精选高中立体几何证明方法及例题
高考指南立体几何垂直证明的六大绝招秒懂
高考指南立体几何垂直证明的六大绝招秒懂!类型一AD⊥SC,求证:AD⊥面SBC证明:∵SA⊥面ABC ∴SA⊥BC又∠ACB=90°∴AC⊥BC又AC,SA⊆面SAC ∴BC ⊥面SAC∴BC⊥AD又AD⊥SC且BC,SC⊆面SBC∴AD⊥面SBC变式:如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,求证:AD⊥AC类型二利用等腰三角形中线证垂直例题:在三棱锥P-ABC中,AC=BC,AP=BP,求证PC⊥AB证明:取AB的中点M,连接PM,CM∵AC=BC,M是AB的中点,∴AB⊥CM∵AP=BP,M是AB的中点,∴AB⊥PM∴AB⊥面PCM∴AB⊥PC变式:四棱锥P-ABCD,底面ABCD是正方形,PA=AD,求证面PAD⊥面PCD类型三利用勾股定理逆定理证垂直例题:如图,四棱锥P-ABCD的底面是边成为3的正方形,PA⊥CD,PA=4,PD=5,求证:PA⊥面ABCD证明:∵PA=4,AB=3,PD=5∴PA2+AB2=PD2,∴三角形PAD是直角三角形,∴PA⊥AD又PA ⊥CD,∴PA⊥面ABCD变式:如果,在三棱台ABC-DEF中,平面BDEF⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,求证:BF⊥面ACFD类型四利用三角形全等证垂直例题:如图,三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°,求证:AB⊥PC证明:取AB的中点M,连接CM,∵△PAB是等边三角形,∴PB=PA又PC=PC,∠PAC=∠PBC=90°∴△PBC≌△PAC,∴BC=AC∴△ACB是等腰三角形,M是AB的中点,∴CM⊥AB又在等边△PAB中,M是AB的中点,∴PM⊥AB∴AB⊥面PMC∴AB⊥PC变式:如图,在以A、B、C、D、E、F为顶点的五面体中,平面CDEF⊥平面ABCD,FC=FB,四边形ABCD为平行四边形,且∠BCD=45°,求证:CD⊥BF类型五利用平行关系证明垂直例题:如图四棱锥P-ABCD,底面是正方形,PA⊥底面ABCD,∠PDA=45°,E是棱AB的中点,求证:面PCE⊥面PCD证明:分别做PC,PD的中点M,N两点,连接EM,MN,NA∵MN为△PCD的中位线,∴MN∥CD且MN=1/2CD又∵E是AB的中点,∴AE∥CD且AE=1/2CD ∴四边形AEMN是平行四边形,则EM∥AN,∵PA⊥面ABCD,∴PA⊥AD,且∠PDA=45°,∴△PAD 是等腰直角三角形又N是PD中点,∴AN⊥PD∵四边ABCD是正方形,∴CD⊥AD,又PA⊥CD,∴CD⊥面PAD,∴CD⊥AN,又上面已求PD⊥AN,∴AN⊥面PCD又∵EM∥AN,∴EM⊥面PCD∵EM ⊂面PEC,∴面PEC⊥面PCD变式:如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图2,证明CD⊥面A1OC.类型六梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD,证明:PA⊥BD。
必修2立体几何证明题详解(五篇)
必修2立体几何证明题详解(五篇)第一篇:必修2 立体几何证明题详解迎接新的挑战!必修2 证明题一.解答题(共3小题)1.(2006•北京)如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:PB∥平面AEC;(2)求二面角E﹣AC﹣B的大小.考点:三垂线定理;直线与平面平行的判定。
分析:(1)欲证PB∥平面AEC,根据直线与平面平行的判定定理可知只需证PB与平面AEC内一直线平行即可,连BD交AC于点O,连EO,则EO是△PDB的中位线则EO∥PB,满足条件;(2)取AD的中点F,连EF,FO,根据定义可知∠EOF是二面角E﹣AC﹣D的平面角,在△EOF中求出此角,而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补.解答:解:(1)由PA⊥平面ABCD可得PAAC又AB⊥AC,所以AC⊥平面PAB,所以AC⊥PB连BD交AC于点O,连EO,则EO是△PDB的中位线,∴EO∥PB ∴PB∥平面AEC(2)取AD的中点F,连EF,FO,则EF是△PAD的中位线,∴EF∥PA又PA⊥平面ABCD,∴EF⊥平面ABCD同理FO是△ADC的中位线,∴FO∥AB,FO⊥AC由三垂线定理可知∠EOF是二面角E﹣AC﹣D的平面角.又FO=AB=PA=EF∴∠EOF=45°而二面角E﹣AC﹣B与二面角E﹣AC﹣D互补,故所求二面角E﹣AC﹣B的大小为135°.点评:本题主要考查了直线与平面平行的判定,以及二面角等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.2.如图,已知∠BAC在平面α内,P∉α,∠PAB=∠PAC,求证:点P在平面α上的射影在∠BAC的平分线上.考点:三垂线定理。
专题:作图题;证明题。
分析:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,证明Rt△AOE≌Rt△AOF,然后得到点P在平面α上的射影在∠BAC的平分线上.解答:证明:作PO⊥α,PE⊥AB,PF⊥AC,垂足分别为O,E,F,连接OE,OF,OA,∵⇒Rt△PAE≌Rt△PAF⇒AE=AF,∵,又∵AB⊥PE,∴AB⊥平面PEO,∴AB⊥OE,同理AC⊥OF.欢迎加入高一数学组联系电话:***迎接新的挑战!必修2 证明题在Rt△AOE和Rt△AOF,AE=AF,OA=OA,∴Rt△AOE≌Rt△AOF,∴∠EAO=∠FAO,即点P在平面α上的射影在∠BAC的平分线上.点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.3.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=3.(I)求证:A1C⊥BD;(II)求直线A1C与侧面BB1C1C所成的角的正切值;(III)求二面角B1﹣CD﹣B的正切值.考点:三垂线定理;直线与平面所成的角;与二面角有关的立体几何综合题。
