2018年高考理科数学三角函数100题(含答案解析)

合集下载

高考数学三角函数与解三角真题训练100题含答案

高考数学三角函数与解三角真题训练100题含答案

高考数学三角函数与解三角真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.数学家欧拉通过研究,建立了三角函数和指数函数之间的联系,得到著名的欧拉公式i e cos isin x x x =+(i 为虚数单位),此公式被誉为“数学中的天桥”.根据欧拉公式,3i e 表示的复数在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数22()cos 3sin 1f x x x =-+的最小正周期为( ) A .2πB .πC .π2D .π43.若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称4.sin 480︒的值是( )A .12B .12-C D . 5.下列各角中与60︒角终边相同的角是( ) A .-300°B .-60°C .600°D .1 380°6.一架直升飞机在300m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60︒,则塔高为( )A .200mB .C .D .100m7.已知ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,b =1a =,23B π=,则c =( )A B .2CD .38.为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点( ) A .纵坐标不变,横坐标伸长为原来的2倍 B .纵坐标不变,横坐标缩短为原来的12倍 C .横坐标不变,纵坐标伸长为原来的2倍 D .横坐标不变,纵坐标缩短为原来的12倍9.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( )A .π12B .π12-C .5π12D .5π12-10.设sin160a ︒=,则cos340︒的值是( )A .21a - BC .D .11.已知,04πα⎛⎫∈- ⎪⎝⎭且24sin225α=-,则sin cos αα+=( )A .15B .15- C .75- D .7512.已知1tan 42πα⎛⎫+= ⎪⎝⎭,则2sin 2cos 1cos 2ααα-=+( ) A.56- B .75- C .2- D .13.已知函数2sin y x =的定义域为[,]a b ,值域为[2,1]-,则b a -的值不可能是 A .2πB .76πC .56π D .π14.已知曲线21:C y x =,曲线2:sin 2cos 2C y x x =+,则下列结论正确的是( )A .曲线1C 关于原点对称B .4x π=是曲线2C 的一条对称轴C .曲线1C 向右平移8π个单位长度,得到曲线2C D .曲线2C 向左平移4π个单位长度,得到曲线1C15.函数3sin 2x y x =的图象可能是( ).A .B .C .D .16.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()5c a b =-+,3C π=,则ABC 的面积是( )A .3B C D .17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c =,b ,则ABC 的面积最大值为( )AB .CD .18.已知sin()0,cos()0θπθπ+<->,则θ是第象限角. A .一 B .二 C .三D .四19. 若,且,42x ππ<<则cos sin x x -的值是A .B .C .D .20.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =( ) A .513B .6365C .2113D .31021. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan△ECF=A .B .C .D .22.已知θ为第四象限角,sin cos θθ+=sin cos θθ-=( )A .B .C D23.在数列{}n a 中,()*1153n n a a a n n N +==-+∈,,若该数列的前三项可作为三角形的三边长,则此三角形最小角与最大角之和为 A .150°B .135°C .120°D .90°24.将函数()π2sin +36x f x ⎛⎫= ⎪⎝⎭的图象向左平移π4个单位,再向下平移1个单位,得到函数 g ( x ) 的图象,则 g ( x ) 的解析式为 A .()π2sin +134x g x ⎛⎫=- ⎪⎝⎭ B .()π2sin 134x g x ⎛⎫=-- ⎪⎝⎭ C .()π2sin 1312x g x ⎛⎫=-+ ⎪⎝⎭D .()π2sin 1312x g x ⎛⎫=-- ⎪⎝⎭25.某船在岸边A 处向正东方向航行x 海里后到达B 处,然后向南偏西60︒方向航行3海里达到C 处,若A 与Cx 的值是( )A .3BC .D .26.一艘船航行到点B 处时,测得灯塔C 在其北偏东15°的方向,如图,随后该船以25海里/小时的速度,沿西北方向航行两小时后到达点A ,测得灯塔C 在其正东方向,此时船与灯塔C 间的距离为( )A .(253海里B .25海里C .(253海里D .(25海里27.北京大兴国际机场(如图所示)位于中国北京市大兴区和河北省廊坊市交界处,为4F 级国际机场、世界级航空枢纽、如图,天安门在北京大兴国际机场的正北方向46km处,北京首都国际机场在北京大兴国际机场北偏东16.28°方向上,在天安门北偏东47.43°的方向上,则北京大兴国际机场与北京首都国际机场的距离约为( ) (参考数据:sin16.280.28︒≈,sin47.430.74︒≈,sin31.150.52︒≈)A .65.46kmB .74.35kmC .85.09kmD .121.12km28.已知定义域为[1,1]-函数3()sin f x x x =+,则关于a 的不等式2(2)(4)0f a f a -+->的解集是( )A.(3,2)-B .2)C .D .29.某学习小组的学习实践活动是测量图示塔AB 的高度.他们选取与塔底在同一水平面内的两个测量基点C ,D ,测得3BCD π∠=,4BDC π∠=,且基点C ,D 间的距离为(30m CD =+,同时在点C 处测得塔顶A 的仰角为6π,则塔高AB 为( )A .20mB .C .40mD .30.若tan()74πα+=,则2cos 2sin 2αα+=( )A .6425B .4825C .1D .162531.已知sin α+cos αα△(0,π),则tan α=( )A .-1 BC D .132.要得到函数2sin 2y x =的图象,只需将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度33.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫ ⎪⎝⎭,,将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象,则( ) A .g (x )为偶函数B .g (x )的一个单调递增区间为51212ππ⎡⎤-⎢⎥⎣⎦,C .g (x )为奇函数D .函数g (x )在02π⎡⎤⎢⎥⎣⎦,上有两个零点34.在ABC 中,如果4sin 2cos 1,2sin 4cos A B B A +=+=C ∠的大小为( ) A .30B .150︒C .30或150︒D .60︒或120︒35.已知()2cos f x x =,[],x m n ∈,则“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件36.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,点P 是ABC 的重心,且AP =若2b =,(()cos 24sin 1A B C ++=,则=a ( )A .B .C .D .37.把函数y= sin 3x π⎛⎫+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移3π个单位,所得图象对应的函数为( )A .y=sin 23x π⎛⎫- ⎪⎝⎭B .y=sin2xC .y=sin 126x π⎛⎫- ⎪⎝⎭D .y=sin 12x38.将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图象.再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数()h x 的图象,则下列叙述正确的是( )A .当6πθ=时,,012π⎛⎫⎪⎝⎭为函数()h x 图象的对称中心B .当6πθ=时,若0,4x π⎡⎤∈⎢⎥⎣⎦,则函数()h xC .当2πθ=时,函数()g x 与()h x 的图象关于x 轴对称D .当2πθ=时,函数()()g x h x -的最小值为039.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45︒方向,距离的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北(045)θθ︒<<︒方向的C 处,且4cos .5θ=已知A ,C 之间的距离为10海里,则该货船的速度大小为( )A ./小时B ./小时C ./小时D ./小时40.中,角的对边分别为,且满足,则A .B .C .D .41.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭A .BCD . 42.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移2π个单位长度 B .向右平移2π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度43.把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象与y 轴距最近的称轴方程为 A .x 3π=B .x -6π= C .x -24π= D .11x 24π=44.已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)△(54π,32π)B .(0,4π)△(54π,32π)C .(2π,34π)△(74π,2π)D .(2π,34π)△(π,32π)45.已知点()00,P x y 是圆22:124390C x y x y ++++=上的一点,记点P 到x 轴距离为1d ,到原点O 的距离为2d ,则当212d d +取最小值时,x y =( ) A .167B .187C .227D .24746.函数()f x 的图象如图所示,则()f x 的解析式可能为( )A .3π()2cos(2)110f x x =+- B .3π()1cos(2)10f x x =-+C .π()1sin 25f x x ⎛⎫=+- ⎪⎝⎭D .π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭47.把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数()y f x =的图象,对于函数()y f x =有以下四个判断:(1)该函数的解析式为2sin 26y x π⎛⎫=+ ⎪⎝⎭;(2)该函数图象关于点,03π⎛⎫⎪⎝⎭对称;(3)该函数在06,π⎡⎤⎢⎥⎣⎦上是增函数;(4)若函数()y f x a =+在0,2π⎡⎤⎢⎥⎣⎦a =其中正确的判断有( ) A .1个 B .2个C .3个D .4个二、填空题48.已知角α与180α︒-的顶点均在原点,始边均在x 轴的非负半轴上,终边相同,且450720α︒<<︒,则α=__________.(用角度表示)49.已知cos 4a π⎛⎫+ ⎪⎝⎭=13,0<α<2π,则sin 4a π⎛⎫+ ⎪⎝⎭=________.50.已知 tan 02παα⎫=<<⎪⎝⎭,则α=___________. 51.用“五点法”画2sin(2)3y x π=+在一个周期内的简图时,所描的五个点分别是(,0)6π-,(,2)12π,(,0)3π,7(,2)12π-,_______.52.如果角θ始边为x 轴的正半轴,终边经过点(,那么tan θ=______. 53.计算:10cos3π=________.54.在ABC 中,已知22,3BC AC B π==,那么ABC 的面积是______. 55.已知函数()2sin cos 4f x x x π⎛⎫=+ ⎪⎝⎭,给出以下四个命题:△函数()f x 的最小正周期为2π;△函数()f x 的图象的一个对称中心是82π⎛- ⎝⎭;△函数()f x 在,04π⎛⎫- ⎪⎝⎭上为减函数;△若()()12f x f x =,则()1211Z 4x x k k ππ+=+∈或()1222Z x x k k π-=∈.其中真命题的序号是__________.(请写出所有真命题的序号) 56.已知()()4sin cos cos sin 5αβαβαα---=,β是第三象限角,则sin 4πβ⎛⎫+ ⎪⎝⎭的值___________.57.已知sincos22θθ+=cos2θ=______. 58.如果1cos 5α=-,且α是第三象限的角,那么cos 2πα⎛⎫+= ⎪⎝⎭______.59.函数tan()34y x ππ=+的对称中心是__________.60.若18090α-︒<<-︒,且()1cos 753α︒+=,则()cos 15α︒-=__________.61.已知1sin cos 2αα+=-,则tan cot αα+=__________62.已知1tan 3α= ,则sin 2α= ________.63.已知角α的终边经过点(3,4)P ,则tan α=____________ 64.y cos 25sin x x =+的最小值为________________.65.若角α的终边经过点()P y ,且sin (0)y y α=≠,则cos α=______.66.设a >0,角α的终边经过点P (﹣3a ,4a ),那么sinα+2cosα的值等于______. 67.已知tan 2α,则3sin 2cos 5sin 4cos αααα-=+__________.68.函数sin 22y x x =的图象可由函数sin 22y x x =的图象至少向右平移_______个长度单位得到.69.已知函数()sin2f x x x =,给出下列四个结论:△函数()f x 的最小正周期是π;△函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是减函数;△函数()f x 的图像关于点,03π⎛⎫⎪⎝⎭对称;△函数()f x 的图像可由函数2sin2y x =的图像向左平移3π个单位得到;其中正确结论是_________________.70.设f(x)=kx -|sin x | (x >0,k >0),若f(x)恰有2个零点,记较大的零点为t ,则2(1)sin 2t tt+= ____71.计算:23456coscoscos cos cos cos 777777ππππππ+++++=__________.72.若2tan 3α=-,则sin(2)4πα+=____________.73.已知3ππ4αβ⎛⎫∈ ⎪⎝⎭,,,()4cos 5αβ+=,π5cos 413α⎛⎫-=- ⎪⎝⎭,所以πcos 4β⎛⎫+= ⎪⎝⎭_____74.已知集合{}22(,)(cos )(sin )4,0P x y x y θθθπ=-+-=≤≤∣.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:△“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为; △在集合P 中任取一点M ,则M 到原点的距离的最大值为4;△阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则||3CD =+△白色“水滴”图形的面积是116π 其中正确的有___________.75.设0a ≥____________.76.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过点(0,B ,且在ππ,183⎛⎫ ⎪⎝⎭上单调,同时()f x 的图像向左平移π个单位长度后与原来的图像重合,当124π2π,,33x x ⎛⎫∈-- ⎪⎝⎭,且12x x ≠时,()()12f x f x =,则()12f x x +=__________.77.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角4B π=且4sin 4sin sin 4sin a A c C ac B b B +=+,则ABC 的面积的最大值为_____________.三、解答题78.设函数()sin(2)2sin cos 3f x x x x π=++.