和、差、积、商的变化规律,通过数的分解、合并改变原来的运算顺序,不但可以提高运算速度,还能使计算又准又快,锻炼思维,提高运算的技能技巧,达到事半功倍的效果。
小数的速算与巧算一小数的简便计算除了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
1、凑整法简算就是要求计算的小数通过移位,拆减等,把这类数化成2×5=10,4×25=100,8×25=200,8×125=1000等相加或者相乘的数。
例1计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算就是把某个数进行拆分,然后分别与乘数相乘,达到简便运算的效果。
例2(1)计算:1.25×1.08 (2)计算:7.5×9.9练习:(1)2.5×10.4 (2) 3.8×0.99 (3)1991+199.1+19.91+1.9913、转化法简算就是把相同的因数提取出来,再把剩下的乘数相加或相减,以达到简便运算的目的。
例3 计算:5.7×9.9+0.1×5.7练习:(1)4.6×99+99×5.4 (2)7.5×101-7.54、扩大或缩减法就是将因式中相同数字的乘数通过扩大或者缩小,另一个乘数缩小或者扩大相同倍数,使其中某个乘数相同,达到简便运算的效果。
五年级奥数- 巧算与速算
速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
奥数 速算与巧算
奥数速算与巧算求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。
对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。
有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。
所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。
下面通过例题来说明这一方法。
例3 求292和822的值。
解:292=29×29=(29+1)×(29-1)+12=30×28+1=840+1=841。
822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724。
由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。
因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。
本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。
最后,还要加上“移多补少”的数的平方。
由凑整补零法计算352,得35×35=40×30+52=1225。
这与三年级学的个位数是5的数的平方的速算方法结果相同。
这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。
例4求9932和20042的值。
解:9932=993×993=(993+7)×(993-7)+72=1000×986+49=986000+49=986049。
20042=2004×2004=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016。
下面,我们介绍一类特殊情况的乘法的速算方法。
小学奥数专题之速算与巧算(二)
小学奥数专题之——————速算与巧算整数与小数乘除法部分《二》必记与熟练运用基本公式a+b+c=a+c+b=b+c+a=b+(c+a)=a+(b+c)=……a+b-c=a-c+b=(a+b)-c=a+(b-c)=a-(c-b)……a-b-c-d-e-……=a-(b+c+d+e+……)a×b×c=a×c×b=a×(b×c)=……a×b÷c=a×(b÷c)=b×(a÷c)=……a÷b÷c=a÷(b×c)a×(b+c)= a×b+a×ca×(b-c)=a×b-a×c基本简便算法训练(写出简算过程)456+897+103 587+684-484 654-387+287 5121+6573+4879 5634+4366-8765 6543+854-1543 5646+9997 6545-1996 6587+59947865-347-1653 7958-(958+162)4795-(355+1795)345-279+655-321 6544+8953-4544-5953 4673-897-26735647+8956-4603 78×99 68×101867×999 567×1001 125×3225×36 125×432×8 76×25×425×32×125 4×83×25 84000÷125÷87800÷25÷4 25×(80+4)125×(80-4)379 ×58+42×379 965×176-965×76 163×175-163×34-163×41利用乘法分配律口算100以内两位数的乘法例23×25=(20+3)×25=(24-1)×25=(25-2)×25=(30-7)×25= 23×(20+5)= 23×(30-5) =23×(27-2)=23×100÷4=23×50÷2=……38×47 96×56 87×54 63×5123×25 75×43 79×64 38×6289×99 21×53 48×56 51×79十位相同个位相加刚好满十的规律(头同尾补)十位乘十位加一的和,并个位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.68.068.
(1)99
思路导航:题中,9.9接近10,且6.8和0.68都是有6、8这两个数字。
解法一:解法二:
99.68.068.99.68.068.
=99×0.68+1×0.68 =9.9×6.8+0.1×6.8
=(99+1)×0.68 =(9.9+0.1)×6.8
=100×0.68 =10×6.8
解:
76.8÷56×14
=76.8÷(56÷14)
=76.8÷4
=19.2
同步导练三:
(1) 144÷15.6×13(2)6355711(3)(487581)(242527)例四:
0.999×0.7+0.111×3.7
思路导航:本类题可以将原式进行合理的等值变形后,再运用适当的方法进行简便运算=0.111×9×0.7+0.111×3.7
例五:
计算1.25×32×2.5
思路导航:.将一个因数分本类题是解成两个或两个以上的因数的积,然后再运用乘法的交换律和结合律进行简便.在这道连乘的算式里,32拆成8与4的积.如果1.25能与8相乘,可得到10,同时把2.5和4,可以得到10,再把100与10相乘就简便了.
解:原式=1.25×(8×4)×2.5
=68 =68
想想还有别的解法吗?
同步导练一:
(1)272.4×6.2+2724×0.38(2)1.25×6.3+37×0.125
(3)7.24×0.1+0.5×72.4+0.049×724
(4)6.49×0.22+258×0.0649+5.3×6.49+64.9×0.19
例2:
(2+0.48+0.82)×(0.48+0.82+0.56)-(2+0.48+0.56)×(0.48+0.82)思路导航:整个式子是乘积之差的形式,它们构成很有规律,如果把2+0.48+0.82用A表示,把0.48+0.82用B表示,则原式化为A×(B+0.56)-(A+0.56)×B,再利用乘法分配律计算,大大简化了计算过程.
=(1.25×8)×(4×2.5)
=10×10
=100
同步导练五:
(1)12.5×48 (2)2.5×128×125×5
(3) 2.5×56 (4)1.8×5.5
第二讲小数的巧算与速算
轻松阅读:
同学们,前面我们已经学过整数的速算与巧算,今天我们一起来研究小数的速算与巧算,它的算理与整数有异曲同工之妙。在数的运算中根据数的特点及数与数之间的特殊关系,恰当地利用四则运算中的规律,不但可以提高运算速度,而且还能使我们的计算又准又快,锻炼思维,提高运算的技能技巧。现在开始学习吧!
解:设A=2+0.48+0.82B=0.48+0.82,
原式=A×(B+0.56)-(A+0.56)×B
=A×B+A×0.56-(A×B+0.56×B)
= A×B+A×0.56- A×B-0.56×B
=0.56×(A-B)
=0.56×2
=1.12
同步导练二:
(1)(3.7+4.8+5.9)×(4.8+5.93;5.9)
=0.111×6.3+0.111×3.7
=0.111×(6.3+3.7)
=0.111×10
=1.11
同步导练四:
(1)0.999×0.6+0.111×3.6 (2) 0.222×0.778+0.444×0.111
(3)0.888×0.9+0.222×6.4 (4)0.111×5.5+0.555×0.9
(2)(4.6+4.8+7.1)×(4.8+7.1+6)-(4.6+4.8+7.1+6)×(4.8+7.1)
例三:
计算76.8÷56×14
思路导航:这道题是乘除同级运算,解答时,利用添括号法则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”。不过,同学们请注意,这种方法只适用于乘、除同级运算。