2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解
2023年高考数学----两角相等(构造全等)的立体几何问题典型例题讲解【规律方法】 构造垂直的全等关系 【典型例题】例1.如图,已知三棱柱−111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交A B 于E ,交A C 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.【解析】(1)证明:M Q ,N 分别为BC ,11B C 的中点,底面为正三角形, ∴=1B N BM ,四边形1BB NM 为矩形,⊥111A N B C ,∴1//BB MN ,11//AA BB Q ,∴1//AA MN , ⊥11MN B C Q ,⊥111A N B C ,⋂=1MN A N N , ∴⊥11B C 平面1A AMN ,⊂11B C Q 平面11EB C F , ∴平面⊥1A AMN 平面11EB C F ,综上,1//AA MN ,且平面⊥1A AMN 平面11EB C F .(2)解:Q 三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF ,∴11////EF B C BC ,//AO Q 面11EB C F ,⊂AO 面1A MNA ,面⋂1AMNA 面=11EB C F PN ,∴//AO PN ,四边形APNO 为平行四边形, O Q 是正三角形的中心,=AO AB ,∴=13A N ON ,=3AM AP ,===113PN BC B C EF ,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令=1EF ,过E 作⊥11EH B C 于H , 则===113PN B C EH ,=11B H,=1B E∠==111sin B H B EH B E, ∴直线1B E 与平面1A AMN.例2.如图,在锥体−P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB,==PA PD =2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角−−P AD B 的余弦值.【解析】(1)取AD 的中点G ,连接PG ,BG ,在∆ABG 中,根据余弦定理可以算出==BG ,发现+=222AG BG AB ,可以得出⊥AD BG ,又//DE BG ∴⊥DE AD ,又=PA PD ,可以得出⊥AD PG ,而⋂=PG BG G , ∴⊥AD 平面PBG ,而⊂PB 平面PBG , ∴⊥AD PB ,又//PB EF , ∴⊥AD EF .又⋂=EF DE E , ∴⊥AD 平面DEF .(2)由(1)知,⊥AD 平面PBG ,所以∠PGB 为二面角−−P AD B 的平面角,在∆PBG 中,==PG ,=BG ,=2PB ,由余弦定理得+−∠==⋅222cos 2PG BG PB PGB PG BG ,因此二面角−−P AD B 的余弦值为.本课结束。
高中数学立体几何证明题汇总
高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。
1)证明EFGH是平行四边形。
2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。
2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。
1)证明AB垂直于平面CDE。
2)证明平面CDE垂直于平面ABC。
3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
证明A1C平行于平面BDE。
4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。
证明AD垂直于面SBC。
5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。
1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。
1)证明AC垂直于平面B1D1D。
2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。
1)证明平面A1BD平行于平面B1DC。
2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。
8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。
证明BD垂直于平面ACD。
9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。
1)证明XXX垂直于AB。
2)当∠APB=90,AB=2BC=4时,求MN的长度。
10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。
证明平面D1EF平行于平面BDG。
11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。
