最新人教版数学八年级上试题 5.易错易混专题:等腰三角形中易漏解或多解的问题
部编数学八年级上册专题10易错易混淆集训:等腰三角形中易漏解或多解的问题(解析版)含答案
专题10易错易混淆集训:等腰三角形中易漏解或多解的问题易错点一求长度时忽略三边关系易错点二当腰和底不明求角度时没有分类讨论易错点三三角形的形状不明时与高线及其他线结合没有分类讨论易错点一求长度时忽略三边关系例题:(2022·河北·石家庄石门实验学校八年级期末)已知等腰三角形的两边长分别为4和8,则它的周长等于____________.【答案】20【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4或是腰长为8两种情况.【详解】解:等腰三角形的两边长分别为4和8,当腰长是4时,则三角形的三边是4,4,8,4+4=8不满足三角形的三边关系;当腰长是8时,三角形的三边是8,8,4,三角形的周长是20.故答案为∶20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.【变式训练】1.(2022·新疆·和硕县第二中学八年级期末)等腰三角形的两边长分别是3和7,则它的周长是多少()A.13B.17C.13或17D.13或10【答案】B【分析】分①腰长为3和②腰长为7两种情况,再结合三角形的三边关系,利用三角形的周长公式即可得.【详解】解:由题意,分以下两种情况:①当腰长为3时,则这个等腰三角形的三边长分别为3,3,7,此时337+<,不满足三角形的三边关系,舍去;②当腰长为7时,则这个等腰三角形的三边长分别为3,7,7,此时377+>,满足三角形的三边关系,所以它的周长为37717++=;综上,这个等腰三角形的周长为17,故选:B .【点睛】本题考查了三角形的三边关系、等腰三角形的定义,正确分两种情况讨论是解题关键.2.(2022·山东菏泽·八年级期末)已知等腰三角形底边和腰的长分别为6和5,则这个等腰三角形的周长为( )A .15B .16C .17D .18【答案】B【分析】根据等腰三角形的定义可知三边长为6,5,5,即可.【详解】根据题意可知等腰三角形的三边长为6,5,5,所以这个三角形的周长为6+5+5=16.故选:B .【点睛】本题主要考查了等腰三角形的定义,掌握等腰三角形的两腰相等是解题的关键.3.已知实数x ,y 满足2|5|(10)0-+-=x y ,则以x ,y 的值为两边长的等腰三角形的周长是()A .20B .25C .20或25D .以上答案均不对【答案】B【解析】【分析】先根据非负数的性质列式求出x 、y 的值,再分5是腰长与底边两种情况讨论求解即可.【详解】解:2|5|(10)0x y -+-=Q ,|5|0x -³,2(100)y -³\x −5=0,y −10=0,解得x =5,y =10,当5是腰长时,三角形的三边分别为5、5、10,∵5+5=10,∴不能组成三角形;当5是底边时,三角形的三边分别为5、10、10,能组成三角形,周长=5+10+10=25,所以,三角形的周长为25,故选:B.【点睛】本题考查了三角形的三边关系,等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.当腰长是5cm 时,则三角形的三边是5cm ,5cm ,2cm ,5cm +2cm >5cm ,满足三角形的三边关系,三角形的周长是5+5+2=12(cm );当腰长是2cm 时,三角形的三边是2cm ,2cm ,5cm ,2cm +2cm <5cm ,不满足三角形的三边关系.故答案为:12cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(1)等腰三角形一腰上的中线把周长分为15和12两部分,求该三角形各边的长.(2)已知一个等腰三角形的三边长分别为21,1,32x x x -+-,求这个等腰三角形的周长.【答案】(1)8,8,11或者10,10,7;(2)周长为7或者10【解析】【分析】(1)根据等腰三角形的性质,列出方程求解,注意分类讨论.(2)分三种情况,进行讨论,结合三角形三边关系得出答案.【详解】()1设腰长为2x ,底为y ,根据题意得:①21512x x x y +=ìí+=î解得:5,7x y ==\ 三边为10,10,7②21215x x x y +=ìí+=î解得:4,11x y ==\ 三边为8,8,11故本题答案为:8,8,11或者10,10,7()2①当211x x -=+时,解2x =,此时3,3,4,能构成三角形.此时周长为10②当2132x x -=-时,解1x =,此时1,2,1不能构成三角形.③当132x x +=-,解得32x =,此时552,,22,能构成三角形,周长为=7综上,三角形的周长为7或者10.【点睛】本题考查等腰三角形性质,以及三角形三边关系,属于基础提高题.易错点二当腰和底不明求角度时没有分类讨论例题:(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35°,则这个等腰三角形的顶角的度数为________.【答案】35°或110°【分析】根据等腰三角形两底角相等,分别讨论当35°为顶角,和当35°为底角两种情况即可得出答案.【详解】解:当35°为顶角时,这个等腰三角形顶角的度数为35°;当35°为底角时,顶角度数为:180352110°-°´=°;故答案为:35°或110°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形两底角相等是本题解题关键.【变式训练】1.已知等腰三角形的一个内角是72°,那么这个等腰三角形的顶角是______度.【答案】72或36【解析】【分析】本题应分底角为72°、顶角为72°这两种情况,分别计算每种情况下等腰三角形是否存在.【详解】解∶①当72°角是顶角时,顶角为72°,②当72°角是底角时,顶角=180°-72°×2=36°,综上顶角为72°或36°.故答案为:72或36.【点睛】本题考查等腰三角形的性质,,树立分类讨论思想,培养学生全面思考问题的数学素养,在计算等腰三角形有关边、角的问题时,要注意利用分类讨论的思想进行全面讨论是解题的关键.2.(2022·山东烟台·七年级期末)若等腰三角形中有一个角等于35°,则这个等腰三角形的顶角的度数为________.【答案】35°或110°【分析】根据等腰三角形两底角相等,分别讨论当35°为顶角,和当35°为底角两种情况即可得出答案.【详解】解:当35°为顶角时,这个等腰三角形顶角的度数为35°;当35°为底角时,顶角度数为:180352110°-°´=°;故答案为:35°或110°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形两底角相等是本题解题关键.3.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.【答案】25°或40°或10°【解析】【详解】【分析】分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=12(180°-100°)=40°,②AB=AD,此时∠ADB=12(180°-∠A)=12(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=12(180°-130°)=25°,③AD=BD,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=12(180°-160°)=10°,综上所述,∠C度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.