(1)求函数()f x 的单调递增区间; (2)若[,]123x ππ∈-,求函数()f x 的最大值和最小值. 79.若角α的终边与60︒角的终边关于直线y x =对称,且360360α-︒<<︒,求角α的值. 80.已知函数()()21cos ,1sin2.2f x xg x x ==+(1)设0x x =是函数()y f x =的图象的一条对称轴,求()02g x 的值; (2)求函数()()(),0,4h x f x g x x π⎡⎤=+∈⎢⎥⎣⎦的值域.81.已知()()()()()3sin 3cos 2sin 2cos sin f παππαααπαπα⎛⎫---+ ⎪⎝⎭=----. (1)化简()f α; (2)若313πα=-,求()f α的值. 82.如图,一艘船以32.2nmile/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东20°方向上,30min 后航行到B 处,在B 处看灯塔S 在船的北偏东60°方向上,求灯塔S 到B 处的距离(精确到0.1nmile ,参考数据:sin 200.342︒≈,sin 400.643︒≈).83.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC且sin cos 0a C A =. (1)求a ;(2)若b c +=ABC 的面积.84.已知函数()()()sin 0,f x x ωϕωϕπ=+><图象经过点,112π⎛⎫- ⎪⎝⎭,7,112π⎛⎫⎪⎝⎭,且在区间7,1212ππ⎛⎫ ⎪⎝⎭上单调递增. (1)求函数()f x 的解析式;(2)当,6x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.85.若向量(3sin ,sin )a x x ωω=,(cos sin )b x x ωω=,,其中0>ω.记函数1()2f x a b =⋅-,若函数()f x 的图象上相邻两个对称轴之间的距离是2π. (1)求()f x 的表达式;(2)设ABC 三内角A 、B 、C 的对应边分别为a 、b 、c ,若3a b +=,c =()1f C =,求ABC 的面积.86.已知ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,)cos sin 0a c B b C --=. (1)求角C 的大小;(2)若2c =,AB 边上的中线CD ABC 的周长. 87.如图4,在平面四边形中,,(1)求的值;(2)求的长88.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若1cos 3A =,3c b =,且△ABC 的面积ABCS=(1)求边,b c ;(2)求边a 并判断△ABC 的形状.89.已知函数2()cos cos 1f x x x x =+. (1)求函数()f x 的单调递增区间;(2)若5()6f θ=,2(,)33ππθ∈,求sin 2θ的值. 90.如图,某圆形海域上有四个小岛,小岛A 与小岛B 相距为5nmile ,小岛A 与小岛C相距为,小岛B 与小岛C 相距为2nmile ,CAD ∠为钝角,且sin CAD ∠=(1)求小岛A ,B ,C 围成的三角形的面积; (2)求小岛A 与小岛D 之间的距离.91.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222a c b ac +-=. (1)求B ;(2)若cos sin a C c A b +=,b =a .92.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若cos b A c= (1)证明:ABC ∆是直角三角形: (2)BM 平分角B 交AC 于点M ,且1BM=,6c =,求cos ABM ∠.93.为迎接冬奥会,石家庄准备进行城市绿化升级,在矩形街心广场ABCD 中,如图,其中400m AB =,300m BC =,现将在其内部挖掘一个三角形空地DPQ 进行盆景造型设计,其中点P 在BC 边上,点Q 在AB 边上,要求3PDQ π∠=.(1)若100m AQ CP ==,判断DPQ 是否符合要求,并说明理由; (2)设CDP θ∠=,写出DPQ 面积的S 关于θ的表达式,并求S 的最小值.94.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,sin A =B 2A =,b 4=. (1)求a 的值;(2)若D 为BC 中点,求AD 的长.95.已知函数()cos cos )f x x x x =+,x ∈R .(1)求函数()f x 的单调递增区间;(2)设0t >,关于x 的函数()2tx g x f ⎛⎫= ⎪⎝⎭在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-,求实数t 的取值范围.96.函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式; (2)求()f x 的单调递增区间; (3)先将()f x 的图象向右平移3π个单位长度,再将图象上所有点的纵坐标扩大到原来的2倍得到函数()g x 的图象,求()g x 在区间[]2ππ,上的值域.97.已知函数()2cos 2cos 1f x x x x =+-. (1)求6f π⎛⎫⎪⎝⎭的值及()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.参考答案:1.B 【解析】 【分析】由题可知3i e 对应在复平面的点为()cos3,sin3,由32ππ<<可判断cos3和sin3的正负,进而得到答案. 【详解】由题,3i e cos3isin3=+,其对应点为()cos3,sin3, 因为32ππ<<知,cos30<,sin30>,所以点()cos3,sin3在第二象限, 故选:B 2.B 【解析】 【分析】先利用余弦的二倍角公式化简()f x ,再利用余弦函数的周期公式即可求解. 【详解】因为()()22222()cos 3sin 1cos sin 12sin f x x x x x x =-+=-+-cos2cos22cos2x x x =+=,所以最小正周期2ππ2T ==, 故选:B. 3.C 【解析】 【分析】根据角θ与角θ-的终边关于x 轴对称即可得解. 【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C 4.C【解析】结合诱导公式化简即可 【详解】()sin 480sin 360120sin120︒=︒+︒=︒=故选:C 【点睛】本题考查三角函数值的化简,属于基础题 5.A 【解析】 【详解】与60︒角终边相同的角为:60360k,k Z ︒+︒∈. 当k 1=-时,即为-300°. 故选A. 6.A 【解析】 【分析】由题设,画平面示意图,利用三角形内边角关系,列方程求塔高即可. 【详解】如图,O 、A 分别为塔底、塔顶,C 为飞机位置,△300,30,60OB BCA BCO =∠=︒∠=︒, 若设OA x =,则300AB x =-,有tan tan AB OBBCA BCO =∠∠,=200x =.故选:A. 7.B 【解析】 【分析】由余弦定理列方程即可求解. 【详解】由余弦定理得222cos 2a c b B ac +-=,即211722c c+--=,整理得260c c +-=,解得2c =.故选:B. 8.C 【解析】 【分析】根据坐标变换求解即可得答案. 【详解】为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点的横坐标不变,纵坐标伸长为原来的2倍. 故选:C 9.B 【解析】 【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】△37515360-=-︒-︒︒,△π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B 10.B 【解析】根据题中条件,先由诱导公式,得到sin 20a ︒=,再根据诱导公式化简所求式子即可. 【详解】因为sin160a ︒=,所以()sin 18020sin 20a ︒-︒=︒=,而()()cos340cos 36020cos 20cos 20︒=︒-︒=-︒=︒= 故选:B. 11.A 【解析】 【分析】由题意得242sin cos 25αα∴=-,由,04πα⎛⎫∈- ⎪⎝⎭,可得sin cos αα+=,代入即可求值得解. 【详解】 24sin 225α=-, 242sin cos 25αα∴=-, ,04πα⎛⎫∈- ⎪⎝⎭,cos sin 0αα∴+>,1sin cos 5αα∴+=. 故选:A 【点睛】本题考查同角三角函数关系式,常用公式2(sin cos )12sin cos 1sin 2x x x x x +=+=+,属于基础题. 12.A 【解析】 【分析】利用两角差的正切公式求出tan tan 44ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,再利用二倍角公式以及同角三角函数的基本关系即可求解. 【详解】△1tan 42πα⎛⎫+= ⎪⎝⎭,△1tan tan 11442tan tan 1443111tan tan 244ππαππααππα⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭=+-===- ⎪⎢⎥⎛⎫⎝⎭⎣⎦+⨯++ ⎪⎝⎭, 则222sin 2cos 2sin cos cos 2tan 11cos 22cos 2αααααααα---==+ 1115tan 2326α=-=--=-.故选:A 【点睛】本题以三角正切函数值为依托,考查了正切的两角差公式和倍角公式的运用,此题以考生最熟悉的知识呈现,面向考生,试题注重基础,针对性强,同时考查了考生的运算求解能力及逻辑推理能力,属于基础题. 13.A 【解析】 【详解】试题分析:因为函数的最大值取不到2,所以b a T -<,即02b a π<-<.故A 正确. 考点:三角函数的图像,值域. 14.C 【解析】 【分析】利用辅助角公式将函数化简,再根据余弦函数、正弦函数的性质判断即可; 【详解】解:曲线21:C y x x ==关于y 轴对称,故A 错误;曲线2:sin 2cos 224C y x x x π⎛⎫=+=+ ⎪⎝⎭,令242x k πππ+=+,解得82k x ππ=+,Z k ∈,即曲线2C 的对称轴方程为82k x ππ=+,Z k ∈,则4x π=不是曲线2C 的一条对称轴,故B 错误;曲线1:222C y x x π⎛⎫==+ ⎪⎝⎭向右平移8π个单位长度得到24i 28n 2y x x πππ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即得到曲线2C ,故C 正确.将曲线2C 向左平移4π个单位长度得到42242i 4n 24y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦++,故D 错误;故选:C 15.D 【解析】 【分析】首先判断函数的奇偶性,排除选项,再根据特殊区间,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <判断选项.【详解】3xy =是偶函数,sin 2y x =是奇函数,()3sin 2xf x x =是奇函数,函数图象关于原点对称,故排除A,B02f ⎛⎫= ⎪⎝⎭π ,当(,)2x ππ∈时,30x y =>,sin 20y x =<3sin 20xy x ∴=<,排除C.故选D . 【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项. 16.C 【解析】 【分析】先根据题意以及余弦定理求出ab ,再根据三角形面积公式即可求解. 【详解】解:2222()525c a b a ab b =-+=-++, 即22225a b c ab +-=-,由余弦定理得:222251cos 3222a b c ab ab ab π+--===, 解得:5ab =,则ABC的面积为:11sin 522ab C =⨯=故选:C. 17.B 【解析】 【分析】根据题意,先由余弦定理,得到28cos 8b A b +=,求出sin A积公式,得到1sin 2ABCSbc A ==,根据三角形的性质,确定b 的范围,进而可求出三角形面积的最值. 【详解】因为b =,2c =,所以222221482cos 248b c b a b A bc b b++-+===,所以sin A =因此1sin 2ABCSbc A == 由三角形性质可得:a b c b a c +>⎧⎨-<⎩,即22b b +>⎨⎪<⎪⎩,解得:44b -<+又44-<+因此当224b =,即b =ABC的面积最大,为ABCS ==. 故选:B. 【点睛】本题主要考查求三角形面积的最值问题,熟记余弦定理,以及三角形面积公式即可,属于常考题型. 18.B 【解析】 【详解】试题分析:由sin()sin 0sin 0θπθθ+=-⇒,cos()cos 0cos 0θπθθ-=->⇒<,由sin 0{cos 0θθ><可知θ是第二象限角,选B.考点:诱导公式及三角函数在各个象限的符号. 19.C 【解析】 【详解】 试题分析:42x ππ<<,cos sin x x ∴<,cos sin 0x x ∴-<,()22213cos sin cos sin 2sin cos 1284x x x x x x -=+-⋅=-⨯=,cos sin x x ∴-=C 正确. 考点:1同角三角函数基本关系式;2正弦函数余弦函数比较大小问题. 20.C 【解析】 【分析】根据同角的三角函数关系式中的平方和关系,结合两角和的正弦公式、正弦定理进行求解即可. 【详解】因为A ,C 是ABC ∆的内角,所以,(0,)A C π∈. 因为4cos 5A =,5cos 13C=,所以3sin 5A ==,12sin 13C ===,因此有:3541263sin sin()sin()sin cos cos sin 51351365B AC A C A C A C π=--=+=+=⨯+⨯=,由正弦定理可知:121363sin sin 13565a b b b A B =⇒=⇒=. 故选:C 【点睛】本题考查了正弦定理的应用,考查了同角的三角函数关系式、两角和的正弦公式的应用,考查了数学运算能力.21.D 【解析】 【详解】 略 22.B 【解析】 【分析】将sin cos θθ+=2sin cos θθ,再求出()2sin cos θθ-,即可得到sin cos θθ-,最后根据θ的范围,即可得解;【详解】解:因为sin cos θθ+=()2sin co 1s 5θθ+=,所以221sin 2sin cos cos 5θθθθ++=,所以42sin cos 5θθ=-,所以()2229sin cos sin 2sin cos cos 5θθθθθθ-=-+=,所以sin cos θθ-=θ为第四象限角,所以sin 0θ<,cos 0θ>,所以sin cos θθ-= 故选:B 23.C 【解析】根据数列的递推关系求出前三项即为三角形边长,根据余弦定理求出从小到大第二大的角,即可求得最大角与最小角之和. 【详解】由题:数列{}n a 中,()*1153n n a a a n n N +==-+∈,,所以12357,8a a a ===,,作为三角形三边长, 由余弦定理:边长为7的边所对角的余弦值为25644912582+-=⨯⨯,角的大小为60°,所以最大角与最小角之和为120°. 故选:C 【点睛】此题考查根据递推关系求数列中的项,根据余弦定理求三角形的角的大小,涉及三角形三内角和的关系进行转化. 24.A 【解析】 【分析】根据函数图象的平移变换,即可求解. 【详解】将函数()π2sin()36x f x +=的图象向左平移 π4个单位,得到函数()πππ2sin +2sin 312634x x f x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭=,再向下平移1个单位,得到函数()π2sin +134x g x ⎛⎫=- ⎪⎝⎭的图象,则解析式为()π2sin +134x g x ⎛⎫=- ⎪⎝⎭.故选:A . 25.D 【解析】 【分析】根据题意画出图形,在ABC 中利用余弦定理建立方程求解即得. 【详解】如图,ABC 中,依题意,30ABC ∠=,,3AC AB x BC ===,由余弦定理2222cos AC AB BC AB BC ABC =+-⋅∠得,222323cos30x x =+-⋅,即260x -+=,解得x =x =所以x 的值是 故选:D 26.D 【解析】 【分析】根据三角形ABC 的边和角,利用正弦定理,即可求解. 【详解】由题意可知,60ABC ∠=︒,45A ∠=︒,75C ∠=︒,50AB =海里,由正弦定理可得sin sin AB ACC ABC=∠,所以(25AC =海里. 