1)证明A1C平行于平面BDE。
2)证明平面A1AC垂直于平面BDE。
12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。
立体几何证明题精选
立体几何证明题精选1.在多面体中,矩形ABB1A1和ACC1A1,AC垂直于BC。
证明BC垂直于平面ACC1A1,同时在线XXX上存在一点M,使得DE与平面A1MC平行。
2.在三棱锥P-ABC中,D,E,F分别是棱PC,AC,AB 的中点。
已知PA垂直于AC,PA=6,BC=8,DF=5.证明PA 平行于平面DEF,同时平面BDE垂直于平面ABC。
3.在四棱锥P-ABCD中,AP垂直于平面PCD,AD平行于BC,AB和BC分别为线段AD和PC的中点。
证明AP平行于平面BEF,同时BE垂直于平面PAC。
4.在四棱锥P-ABCD中,底面ABCD是平行四边形,BA=BD=BC=1,AD=2,PA=PD=√5,E和F分别是棱AD和PC的中点。
证明EF平行于平面PAB,同时平面PBC垂直于平面ABCD。
5.在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB垂直于BC,AA1=AC=2,BC=1,E和F分别是A1C1和BC的中点。
证明平面ABE垂直于平面B1BCC1,C1F平行于平面ABE,同时求三棱锥E-ABC的体积。
6.在四棱锥P-ABCD中,底面ABCD为矩形,PA垂直于平面ABCD,E为PD的中点。
证明PB平行于平面AEC,同时若AP=1,AD=3,则三棱锥P-ABD的体积为2/3,求A到平面PBC的距离。
7.在四棱锥中,平面ACD和平面ABD的交线为直线L,平面ABC和平面ACD的交线为直线M,平面ABC和平面ABD的交线为直线N,P为直线L上一点,Q为直线M上一点,R为直线N上一点,且PQR平行于平面ABCD,证明PR 平行于直线BD,同时求四面体PQRD的体积。
8.在长方体ABCD-A1B1C1D1中,底面A1B1C1D1为正方形,O为BD的中点,E为棱AA1上任意一点。
证明BD垂直于EC1,同时若AB=2,AE=2,OE垂直于EC1,则AA1的长度为2√2.。
立体几何证明平行的方法及专题训练(学生)
立体几何证明平行的方法及专题训练 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。
(2) 利用三角形中位线的性质。
(3) 利用平行四边形的性质。
(4) 利用对应线段成比例。
(5) 利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC.(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;(第1题图)DE B 1A 1C 1CABFM 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形FGGCDEDEF(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG6、如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。
高中立体几何证明题
高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。
解析1. 连接AC。
- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。
2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。
- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。
- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。
- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。
题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。
解析1. 连接BC_{1},交B_{1}C于点E。
- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。
2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。
- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。
- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。
二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。
解析1. 连接AC,BD交于点O,连接PO。
- 因为底面ABCD是正方形,所以O为AC,BD中点。
- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。
- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。
- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。
- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。
高中立体几何最佳解题方法及考题详细解答
高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
必修二立体几何经典证明题
必修二立体几何经典证明题1.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