【点睛】本题主要考查了等腰三角形的存在性,解决问题的关键是熟练掌握等边对等角的性质,三角形的三个角都有可能是顶角,分类讨论.易错点三 三角形的形状不明时与高线及其他线结合没有分类讨论例题:若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角的度数为( )A .20°B .50°或70°C .70°D .20°或70°【答案】D【解析】【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】(1)当这个三角形是锐角三角形时,如图所示:∵高与另一腰的夹角为50°,即50ABD Ð=°,∴顶角905040A Ð=°-°=°,∵A ABC CB =Ð∠,()118040702ABC ACB \Ð=Ð=°-°=°;(2)当这个三角形是钝角三角形时,如图所示:∵∠ABD =50°,BD ⊥CD ,∴∠BAD =90°-50°=40°,∵ABC C Ð=Ð,40ABC C Ð+Ð=°,∴140202ABC C Ð=Ð=´°=°;综上所述,这个等腰三角形的底角的度数为70°或20°.故选:D .【点睛】本题考查了等腰三角形的性质及三角形内角和定理,三角形外角的性质,等腰三角形的高线,可能在三角形的内部,边上、外部几种不同情况,因此遇到与等腰三角形的高有关的计算时应分类讨论.【变式训练】∵∠ADE =50°,∠AED ∴∠A =40°,∴(11802B C =Ð=Ð∵∠ADE =50°,∠AED =90°,∴∠BAC =∠ADE +∠AED =140°,∴()1180140202B C =Ð=-°=а°4.若等腰三角形一腰上的高与另一腰的夹角为56°,则这个等腰三角形底角度数是_______.【答案】73°或17°【解析】【分析】在等腰ABC D 中,AB AC =,BD 为腰AC 上的高,56ABD Ð=°,讨论:当BD 在ABC D 内部时,如图1,先计算出34BAD Ð=°,再根据等腰三角形的性质和三角形内角和可计算出ACB Ð;当BD 在ABC D 外部时,如图2,先计算出34BAD Ð=°,再根据等腰三角形的性质和三角形外角性质可计算出ACB Ð.【详解】解:在等腰ABC D 中,AB AC =,BD 为腰AC 上的高,56ABD Ð=°,当BD 在ABC D 内部时,如图1,BD Q 为高,90ADB \Ð=°,905634BAD \Ð=°-°=°,AB AC =Q ,1(18034)732ABC ACB \Ð=Ð=°-°=°;当BD 在ABC D 外部时,如图2,BD Q 为高,90ADB \Ð=°,905634BAD \Ð=°-°=°,AB AC =Q ,ABC ACB \Ð=Ð,而BAD ABC ACB Ð=Ð+Ð,1172ACB BAD \Ð=Ð=°,综上所述,这个等腰三角形底角的度数为73°或17°.故答案为:73°或17°.【点睛】本题考查了等腰三角形的性质,熟悉相关性质是解题的关键.5.(2022·陕西·交大附中分校七年级期末)已知ABC V 中,20B Ð=°,在AB 边上有一点D ,若CD 将ABC V分为两个等腰三角形,则AÐ=________.【答案】100°,70°,40°或者10°【分析】分BD=CD、BC=CD、BD=BC三种情况讨论即可求解.【详解】第一种请况:BD=CD时,如图,∵BD=CD,∠B=20°,∴∠B=∠DCB=20°,∴∠ADC=∠B+∠DCB=40°,(1)当DA=DC时,∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∠ADC=40°,∴∠A=∠ACD=70°;(2)当DA=AC时,即有∠ADC=∠ACD=40°,∴∠A=180°-∠ADC-∠ACD=100°;(3)当CD=CA时,∠A=∠ADC=40°;第二种请况:BC=CD时,如图,∵∠B=20°,BC=CD,∴∠B=∠BDC=20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC=∠BCD,∵∠B=20°,∠B+∠BCD+∠BDC=180°,∴∠BCD=∠BDC=80°,∴∠ADC=180°-∠BDC=100°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=40°;综上所述:∠A的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.6.(2021·江西育华学校八年级期末)已知△ABC中,如果过顶点B的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的二分割线.如图1,Rt△ABC中,显然直线BD是△ABC的关于点B的二分割线.在图2的△ABC中,∠ABC=110°,若直线BD是△ABC的关于点B的二分割线,则∠CDB的度数是_____.【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD时,直线BD是△ABC的关于点B的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD时,直线BD是△ABC的关于点B的二分割线,或当∠BDC=90°,CD=BD时,直线BD是△ABC的关于点B的二分割线,;③如图,当∠ABD=90°,CD=BD时,直线BD是△ABC的关于点B的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC的度数是40°或90°或140°时,直线BD是△ABC的关于点B的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题的关键.。
人教版八年级数学上册专题课件5.等腰三角形中易漏解或多解的问题
D E B 图1 C
E D B
A C
图2
若△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为 50°,求底角∠B的大小.
A
解:由于△ABC的形状不确定,故需分类讨论. ① 若△ABC为锐角三角形,则AB的垂直平分线 与AC的交点在射线AC上,如图1,∠AED= 50°,则∠A=90°-50°=40°,底角∠B =(180°-40°)÷2=70°;
B E D A C
图2
在处理与三角形高线或某边垂直平分线相关的问题时,要注意高线或者垂 足的位置,通常需要分类讨论,画出所有满足条件的图形后分别处理.
ቤተ መጻሕፍቲ ባይዱ
方法总结
对于没有明确顶角和底角而求三角形内角的等腰三角形问题,通常需
要分类讨论,同时要注意等腰三角形的底角小于90°,以避免出现多解或
漏解现象.
在等腰三角形的问题中,经常会遇到与高相关的问题,由于高可能在三角 形内部也可能在三角形外部,因而常需要分类讨论解决.
类型三:三角形的形状不明与高结合时没有分类讨论 已知等腰△ABC腰AB上的高CE与另一腰AC的夹角为30°,则其顶角的度数 为___________
等腰三角形中易漏解或多解的问题
在等腰三角形的问题中,如果条件中没有明确底和腰,这类问题通常需要 分类讨论,否则易出现多解或漏解现象.
类型一:求长度时忽略三边关系
17 例:已知等腰三角形的两边长为3和7,则其周长为______.
方法总结
对于没有明确底和腰的等腰三角形问题通常需要分类讨论,同时需要
B D E 图1 C
若△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为 50°,求底角∠B的大小. 解:②若△ABC为钝角三角形,则AB 的垂直平分线与AC的交点在CA的延长 线上,如图2,∠AED=50°,则 ∠BAC=∠AED+∠ADE=90°+ 50°=140°,底角∠B=(180°- 综上所述,∠ 140° )÷2=20° B为70°或20°.
