刚体力学习题答案.docx
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
第03章(刚体力学)习题答案
轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
刚体力学参考答案
mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。
【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。
刚体力学基础-习题-解答
衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ=__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理2-1第四章(刚体力学)习题答案
大学物理2-1第四章(刚体力学)习题答案习题四4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。
当重物下落时可使飞轮旋转起来。
若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。
试求飞轮在t 时刻的角速度和角加速度。
[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则a txa 2d d 22t ==因为飞轮与绳子之间无相对滑动,所以βR a =t则 2t rad/s 0.220.222=?===R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200minrad,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。
又过了5s 后,飞轮停止转动。
若该飞轮总共转了100转,求共运转了多少时间 [解] 分三个阶段进行分析10 加速阶段。
由题意知111t βω= 和11212θβω= 得22111211t ωβωθ==20 匀速旋转阶段。
212t ωθ= 3制动阶段。
331t βω= 33212θβω= 22313213t ωβωθ== 由题意知100321=++θθθ 联立得到πωωω210022312111?=++t t t所以 s 1836020025602002660200210022=-??-=ππππt 因此转动的总时间 s 19418356321=++=++=t t t t4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。
设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。
(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大(2)齿轮边缘上一点的线速度和加速度是多大[解] (1) 齿轮由A 转到B 孔所需要的时间5103126005002?===ππωθt所以光速 s m 10310315002285=??==TL c(2) 齿轮边缘上一点的线速度s m 1088.1260010522?===-πωR v齿轮边缘上一点的加速度()25222s m 1010.71052600?===-πωR a4-4 刚体上一点随刚体绕定轴转动。
第七章 刚体力学习题及解答
第七章刚体力学习题及解答7。
1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。
估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。
解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。
(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。
1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。
x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。
解:( 1)( 2) 时,由( 3)当时,由7。
1。
5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。
1.6 收割机拔禾轮上面通常装4到6个压板。
拔禾轮一边旋转,一边随收割机前进。
压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。
2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。
取收割机前进的方向为坐标系正方向7。
1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。
(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。
刚体力学(答案)