Ⅰ)证明:平面BDC ⊥平面BDC1Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。
解析】(Ⅰ)由题设知BC ⊥ CC1,BC ⊥ AC,CC1 ∩AC=C,∴BC ⊥面ACC1,又∵DC1 ⊂面ACC1,∴DC1⊥BC,由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1 ⊥DC,又∵DC ∩ BC=C,∴DC1 ⊥面BDC,∵DC1 ⊂面BDC1,∴面BDC ⊥面BDC1;Ⅱ)设棱锥B-DA1CC1的体积为V1,AC=1,由题意得,V1=1/3*1*1*1=1/3,由三棱柱ABC-A1B1C1的体积V=1,∴(V-V1):V1=1:1,∴平面BDC1分此棱柱为两部分体积之比为1:1.2.如图5所示,在四棱锥P-ABCD中,AB ⊥平面PAD,AB//CD,PD=AD,E是PB的中点,F是CD上的点且DF=1/2AB,PH为△PAD中AD边上的高。
1)证明:PH ⊥平面ABCD;2)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;3)证明:EF ⊥平面PAB。
解析】(1)证明:因为AB ⊥平面PAD,所以PH ⊥AB。
因为PH为△PAD中AD边上的高,所以PH ⊥AD。
因为ABAD=A,所以PH ⊥平面ABCD。
2)连结BH,取BH中点G,连结EG。
因为E是PB的中点,所以EG//PH。
因为PH ⊥平面ABCD,所以EG ⊥平面ABCD。
则EG=1/2PH=1/2,V(E-BCF)=S△BCF*EG=1/2*1*2*1/2=1.3)证明:取PA中点M,连结MD,ME。
因为E是PB的中点,所以___。
因为DF//AB,所以四边形MEDF是平行四边形,所以EF//MD。
因为PD=AD,所以MD ⊥___。
立体几何证明方法总结及经典3例(推荐文档)
立体几何证明方法总结及典例例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥,∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC . ∴AE SB ⊥. 同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:.||||cos 2121n n n n ⋅⋅-=θ距离公式:||||||n n AB CD d ⋅== 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P到平面QAD 的距离22PQ d==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD向量法解立体几何题目5、在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC 交BD 于点O . ∵ABCD 是平行四边形,∴A O =O C.连结O Q ,则O Q 在平面BDQ 内, 且O Q 是△APC 的中位线, ∴PC ∥O Q.∵PC 在平面BDQ 外, ∴PC ∥平面BDQ.2、证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC3、证明:在平面PAC 内作AD ⊥PC 交PC 于D . ∵平面PAC ⊥平面PBC ,且两平面交 于PC ,AD ⊂平面PAC ,且AD ⊥PC ,∴AD ⊥平面PBC . 又∵BC ⊂平面PBC , ∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵ACBC =, ∴CFAB ⊥.∵AD BD =,(等腰三角形三线合一)∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF .∵CD ⊂平面CDF ,∴CD AB ⊥.又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、31022c ⎛⎫-⎪ ⎪⎝⎭,,、133022C ⎛⎫ ⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,, 故11112cos 3EA B A EA B A θ==,即2tan 2θ=。
高中立体几何证明方法及例题
(一)平行与垂直关系的论证.口.高由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系; 级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质:■ //[—■ a // b: =a,H ba //ba 二:∙, b - (I)=a // :•aa// :,b//∣.∙a 二:;,b :■a Ib = A公理4-——(a∕∕b,b ∕∕c■ a / /c)线线//线面平行判定线面//面面平行判定1面面//<---------------- < ----------------面面平行性质:■//T1=L // Γ∙a// :■a^β 汪:■- =b∖—■ a//b2.线线、a:_ :■=■ a// :线面、面面垂直关系的转化:三垂线定理、逆定理PAI r, AO为PO则a_OA= a_Poa_P0 = a IAO'↑/> a I Cf 1 r丿盘λ∕7a U BJ Ji=■1_:-l_a, l_ba, b 二:a b =O线面垂直判定1线面垂直定义I ic(Ija - I=l _a------ 面面垂直判定线面丄<面面垂直性质,推论2CcLB α∩β =b p=⅛a Am. a ~ ∣∙,,a I bCd7An 片a l?::=a面面垂直定义:■ =I,且二面角G -I -β]”成直二面角3. 平行与垂直关系的转化:ra S〕∖=⅛a /∕b b IffJ4. 应用以上“转化”的基本思路一一“由求证想判定,由已知想性质。