故选:D 27.A 【解析】 【分析】由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒,然后在ABC 中利用正弦定理求解即可 【详解】如图所示,由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒, 由正弦定理可得sin sin BC ACA B =,即46sin132.57sin31.15BC =︒︒, 解得4646sin132.570.7465.46sin31.150..52BC =⋅︒≈⨯≈︒.故选:A28.C 【解析】 【分析】根据已知中的函数解析式,先分析函数的奇偶性和单调性,进而根据函数的性质和定义域,将不等式2(2)(4)0f a f a -+->化为2(2)(4)f a f a ->-,解不等式组即可求解. 【详解】解:因为函数3y x =和函数sin y x =均为奇函数,且在[1,1]-上均为增函数, 所以函数3()sin f x x x =+是奇函数,且在[1,1]-为增函数, 由2(2)(4)0f a f a -+->, 得2(2)(4)f a f a ->-, 所以2224121141a a a a ⎧->-⎪-≤-≤⎨⎪-≤-≤⎩,解得2a <≤2a ∈(. 故选:C. 29.A 【解析】 【分析】设,AB x =则BC =,利用正弦定理即得解. 【详解】解:设,AB x =则BC . 由题得53412CBD ππππ∠=--=.51sinsin()12642πππ=+==在△BCD20x ∴=. 所以塔高20m. 故选:A 30.A 【解析】 【分析】先计算出tan α的值,然后构造齐次式,将分子分母同除以2cos α即可计算出结果. 【详解】因为tan()74πα+=,所以tan 171tan A A +=-,所以3tan 4α=,又222222314cos 4sin cos 14tan 644cos 2sin 2sin cos tan 125314ααααααααα+⨯+++====++⎛⎫+ ⎪⎝⎭,所以264cos 2sin 225αα+=. 故选:A. 【点睛】本题考查两角和的正切公式与同角三角函数的基本关系的综合应用,难度一般.已知tan α,求解22sin cos m n αα+的值,可变形为求解222222sin cos tan sin cos tan 1m n m nαααααα++=++的结果;求解sin cos sin cos n n n n a b c d αααα++的值,可变形为求解tan tan n n a b c dαα++的结果.31.D 【解析】 【详解】 由sin α+cos α=得(sin α+cos α)2=1+2sin αcos α=2,即2sin αcos α=1,又因为α△(0,π),则当cos α=0时,sin α=1,不符合题意,所以cos α≠0,所以==1,解得tan α=1,故选D. 32.D 【解析】 【详解】分析:利用诱导公式,()y Asin x ωϕ=+的图象变换规律,得到答案详解:222sin 236y sin x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦要得到函数22y sin x =的图象,只需要将函数223y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度即可故选D点睛:本题考查了三角函数图像的性质,根据图像的平移来确定结果,掌握由sin y x =图像到()y Asin x ωϕ=+图像的变换过程. 33.B【分析】先根据函数的部分图象和性质求出f (x )解析式,再根据图象的变换规律求得g (x ),最后根据余弦函数性质得出结论. 【详解】因为函数f (x )=A cos (ωx +φ)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫⎪⎝⎭,, 所以A =3,46T π=-(12π-)4π=;所以T =π所以ω=2;所以f (x )=3cos (2x +φ); 又因为f (12π-)=3cos[(2×(12π-)+φ]=3,所以6π-+φ=K π;△0<φ<π; △φ6π=,△f (x )=3cos (2x 6π+); 因为将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象, 所以g (x )=3cos[2(x 6π-)6π+]=3cos (2x 6π-);是非奇非偶函数;令﹣π+2k π≤2x 6π-≤2k π,所以512π-+k π≤x ≤k π12+π,k △z ; 当k =0时,g (x )的一个单调递增区间为:51212ππ⎡⎤-⎢⎥⎣⎦,;令2x 6π-=k π2π+, 解得x 23k ππ=+,k △z , △函数g (x )在[0,2π]上只有一个零点. 故选:B .本题主要考查由三角函数部分图象求解析式,图象变换以及三角函数的性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 34.A 【解析】 【分析】对4sin 2cos 1,2sin 4cos A B B A +=+=再相加得出30C ︒=或150︒,再由三角函数的性质验证150C ︒=,即可得出答案. 【详解】4sin 2cos 1,2sin 4cos A B B A +=+=2216sin 16sin cos 4cos 1A A B B ∴++=△224sin 16sin cos 16cos 27B B A A ∴++=△△+△得2016sin()28A B ++=即1sin()sin()sin 2A B C C π+=-==()0,180C ︒︒∈ 30C ︒∴=或150︒当150C ︒=时,则030,030A B ︒︒︒︒<<<<12sin 212B ∴<⨯=,4cos 4A <2sin 4cos 5B A ∴+<5∴<150C ︒∴=不满足题意故选:A 【点睛】本题主要考查了两角和的正弦公式,平方关系,三角函数的性质,属于中档题. 35.A 【解析】 【分析】由三角函数的性质可知()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为π,结合充分、必要条件的定义即可判定. 【详解】由于()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为半个周期,即π,所以若存在[]12,,x x m n ∈使得()()124f x f x -=,则必有πn m -≥,但反之不成立,比如2π2,33m n π=-=时,4=>π3n m π-,但()f x 在[],m n 上的最大值为2,最小值为1-,[]12,,x x m n ∈时()()12f x f x -的最大值为3,不可能等于4,△“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的充分不必要条件, 故选:A. 【点睛】本题考查充分不必要条件的判定,涉及三角函数的性质,属基础题,关键是认真审题,理解存在性命题的意义,掌握三角函数的性质和充分、必要条件的意义. 36.C 【解析】 【分析】利用三角恒等变换的应用化简已知恒等式可得(22sin 4sin 0A A -+=,解方程即可求出sin A ,进而求出角A ,由三角形的重心的性质可得()13AP AB AC =+,两边同时平方结合平面向量的数量积的运算即可得到24cos 240c c A +⋅-=,分类讨论求出边c ,进而求出结果. 【详解】因为(()cos 24sin 1A B C ++=,所以(212sin 4sin 1A A -+=,因此(22sin 4sin 0A A -+=,解得sin A =或sin 2A =, 又因为()0,A π∈,则(]sin 0,1A ∈,所以sin A =,因此3A π=或23A π=,又因为点P 是ABC 的重心,所以()13AP AB AC =+,因此()22212cos 9AP AB AC AB AC A =++⋅⋅, 即()22212cos 9AP AB AC AB AC A =++⋅⋅,又因为AP =2b =,所以()228144cos 99c c A =++⋅,即24cos 240c c A +⋅-=,当3A π=时,22240c c +-=,因为0c >,所以4c =,此时214162242a =+-⨯⨯⨯,所以a =当23A π=时,22240c c --=,因为0c >,所以6c =,此时214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,所以a =综上:a =a = 故选:C. 37.A 【解析】 【分析】直接利用三角函数图象的“伸缩变换”与“平移变换”法则求解即可. 【详解】把函数3y sin x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到23y sin x π⎛⎫=+ ⎪⎝⎭的图象,再将23y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位,所得图象对应的函数为22333y sin x sin x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选A.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.38.C 【解析】 【分析】利用图象的变换规律,可求出函数()g x 与()h x 的的解析式, 再由三角函数的性质逐项判断即可. 【详解】将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍, 纵坐标不变,得到函数()sin 2g x x =的图象,再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数 ()sin()h x x θ=+的图象 ,当6πθ=时,()sin(2),3h x x π=+ 当12x π=时,()sin(2)112123h πππ=⨯+=,则12x π=为函数()h x 图象的对称轴,故 A 错误;当6πθ=时,()sin(2)3h x x π=+,若0,,4x π⎡⎤∈⎢⎥⎣⎦52,,336x πππ⎡⎤+∈⎢⎥⎣⎦则1sin(2),132x π⎡⎤+∈⎢⎥⎣⎦故()h x 的最大值为 1,故B 错误; 当2πθ=时,函数()sin 2g x x =与()sin 2h x x =-的图象关于x 轴对称,故C 正确; 当2πθ=时,()()2sin 2g x h x x -=最小值为 -2 , 故D 错误. 故选:C. 39.A 【解析】 【分析】根据所给条件求出cos BAC ∠,再借助余弦定理即可作答. 【详解】因4cos 5θ=,则3sin 5θ=,由题意得45BAC θ∠=︒-, 即()43cos cos 4555BAC θ⎛⎫∠=︒-=+= ⎪⎝⎭, 在ABC中,AB =10AC =,由余弦定理2222BC AB AC AB ACcos BAC =+-⋅∠得:即22210210340BC =+-⋅=,解得BC = 设船速为x,则12x =x =所以货船的速度大小为/小时. 故选:A 40.C 【解析】 【详解】 设,则,则,故选C.考点:正弦定理与余弦定理. 41.A 【解析】 【详解】2222221sin tan 14sin 1sin cos tan 1514αααααα====+++,由于角为第三象限角,故sin α=πcos sin 2αα⎛⎫-== ⎪⎝⎭. 42.C 【解析】 【分析】先将函数()f x 的化为正弦型函数,在将函数()f x 的解析式表示为()()sin 23f x x πϕ⎡⎤=++⎢⎥⎣⎦,并结合ϕ的符号与绝对值确定平移的方向与长度.【详解】由诱导公式可得()cos 2sin 2sin 232343f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因此,只需在将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度,即可得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,故选C .【点睛】在考查两个三角函数平移的过程中,需注意以下两个问题; △两个函数的名称一定要一致;△左右平移法则中的“左加右减”指的是在自变量x 上变化了多少. 43.B 【解析】 【分析】先求出把函数()f x 的图象向左平移4π个单位后所得图象对应的解析式,然后求出该图象对应函数的对称轴,最后结合四个选项进行判断即可. 【详解】把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象对应的解析式为sin 2?cos 2433y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由2,k Z 3x k ππ+=∈,得对称轴方程为,k Z 62k x ππ=-+∈.当0k =时,可得对称轴为6x π=-,此时对称轴离y 轴距最近. 故选B . 【点睛】本题考查三角函数图象的平移变换以及函数图象对称轴的求法,对于图象的平移变换,解题时要注意平移只是对自变量x 而言的,同时要注意平移的单位的大小;在求图象的对称轴方程时,将4x π+看作一个整体进行求解,属于基础题.44.C【解析】 【分析】由点P 的横坐标大于0且纵坐标小于0解三角不等式求解α的范围. 【详解】△点P (sinα+cosα,tanα)在第四象限,△00sin cos tan ><ααα+⎧⎨⎩, 由sinα+cosα=(α4π+), 得2kπ<α4<π+2kπ+π,k△Z ,即2kπ4π-<α<2kπ34π+π,k△Z . 由tanα<0,得kπ2π+<α<kπ+π,k△Z . △α△(2π,34π)△(74π,2π).故选C . 【点睛】本题考查了三角函数的符号,考查了三角不等式的解法,是基础题. 45.D 【解析】 【分析】利用圆的参数方程,表示出212d d +并求最值,利用三角函数求出0x y . 【详解】22:124390C x y x y ++++=化为标准方程:22(6)(2)1x y +++=,点()00,P x y 是圆上一点,不妨设006sin 2cos x ty t =-+⎧⎨=-+⎩(t 为参数),则22212(6sin )(2cos )(2cos )d d t t t +=-++-+--+(12sin 5cos )43t t =-++)43t ϕ=++ 13sin()43t ϕ=-++其中5tan 12ϕ= 当2t πϕ+=时,212sin()1,t d d ϕ+=+可取得最小值30此时001266sin 6cos 221352cos 2sin 7213x t y t ϕϕ-+-+-+====-+-+-+ 故选:D 【点睛】关键点点睛:根据圆的方程,可设点()00,P x y 满足006sin 2cos x t y t=-+⎧⎨=-+⎩,代入212d d +化简求最值,是解决本题的关键,属于中档题. 46.D 【解析】 【分析】由函数图象知,,A T B ,利用周期公式即可解得ω,又πf ⎛⎫= ⎪⎝⎭7020,解得ϕ,即可得出函数()f x 的解析式. 【详解】设函数()()sin f x A x B ωϕ=++,则 由图可知,A B =-=11,πππT =-=7420104,解得πT =, 所以2π=πT ω=,解得2=ω,将点π,⎛⎫⎪⎝⎭7020代入函数()()sin 21f x x ϕ=-++中,即7π7π()sin 2102020f ϕ⎛⎫=-⨯++= ⎪⎝⎭,解得ππ,k k Z ϕ=-∈25当0k =时,π5ϕ=-. ()f x 的解析式为:π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭.故选:D.47.B 【解析】 【分析】利用正弦型函数的图象变换规律求得函数()y f x =的解析式,然后利用正弦函数的基本性质可得出结论. 【详解】把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,可得sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再把纵坐标伸长到原来的2倍(横坐标不变)后得到函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象,对于函数()2sin 23x y f x π=⎛⎫=+ ⎪⎝⎭,故(1)错误;由于当3x π=时,()0f x =,故该函数图象关于点,03π⎛⎫⎪⎝⎭对称,故(2)正确;在06,π⎡⎤⎢⎥⎣⎦上,22,333x πππ⎡⎤+∈⎢⎥⎣⎦,故函数()y f x =该函数在0,2π⎡⎤⎢⎥⎣⎦上不是增函数,故(3)错误;在0,2π⎡⎤⎢⎥⎣⎦上,42,333x πππ⎡⎤+∈⎢⎥⎣⎦,故当4233x ππ+=时,函数()y f x a =+在06,π⎡⎤⎢⎥⎣⎦上取得最小值为a =a ∴=4)正确,故选:B. 【点睛】本题主要考查正弦型三角函数图象变换,同时也考查了正弦型函数基本性质的判断,考查推理能力,属于中等题. 48.630° 【解析】 【分析】根据题目条件得到(180)360,k Z k αα=-+⋅︒︒∈,求出()2190,k k Z α=+⋅︒∈,列出不等式组,求出3,630k α==︒. 【详解】由题意得,(180)360,k Z k αα=-+⋅︒︒∈, 即()2190,k k Z α=+⋅︒∈,。