第02讲 等腰三角形中易漏解或多解的问题(拓展提升)(解析版)
思维导图核心考点聚焦1.求等腰三角形的周长时忽略构成三角形的三边关系产生易错2.当等腰三角形中腰和底不明求角度时没有分类讨论产生易错3.求有关等腰三角形中的多解题没有分类讨论产生易错4.三角形的形状不明时与高线及其他线结合没有分类讨论产生易错1.等腰三角形的性质(1(2角的三线合一图形:1.求等腰三角形的周长,要先考虑三角形的三边是否能构成三角形考点剖析【答案】2516或52或4,则216BP BC cm ==,,,图2③如图3,当图3故答案为:9或【解析】如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()15123||||cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【变式训练】1.等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒【答案】D【解析】如图1,三角形是锐角三角形时,∵45ACD ∠=︒,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135如图,当CD 在ABC CD AB⊥ 90BAC ACD ∴∠=︒+∠AB AC= 30B C ∴∠=∠=︒故答案为60︒或30︒过关检测【答案】80︒,65︒或【解析】当C ∠是顶角时,∴180C A ∠=︒-∠-∠当C ∠是底角,A ∠是顶角时,∴180652A C ︒-∠∠==当C ∠、A ∠都是底角时,∴50C A ∠=∠=︒;综上,C ∠的度数可能是故答案为:80︒,65︒或7.在平面直角坐标系中,坐标是【答案】()3,0-或(2,0-【解析】根据题意,作图如下,∵()3,0A ,()0,4B ,∴3,4OA OB ==,在Rt AOB △中,22AB OA OB =+以AB 为腰作等腰三角形ABC ,①1BC BA =,则1ABC 是以AB 为腰作等腰三角形,∴()13,0C -;②2AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴AC 2=5,且3OA =,∴2532OC =-=,则()22,0C -;③3AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴35AC =,∴33358OC OA AC =+=+=,则C 综上所述,点C 坐标是()3,0-或(-故答案为:()3,0-或()2,0-或(8,0)8.在ABC △中,110ABC ∠=︒,点腰三角形,则CDB ∠的度数是【答案】40︒或90︒或140︒【解析】如图1中,当CDB ∠如图3中,当90DBC ∠=︒,DA 40CDB A DBA ∴∠=∠+∠=︒,故答案为:40︒或90︒或140︒.三、解答题9.如图,ABC △中,90C ∠=运动,且速度为每秒2cm ,设运动的时间为(1)当1t =时,求PBC △的面积.(2)当t 为何值时,CP 把ABC △(3)当t 为何值时,BCP △为等腰三角形?【解析】(1)解:当1t =时,PBC ∴△的面积为1BC CP ⨯=故答案为:26cm .(2)解:ABC 中,∴2AB AC BC =+∵1122AC BC ⨯=∴ 4.8CE =∴226 4.8PE =-∴27.2BP PE ==∴AP AB PB =-=∴82AC AP t +==②如果BC BP =③如果PB PC =∵PB PC =,∴12∠=∠,又∵12A ∠+∠=∠∴3A ∠=∠∴PC PA =,∴PA PB =,即P 在AB 的中点,此时()8513cm CA AP +=+=,132 6.5(t =÷=秒);综上可知,当3t =秒或5.4秒或6秒或6.5秒时,BCP 为等腰三角形.10.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图(1),BE 是ABD △的“双等腰线”,AD 、BE 是ABC △的“三等腰线”.(1)请在图(2)中,作出ABC △的“双等腰线”,并标注相等角的度数①70B ∠=︒,35A ∠=︒②81B ∠=︒,27A ∠=︒.(2)直角三角形的______就是它的“双等腰线”(3)已知ABC △中,33C ∠=︒,AD 和DE 分别是ABC △的“三等腰线”,点D 在BC 边上,点E 在AB 边上,且AD DC =,BE DE =,请根据题意写出B ∠度数的所有可能的值______.【详解】(1)解:如图,取CD BC =,则70CDB B ∠=∠=︒,35A ∠=︒ ,703535ACD ∴∠=︒-︒=︒,ACD A ∴∠=∠,AD CD BC ∴==,ADC ∴ 和BCD △是等腰三角形;如图,作AB 的垂直平分线DE ,交AC 于D ,交AB 于E ,连接BD ,AD BD ∴=,27A ABD ∴∠=∠=︒,54CDB ∴∠=︒,81ABC ∠=︒ ,812754CBD BDC ∴∠=︒-︒=︒=∠,CD BC ∴=,ADB ∴ 和BCD △是等腰三角形;(2)直角三角形斜边中线把直角三角形分成两个等腰三角形,故答案为:斜边中线;(3)如图,设B x ∠=,∵33C ∠=︒,AD DC =,∴33C DAC ∠=∠=︒,180114EAD B C DAC x ∠=︒-∠-∠-∠=︒-,∴66ADB ∠=︒∵BE DE =,∴B BDE x ∠=∠=,∴2AED x ∠=,66ADE ADB BDE x ∠=∠-∠=︒-,∵AD 和DE 分别是ABC 的“三等腰线”,∴ADE V 是等腰三角形,当AD DE =时,EAD AED ∠=∠,则1142x x ︒-=,解得38B x ︒==∠;当AD AE =时,ADE AED ∠=∠,则662x x ︒-=,解得22B x ︒==∠;当AE DE =时,EAD ADE ∠=∠,则11466x x ︒-=︒-,无解;综上所述,B ∠度数的所有可能的值为38︒、22︒、66︒、57︒、48︒.故答案为:38︒、22︒.。
易错05 等腰三角形中分类讨论漏解从而产生易错(解析版)-2021学年八上期末提优训练
12020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)易错05 等腰三角形中分类讨论漏解从而产生易错【典型例题】1.(2020·信阳市商城思源实验学校八年级月考)(1)发现:如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E ,由∠1+∠2=∠2+∠D =90°,得∠1=∠D ,∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE ,进而得到AC =______,BC =_______.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)拓展:如图3,在平面直角坐标系xOy 中,点A 的坐标为(-1,-4),点B 为平面内一点.