5. 唯一性结论:①过直线外一点*有且只有一条直线与已知直线平行'②过空间一点,有且只有一条直线与已知平面垂直③过空间一点,有且只有一个平面与已知直线垂直1. 三类角的定义:(1) 异面直线所成的角θ : 0°v θ≤ 90°(2) 直线与平面所成的角:0°≤θ ≤90°(3) 二面角:二面角的平面角θ , 0°v θ线线//占⅛—二~I八,a_-I ab zL面面平行判定2线面垂直性质2面面平行性质3韵面面/a//P] R浄丄Pa±3t J,应用中常用于”反>证法*同一法∙υ(定义法)线面垂直判定2a / ∕b''=⅛ b_Lfxa_Lu( J.面角的平面角aQ(三垂线定理Si)≤180 °22二 62. 三类角的求法:转化为平面角“一找、二作、三算” 即: (1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。
高中空间立体几何典型例题
1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F 。
求证:EF ∥平面ABCD 。
证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN 。
∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN .又∵B 1E =C 1F ,∴EM =FN ,故四边形MNFE 是平行四边形,∴EF ∥MN 。
又MN ⊂平面ABCD ,EF ⊄平面ABCD , 所以EF ∥平面ABCD 。
方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则BB G B AB E B 1111=,∵B 1E =C 1F ,B 1A =C 1B , ∴BB G B BC E C 1111=,∴FG ∥B 1C 1∥BC ,又EG ∩FG =G ,AB ∩BC =B ,∴平面EFG ∥平面ABCD ,而EF ⊂平面EFG , ∴EF ∥平面ABCD .2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心。
(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △321G G G ∶S △ABC .(1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F ,连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内,∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC 。
又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC 。
(2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE 。
高一数学立体几何考点例题(全章)
高一数学立体几何例题(全章)考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++, 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP x AB y AC =+或对空间任一点O ,有OP OA x AB y AC =++。
答案:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+,即22PA PB PC =--,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2. 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE . 解析:要证明//MN 平面CDE ,只要证明向量NM 可以用平面CDE 内的两个不共线的向量DE 和DC 线性表示.答案:证明:如图,因为M 在BD 上,且13BM BD =,所以111333MB DB DA AB ==+.同理1133AN AD DE =+,又CD BA AB ==-,所以MN MB BA AN =++ 1111()()3333DA AB BA AD DE =++++2133BA DE =+2133CD DE =+.又CD 与DE 不共线,根据共面向量定理,可知MN ,CD ,DE 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开. 考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E转化转化是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1, ∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵=(-23,0,2),1AC =(-3,0,4),∴121AC =,∴DE ∥AC 1.点评:2.平行问题的转化: 面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。
高中立体几何证明平行的专题
FGG A B CD ECA BDE F DE B 1A 1C 1CM 立体几何——平行的证明【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形'【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。