2018年高考数学真题专题汇编----三角函数

2018年高考数学真题专题汇编----三角函数
2018 年高考数学真题专题汇编----三角函数
一、填空题 1.(全国卷 I 文 11 改 )已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A 1 ,a ,
B 2 ,b ,且 cos 2
1.
2 ,则 a b __________. 3
5 5
) 的图象关于直线 x 对称,则 的值是__________. 2 2 3
4.
4.(天津理 6 改)将函数 y sin(2 x ) 的图象向右平移 个单位长度,所得函数的增区间__________. 5 10 3 5 4.在区间 [ , ] 上单调递增 4 4 5.(全国卷 II 理 15)已知 sin α cos β 1 , cos α sin β 0 ,则 sin(α β ) __________. 1 5. 2 5π 1 6.(全国卷 II 文 15)已知 tan(α ) ,则 tan α __________. 4 5 3 6. 2 1 7.(全国卷 III 理 4 改)若 sin ,则 cos 2 __________. 3
7 9 8.(全国卷 I 理 16)已知函数 f x 2sin x sin 2 x ,则 f x 的最小值是_____________.
7.
3 3 2 9.(全国卷 II 理 10)若 f ( x) cos x sin x 在 [a, a] 是减函数,则 a 的最大值是_____________. π 9. 4 10.(全国卷 I 文 16)△ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sin C c sin B 4a sin B sin C ,

2018三角函数专题(理科)(2018高考真题)

2018三角函数专题(理科)(2018高考真题)