一、选择题[ C ]1、(基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >(或者:列方程组:11122212m g T m a T m g m aT R T R J a Rββ-=⎧⎪-=⎪⎪⎨-=⎪⎪=⎪⎩ ,解得:()()12212m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >)[B] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2013m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为 (A)0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v4m m L【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零,所以系统的角动量守恒: 20123v mvL m L m L ω⎛⎫=+ ⎪⎝⎭,即可求出答案。
[ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变. (C) 减小. (D) 不能确定.【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。
刚体力学习题解答.docx
第三章习题解答3.13 某发动机飞轮在时间间隔t内的角位移为。
求 t时刻的角速度和角加速度。
解:3.14桑塔纳汽车时速为 166km/h,车轮滚动半径为 0.26m,发动机转速与驱动轮转速比为 0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m,发动机转速为 n1, 驱动轮转速为 n2, 汽车速度为 v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,,所以:3.15 如题 3-15图所示,质量为 m的空心圆柱体,质量均匀分布,其内外半径为 r1和r2,求对通过其中心轴的转动惯量。
解:设圆柱体长为 h ,密度为,则半径为 r,厚为 dr的薄圆筒的质量 dm 为:对其轴线的转动惯量为3.17 如题 3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过 O轴且垂直于圆形细杆所在平面的轴的转动惯量为 mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过轴的转动惯量为 mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:3.18 在质量为 M ,半径为 R的匀质圆盘上挖出半径为 r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心 o且与盘面垂直的轴线(以下简称 o轴)的转动惯量为.由于对称放置,两个小圆盘对 o轴的转动惯量相等,设为 I ’,圆盘质量的面密度σ=M/πR2,根据平行轴定理,设挖去两个小圆盘后,剩余部分对o轴的转动惯量为 I ”3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s,两制动闸瓦对轮的压力都为 392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为 r=0.4m,问从开始制动到静止需多长时间?解:由转动定理:制动过程可视为匀减速转动,3.20一轻绳绕于 r=0.2m的飞轮边缘,以恒力F=98N 拉绳,如题 3-20图(a)所示。
刚体力学答案
练习一 刚体的转动定律一、填空题1.25π,-π,625π22.刚体转动中惯性大小的量度,⎰=dm r J 2 ,刚体的形状、质量分布、转轴的位置 3.50ml 24.157 N ·m 5.1.5g 6.0.5kg ·m 2二、计算题1.解:由于 β=–kw即 d k dt ωω=-分离变量 kdtd -=ωω积分td kdtωωωω=-⎰⎰有lnkt ωω=-t 时飞轮角速度为 0kte ωω-=2.解:设绳中张力为T对于重物由牛顿第二定律∑=dt v m d F )( 得: m 2g –T =m 2a (1)对于滑轮按转动定律M =J β有β⋅=221mr Tr (2) 由角量线量关系有 a =r β (3)联立以上三式解得 21222m m gm a +=3.解:由转动定律M =J β得 -μNR=mR 2(ω-ω0)/ΔtN=-m R 2 (ω-ω0)/ μR Δt=250π又有 0.5N -(0.5+0.75)F=0F=100π=314(N)4.解:各物体受力情况如图.F -T =maT '=ma(T T '-)R =β221mR a =R β由上述方程组解得: β=2F / (5mR)=10 rad·s -2 T =3F / 5=6.0 N T '=2F / 5=4.0 N练习二 刚体的角动量及守恒定律一、填空题a a T ’1.定轴转动刚体所受外力对轴的冲量矩等于转动刚体对轴的角动量的量,0)(d 21ωωJ J t M t t z -=⎰,刚体所受对轴的合外力矩等于零2.4×1043.F r M⨯=,变角速度,角动量 4.杆和子弹,角动量 5.6π,3∶16.02ωm M M + ,02222ωmrMR MR + 二、计算题1.解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒.设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度 则有 J 0ω 0 = J ω ① 由已知条件知:J 0 = 2mR 2 / 5,J = 2m(R / 2)2 / 5 代入①式得 ω = 4ω 0 即收缩后球体转快了 其周期 442200T T =π=π=ωω周期减小为原来的1 / 4.2.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min(2) A 轮受的冲量矩⎰t M A d = = -4.19×10 2N ·m ·s负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.3.