(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; &分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形;【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F GM AD CD BD BC AM EFG 求证:E F BACDP (第1题图)AE;PEDCBAAB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//=12AD BE //=12AF,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形的性质【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O21中点为PD E 求证:AE ∥平面PBC ; ~分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。
立体几何证明平行的方法及专题训练
立体几何证明平行的方法及专题训练立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行的性质,等等。
(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、 PD的中点.求证:AF∥平面PCE;分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形(第1题图)2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形P E D C B A3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点,M 为BE 的中点, AC⊥BE . 求证:(Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F G M AD CD BD BC AM EFGAM EFG ///ABC A B C -90BAC ∠=o 2,AB AC ==/A B //B C 求证:AB 1明: BC 1证:AP ∥GH .利用平行四边形的性质10.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,求证: D 1O 21中点为PD E 求证:AE ∥平面PBC ;12、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; A B C DE F G M(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.利用对应线段成比例13、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别 是SA 、BD 上的点,(1)SM AM =ND BN, 求证:MN ∥平面SDC(2)AM DNSM BN , 求证:MN ∥平面SBC(6) 利用面面平行15、如图,三棱锥中, 为的中点,为的中点,点在上,且. 求证:平面;16、如图, 在直三棱柱中,,,,,点是的中点,(1)求证:;(2)求证:;(3)求三棱锥的体积。
(完整版)高中数学立体几何经典常考题型
高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC?平面ABC,∴PO⊥OC.又∵PO,AB?平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO?平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D?面A 1DE ,B 1C?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎨⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD 若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO?平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO?平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解设M是棱PA上一点,则存在λ∈0,1],使得AM→=λAP→.因此点M(0,1-λ,λ),BM→=(-1,-λ,λ).因为BM?平面PCD,所以要使BM∥平面PCD,则BM→·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=1 4 .所以在棱PA上存在点M,使得BM∥平面PCD,此时AMAP=14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN BC2-CN2=102-82=6,∴AB=12,而E,M分别为PA,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM?平面PBC ,DE?平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz . 则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525. 【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0, 得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