若△AOB 是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标【答案】(1)AC =DE ,BC =AE ;(2)35,22⎛⎫ ⎪⎝⎭或53,22⎛⎫-- ⎪⎝⎭ (1)∵△ABC ≌△DAE ,∴AC =DE ,BC =AE ;(2)分两种情况:①过点A 作AC ⊥y 轴于点D ,过点B 作BE ⊥x 轴于E ,DA 与EB 相交于C ,如图3所示:则∠C =90°∵点A 坐标为(﹣1,﹣4)∴AD =1,OD =CE =4,∵∠OBA=90°∴∠OBE+∠ABC=90°∵∠ABC+∠BAC=90°∴∠BAC=∠OBE在△ABC和△BOE中,90C BEOBAC OBE AB BO⎧⎪⎨⎪∠=⎩∠=︒∠∠==∴△ABC≌△BOE(AAS)∴AC=BE,BC=OE,设OE=x,则BC=OE=CD=x∴AC=BE=x+1,∴CE=BE+BC=x+1+x=OD=4,∴35,122 x x=+=∴点B坐标35,22⎛⎫ ⎪⎝⎭,②过点A作AC⊥y轴于点D,过点B作BE⊥x轴于E,DA与EB相交于C,如下图所示:则∠C=90°2同理可得:点B坐标53,22⎛⎫--⎪⎝⎭综上所述,点B坐标35,22⎛⎫⎪⎝⎭或53,22⎛⎫--⎪⎝⎭【点睛】本题主要考查全等三角形的判定和性质、等腰直角三角形的性质、等腰直角三角形的性质,解题的关键是综合运用所学知识,题(2)要分情况讨论.【专题训练】一、填空题1.(2020·长沙市北雅中学八年级月考)若等腰三角形的一个角为80°,则顶角为_________.【答案】80°或20°①当80°的角为等腰三角形的顶角时,其顶角为80°,②当80°的角为等腰三角形的底角时,顶角的度数=180280︒-⨯︒=20°;故它的底角的度数是80°或20°.故答案为:80°或20°.【点睛】34此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,正确解题的关键是分80°的角是等腰三角形的底角和顶角两种情况讨论.2.(2020·莆田砺志学校八年级月考)如果一个等腰三角形的周长为17,一边长为5,那么腰长为_____.【答案】5或6解:当5是等腰三角形的底边时,则其腰长是(17-5)÷2=6,能够组成三角形;当5是等腰三角形的腰时,则其底边是17-5×2=7,能够组成三角形.所以,该等腰三角形的腰长为:5或6.故答案为:5或6.【点睛】此题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.3.(2020·河南漯河市·八年级月考)在ABC 中,50B ∠=︒,当C ∠=______度时,ABC 是等腰三角形.【答案】65、80、50当∠B 是顶角时,∠C =12(180-∠B )=65, 当∠C 是顶角时,∠C =180-2∠B =80,当∠B 与∠C 都是底角时,∠C =50B ∠=︒,故答案为:65、80、50.【点睛】此题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形的内角和定理.4.(2020·兴化市乐吾实验学校八年级月考)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.【答案】50°或130°5(1)当三角形是锐角三角形时,如下图.根据题意可知=40CBD ∠︒,∵三角形内角和是180︒,∴在BCD △中,=1809040=50BCD ∠︒-︒-︒︒(2)当三角形是锐角三角形时,如下图.根据题意可知=40CBD ∠︒,同理,在BCD △中,=1809040=50BCD ∠︒-︒-︒︒∵BCD ∠是ABC 的外角,∴=180********ACB BCD ∠︒-∠=︒-︒=︒故答案为50︒或130︒【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.5.(2020·江苏扬州市·八年级月考)在平面直角坐标系中,等腰三角形AOB的顶点A的坐标为(2,2),底为OA,且B在坐标轴上,则B的坐标为___.【答案】(2,0),(0,2)如图,作AO的垂直平分线,分别交x轴、y轴于点B、B′,则点B、B′就是符合条件的点,连接AB、AB′,∵A的坐标为(2,2),∵OA平分∵BOB′,∵∵BOE=∵B′OE=45°,∵BB′垂直平分OA,∴OB=AB,∠OEB=∠AEB=90°,OE=AE,∵∵OBE=90°-∵BOE=45°,∵∵OEB≌∵AEB,∵∵ABE=∵OBE=45°,∴∠OBA=90°,∵∵AOB是等腰直角三角形,∵OB=AB=2,∵B(2,0),同理,B'(0,2),67故答案为:(2,0),(0,2).【点睛】本题考查了的等腰三角形的判定及坐标与图形的性质;熟练掌握等腰三角形的顶角顶点一定在底边的垂直平分线上是比较关键的.6.(2020·哈尔滨市虹桥初级中学校八年级月考)已知在ABC 中,AB AC =,BD 为AC 边上的高,50ABD ∠=︒,则ACB =∠________. 【答案】20︒或70︒解:①当AC 边上的高BD 在ABC 外部时,如图:∵BD 为AC 边上的高∴90ADB ∠=︒∵50ABD ∠=︒8∴9040BAD ABD ∠=︒-∠=︒∴40ABC ACB BAD ∠+∠=∠=︒∵AB AC = ∴()1202ACBABC ABC ACB ∠=∠==∠+∠=︒; ②当AC 边上的高BD 在ABC 内部时,如图:∵BD 为AC 边上的高∴90ADB ∠=︒∵50ABD ∠=︒∴9040BAD ABD ∠=︒-∠=︒∴180140ABC ACB BAD ∠+∠=︒-∠=︒∵AB AC = ∴()1702ACBABC ABC ACB ∠=∠==∠+∠=︒. 故答案是:20︒或70︒【点睛】9本题考查了三角形高的定义、直角三角形的性质、等腰三角形的性质、三角形内角和定理以及三角形外角定理,能根据高的位置进行分类讨论是解决问题的关键.7.(2020·厦门五缘第二实验学校八年级期中)若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形底角的度数为_____°.【答案】15或75(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD =12AB , 根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD 为等腰三角形ABC 腰AC 上的高,并且BD =12AB , 根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°. 故答案为:15°或75°.【点睛】10此题主要考查等腰三角形的性质;正确的分类讨论是解答本题的关键.8.(2020·阳泉市第三中学校八年级期中)在∵ABC 中,AH 是BC 边上的高,若CH -BH =AB ,∵ABH =78°,则∵BAC =____【答案】63°或39°.解:如图1,当∠ABC 为锐角时,过点A 作AD =AB ,交BC 于点D ,∴∠ADB =∠ABH =78°,BH =DH .∵AB +BH =CH ,CH =CD +DH ,∴CD =AB =AD ,∴∠C =12∠ADB =39°, ∴∠BAC =180°-∠ABH -∠C =63°.如图2:当∠ABC 为钝角时,作AH ⊥BC 于H∵CH -BH =AB ,∴AB +BH =CH ,∴AB =BC ,∴∠BAC =∠ACB =12∠ABH =39°. 故答案为:63°或39°.【点睛】本题主要考查等腰三角形的判定与性质、三角形内角和定理等知识点,由于题干没图,分∠ABC为锐角及∠ABC为钝角两种情况成为解答本题的关键.9.(2020·湖北黄冈市·思源实验学校八年级月考)在等腰△ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为__________【答案】7或11①当15是腰长与腰长一半时,1152AC AC+=,解得10AC=,∴底边长1121072=-⨯=;三边长为:10,10,7;②当12是腰长与腰长一半时,1122AC AC+=,解得8AC=,∴底边长1158112=-⨯=,三边长为:8,8,11;经验证,这两种情况都是成立的.∴这个三角形的底边长等于7或11.