解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆4.解:由人和转台系统的角动量守恒J 1ω1 + J 2ω2 = 0其中 J 1=300 kg ·m 2,ω1=v /r =0.5 rad / s ,J 2=3000 kg ∙m 2 ∴ ω2=-J 1ω1/J 2=-0.05 rad/s 人相对于转台的角速度 ωr =ω1-ω2=0.55 rad/s ∴ t =2π /r ω=11.4 s5.解:(1)小碎块飞出时与轮同步以角速度ω旋转 ∴ v 20=R ω 由机械能守恒定律得m g h mv =22021 gR h 22g v 22220ω==(2)据题意,系统角动量守恒 J 0ω0=J 1ω1+J 2ω2ωωω21222)(2M mR R m M R +-= 即余下部分的角速度、角动量、转动动能为 ωωmM mM --=21ωωω21211)2(2)(R m MR m M J -=-=222212211)(4)2(2)(2121ωωωR m M m M R m M J --=-=刚体自测题一、选择题BBDADCD 二、填空题 1.4s ,-15m/s 2.(1)(2)(4)3.5.0 N ·m 4.mgl 21,2g / (3l)5.()lm M /3460+v6.()212m RJ m r J ++ω7.20m R J m R J +-vω8. 8 rad ·s -1 .三、计算题1.解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中ω1是匀加速阶段的末角速度,也是匀减速阶段的初角速度, 由此可得 t =8 s 时 ω1=ω0+9=27 rad /s 当ω=0时,得 t =(ω1+24)/ 3=17s 所以,体系在17s 时角速度为零.2.解:人受力如图(1)由牛顿第二定律得 mgsin37°-T m =ma (1)由转动定律得 rT m -rT k =Jβ=Ja/r (2) 由胡克定律得 T k =kx (3) 有 dxdv v dt dx dx dv dt dv a =⋅==(4) 联立求解得 mgsin37°-kx=(m+ J /r 2)vdv/dxvdv r J m dx kx mg xv v ⎰⎰==+=-︒020)/()37sin (x=2mgsin37°/k=1.176(m)3.解:(1) ∵ mg -T =ma TR =J βa =R β∴ β = mgR / (mR 2+J)()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2方向垂直纸面向外.(2) ∵βθωω2202-=当ω=0 时, rad 612.022==βωθ物体上升的高度h = R θ = 6.12×10-2 m(3)==βθω210.0 rad/s方向垂直纸面向外.4.解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 将①式代入②式得:R2120v+=ωω ③ (2) 欲使盘对地静止,则式③必为零.即 ω0 +2v / (21R)=0得: v =-21R ω0 / 2式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.5.解:在子弹通过杆的过程中,子弹与杆系统因外力矩为零,故角动量守恒.则有m 2v 0 l / 4 = m 2v l / 4 +J ω()()lm m J l m 1020234v v v v -=-=ω =11.3rad/s6.解:碰撞前瞬时,杆对O 点的角动量为Lm L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中 为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以L m mL 022112/7v =ω∴ = 6v 0 / (7L)。
第五章刚体力学(答案)
第五章刚体力学(答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March一、选择题[ C ] 1、(基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >(或者:列方程组:11122212m g T m a T m g m aT R T R J a Rββ-=⎧⎪-=⎪⎪⎨-=⎪⎪=⎪⎩ ,解得:()()12212m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >)[ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2013m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L. (D) 07v 4m m L【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零,所以系统的角动量守恒: 20123v mvL m L m L ω⎛⎫=+ ⎪⎝⎭,即可求出答案。
图5-7v 21 v 俯视图 图5-9[ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定.【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。
大学物理第3章刚体力学习题解答
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