2018三角函数专题(理)1.已知集合22{(,)|3,,}A x y x y x y =+∈∈Z Z ≤,则A 中元素的个数为( ) A .9 B .8 C .5 D .42.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ) A .4B .3C .2D .03.在ABC △中,cos 2C =1BC =,5AC =,则AB =( ) A.BCD.4.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π5.若,则( ) A .B .C .D . 6.的内角的对边分别为,,,若的面积为,则( ) A .B .C .D .7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.设R x ∈,则“11||22x -<”是“31x <”的 ( ) A. 充分而不必要条件 B. 必要而不重复条件 C.充要条件 D. 既不充分也不必要条件 9.已知a ∈R ,则“1a >”是“11a<”的( ) A. 充分非必要条件 B.必要非充分条件 C. 充要条件 D. 既非充分又非必要条件1sin 3α=cos 2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π610.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 ( ) A. a b c >> B. b a c >> C. c b a >> D. c a b >> 11.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( ) A. 在区间35[,]44ππ上单调递增 B. 在区间3[,]4ππ上单调递减 C. 在区间53[,]42ππ上单调递增 D. 在区间3[,2]2ππ上单调递减 12.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则 的最小值为( ) A.2116 B. 32 C. 2516D. 313.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件14.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( ) A. 1B. 2C. 3D. 415.设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( ) A. 对任意实数a ,(2,1)A ∈B. 对任意实数a ,(2,1)A ∉C. 当且仅当a <0时,(2,1)A ∉D. 当且仅当32a ≤时,(2,1)A ∉ 16.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是()π3A−1B+1C.2D.217.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a ,b =2,A =60°,则sin B =___________,c =___________.18.已知向量,,.若,则________.19.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ∙的最小值为_________.20.设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.21.若x ,y 满足x +1≤y ≤2x ,则2y –x 的最小值是__________. 22.已知函数)22)(2sin(πϕπϕ<<-+=x y 的图象关于直线3π=x 对称,则ϕ的值是______23.在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限内的点,B (5,0),以AB 为直径的圆C 与l 交于另一点D ,若0=⋅,则点A 的横坐标为_______24.在ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,︒=∠120ABC ,ABC ∠的平分线交AC 与点D ,且BD =1,则4a +c 的最小值为_______25.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.26.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.27.已知圆2220x y x +-=的圆心为C ,直线1,23⎧=-+⎪⎪⎨⎪=⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为 . 28.已知,R a b ∈,且360a b -+=,则128ab+的最小值为 . ()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=29.在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =. ⑴求cos ADB ∠;⑵若DC =,求BC .30.在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.31.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小;(II )设a =2,c =3,求b 和sin(2)A B -的值.32.已知βα,为锐角,34tan =α,55)cos(-=+βα, (1)求α2cos 的值; (2)求)tan(βα-的值.33.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=,求cos β的值.34.设常数a ∈R ,函数2()sin 22cos f x a x x =+。

高考专题---三角函数综合-2018年高考数学(理)---精校解析 Word版

高考专题---三角函数综合-2018年高考数学(理)---精校解析 Word版

专题10 三角函数综合【母题原题1】【2018上海卷,18】设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

【答案】(1);(2)或或.【解析】 【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出a 的值,再根据三角形函数的性质即可求出. 【详解】∴,∴,∴,∵,∴,∴,∴,或,∴,或,∵,∴或或【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.【母题原题2】【2017上海卷,18】已知函数,.(1)求的单调递增区间;(2)设△ABC为锐角三角形,角A所对边,角B所对边,若,求△ABC的面积. 【答案】(1);(2)若,即有解得,即由余弦定理可得a2=b2+c2﹣2bc cos A,化为c2﹣5c+6=0,解得c=2或3,若c =2,则即有B 为钝角,c =2不成立, 则c =3,△ABC 的面积为【母题原题3】【2017上海卷,11】设、,且,则的最小值等于________ 【答案】【命题意图】 高考对本部分内容的考查以能力为主,重点考查三角函数的性质(周期性、奇偶性、对称性、单调性、最值等),体现数形结合的思想,函数与方程的思想等的应用,均可能出现填空题与解答题中,难度中低档为主,主要有两种考查题型:(1)根据三角函数的解析式确定其性质;(2)根据三角函数的性质求相关的参数值(或取值范围).【命题规律】1. 高考对三角函数的图象与性质的考查往往集中于正弦函数、余弦函数、正切函数的图象与性质;函数y =Asin(ωx +φ)的图象及性质,主要考查三角函数图象的识别及其简单的性质(周期、单调性、奇偶性、最值、对称性、图象平移及变换等).2. 高考中主要涉及如下题型:(1) 考查周期、单调性、极值等简单性质;(2) 考查与三角函数有关的零点问题;(3) 考查图象的识别. 【方法总结】1.根据函数的图象确定函数()sin()(0,0)f x A x B A ωϕω=++>>中的参数主要方法:(1)A ,B 主要是根据图象的最高点或最低点的纵坐标确定,即2A -=最大值最小值,2B +=最大值最小值;(2)ω的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点(通常优先取非零点)的坐标确定.2.在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.“先平移,后伸缩”主要体现为由函数sin y x =平移得到函数()sin y x ϕ=+的图象时,平移ϕ个长度单位;“先伸缩,后平移” 主要体现为由函数()sin y x ω=平移得到函数()sin y x ωϕ=+的图象时,平移ϕω个长度单位. 3. 利用函数图象处理函数的零点(方程根)主要有两种策略:(1)确定函数零点的个数:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数定性判断;(2)已知函数有零点(方程有根)求参数取值范围:通常也转化为两个新函数的交点,即在同一坐标系中作出两个函数的图象,通过观察它们交点的位置特征建立关于参数的不等式来求解. 4. 求解三角函数的周期性的方法:(1)求三角函数的周期,通常应将函数式化为只有一个函数名,且角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周期来求解.(2)三角函数的最小正周期的求法有:①由定义出发去探求;②公式法:化成sin()y A x ωϕ=+,或tan()y A x ωϕ=+等类型后,用基本结论2||T πω=或||T πω=来确定;③根据图象来判断. 5. 求解三角函数的单调性的方法:(1)三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.(2)已知三角函数的单调区间求参数的取值范围的三种方法:①子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;[ ②反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.6. 求解三角函数的奇偶性的策略:(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化简,再判断其奇偶性;(2)两个常见结论:①若函数()()sin f x A x ωϕ=+为奇函数,则()k k Z ϕπ=∈;若函数()()sin f x A x ωϕ=+为偶函数,则()2k k Z πϕπ=+∈;②若函数()()cos f x A x ωϕ=+为奇函数,则()2k k Z πϕπ=+∈;若函数()()cos f x A x ωϕ=+为偶函数,则()k k Z ϕπ=∈.7. 求解三角函数对称性的方法:(1)求函数sin()y A x ωϕ=+的对称中心、对称轴问题往往转化为解方程问题:①由sin y x =的对称中心是(0)k π,,k ∈Z ,所以sin()y A x ωϕ=+的中心,由方程x k ωϕπ+=解出x 即可;②因为sin y x =的对称轴是2x k ππ=+,k ∈Z ,所以可由2x k πωϕπ+=+解出x ,即为函数sin()y A x ωϕ=+的对称轴;注意tan y x =的对称中心为1(,0)()2k k Z π∈;(2)对于函数sin()y A x ωϕ=+,其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线0x x =或点()0,0x 是否是函数的对称轴或对称中心时,可通过检验()0f x 的值进行判断. 8. 求解三角函数的值域(最值)常见的题目类型及求解策略:(1)形如sin cos y a x b x k =++的三角函数化为sin()y A x k ωϕ=++的形式,再利用正弦曲线的知识求最值(值域);(2)形如2sin sin y a x b x k =++的三角函数,可先设sin x t =,化为关于t 的二次函数求值域(最值); (3)形如()sin cos sin cos y a x x b x x c =+±+的三角函数,可先设sin cos t x x =±,化为关于t 的二次函数求值域(最值).1.【上海市浦东新区2018届三模】设函数的图象为,下面结论中正确的是( )A . 函数的最小正周期是B . 图象关于点对称C . 图象可由函数的图象向右平移个单位得到D . 函数在区间上是增函数【答案】B 【解析】 试题分析:的最小正周期,∵,∴图象关于点对称,∴图象可由函数的图象向右平移个单位得到,函数的单调递增区间是,当时,,∴函数在区间上是先增后减.考点:三角函数图象、周期性、单调性、图象平移、对称性.2.【上海市十二校2018届高三联考】已知函数()sincos 212cos2x x f x xωωω=(0)ω>, x R ∈,若函数()f x 在区间(),2ππ内没有零点,则ω的取值范围为( )A . 10,8⎛⎤ ⎥⎝⎦ B . 50,8⎛⎤ ⎥⎝⎦ C . ][150,,148⎛⎫⋃ ⎪⎝⎭ D . ][1150,,848⎛⎤⋃ ⎥⎝⎦【答案】D本题选择D 选项.点睛:重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 3.【上海市浦东新区2018届高三三模】已知的三边成等比数列,所对的角分别为,则的取值范围是_________.【答案】.【解析】 【分析】【点睛】本题考查等比中项的定义和余弦定理、基本不等式和正弦函数的图象和性质,考查运算能力,属于中档题.4.【上海市大同中学2018届高三三模】若,,,满足:,,则的值为__________.【答案】【解析】【分析】首先对所给的方程进行恒等变形,然后结合函数的单调性和角度的范围求得的值,然后求解三角函数值即可.【详解】∵,∴(−2β)3−2sinβcosβ−2λ=0,即(−2β)3+sin(−2β)−2λ=0.由可得.故−2β和是方程x3+sinx−2λ=0的两个实数解.再由,,,所以和的范围都是,由于函数x3+sinx在上单调递增,故方程x3+sinx−2λ=0在上只有一个解,所以,,∴,则的值为.【点睛】本题主要考查函数的单调性,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.【上海市2018年5月高考模拟】已知为常数),若对于任意都有,则方程在区间内的解为__________【答案】或【解析】【分析】由,可知是函数的最小值,利用辅助的角公式求出的关系,然后利用三角函数的图象和性质进行求解即可.【详解】则,由,解得,即,,当时,,当时,,故或,故答案为或.【点睛】本题主要考查三角函数的图象和性质,以及辅助角公式的应用,属于难题.利用该公式() 可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.6.【上海市浦东新区2018届高三三模】若的图像的最高点都在直线上,并且任意相邻两个最高点之间的距离为.(1)求和的值:(2)在中,分别是的对边,若点是函数图像的一个对称中心,且,求外接圆的面积.【答案】(1) .(2) .【解析】【分析】【点睛】本题考查了二倍角的正弦函数公式,以及正弦定理的应用,熟练掌握公式是解本题的关键,是中档题.7.【上海市大同中学2018届高三三模】如图一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.(1)当时,求关于的函数关系式;(2)当时,求的最大值;(3)若探照灯每9分钟旋转“一个来回”(自转到,再回到,称“一个来回”,忽略在及处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.【答案】(1)见解析;(2);(3)2分钟.【解析】【分析】(1)由题意结合三角函数的性质可得:当时,,当时,;(2)结合(1)中函数的解析式和三角函数的性质可得当时,;(3)结合实际问题和三角函数的性质计算可得点被照到的时间为分钟.【详解】【点睛】本题主要考查三角函数的实际应用,三角函数的性质,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.8.【上海市2018年5月高考模拟】钓鱼岛及其附属岛屿是中国固有领土,如图:点分别表示钓鱼岛、南小岛、黄尾屿,点在点的北偏东方向,点在点的南偏西方向,点在点的南偏东方向,且两点的距离约为3海里.(1)求两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在点处因故障抛锚发出求教信号.一艘国舰艇正从点正东10海里的点处以18海里/小时的速度接近渔船,其航线为 (直线行进),而我东海某渔政船正位于点南偏西方向20海里的点处,收到信号后赶往救助,其航线为先向正北航行8海里至点处,再折向点直线航行,航速为22海里/小时.渔政船能否先于国舰艇赶到进行救助?说明理由.【答案】(1)14.25(2)渔政船能先于国舰艇赶到进行救助.【解析】【分析】(1)由题意,,,在中,由正弦定理可求两点间的距离;(2)结合(1)【点睛】本题主要考查阅读能力、数学建模能力和化归思想以及正弦定理与余弦定理的应用,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.9.【上海市虹口区2018届高三下学期教学质量监控(二模)】已知中,角所对应的边分别为,(是虚数单位)是方程的根,.(1)若,求边长的值;(2)求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)解得,所以,,,由正弦定理得;(2)由余弦定理得,根据基本不等式,得,所以面积的最大值等于。