故答案为:7或11.1112【点睛】本题主要考查了等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验是否符合三角形三边性质.分类讨论是正确解答本题的关键.10.(2020·成都金苹果锦城第一中学八年级期中)如图,A 、B 两点的坐标分别为()2,4,()6,0,点P 是x 轴上一点,且ABP △为等腰三角形,则点P 的坐标为_________.【答案】(2,0)或(2,0)-或(6+或(6-∵ABP △为等腰三角形,∵当AB BP =时,如图∵,∵AB ==∵BP =∵(6,0)B ,∵(6P +或(6P -;∵当AB AP =时,如图∵13作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∵BC CP =, ∵624BC =-=,∵4CP =,∵(2,0)P -.∵当AP BP =时,如图∵,作AP BP ⊥,∵4AP BP ==,∵(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)-或(6+或(6-,故答案为:(2,0)或(2,0)-或(6+或(6-.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键.。
专题09 易错易混淆集训:等腰三角形中易漏解或多解的问题压轴题四种模型全攻略(解析版)
专题09易错易混淆集训:等腰三角形中易漏解或多解的问题压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (4)【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (9)【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (14)【典型例题】【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】【点睛】本题考查了三角形的三边关系,等腰三角形的定义,解题关键是掌握三角形任意两边之和大于第三边,任意两边之差小于第三边.【变式训练】3.(2022春·吉林长春·八年级统考期末)若ABC 的三边长分别为10a -,7,6,当ABC 为等腰三角形时,则a 的值为__________.【答案】3或4##4或3【分析】根据等腰三角形的性质分两种情况:当106a -=时,当107a -=时,再结合三角形三边关系检验即可.【详解】解:∵ABC 为等腰三角形,∴当106a -=时,解得4a =,∴三边长为6,6,7∵66>7+,∴符合三角形三边的条件,当107a -=时,解得3a =,∴三边长为7,7,6∵67>7+,∴符合三角形三边的条件,∴a 的值为4和3.故答案为:4和3.【点睛】本题考查了三角形的三边关系和等腰三角形的定义(两边相等的三角形),灵活运用所学知识求解是解决本题的关键.4.(2022春·湖北武汉·八年级统考期中)用一条长为28cm 的细绳围成一个等腰三角形,已知这个等腰三角形一边长是另一边长的1.5倍,则它的底边长为______cm .【答案】12或7【分析】可设一边为cm x ,则另一边为1.5cm x ,然后分x 为腰和底两种情况,表示出周长,解出x ,再利用三角形三边关系进行验证即可.【详解】解:设一边为cm x ,则另一边为1.5cm x ,①当长为cm x 的边为腰时,此时三角形的三边长分别为cm x 、cm x 、1.5cm x ,由题意可列方程: 1.528x x x ++=,解得8x =,此时三角形的三边长分别为:8cm 、8cm 和12cm ,满足三角形三边之间的关系,符合题意;②当长为cm x 的边为底时,此时三角形的三边长分别为:cm x 、1.5cm x 、1.5cm x ,由题意可列方程: 1.5 1.528x x x ++=,解得:7x =,此时三角形的三边长分别为:7cm 、10.5cm 、10.5cm ,满足三角形的三边之间的关系,符合题意;∴这个三角形的底边长为12cm 或7cm .故答案为:12或7.【点睛】本题主要考查等腰三角形的性质及三角形三边关系,分情况讨论且进行三边验证是解题的关键.【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】【变式训练】【答案】20︒或80︒或140【分析】求出AOC ∠,根据等腰得出三种情况,三角形内角和定理求出即可.∵OC OE =,∴OEC OCE ∠=∠,∴(11802OEC AOC ∠=︒-∠∵OC CE =,∴20OEC AOC ∠=∠=︒;③当OE CE =时,如图,∵OE CE =,∴20OCE AOC ∠=∠=︒,∴180140OEC OCE AOC ∠=︒-∠-∠=︒,综上,OEC ∠的度数为:20︒或80︒或140︒,故答案为:20︒或80︒或140︒【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.5.(2022春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)在ABC ∆中,AB AC =,100BAC ∠=︒,点D 在边BC 上(不与B 、C 重合),连接AD ,若ABD 是等腰三角形,则ADC ∠的度数为___________.【答案】80︒或110︒【分析】在ABC ∆中,根据AB AC =,100BAC ∠=︒,得到(180100)240B C ∠=∠=︒-︒÷=︒,再根据ABD 是等腰三角形及三角形外角公式分类讨论即可得到答案.【详解】解:如图所示,在ABC 中,∵AB AC =,100BAC ∠=︒,∴(180100)240B C ∠=∠=︒-︒÷=︒,若ABD 是等腰三角形,①当BD AD =时,40B BAD ∠=∠=︒,80ADC B BAD ∠=∠+∠=︒,②当BA BD =时,BAD BDA ∠=∠,(18040)270BAD ∠=︒-︒÷=︒,110ADC B BAD ∠=∠+∠=︒,综上所述80︒或110︒.【点睛】本题考查利用等腰三角形性质求角度及三角形内外角关系,解题关键是分析出ABD 的腰.6.(2022春·江西赣州·八年级统考期中)如图,在ABC 中,20B ∠=︒,105A ∠=︒,点P 在ABC 的三边上运动,当PAC △为等腰三角形时,顶角的度数是________.【答案】105︒或55︒或70︒【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP AC =,顶角为105A ∠=︒,②∵20B ∠=︒,105A ∠=︒,∴1802010555C ︒︒︒︒∠=--=,如图2,点P 在BC 上时,若AC PC =,顶角为55C ∠=︒,如图3,若AC AP =,则顶角为180218025570CAP C ︒︒︒︒∠=-∠=-⨯=,【答案】30︒或120︒或150︒.【分析】分情况讨论:如图,如图,当AB AC =时,C 在如图,当BA BC =时,则BAC ∠∴顶角180230ABC ∠=︒-⨯︒=如图,当AC BC =时,则BAC ∠此时顶角180230ACB ∠=︒-⨯故答案为:30︒或120︒或150【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】【变式训练】②当AE AD m ==时:如图,则:4CE BC BE m =-=-,在Rt ACE 中,22AE AC =+解得:258m =;此时AE AB =,∵90ACB ∠=︒,30∠=︒,A∴∠=︒,'30AEB∴∠=∠,A AEB'∴∠=︒,AB E'75∠=∠由折叠可得,DB E'∴∠=︒,DB C'4530EB A A '∴∠=︒=∠,AE B E '∴=,即AEB '△是等腰三角形,此时0CB '=,【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()A .7B .11C .7或11D .