华理工大学大学物理习题之刚体力学习题详解.doc
m的人。圆盘可无摩擦地
绕过盘中心的竖直轴转动。当这人沿着与圆盘同心,半径为
R(< R)的圆周相对于圆盘走一
2
1
周时,问圆盘和人相对于地面转动的角度各为多少
答案:(1)
4 mR2
2
2,或
4
2
MR12
2
。
2
2
2
2
;(2)
2
2,或
2
2
)
2mR2MR1
16 M
gl,所以
v0
1
Mgl,v0
2
m
3
Ml
2
16
M
3 m
4
3
2.圆柱体以
80rad/s
的角速度绕其轴线转动,它对该轴的转动惯量为
4kg
m2。在恒力矩作
用下,10s内其角速度降为40rad/s。圆柱体损失的动能和所受力矩的大小为[]
(A)80J,80N m; (B)800J,40N m;(C)4000J,32N m;(D)9600J,16N m。
。
答案:5s
解:由角动量守恒定律
( J
mr2)
0
J
0
2
得
J
m
3
m
r2
,
由于
t
1 10
kg/s
所以
t
m
J
5
105
5s
1 10
3
r2
1 103
0.12
1 103
如图所示,一轻绳跨过两个质量均为m、半径均为R的匀质圆盘状定滑轮。绳的两端分别系着质量分别为m和2m的重物, 不计滑轮转轴的摩擦。 将系
大学物理刚体力学测试题答案
2 .如 图 所 示 , 一 长 为 轴
L = 0 .4 0 m
的 均 匀 木 棒 , 质 量
M = 1 .0 k g , 可 绕 水 平 m = 8 .0 g O 点 的 距
O 在 竖 直 面 内 转 动 。开 始 时 ,棒 自 然 地 竖 直 悬 垂 ,现 有 质 量
的 子 弹 以
v 200m s 1 的
0 240 转动,则飞轮边缘上一点在飞轮转过 时的切向加速度 at
=
0.15m s
2
,法向加速度 a n =
0.4 m s2
。
4 角度需变为弧度计算 240 rad 3 4 2 1 2 4 2 16 2 3 t t 2 3 0.5 3
1 mR 2 2
m相同d相同,而R的关系不知。 由
m m V R d R d
2 2
1 1 m 1 2 J mR m 2 2 d
2.一个可以绕定轴转动的刚体:( D ) (A)若转动角速度很大,则角加速度一定很大; 匀角速度转动 (B)若转动角加速度为零,则受力一定为零; (C)若受力很大,则角速度一定很大; (D)若受力矩为零,则角加速度也一定为零。
在子弹射入圆柱体的边缘的瞬间,其 合外力——重力过O轴,合外力矩为零, 子弹、圆盘系统对过O轴的角动量守恒。
( M 2m ) R
R O
m R 0 J m J M 2 1 2 m R 0 mR MR 2 2m
( M 2m ) R
2 为 3 J 0 时,则角速度为(
A (C)
)
3 03 0
(D)
2 0 3
合外力矩为零,系统角动量守恒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m
4kg,哑铃距转台轴
r0
0.8m,起初转
台以
0
2
rad/s
的角速度转动
然后此人放下两臂
使哑铃与轴相距
r
0.2m,
设人与转
,
,
台的转动惯量不变
,且J 5kg
第三章刚体力学习题答案
3-1如图3-1示,一轻杆长度为2l,两端各固定一小球,A球质量为2m,B球质量为m,杆可绕过中心的水平轴O在铅垂面内自由转动,求杆与竖直方向成
角时的角加速度.
图3-1
解:系统受外力有三个,即A,B受到的重力和轴的支撑作用力,轴的作用力对轴的力
臂为零,故力矩为零,系统只受两个重力矩作用.以顺时针方向作为运动的正方向,则A
是v1=×104m·s-1,它离太阳最远时的速率是
v2=×102m·s-1,这时它离太阳的距离r2为
多少(太阳位于椭圆的一个焦点.)
解:
哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;
又由于
哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有
r1mv1
r2mv2
∴
r2
r1v1
向成230的方向反弹,求盘获得的角速度.
图3-15
解:对于盘和子弹组成的系统,撞击过程中轴O的支撑力的力臂为零,不提供力矩,其他
外力矩的冲量矩可忽略不计,故系统对轴O的角动量守恒,即
L1L2,初时盘的角动量为零,只有子弹有角动量,故
L1m2vr sin 60
末态中盘和子弹都有角动量,设盘的角速度为,则
(1)此后圆盘还能继续转动多少时间
(2)上述过程中摩擦力矩所做的功.
解:(1)撤去外力后,盘在摩擦力矩
Mf作用下停止转动-设盘质量密度为
m
2,则
R
有
Mf
R
g 2
r2dr
2mgR
0
3
根据转动定律
Mf
, J
1
2
4 g
J
mR
3R
2
t
0
3R
0
4g
(2)根据动能定理有
摩擦力的功Wf
01J
2
0
21mR2
0
2
4
3-5如题3-6图所示,一匀质细杆质量为m,长为l,可绕过一端O的水平轴自由转动,杆于
动,其转动动能为
J
2.将势能零点取在地面上,初始时刻圆柱体的势能为
Mgh,由于
2
圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,
于是有Mgh
1Mv2
1J2
1
2
2
式中J
Mr2,v
r,代入上式得
2
Mgh
1
( Mr21
Mr2)
2
2
2
即
2
gh
r
3
3-9一个轻质弹簧的倔强系数
k
2.0N/m,它的一端固定,另一端通过一条细绳绕过一个
2
N
2
75
3-8
一质量为M、半径为r的圆柱体,在倾斜
角的粗糙斜面上从距地面
h高处只滚不滑
而下,试求圆柱体滚止地面时的瞬时角速度
.