2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类大全(三角函数  三角恒等变换)

2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。

2018年高考数学—三角函数(解答+答案)

2018年高考数学—三角函数(解答+答案)

2018年高考数学——三角函数解答1.(18北京理(15)(本小题13分))在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.2.(18江苏16.(本小题满分14分))已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值;(2)求tan()αβ-的值.3.(18全国一理17.(12分))在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .4.(18天津理(15)(本小题满分13分))在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (I )求角B 的大小;学科*网(II )设a =2,c =3,求b 和sin(2)A B -的值.5.(18浙江18.(本题满分14分))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值.6.(18北京文(16)(本小题13分))已知函数2()sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.参考答案:1.解:(Ⅰ)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=. 由正弦定理得sin sin a b A B =⇒7sin A =43,∴sin A =3. ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3. (Ⅱ)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =31143()72⨯-+⨯=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337⨯=, ∴AC 边上的高为33.2.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()αβ+=,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.3.解:(1)在ABD △中,由正弦定理得sin sin BD AB A ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=. 由题设知,90ADB ∠<︒,所以223cos 1255ADB ∠=-=.(2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.4.(Ⅰ)解:在△ABC 中,由正弦定理sin sin a b A B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3. (Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cos A .因此sin 22sin cos A A A =21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-=5.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-, 所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-, 由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-.6.【解析】(Ⅰ)1cos 211π1()22cos 2sin(2)22262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知π1()sin(2)62f x x =-+. 因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. 要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3.。

【高三数学试题精选】2018年高考数学理科试题分类汇编:三角函数

【高三数学试题精选】2018年高考数学理科试题分类汇编:三角函数

2018年高考数学理科试题分类汇编:三角函数
5 1 (c)1 (D)3
【答案】A
【解析】因为是方程的两个根,所以,,所以,选A
2【2 ,2] B[- , ] c[-1,1 ] D[- , ]
【答案】B
【解析】f(x)=sinx-cs(x+ ) ,
,值域为[- , ]
【点评】利用三角恒等变换把化成的形式,利用,求得的值域
10【2018高考上海理16】在中,若,则的形状是()
A.锐角三角形 B.直角三角形 c.钝角三角形 D.不能确定
【答案】c
【解析】根据正弦定理可知由 ,可知,在三角形中,所以为钝角,三角形为钝角三角形,选c
【点评】本题主要考查正弦定理及其推理、余弦定理的运用主要抓住所给式子的结构选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理本题属于中档题11【2018高考天津理2】设则“ ”是“ 为偶函数”的
(A)充分而不必要条(B)必要而不充分条
(c)充分必要条(D)既不充分与不必要条
【答案】A
【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条与必要条的判定
【解析】函数若为偶函数,则有 ,所以“ ”是“ 为偶函数”的充分不必要条,选A
12【2018高考天津理6】在中,内角A,B,c所对的边分别是,。

2018年高考真题解答题专项训练:三角函数(理科)教师版

2018年高考真题解答题专项训练:三角函数(理科)教师版

2018年高考真题解答题专项训练:三角函数(理科)教师版1.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(,).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【来源】2018年全国普通高等学校招生统一考试数学(浙江卷)详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.2.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【来源】2018年全国普通高等学校招生统一考试理科数学(天津卷)详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故因此,.所以,.3.在ABC中,a=7,b=8,cos B= –.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【来源】2018年全国普通高等学校招生统一考试理科数学(北京卷)详解:解:(1)在△ABC中,∵cos B=–,∴B∈(,π),∴sin B=.由正弦定理得=,∴sin A=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在ABC中,∵sin C=sin(A+B)=sin A cos B+sin B cos A==.如图所示,在△ABC中,∵sin C=,∴h==,∴AC边上的高为.4.已知为锐角,,.(1)求的值;(2)求的值.【来源】2018年全国普通高等学校招生统一考试数学(江苏卷)详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.5.在平面四边形中,,,,.(1)求;(2)若,求.【来源】2018年全国普通高等学校招生统一考试理科数学(新课标I卷)详解:(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.所以.。

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

I 2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C 1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6II A . B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,III 则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值. 4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.IV 6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求c osβ的值. 7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =-()ππ-[,]上的解. 参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin ADB ∠=. 由题设知,90ADB ∠<︒,所以cos 5ADB ∠==. (2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴sinB==12-V 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7=,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A =.因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. 4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-VI (2)因为为锐角,所以. 又因为,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则si nθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2).,αβ(0,π)αβ+∈cos()αβ+=sin()αβ+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+VII 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a , 当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。

(完整版)2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

(完整版)2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形一、选择题1.【2018全国二卷6】在中,,,,则 A .BCD .2.【2018全国二卷10】若在是减函数,则的最大值是A .B .C .D .3.【2018全国三卷4】若,则 A .B .C .D .4.【2018全国三卷9】的内角的对边分别为,,,若的面积为,则 A .B .C .D .5.【2018北京卷7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A. 1B. 2C. 3D.46.【2018天津卷6】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A 在区间35[,]44ππ上单调递增 B 在区间3[,]4ππ上单调递减 C 在区间53[,]42ππ上单调递增 D 在区间3[,2]2ππ上单调递减 7.【2018浙江卷5】函数y=||2x sin2x 的图象可能是ABC △cos 2C =1BC =5AC =AB =()cos sin f x x x =-[,]a a -a π4π23π4π1sin 3α=cos2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A .B .C .D .二、填空题1.【2018全国一卷16】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_________. 2.【2018全国二卷15】已知,,则__________.3.【2018全国三卷15】函数在的零点个数为________.4.【2018北京卷11】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.5.【2018江苏卷7】已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 . 6.【2018江苏卷13】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .7.【2018浙江卷13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若b=2,A=60°,则sin B=___________,c=___________. 三.解答题1.【2018全国一卷17】在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.sin cos 1αβ+=cos sin 0αβ+=sin()αβ+=()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,(1)求cos ADB ∠; (2)若22DC =,求BC .2.【2018北京卷15】在△ABC 中,a=7,b=8,cosB=–17. (△)求∠A ; (△)求AC 边上的高.3.【2018天津卷15】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小; (II )设a=2,c=3,求b 和sin(2)A B -的值.4.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.5.【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.6.【2018浙江卷18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cosβ的值.7.【2018上海卷18】设常数a R ∈,函数f x ()=x x a 2cos 22sin + (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解.参考答案一、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D二、填空题1. 2. 3. 3 4.23 5.π6- 6. 9 7.3721; 三.解答题 1.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以sin 5ADB ∠=. 由题设知,90ADB ∠<︒,所以cos ADB ∠== (2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=. 所以5BC =.12-2.解:(Ⅰ)在△ABC 中,∵cosB=–17,∴B ∈(π2,π),∴. 由正弦定理得sin sin a b A B =⇒7sin A,∴.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A=π3.(Ⅱ)在△ABC 中,∵sinC=sin (A+B )11()72-+.如图所示,在△ABC 中,∵sinC=h BC ,∴h=sin BC C ⋅=7,∴AC边上的高为33.3.解:在△ABC 中,由正弦定理sin sin a bA B =,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B .又因为(0π)B ∈,,可得B=π3.(Ⅱ)解:在△ABC 中,由余弦定理及a=2,c=3,B=π3,有2222cos 7b a c ac B =+-=,故πsin cos()6b A a B =-,可得sin A .因为a<c ,故cos A =sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 4.解:(1)因为,,所以.因为,所以,因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以,因此. 因为,所以,因此,.5.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH=10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD 的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP 的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK=KN=10. 令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sinθ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sinθcosθ+cosθ)平方米,△CDP 的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k (sinθcosθ+cosθ),θ∈[θ0,π2). 设f (θ)=sinθcosθ+cosθ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.[来源:学§科§网]6.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 7. 解:(1)11cos 22sin )(2+-+=x x a x f =12cos 2sin ++x x a ,1)2cos()2sin()(+-+-=-x x a x f 12cos 2sin ++-=x x a当)(x f 为偶函数时:)()(x f x f -=,则a a -=,解得0=a 。

2018-2019年高考数学试题分类汇编三角函数附答案详解

2018-2019年高考数学试题分类汇编三角函数附答案详解

2018-2019年高考数学试题分类汇编三角函数一、选择题.1、(2018年高考全国卷1文科8)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4【解答】解:函数f(x)=2cos2x﹣sin2x+2,=2cos2x﹣sin2x+2sin2x+2cos2x,=4cos2x+sin2x,=3cos2x+1,=,=,故函数的最小正周期为π,函数的最大值为,故选:B.2、(2018年高考全国卷1文科11)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,∴cos2α=2cos2α﹣1=,解得cos2α=,∴|cosα|=,∴|sinα|==,|tanα|=||=|a﹣b|===.故选:B.3、(2018年高考全国卷3理科4)若sinα=,则cos2α=()A.B.C.﹣ D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.4、(2018年高考全国卷3理科9文科11)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,∴S△ABC==,∴sinC==cosC,∵0<C<π,∴C=.故选:C.5、(2018年高考全国卷2理科6文科7)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.6、(2018年高考全国卷2理科10)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.7、(2018年高考全国卷2文科)10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C. D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=﹣sin(x﹣),由﹣+2kπ≤x﹣≤+2kπ,k∈Z,得﹣+2kπ≤x≤+2kπ,k∈Z,取k=0,得f(x)的一个减区间为[﹣,],由f(x)在[0,a]是减函数,得a≤.则a的最大值是.故选:C8、(2018年高考全国卷3文科4)若sinα=,则cos2α=()A.B.C.﹣ D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.9、(2018年高考全国卷3文科6)函数f(x)=的最小正周期为()A.B.C.πD.2π【解答】解:函数f(x)===sin2x的最小正周期为=π,故选:C.10、(2018年高考北京卷理科7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.4【解答】解:由题意d==,tanα=﹣,∴当sin(θ+α)=﹣1时,d max=1+≤3.∴d的最大值为3.故选:C.11、(2018年高考北京卷文科7)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.12、(2018年高考天津卷文理科6)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x ≤,k ∈Z , 减区间满足:≤2x ≤,k ∈Z ,∴增区间为[﹣+kπ,+kπ],k ∈Z , 减区间为[+kπ,+kπ],k ∈Z ,∴将函数y=sin (2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A .13、(2019年高考全国I 卷文理科5)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 14、(2019年高考全国I 卷理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。