无法确定【答案】C【分析】根据题意作出图形,设AD DC x BC y ===,,然后分两种情况列出方程组求解,再根据三角形的三边关系判断即可求解.【详解】解:如图所示,根据等腰三角形的定义和三角形中线的性质得:【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A.45︒B.90︒C.135︒D.135︒或45︒【答案】D【分析】分三角形是锐角三角形时,利用直角三角形两锐角互余求解;三角形是钝角三角形时,利用三角∵45ACD ∠=︒,∴顶角90A ∠=︒-如图2,三角形是钝角时,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135故答案为60︒或120︒.【点睛】本题主要考查了等腰三角形的性质、直角三角形的性质、三角形外角的性质等知识点,注灵活运用相关性质是解答本题的关键.3.(2023秋·山西临汾·八年级统考期末)在∠=.B如图当CD在ABC⊥CD AB∴∠=︒+∠BAC ACD90AB AC=∴∠=∠=︒30B C故答案为60︒或30︒【点睛】本题考查的是等腰三角形的性质,三角形的角平分线、中线和高;三角形内角和定理及推论此题难度不大,属于中等题;4.(2022春·广东广州·八年级校考阶段练习)在ABC 中,AB AC =,AC 上的中线BD 把三角形的周长分成24和30两部分,则底边BC 的长为______.【答案】22或14【分析】分两种情况:24AB AD +=;30AB AD +=,可得AB 的长,再由另一部周长即可求得底边BC 的长.【详解】解:由题意得:AD CD=2AB AC AD ∴==;当24AB AD +=时,即224AD AD +=,8AD ∴=,30BC CD += ,3030822BC CD ∴=-=-=;当30AB AD +=时,即230AD AD +=,10AD ∴=,24BC CD += ,24241014BC CD ∴=-=-=;综上,底边的长为22或14;故答案为:22或14.【点睛】本题考查了等腰三角形的性质,中线的含义,涉及分类讨论.5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.【答案】100°,70°,40°或者10°【分析】分BD =CD 、BC =CD 、BD =BC 三种情况讨论即可求解.【详解】第一种请况:BD =CD 时,如图,∵BD=CD,∠B=20°,∴∠B=∠DCB=20°,∴∠ADC=∠B+∠DCB=40°,(1)当DA=DC时,∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∠ADC=40°,∴∠A=∠ACD=70°;(2)当DA=AC时,即有∠ADC=∠ACD=40°,∴∠A=180°-∠ADC-∠ACD=100°;(3)当CD=CA时,∠A=∠ADC=40°;第二种请况:BC=CD时,如图,∵∠B=20°,BC=CD,∴∠B=∠BDC=20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC =∠BCD ,∵∠B =20°,∠B +∠BCD +∠BDC =180°,∴∠BCD =∠BDC =80°,∴∠ADC =180°-∠BDC =100°,∵△ADC 是等腰三角形,∴有∠A =∠ACD ,∵∠A +∠ACD +∠ADC =180°,∴∠A =40°;综上所述:∠A 的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.6.(2023春·广东河源·八年级校考开学考试)在ABC 中,AB AC =,AC 边上的中线BD 把三角形的周长分成12cm 和15cm 的两部分,求三角形各边的长.【答案】三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、【分析】由在ABC 中,AB AC =,AC 边上的中线BD 把三角形的周长分成12cm 和15cm 两部分,可得()15123cm ||AB BC -=-=,()2121527cm AB BC AC AB BC ++=+=+=,然后分别从AB BC >与AB BC <去分析求解即可求得答案.【详解】解:如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()()||||15123cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【点睛】此题考查了等腰三角形的定义.注意掌握方程思想、分类讨论思想与数形结合思想的应用.。
八年级数学上册易错易混专题等腰三角形中易漏解或多解的问题(新版)新人教版
易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100° B.40°C.40°或100° D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40° B.80°,20°C.80°,80° D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25° B.40°C.25°或40° D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有_____个.参考答案与解析1.C2.不正确 没考虑三角形三边关系 3.解:设腰长为x cm ,①腰长与腰长的一半是6cm 时,x +12x =6,解得x =4,∴底边长=10-12×4=8(cm).∵4+4=8,∴4cm、4cm 、8cm 不能组成三角形;②腰长与腰长的一半是10cm 时,x +12x =10,解得x =203,∴底边长=6-12×203=83(cm),∴三角形的三边长为203cm 、203cm 、83cm ,能组成三角形.综上所述,三角形的腰长为203cm ,底边长为83cm.4.C 5.D 6.120°或20° 7.C 8.70°或20° 9.x 或90-x 解析:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x .故答案为x 或90-x .10.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在其外部.如图①所示,得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.11.A 12.5。
2020年八年级数学上册第十三章易错易混专题:等腰三角形中易漏解或多解的问题
10.(2019-2020·江夏区期末)在 Rt△ABC 中,∠ACB =90°,以△ABC 的一边为边画等腰三角形,使得 它的第三个顶点在△ABC 的其他边上,则可以画出 的不同的等腰三角形最多有( B ) A.9 个 B.7 个 C.6 个 D.5 个
2.某等腰三角形的三边长分别为 x,3,2x-1,则
该三角 或 8 或 5 D.与 x 的取值有关
3.已知等腰三角形中,一腰上的中线将三角形的周 长分成 6 cm 和 10 cm 两部分,求这个三角形的腰长 和底边长. 解:如图,等腰△ABC 中,AB,AC 为腰,CD 为中 线,则 AD=BD= 1 AB= 1 AC.