(完整版)高中数学立体几何经典常考题型
高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等. (2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1. 线线、线面、面面平行关系的转化:αβαγβγ//,// ==⇒⎫⎬⎭a b a b面面平行性质⎫⎬⎪⎭⎪ 面面平行性质αγβγαβ//////⎫⎬⎭⇒2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定 线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角线线∥线面⊥面面∥线面垂直判定2 面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
”5. 唯一性结论:1. 三类角的定义:(1)异面直线所成的角θ:0°<θ≤90°(2)直线与平面所成的角:0°≤θ≤90°(3)二面角:二面角的平面角θ,0°<θ≤180°2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角; (4)计算大小。
【典型例题】(一)与角有关的问题例1. (1)如图,E 、F 分别为三棱锥P —ABC 的棱AP 、BC 的中点,PC =10,AB =6,EF =7,则异面直线AB 与PC 所成的角为( )A. 60°B. 45°C. 30°D. 120°解:取AC 中点G ,连结EG 、FG ,则EG PC FG AB∥∥,==1212∴∠EGF 为AB 与PC 所成的角在△EGF 中,由余弦定理,cos ∠··EGF EG FG EF EG FG =+-=+-⨯⨯=-222222253725312∴AB 与PC 所成的角为180°-120°=60°∴选A(2)已知正四棱锥以棱长为1的正方体的某个面为底面,且与该正方体有相同的全面积,则这一正四棱锥的侧棱与底面所成的角的余弦值为( )A B C D ....131336332626解:设正四棱锥的高为,斜高为h h h '=+⎛⎝ ⎫⎭⎪2212由题意:1241121612222⨯⨯+⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪⎪+=⨯h∴h 26=∴侧棱长PB h OB =+=+⎛⎝ ⎫⎭⎪=222622262∴∠cos PBO OBPB===222621313∴选A()如图,在正方体中,为上的一个定点,为3111111ABCD A B C D P A D Q -A B E F CD EF 11上的任意一点,、为上任意两点,且的长为定值,有下列命题:①点P 到平面QEF 的距离为定值;②直线PQ 与平面PEF 所成的角为定值; ③二面角P —EF —Q 的大小为定值; ④三棱锥P —QEF 的体积为定值其中正确命题的序号是___________。
解:平面即是平面QEF A B CD 11∴上定点到面的距离为定值A D P A B CD 1111∴①对,②错二面角——,即面与面所成的角,且平面角∠为定P EF Q PDF A B CD PDA 111 值,∴③对 因为∥,且为定值,∴为定值A B DC EF S QEF 11∆又点到平面的距离为定值,∴为定值,∴④对P QEF V P QEF -综上,①③④正确。
例2. 图①是一个正方体的表面展开图,MN 和PQ 是两条面对角线,请在图(2)的正方体中将MN ,PQ 画出来,并就这个正方体解答下列各题: (1)求MN 和PQ 所成角的大小; (2)求四面体M —NPQ 的体积与正方体的体积之比;(3)求二面角M —NQ —P 的大小。
解:(1)如图②,作出MN 、PQ∵PQ ∥NC ,又△MNC 为正三角形 ∴∠MNC =60°∴PQ 与MN 成角为60°()·213V V S MQ M NPQ Q PMN PMN --==∆===1621616···正方体S MQ S MQ V PMN PMDN ∆即四面体M —NPQ 的体积与正方体的体积之比为1:6(3)连结MA 交PQ 于O 点,则MO ⊥PQ又NP ⊥面PAQM ,∴NP ⊥MO ,则MO ⊥面PNQ 过O 作OE ⊥NQ ,连结ME ,则ME ⊥NQ ∴∠MEO 为二面角M —NQ —P 的平面角 在Rt △NMQ 中,ME ·NQ =MN ·MQ设正方体的棱长为aME a a aa MO a ===236322·,又 在中,∠Rt MEO MEO MOMEaa ∆sin ===226332∴∠MEO =60°即二面角M —NQ —P 的大小为60°。
例3. 如图,已知四棱锥P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°。
(1)求点P 到平面ABCD 的距离; (2)求面APB 与面CPB 所成二面角的大小。
解:(1)作PO ⊥平面ABCD ,垂足为O ,连结OB 、OA 、OD ,OB 与AD 交于点E ,连结PE∵AD ⊥PB ,∴AD ⊥OB (根据___________) ∵PA =PD ,∴OA =OD于是OB 平分AD ,点E 为AD 中点 ∴PE ⊥AD∴∠PEB 为面PAD 与面ABCD 所成二面角的平面角∴∠PEB =120°,∠PEO =60°又,∴·PE PO PE o====36033232sin即为P 点到面ABCD 的距离。