2018年全国高考(理科)数学试题分类汇编:三角函数

2018年全国高考(理科)数学试题分类汇编:三角函数

全国高考理科数学试题分类汇编3:三角函数一、选择题1 (浙江数学(理)试题)已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43C.43-D.34-*C2 (高考陕西卷(理))设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定*B3 (天津数学(理)试题)在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠(B)C 4 (山东数学(理)试题)将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π (C)0 (D) 4π-*B5 (辽宁数学(理)试题)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= A.6π B.3π C.23π D.56π *A 6 (大纲版数学(理))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x()f x 既奇函数,又是周期函数*C 7 (山东数学(理)试题)函数cos sin y x x x =+的图象大致为*D8 (高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π*A9 (上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =*B10(重庆数学(理)试题)04cos50tan 40-= ( )1*C 11(高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A.12π B.6π C.4π D.3π*D12(高考湖北卷(理))将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12πB.6πC.3πD.56π*B 二、填空题13(浙江数学(理)试题)ABC ∆中,090=∠C ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________.*314(高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______*.15(福建数学(理)试题)如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________16(上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_________*2π17(高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是________18(高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=*2sin()3x y +=. 19(高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)*1arccos 3C π=-20(大纲版数学(理))已知α是第三象限角,1sin 3a =-,则cot a =____________.* 21(江苏卷(数学))函数)42sin(3π+=x y 的最小正周期为___________.*π22(上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B === ,,,则b=_______*723(安徽数学(理)试题)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.*π3224(新课标Ⅱ卷数学(理))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=____*25(高考江西卷(理))函数2sin 2y x x =+的最小正周期为T 为_________.*π 26(上海市春季高考数学试卷(含答案))函数4sin 3cos y x x =+的最大值是_________*5 三、解答题27(高考北京卷(理))在△ABC 中,a =3,b ,∠B =2∠A .(I)求cos A 的值; (II)求c 的值.*解:(I)因为a =3,b =2,∠B =2∠A . 所以在△ABC 中,由正弦定理得3sin A =.所以2s i n c o s6s i n A A A =.故cos A =. (II)由(I)知cos A =,所以sin A ==.又因为∠B=2∠A,所以21c o s2c o s 13B A =-=.所以sin 3B ==. 在△ABC中,sin sin()sin cos cos sin 9C A B A B A B =+=+=. 所以sin 5sin a C c A ==.28(高考陕西卷(理))已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期. (Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.*解:(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π. (Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.29(重庆数学(理)试题)在ABC 中,内角,,A B C 的对边分别是,,a b c ,且222a b c +=.(1)求C ; (2)设()()2cos cos cos cos 5cos 5A B A B ααα++==求tan α的值.【答案】 由题意得30(天津数学(理)试题)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.*31(辽宁数学(理)试题)设向量)(),sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x = 求的最大值*32(高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>;(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.*(1)因为0ω>,根据题意有 34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2)()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈, 即()g x 的零点相离间隔依次为3π和23π, 故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 33(大纲版数学(理))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B(II)若sin sin A C =求C .*34(高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC方向上的投影.*解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-, 则()3cos 5A B B -+=-,即3cos 5A =- ()II 由3cos ,05A A π=-<<,得4sin 5A =, 由正弦定理,有sin sin a b A B =,所以,sin sin b A B a ==. 由题知a b >,则A B >,故4B π=. 根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭, 解得1c =或7c =-(舍去). 故向量BA 在BC 方向上的投影为cos 2BA B = 35(山东数学(理)试题)设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =.(Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.*解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+, 又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =. (Ⅱ)在△ABC中,sin B ==, 由正弦定理得sin sin a B A b ==, 因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin A B A B A B -=-=.36(安徽数学(理)试题)已知函数()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π. (Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.*解: (Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ.所以1,2)42s i n (2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y = 37(福建数学(理)试题)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像. (1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2018个零点.*解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈ 故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x = 将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x = (Ⅱ)当(,)64x ππ∈时,1sin 2x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >> 问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增 又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+= 当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x =-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x =-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况 22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞ 故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯= 综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点38(江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知(cos ,sin )(cos ,sin )a b ααββ==,,παβ<<<0.(1)若||a b -= ,求证:a b ⊥ ;(2)设(0,1)c = ,若a b c +=,求βα,的值.*解:(1)∵2||=- ∴2||2=- 即()22222=+-=-, 又∵1sin cos ||2222=+==αα,1sin cos ||2222=+==ββ∴222=-∴0=∴⊥ (2)∵)1,0()sin sin ,cos (cos =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0 ∴πβπα61,65==39(广东省数学(理)卷)已知函数()12f x x π⎛⎫=- ⎪⎝⎭,x ∈R .(Ⅰ) 求6f π⎛⎫-⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.*(Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ)222cos2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭c o s 2s i θθ=-72417252525⎛⎫=---= ⎪⎝⎭.40(高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且()f α=求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.*解: (I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f . 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ41(江苏卷(数学))本小题满分16分.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲.乙两位游客从A处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为m i n /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C .(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?*解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C ∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据s i n B s i n C AC AB =得m C AC AB 1040sin sinB== (2)设乙出发t 分钟后,甲.乙距离为d,则1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d ∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理sinB sinA AC BC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m. (2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2), 由余弦定理得:MN 2=AM 2+AN 2-2AM ·AN cos A =7400 x 2-14000 x +10000, 其中0≤x ≤8,当x =3537(min)时,MN 最小,此时乙在缆车上与甲的距离最短. (3)由(1)知:BC =500m,甲到C 用时:126050 =1265 (min). 若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) . 此时乙的速度最小,且为:500÷865 =125043 m/min. 若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) . 此时乙的速度最大,且为:500÷565 =62514m/min. 故乙步行的速度应控制在[125043 ,62514]范围内.42(高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos23cos 1A B C -+=.(I)求角A 的大小;(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.CBAC BADMN*解:(I)由已知条件得:cos23cos 1A A += 22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒(II)1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A== 25sin sin 47bc B C R ∴==43(新课标Ⅱ卷数学(理))△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.*44(高考新课标1(理))如图,在△ABC 中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA *(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o,在△PBA 中,由余弦定理得2PA =o 1132cos3042+-=74,∴; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得osin sin(30)αα=-,化简得4sin αα=, ∴tan α,∴tan PBA ∠.45(上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n nP AP θ+∠=,n N *∈.(1)若31arctan 3θ=,求点A 的坐标; (2)若点A的坐标为(0,求n θ的最大值及相应n 的值.[解](1) (2)*[解](1)设(0 )A t ,,根据题意,12n n x -=.由31arctan3θ=,知31tan 3θ=, 而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),. (2)由题意,点n P 的坐标为1(2 0)n -,,1tan n n OAP -∠=. 111212tan tan()1n n n n n n n OAP OAP θ--+-=∠-∠===+. 因为2n ≥,所以tan n θ≤=, 当且仅当n=,即4n =时等号成立. 易知0 t an 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为arctan 4. 46(高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围*解:(1)由已知得cos()cos cos cos 0A B A B A B -++= 即有sin sin sin cos 0AB A B = 因为sin 0A ≠,所以sin cos 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3B π=. (2)由余弦定理,有2222cos b a c ac B =+-. 因为11,cos 2a c B +==,有22113()24b a =-+. 又01a <<,于是有2114b ≤<,即有112b ≤<.。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .

2018年高考数学—函数(解答+答案)

2018年高考数学—函数(解答+答案)