个不同的度数.
7.(2019-2020·庐江县期中)在△ABC 中,AH 是 BC 边上的高.若 CH-BH=AB,∠ABH=70°,则∠BAC = 75或35 °.
解析:分以下两种情况讨论:当∠ABC 为锐角时, 过点 A 作 AD=AB,交 BC 于点 D,如图①所示. ∵AB=AD,∴∠ADB=∠ABH=70°,BH=DH. ∵AB+BH=CH,CH=CD+DH,∴CD=AB=AD. ∴∠C= 1 ∠ADB=35°. ∴∠BAC=
快速对答案
1D
2B
3
详细答案 点击题序
4A
5
8或1 54
6
详细答案 点击题序
提示:点击
7 75或35
8
详细答案 点击题序
9C
进入习题
10 B
1.(2019-2020·武昌区期中)若等腰三角形的周长为
19 cm,一边长为 7 cm,则腰长为( D )
A.7 cm
B.5 cm
C.7 cm 或 5 cm D.7 cm 或 6 cm
最新人版数学八年级(上册)易错题和答案解析
八年级上册易错题集第十一章三角形1. 一个三角形的三个内角中〔A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°2. 如图,△ABC中 ,高CD、BE、AF相交于点O,则△BOC•的三条高分别为.3、三角形的一个外角大于相邻的一个内角,则它的形状;三角形的一个外角小于于相邻的一个内角,则它的形状;三角形的一个外角等于相邻的一个内角,则它的形状。
4、三角形内角中锐角至少有个,钝角最多有个,直角最多有个,外角中锐角最多有个,钝角至少有个,直角最多有个。
一个多边形中的内角最多可以有个锐角。
5.已知一个三角形的三边长3、a+2、8,则a的取值范围是。
6.如图②,△ABC中,∠C=70°,若沿虚线截去∠C,则∠1+∠2=。
7.如图③,一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE 折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=。
8.△ABC中,∠A=80°,则∠B、∠C的内角平分线相交所形成的钝角为;∠B、∠C的外角平分线相交所形成的锐角为;∠B的内角平分线与∠C的外角平分线相交所形成的锐角为;高BD与高CE相交所形成的钝角为;若AB、AC 边上的垂直平分线交于点O,则∠BOC为。
9.一个多边形除去一个内角外,其余各角之和为2750°,则这个多边形的边数为,去掉的角的度数为.10.一个多边形多加了一个外角总和是1150°,这个多边形是边形,这个外角是度. 11.如图,在△ABC 中,画出AC 边上的高和BC 边上的中线。
第十二章 全等三角形1. 有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等;④斜边和一锐角对应相等;⑤两条直角边对应相等;⑥斜边和一条直角边对应相等。
其中能判断两直角三角形全等的是2. 已知△ABC 与△A ′B ′C ′中,AB=A ′B ′,BC=B ′C ′,下面五个条件: ①AC=A ′C ′;②∠B=∠B ′;③∠A=∠A ′;④中线AD=A ′D ′;⑤高AH=A ′H ′,能使△ABC ≌△A ′B ′C ′的条件有。
易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)(原卷版)
第05讲易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (2)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (2)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】 (3)【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (4)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2023春·陕西汉中·七年级校考阶段练习)已知一个等腰三角形的三边长分别为21x -,1x +,32x -,且21x -为腰长.求这个等腰三角形的周长.【变式训练】6.(2022春·七年级单元测试)用一条长为35cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长分别是多少?(2)能围成有一边长为7cm的等腰三角形吗?【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】1.在△ABC中,∠B=70°,过点A作一条直线,将△ABC分成两个新的三角形.若这两个三角形都是等腰4.(2023春·江西九江·八年级统考期末)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】【变式训练】1.(2023上·湖北武汉·八年级校联考期中)在BC 边上,连接AD ,若ABD △为直角三角形,则2.(2023下·河南郑州·七年级河南省实验中学校考期中)60BAC ∠=︒,78ACB ∠=︒,点F 为边4.(2023下·全国·八年级专题练习)已知在平面直角坐标系中运动,当点P与点A,B,C三点中任意两点构成直角三角形时,点【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()A.7B.11C.7或11D.无法确定【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为形的顶角为()A.45︒B.90︒2.(2022秋·广东惠州·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为为.3.已知一个等腰三角形的周长为45cm,一腰上的中线将这个三角形的周长分为三角形的底长为.4.(2022春·广东广州·八年级校考阶段练习)在成24和30两部分,则底边BC的长为______。
人教版八年级数学上册-易错易混专题:等腰三角形中易漏解或多解的问题
学好数学的秘密1、学完多思考要想学好数学一定要多思考。
主要是指养成思考的习惯,学会思考的方法。
独立思考是学习数学必须具备的能力。
同学们在学习时,要边听课边想,边看书边想,边做题边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
2、多做练习题要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。
只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。
3、善于总结规律我们会发现在日常的数学学习中,很多同学是不是同一种类型的题目总是反复错,经常错?这种问题的出现,就是学生缺乏总结规律的习惯,一种类型的题目反复错,经常错,说明你还没有掌握做这种题目的规律,你不仅要做错题笔记,而且还需要将你错的这种类型的题目都拿出来总结归纳,要善于总结规律,将同种类型的题目多比对,多总结,总结出一种属于自己的解题思路和方法,然后再遇到这类问题时利用总结的规律和方法去解决。
易错易混专题:等腰三角形中易漏解或多解的问题——易错归纳,各个击破◆类型一求长度时忽略三边关系1.(2016·贺州中考)一个等腰三角形的两边长分别是4,8,则它的周长为()A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明的回答是否正确:_____,理由是_____________________.3.已知等腰三角形中,一腰上的中线将三角形的周长分成6cm和10cm两部分,求这个三角形的腰长和底边的长.◆类型二当腰或底不明求角度时没有分类讨论4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.100°B.40°C.40°或100°D.60°5.等腰三角形的一个外角等于100°,则与这个外角不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.80°,80°D.50°,50°或80°,20°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为_____.◆类型三三角形的形状不明时没有分类讨论7.等腰三角形的一个角是50°,则它一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不能确定8.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于_____.9.如果两个等腰三角形的腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形的底角分别为x°和y°,则_________(用含x 的代数式表示).10.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.◆类型四一边确定,另两边不确定,求等腰三角形个数时漏解11.(2016·武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.812.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有_____个.参考答案与解析1.C2.不正确 没考虑三角形三边关系 3.解:设腰长为x cm ,①腰长与腰长的一半是6cm 时,x +12x =6,解得x =4,∴底边长=10-12×4=8(cm).∵4+4=8,∴4cm 、4cm 、8cm 不能组成三角形;②腰长与腰长的一半是10cm 时,x +12x =10,解得x =203,∴底边长=6-12×203=83(cm),∴三角形的三边长为203cm 、203cm 、83cm ,能组成三角形.综上所述,三角形的腰长为203cm ,底边长为83cm.4.C 5.D 6.120°或20° 7.C 8.70°或20°9.x 或90-x 解析:∵两个等腰三角形的腰长相等、面积也相等,∴腰上的高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x .故答案为x 或90-x .10.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在其外部.如图①所示,得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.11.A 12.5。
最新人教版初中八年级上册数学《等腰三角形中易漏解或多解的问题》精品教案
方法总结
对于没有明确顶角和底角而求三角形内角的等腰三角形问题,通常需 要分类讨论,同时要注意等腰三角形的底角小于90°,以避免出现多解或 漏解现象.