(2)由已知ABCD 为菱形,及△PAD 为边长为2的正三角形 ∴PA =AB =2,又易证PB ⊥BC 故取PB 中点G ,PC 中点F 则AG ⊥PB ,GF ∥BC 又BC ⊥PB ,∴GF ⊥PB∴∠AGF 为面APB 与面CPB 所成的平面角 ∵GF ∥BC ∥AD ,∴∠AGF =π-∠GAE 连结GE ,易证AE ⊥平面POB又,为中点PE BE G PB ==3∴∠∠PEG PEB o ==1260∴GE PE o==⨯=cos6031232在中,Rt AGE AE AD ∆==121∴∠tan GAE GE AE ==32∴∠GAE =arctan32∴∠AGF =-πarctan32所以所求二面角的大小为π-arctan32(2)解法2:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DAP B (,,),(,,)003203320PB G AG 的中点的坐标为(,,),连结033434又(,,),(,,)A C 132023320-由此得到(,,),(,,),GA PB →=--→=-13434033232BC →=-(,,)200于是·,·GA PB BC PB →→=→→=00 ∴⊥,⊥GA PB BC PB →→→→∴、的夹角为所求二面角的平面角GA BC →→θ于是··cos ||||θ=→→→→=-GA BC GA BC 277∴所求二面角大小为π-arccos277(二)与距离有关的问题例4. (1)已知在△ABC 中,AB =9,AC =15,∠BAC =120°,它所在平面外一点P 到△ABC 三个顶点的距离都是14,那么点P 到平面ABC 的距离是( )A. 13B. 11C. 9D. 7 解:设点P 在△ABC 所在平面上的射影为OAB C O R∵PA =PB =PC ,∴O 为△ABC 的外心△ABC 中,AB =9,AC =15,∠BAC =120°∴BC o=+-⨯⨯⨯=91529151202122cos由,∴aAR R sin ==⨯=22123273()∴PO =-=1473722()在直三棱柱中,,,∠2221111ABC A B C AB BC BB ABC -====90E F o,、分别为、的中点,沿棱柱的表面从到两点的最短路径的AA C B E F 111长度为___________。
解:(采用展开图的方法)将平面沿旋转使两矩形与在同一平面内B BCC B B A ABB B BCC 1111111连接,则为所求的最短路径EF EF如图①,EF A E A F =+=+⎛⎝ ⎫⎭⎪=1212221322222如图②展开,EF =++⎛⎝ ⎫⎭⎪=+()2122722222如图③展开,EF =⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=3212132222比较这三种方式展开,可见沿表面从到的最短路径长度为。
E F 322点评:此类试题,求沿表面运动最短路径,应展开表面为同一平面内,则线段最短。
但必须注意的是,应比较其各种不同展开形式中的不同的路径,取其最小的一个。
(3)在北纬45°圈上有甲、乙两地,它们的经度分别是东经140°与西经130°,设地球半径为R ,则甲、乙两地的球面距离是( )A RB RC RD R ....12143213ππππ解:()由题意∠AO B o o o o136014013090=-+=(O 1为小圆圆心)又由题意O A O B R 1122==则中,∆O 1AB AB R =∴△AOB 为正三角形(O 为球心)∴∠AOB =π3∴、两点球面距离为A B R π3∴选D例5. 如图,四棱锥P —ABCD ,底面ABCD 是矩形,PA ⊥平面ABCD ,E 、F 分别是AB 、PD 中点。
(1)求证:AF ∥平面PEC ;()若=,,二面角——为,求点到平面2AD 2CD P CD B F PEC o=2245距离。
解:G 为PC 中点,连结FG 、EG 又∵F 为PD 中点∴,又∥∥FG CD AE CD==1212∴∥FG AE =∴四边形AEGF 为平行四边形∴∥,又面,面AF EG EG PEC AF PEC ⊂⊄∴AF ∥平面PEC(2)∵CD ⊥AD ,又PA ⊥面ABCD ∴AD 为PD 在面ABCD 上射影 ∴CD ⊥PD∴∠PDA 为二面角P —CD —B 的平面角,且∠PDA =45° 则△PAD 为等腰直角三角形 ∴AF ⊥PD ,又CD ⊥平面PAD ∴CD ⊥AF ∴AF ⊥面PCD作FH ⊥PC 于H ,则AF ⊥FH 又EG ∥AF ,∴EG ⊥FH∴FH ⊥面PEC ,∴FH 为F 到面PEC 的距离在Rt △PEG 中,FH ·PG =PF ·FG∴FH =⨯+=2222122方法2:(体积法)∵AF ∥面PEC ,故只要求点A 到面PEC 的距离d由即··V V S d S PAA PEC P AEC PEC AEC --==1313∆∆易证AF ⊥面PCD ,∴EG ⊥面PCD∴EG ⊥PC()∴·S PC EG PEC∆==++⨯=12122222222222S AE BC AEC ∆=⨯=⨯⨯=1212222∴·d S PA S AEC PEC ==⨯=∆∆22221(三)对命题条件的探索例6. (1)如图已知矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件E 点有两个时,a 的取值范围是( )A aB a ..>≥66C aD a ..0606<<<≤解:∵PA ⊥面ABCD ,PE ⊥DE由三垂线定理的逆定理知PE 的射影AE ⊥BE所以满足条件的点E 是以AD 为直径的圆与BC 的交点,要有两个交点,则 AD >2AB =6∴选A(2)如图,在三棱柱ABC -A'B'C'中,点E 、F 、H 、K 分别为AC'、CB'、A'B 、B'C'的中点,G 为△ABC 的重心,从K 、H 、G 、B'中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( )A. KB. HC. GD. B分析:从题目中的“中点”条件,联想到“中位线”。