解: 在滚动过程中,圆柱体受重力
Mg和斜面的摩
擦力F作用,设
圆柱体滚止地面时,质心在瞬时速
率为v,则此时质心的平动动能为
1
Mv2,与此同时,圆柱体以角速度
绕几何中心轴转
1
2
8.75
1010
5.46
104
5.26
1012m
v2
9.08
102
3-12
平板中央开一小孔
,质量为m的小球用细线系住
,细线穿过小孔后挂一质量为
M1的重
物.小球做匀速圆周运动
,当半径为r0时重物达到平衡. 今在M1的下方再挂一质量为M2
的物体,如3-14图.试问这时小球做匀速圆周运动的角速度
和半径r为多少
碰撞时间极短.已知小滑块在碰撞前后的速度分别为V1和V2,如图示,
求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O
点的转动惯量J
1
ml1
2).
图3-12
3
解:对棒和滑块组成的系统, 因为碰撞时间极短, 所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩, 故可认为合外力矩为零, 所以系统的角动量守恒, 且碰撞阶段棒的角位移
(1)设这碰撞为弹性碰撞,试计算小球初速v0的值;
(2)相撞时小球受到多大的冲量
图18
解:(1)设小球的初速度为v0,棒经小球碰撞后得到的初角速度为,而小球的速度变为
v,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:
0.2
2
0.1
2
9.8
1
0.202
1
0.102
0.202
0.102
10
4
2
2
2
2
6.13 rad s2
(2)由①式
T2
m2r
m2g
2
0.10
6.13
2
9.8
20.8N
由②式
T1
m1g
m1R
2
9.8
2 0.2.
6.13
17.1N
3-7
一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了
质量为4m,半径为2r,最初静止,如图所示,两飞轮啮合后,以同一速度 转动,求 及啮合过程中机械能的损失.
图3-14
解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有
1mr2
0
1mr2
14m(2r )2
2
2
2
1
得0
17
初始机械能为W1
1 1mr2
0
2
1mr2
0
2
2 2
4
水平地沿转台的边缘的切线方向投出
,石子的速率为v(相对于地面).求石子投出后转
台的角速度与人的线速度.
解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,
设转台角速度的转向与投出的石子速度v方向一致,初始时系统角动量为零,得
JmRv0
人和转台的转动惯量J110m'R2m'R2,代入上式后得
忽略不计,由角动量守恒得
m2v1l
m2v2l
1ml12
3
碰撞后在在转动过程中棒受到的摩擦力矩为
M
t
gm1dx
1
m gl
f
0
l
2
1
由角动量定理得转动过程中
t
1
m1l2
Mfdt
0
0
3
联立以上三式解得:
t
2m2V1
V2
m1g
3-11
哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为
r1=×1010m时的速率
球受力矩为正,B球受力矩为负,两个重力的力臂相等为dl sin,故合力矩为
M2mgl sinmgl sinmgl sin
系统的转动惯量为两个小球(可视为质点)的转动惯量之和
J2ml2ml23ml2
应用转动定律
M J
有:mgl sin
3ml2
解得
g sin
3l
3-2计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体
3-13如图示,长为l的轻杆,两端各固定质量分别为m和2m的小球,杆可绕水平光滑轴
在竖直平面内转动,转轴O距两端的距离分别为l / 3或2l /3.原来静止在竖直位置.今
有一质量为m的小球,以水平速度v0与杆下端的小球m做对心碰
撞,碰后以v0/ 2的速度返回,试求碰撞后轻杆所获得的角速度
.
图3-13