在等腰三角形的问题中,经常会遇到与高相关的问题,由于高可能在三角 形内部也可能在三角形外部,因而常需要分类讨论解决.
类型三:三角形的形状不明与高结合时没有分类讨论 已知等腰△ABC腰AB上的高CE与另一腰AC的夹角为30°,则其顶角的度数为 ___________
等腰三角形中易漏解或多解的问题
在等腰三角形的问题中,如果条件中没有明确底和腰,这类问题通常需要分 类讨论,否则易出现多解或漏解现象.
类型一:求长度时忽略三边关系
例:已知等腰三角形的两边长为3和7,则其周长为___1_7__.
方法总结
对于没有明确底和腰的等腰三角形问题通常需要分类讨论,同时需要 运用三角形的三边关系检验相关三角形是否成立,以避免出现多解或漏解 现象.
则顶角∠A=90°-30°=60°;
② 如图2,当该三角形为钝角三角形时,则高CE在△ABC外部,∠ACE=30°,
则顶角∠BAC=90°+30°=120°.
若△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为 50°Fra bibliotek求底角∠B的大小.
A
D E
B
C
图1
E
A
D
B
图2
C
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完 成后同桌之间相互订正
在等腰三角形的问题中,如果条件中没有明确顶角和底角,这类问题通常 也需要分类讨论,否则易出现多解或漏解现象.
类型二:顶角与底角不明时需分类讨论 已知等腰三角形的一内角为70°,求其余两个内角. 解:由于没有明确该内角是等腰三角形顶角或底角,故需要分类讨论: ① 设该角为顶角,则底角为(180°-70°)÷2=55°,此时其余两个内角均为55°; ② 设该角为底角,则顶角为180°-70°×2=40°,此时其余两个内角分别为70°、 40°. 综上所述,其余两个内角分别为55°、55°或70°、40°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错易混专题:等腰三角形中易漏解或
多解得问题
——易错归纳,各个击破 ◆类型一 求长度时忽略三边关系
1.(2016·贺州中考)一个等腰三角形得两边长分别是4,8,
则它得周长为( ) A .12 B .16
C .20
D .16或20
2.学习了三角形得有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形得周长是12,其中一条边长为3,求另两条边得长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3、6或4.5、4.5.”你认为小明得回答是否正确:_____,理由是_____________________.
3.已知等腰三角形中,一腰
上得中线将三角形得周长分成6cm 和10cm 两部分,求这个三角形得腰长和底边得长. ◆类型二 当腰或底不明求角度
时没有分类讨论 4.已知等腰三角形得一个内角为40°,则这个等腰三角形得顶角为( )
A .100°
B .40°
C .40°或100°
D .60°
5.等腰三角形得一个外角等于100°,则与这个外角不相邻得两个内角得度数分别为( )
A .40°,40°
B .80°,20°
C .80°,80°
D .50°,50°或80°,20°
6.已知一个等腰三角形两内
角得度数之比为1∶4,则这个等腰三角形顶角得度数为_____.
◆类型三三角形得形状不明时没有分类讨论
7.等腰三角形得一个角是50°,则它一腰上得高与底边得夹角是()
A.25° B.40°C.25°或40° D.不能确定8.在△ABC中,AB=AC,AB 得垂直平分线与AC所在得直线相交所得到得锐角为50°,则∠B等于_____.
9.如果两个等腰三角形得腰长相等、面积也相等,那么我们把这两个等腰三角形称为一对合同三角形.已知一对合同三角形得底角分别为x°和y°,则
_________(用含x得代数式表示).
10.已知等腰三角形一腰上得高与另一腰得夹角得度数为20°,求顶角得度数.
◆类型四一边确定,另两边不确定,求等腰三角形个数时漏解
11.(2016·武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件得点C得个数是()A.5 B.6 C.7 D.8
12.如图,在4×5得点阵图中,每两个横向和纵向相邻阵点得距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点得三角形是等腰三角形,则符合条件得C点有_____个.
参考答案与解析
1.C
2.不正确 没考虑三角形三边关系
3.解:设腰长为xcm ,①腰长与腰长得一半是6cm 时,x +12x
=6,解得x =4,∴底边长=10-1
2
×4=8(cm).∵4+4=8,∴4cm、4cm 、8cm 不能组成三角形;②腰长与腰长得一半是10cm 时,x +12x =10,解得x =20
3,∴
底边长=6-12×203=8
3(cm),∴三
角形得三边长为203cm 、203cm 、8
3cm ,
能组成三角形.综上所述,三角形得腰长为203cm ,底边长为8
3
cm.
4.C 5.D
6.120°或20° 7.C 8.70°或20°
9.x 或90-x 解析:∵两
个等腰三角形得腰长相等、面积也相等,∴腰上得高相等.①当这两个三角形都是锐角或钝角三角形时,y =x ,②当两个三角形一个是锐角三角形,一个是钝角三角形时,y =90-x.故答案为x 或90-x.
10.解:此题要分情况讨论:当等腰三角形得顶角是钝角时,腰上得高在其外部.如图①所示,得顶角∠ACB=∠D+∠DAC=90°+20°=110°;当等腰三角形得顶角是锐角时,腰上得高在其内部,如图②所示,故顶角∠A =90°-∠ABD=90°-20°=70°.综上所述,顶角得度数为110°或70°.
11.A 12.5。