3
8.(18 北京文(19)(本小题 13 分))
设函数 f (x) [ax2 (3a 1)x 3a 2]ex . (Ⅰ)若曲线 y f (x) 在点 (2, f (2)) 处的切线斜率为 0,求 a; (Ⅱ)若 f (x) 在 x 1处取得极小值,求 a 的取值范围.
9.(18 全国二文 21.(12 分))
当 1 x 0 时,g(x) 0 ;当 x 0 时,g(x) 0 .故当 x 1 时,g(x) g(0) 0 ,
且仅当 x 0 时, g(x) 0 ,从而 f (x) 0 ,且仅当 x 0 时, f (x) 0 .
所以 f (x) 在 (1, ) 单调递增.学#科网
又 f (0) 0 ,故当 1 x 0 时, f (x) 0;当 x 0 时, f (x) 0 .
f (x) 在 (0, ) 只有一个零点当且仅当 h(x) 在 (0, ) 只有一个零点.
(i)当 a 0 时, h(x) 0 , h(x) 没有零点; (ii)当 a 0 时, h'(x) ax(x 2)ex .
当 x (0, 2) 时, h'(x) 0 ;当 x (2, ) 时, h'(x) 0 .
7
综上, f (x) 在 (0, ) 只有一个零点时, a e2 . 4
4.解:(1)当 a 0 时, f (x) (2 x) ln(1 x) 2x , f (x) ln(1 x) x . 1 x
设函数 g(x)
f
(x)
ln(1 x) x 1 x
,则 g(x)
x (1 x)2
.
(1)若 a 0 ,证明:当 1 x 0时, f x 0 ;当 x 0 时, f x 0 ; (2)若 x 0 是 f x 的极大值点,求 a .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考理科数学三角函数100题(含答案解析)1.己知x 0=﹣是函数f (x )=sin (2x+φ)的一个极小值点,则f (x )的一个单调递减区间是( )A .(,)B .(,)C .(,π)D .(,π)2.已知△ABC 是钝角三角形,若AC=1,BC=2,且△ABC 的面积为,则AB=( )A .B .C .D .33.已知1(,2)2P 是函数()sin()(0)f x A x ωϕω=+>图象的一个最高点,,B C 是与P 相邻的两个最低点.若7cos 25BPC ∠=,则()f x 的图象对称中心可以是 (A )()0,0 (B )()1,0 (C ) ()2,0 (D )()3,0 4.已知函数()sin()f x A x ωϕ=+(A ,ω,ϕ均为正的常数)的最小正周期为π,当2π3x =时,函数()f x 取得最小值,则下列结论正确的是( ). A .(2)(2)(0)f f f <-< B .(0)(2)(2)f f f <<- C .(2)(0)(2)f f f -<<D .(2)(0)(2)f f f <<-5.设函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象为C ,下面结论中正确的是( ).A .函数()f x 的最小正周期是2πB .图象C 关于点π,06⎛⎫⎪⎝⎭对称C .图象C 向右平移π2个单位后关于原点对称 D .函数()f x 的区间ππ,122⎛⎫- ⎪⎝⎭上是增函数6.已知函数π()sin (0)4f x x ωω⎛⎫=> ⎪⎝⎭+的最小正周期为π,刚该函数的图象( ).A .关于点π,04⎛⎫⎪⎝⎭对称B .关于直线π8x =对称 C .关于点π,08⎛⎫⎪⎝⎭对称D .关于直线π4x =对称 7.为了得到函数sin cos y x x =+的图像,只需把sin cos y x x =-的图像上所有的点( ). A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度D .向右平移π2个单位长度 8.已知(0,π)α∈,3cos 5α=-,则tan α=( ).A .34B .34-C .43D .43-9.已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭图象如图所示,则下列关于函数()f x 的说法中正确的是( ).A .对称轴方程是ππ()6x k k =+∈Z B .对称中心坐标是ππ,0()3k k ⎛⎫+∈ ⎪⎝⎭Z C .在区间ππ,22⎛⎫- ⎪⎝⎭上单调递增D .在区间2ππ,3⎛⎫-- ⎪⎝⎭上单调递增10.设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .不确定11.要得到函数πsin 43y x ⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ).A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位 12.将函数cos y x =的图像上所有的点向右平行移动π6个单位长度,再把所得各点的横坐标缩短到原来的12(纵坐标不变),所得图像的函数解析式是( ). A .1πcos 26y x ⎛⎫=- ⎪⎝⎭B .1πcos 212y x ⎛⎫=- ⎪⎝⎭C .πcos 26y x ⎛⎫=- ⎪⎝⎭D πcos 23y x ⎛⎫=- ⎪⎝⎭13.函数y=cos 2(x ﹣6π)的一条对称轴为( ) A .x=﹣6π B .x=125π C . x=3π D .x=﹣3π 14.在锐角△ABC 中,∠A=,∠BAC 的平分线交边BC 于点D ,|AD|=1,则△ABC 面积的取值范围是( )A .[,]B .[,] C .[,)D .[,)15.已知函数,则f (x )的值域是( )A .[﹣1,1]B .C .D .16.已知,且,则tan α=( )A .B .C .D .17.函数y=xcosx+sinx 的图象大致为( )A .B .C .D .18.已知函数f (x )=Acos (ωx+φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .B .C .D .19.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=3,则b 的值为( )A .6B .26C .D .20.已知角α的终边过点P (﹣8m ,﹣6sin30°),且cos α=﹣,则m 的值为( )A .﹣B .C .﹣D .21.已知实数a=cos 224°﹣sin 224°,b=1﹣2sin 225°,c= ︒-︒23tan 123tan 22,则a ,b ,c 的大小关系为( )A .b >a >cB .c >a >bC .a >b >cD .c >b >a22.要得到y=sinx•cosx ﹣cos 2x+21的图象,只需将函数y=22sin2x 的图象( )A .左移4πB .右移4π C .左移8π D .右移8π 23.已知θ∈(,π),sin θ=,则sin (θ+)等于( )A .B .﹣C .D .﹣24.若函数f (x )=sin ωx+cos (ωx+)(ω>0)的最小正周期为π,则f (x )在[0,]上的最大值为( )A .2B .C .D .25.已知cos (+α)=,则α∈(,),则sin2α=( )A .﹣B .﹣C .D .26.已知函数f (x )=Asin (ωx+φ)(其中A >0,|φ|<)的图象如图所示,则函数f(x )的解析式为( )A .B .C .D .27.设a=(sin17°+cos17°),b=2cos 213°﹣1,c=,则( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c28.已知 f(sinx)=x,且,则的值等于()A.B.C.D.29.已知tanα=,α∈(π,π),则cosα的值是()A.±B.C.﹣D.30.定义在R上的偶函数f(x)满足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函数,A,B 是锐角三角形的两个内角,则()A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)31.cos(﹣585°)的值为()A.B.C.D.32.已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为的奇函数C.最小正周期为π的偶函数D.最小正周期为的偶函数33.已知θ是第四象限角,且,则cos θ= .34.已知x 1,x 2是函数f (x )=2sin2x+cos2x ﹣m 在[0,]内的两个零点,则sin (x 1+x 2)= . 35.在平面直角坐标系xOy 中,角θ的顶点在原点,始边与x轴的非负半轴重合,终边过点1(2,则πcos()3θ+=________. 36.复数1cos i z θ=-,2sin i z θ=-,则12z z 实部的最大值__________,虚部的最大值__________. 37.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,若a =4c =,60A =︒,则b =__________. 38.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若4c =,sin 2sin C A =,sin B ,则a =__________,ABC S =△__________. 39.已知AOB △为等腰直角三角形,1OA =,OC 为斜边的高.C BAOP(1)若P 为线段OC 的中点,则AP OP ⋅=__________.(2)若P 为线段OC 上的动点,则AP OP ⋅的取值范围为__________. 40.已知函数的部分图象如图所示,则函数的解析式为______.41.点P 从(0,1) 出发,沿单位圆逆时针方向运动23π弧长到达Q 点,则Q 点的坐标为 . 42.在ABC △中,4a =,5b =,6c =,则sin 2sin AC=__________. 43.在平面直角坐标系xOy 中,角α与角B 均以Ox 为始边,它们的终边关于y 轴对称,若1sin 3α=,则sin B =__________,cos()αβ-=__________.44.在ABC △中,cos c a B =,①A =__________;②若1sin 3C =,则cos(π)B +=__________.45.已知α∈(,π),sin α=,则tan= .46.在△ABC 中,,AB=2,且△ABC 的面积为,则边BC 的长为 .47.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,若==,则sinB= . 48.若sin(α﹣3π)=51,α∈(0,2π),则cosα= . 49.已知△ABC 中,AB=3,BC=1,sinC=3cosC ,则△ABC 的面积为 . 50.已知函数的图象为C ,关于函数f (x )及其图象的判断如下:①图象C 关于直线x=对称;②图象C 关于点对称;③由y=3sin2x 得图象向左平移个单位长度可以得到图象C ;④函数f (x )在区间(﹣)内是增函数;⑤函数|f (x )+1|的最小正周期为π.其中正确的结论序号是 .(把你认为正确的结论序号都填上) 51.将函数的图象上所有点的横坐标向 平移 个单位,可得函数y=sin2x 的图象. 52.已知sin α=,α∈(0,),则cos (π﹣α)= ,cos2α= .53.已知函数y=2sin (ωx+φ)(ω>0,|φ|<2π). ①若f (0)=1,则φ= ;②若∃x ∈R ,使f (x+2)﹣f (x )=4成立,则ω的最小值是 . 54.设f(x)=sin 2x ﹣3cosxcos(x+2π),则f (x )在[0,2π]上的单调递增区间为 . 55.若函数f(x)=sin(ωπx -6π)(ω>0)的最小正周期为51,则f(31)的值为 .56.已知△ABC 中,角C 为直角,D 是BC 边上一点,M 是AD 上一点,且|CD|=1,∠DBM=∠DMB=∠CAB ,则|MA|= . 57.已知函数.(1)求函数f (x )的最小正周期和对称轴;(2)将函数f (x )的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移个单位,得函数g (x )的图象.若a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,a+c=6,且g (B )=0,求b 的取值范围. 58.已知函数.(1)求f (x )的最小正周期;(2)当时,f (x )的最小值为2,求a 的值.59.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知acosAcosB ﹣bsin 2A ﹣ccosA=2bcosB . (1)求B ;(2)若,求a .60.ABC ∆的内角,,A B C 的对边分别为,,a b c .已知()sin sin sin a b A c C b B -=-.(Ⅰ)求C ;(Ⅱ)若ABC ∆的周长为6,求ABC ∆的面积的最大值. 61.在ABC △中,内角A 、B 、C 的对边分别为a 、b 、c .角π6A =,(12c b +=. (1)求角C 的值.(2)若1CA CB ⋅=a 、b 、c 的值. 62.已知向量(sin ,2)a x =-,(1,cos )b x =互相垂直,其中π0,2x ⎛⎫∈ ⎪⎝⎭.(1)求sin x ,cos x 的值.(2)若5cos()x θθ-=,π02θ<<,求cos θ的值. 63.函数π()cos(π)02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的部分图象如图所示.(Ⅰ)写出ϕ及图中0x 的值.(Ⅱ)设1()()3g x f x f x ⎛⎫=++ ⎪⎝⎭,求函数()g x 在区间11,23⎡⎤-⎢⎥⎣⎦上的最大值和最小值.64.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若tan 21tan A cB b+=. Ⅰ求角A 的大小.Ⅱ若函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ,42x ⎡⎤∈⎢⎥⎣⎦,在x B =处取到最大值a ,求ABC △的面积.65.在ABC△1cos2B B =-. (Ⅰ)求角B 的值. (Ⅱ)若2BC =,π4A =,求ABC △的面积. 66.在锐角ABC △中,a ,b ,c 分别为内角A ,B,C 2sin 0b A -=. (Ⅰ)求角B 的大小.(Ⅱ)若5a c +=,且ac >,b =AB AC ⋅的值. 67.己知函数2()cos sin 1f x x x =--+. (Ⅰ)求函数()f x 的最小值. (Ⅱ)若5()16f α=,求cos2α的值. 68.如图,在ABC △中,点D 在BC 边上,π4CAD ∠=,72AC =,cos ADB ∠=CB AD(Ⅰ)求sin C ∠的值.(Ⅱ)若5BD =,求ABD △的面积. 69.已知函数2()sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值.(Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.70.如图,在△ABC 中,∠B=,AC=2.(1)若∠BAC=θ,求AB 和BC 的长.(结果用θ表示); (2)当AB+BC=6时,试判断△ABC 的形状.71.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,设π3A =,sin 3sinBC =.(Ⅰ)若a ,求b 的值. (Ⅱ)求tan C 的值. 72.已知函数2π()2sin cos 22f x x x ⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值.(Ⅱ)求函数()f x 的最小正周期及单调递减区间. 73.已知函数2()cos 2cos 222x x xf x =-.(I )求π3f ⎛⎫⎪⎝⎭的值.(II )求函数()f x 的单调递减区间及对称轴方程. 74.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,a =sin C A . (1)求边c 的值.(2)若cos C ABC △的面积. 75.已知函数π()sin 2cos 26f x x x ⎛⎫=-+ ⎪⎝⎭.(1)求π6f ⎛⎫⎪⎝⎭的值.(2)求函数()f x 的最小正周期和单调递增区间. (3)求()f x 在区间7π0,12⎡⎤⎢⎥⎣⎦上的最大值和最小值.76.已知在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,60A =︒,32b c =,ABC S =△. (Ⅰ)求b 的值. (Ⅱ)求sin B 的值. 77.如图,在平面直角坐标系xOy 中,以x 轴为始作边两个锐角α、β,它们的终边分别与单位圆交于A 、B 两点,已知A 、B . (Ⅰ)求tan()αβ+的值. (Ⅱ)求2+αβ的值.78.已知函数π()sin sin3f x x x⎛⎫=--⎪⎝⎭.(Ⅰ)求π6f⎛⎫ ⎪⎝⎭.(Ⅱ)求()f x的单调增区间.79.在△ABC中,角A,B,C的对边分别为a,b,c,且满足c(3sinB+cosB)=a+b.(Ⅰ)求角C的值;(Ⅱ)若a=5,△ABC的面积为53,求sinB的值.80.B试题分析:发菜属于蓝藻,虽然没有叶绿体但含有藻蓝素和叶绿素,能进行光合作用;A 错误。

相关文档
最新文档