[全]中考数学有关圆的证明与计算题型解析

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

中考数学专题二 题型六 与圆有关的证明与计算

中考数学专题二 题型六 与圆有关的证明与计算

1. 已知切线 例2 (2020·菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC 相交于点D,过点D作⊙O的切线交AC于点E. (1)求证:DE⊥AC; (2)若⊙O的半径为5,BC=16,求DE的长. 【分析】(1)连接AD,OD.先证明∠ADB=90°,∠EDO=90°,从而可证明 ∠EDA=∠ODB,由OD=OB可得到∠EDA=∠OBD,由等腰三角形的性质 可知∠CAD=∠BAD,故此∠EAD+∠EDA=90°,于是可得到DE⊥AC; (2)由等腰三角形的性质求出BD=CD=8,由勾股定理求出AD的长,根据三角 形的面积得出答案.
8. (2020·北京)如图,AB 为⊙O 的直径,C 为 BA 延长线上一点, CD 是⊙O 的切线,D 为切点,OF⊥AD 于点 E,交 CD 于点 F. (1)求证:∠ADC=∠AOF;
(2)若 sin C=13 ,BD=8,求 EF 的长.
(1)证明:连接OD,如解图, ∵AB为⊙O的直径, ∴∠ADB=90°,∴AD⊥BD, ∵OF⊥AD,∴OF∥BD, ∴∠AOF=∠B,∵CD是⊙O的切线,D为切点, ∴ ∠ CDO = 90° , ∴ ∠ CDA + ∠ ADO = ∠ ADO + ∠ BDO = 90° , ∴∠CDA=∠BDO,∵OD=OB,∴∠ODB=∠B,∴∠AOF=∠ADC;
1. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD, 交AD于点E,连接BC. (1)求证:AE=ED; (2)若AB=6,∠CBD=30°,求图中阴影部分的面积. (1)证明:∵AB是⊙O的直径, ∴∠ADB=90°,∵OC∥BD, ∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED;
3. (2019·孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的 外接圆⊙O交于点D,与AC交于点E,延长CD,BA相交于点F, ∠ADF的平分线交AF于点G. (1)求证:DG∥CA; (2)求证:AD=ID; (3)若DE=4,BE=5,求BI的长.

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

河南中考数学 题型四 与圆有关的证明与计算及答案.docx

河南中考数学 题型四  与圆有关的证明与计算及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】题型四与圆有关的证明与计算(近6年连续考查)【题型解读】近6年连续在解答题中考查,考查的类型有两种:①在2017年中考查与切线性质有关的证明与计算,设问有:证明线段的相等和利用勾股定理求线段长;②其余5年考查的是特殊四边形的动态探究,考查该类型的时候,第二问往往是以两个填空题的形式出现,主要考查内容是菱形、正方形的判定,其中菱形的判定是必考内容.类型一与切线判定有关的证明与计算1.如图,D是⊙O上的一点,C是直径AB延长线上一点,连接BD,CD,且∠A=∠BD C.(1)求证:CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.第1题图2.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=A C.(1)求证:P A是⊙O的切线;(2)若AB=3,BC=2,求⊙O的半径.第2题图3.(2019南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.第3题图4.(2019济宁)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是AC ︵的中点,E 为OD 延长线上一点,且∠CAE =2∠C ,AC 与BD 交于点H ,与OE 交于点F .(1)求证:AE 是⊙O 的切线;(2)若DH =9,tan C =34,求直径AB 的长.第4题图类型二与切线性质有关的证明与计算(2017.18)1.(2019河南定心卷)如图,⊙O为△ABC的外接圆,AB=AC,直线MN与⊙O相切于点C,弦BD∥MN,AC与BD相交于点E,连接AD,C D.(1)求证:△ABE≌△ACD;(2)若AB=5,BC=3,求AE的长.第1题图2.如图,在△ABC中,∠C=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点E作EH⊥AB于点H,连接BE.(1)求证:BC=BH;(2)若AB=5,AC=4,求CE的长.第2题图3.如图,半圆O的直径为AB,D是半圆上的一个动点(不与点A,B重合),连接BD并延长至点C,使CD=BD,过点D作半圆O的切线交AC于点E.(1)求证:DE⊥AC;(2)若BD=2,且AB=3BD,求DE的长.第3题图4.(2019桂林改编)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB 于点E,DE=OE.(1)求证:∠CAE=∠CBA;(2)求证:OA2=OE·DC;(3)求tan∠ACD的值.第4题图类型三特殊四边形的动态探究题(2019、2015、2014.17;2018.19;2016.18)1.如图所示,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE于点F.(1)线段BF与图中哪条线段相等?写出来并加以证明;(2)若AB=12,BC=13,P从E出发沿ED方向运动,Q从C出发向B运动,两点同时出发且速度均为每秒1个单位.填空:①当运动时间为秒时,四边形EPCQ是矩形;②当运动时间为秒时,四边形EPCQ是菱形.第1题图2.如图,已知BC是⊙O的直径,AD与⊙O相切于点A,CD∥OA交⊙O于另一点E.(1)求证:△ACD∽△BCA;(2)若A是⊙O上一动点,则①当∠B=时,以A,O,C,D为顶点的四边形是正方形;②当∠B=时,以A,O,C,E为顶点的四边形是菱形.第2题图3.如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,交AC于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)填空:①当∠BAC=时,△CDE为等边三角形;②连接OD,当∠BAC=时,四边形OBED是菱形.第3题图4.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,过点D作⊙O的切线,交EC于点F.(1)求证:EF=FC;(2)填空:①当∠ACD的度数为时,四边形ODFC为正方形;②若AD=4,DC=2,则四边形ABCD的最大面积是.第4题图5.(2019许昌模拟)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC,分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)填空:①当∠BAC的度数为时,四边形ACDO为菱形;②若⊙O的半径为5,AC=3CE,则BC的长为.第5题图6.如图,已知AB是⊙O的直径,PC与⊙O相切于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP=时,以A,O,P,C为顶点的四边形是正方形;②当弧AP=时,以A,D,O,P为顶点的四边形是菱形.第6题图7.(2019新乡模拟)如图,在⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A,PB交⊙O于D,E两点,∠P AB为锐角,连接DE,OD,OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.第7题图8. 如图,点A ,C ,B 是⊙O 上三点,且C 是劣弧AB ︵的中点,点E ,F 是弦AB 上两点,且AF =BE . (1)求证:OE =OF ;(2)填空:若⊙O 的半径为2,①当∠AOB = 时,四边形AOBC 是菱形; ②当∠AOB =90°时,四边形AOBC 的面积是 .第8题图9.(2019开封模拟)如图,在▱ABCD 中,⊙O 是△ABC 的外接圆,CD 与⊙O 相切于点C ,点P 是劣弧BC ︵上的一个动点(点P 不与点B ,C 重合),连接P A ,PB ,P C.(1)求证:CA =CB ;(2)当AP =AC 时,试判断△APC 与△CBA 是否全等,请说明理由; (3)填空:当∠D = 时,四边形ABCD 是菱形.第9题图10.如图,以△ABC一边AB为直径作⊙O,与另外两边分别交于点D、E,且点D为BC的中点,连接DE.(1)证明:△ABC是等腰三角形;(2)填空:①当∠B=时,四边形BDEO是菱形;②当∠B=时,△AOE是直角三角形.第10题图11.如图,△ABC内接于⊙O,AB=AC,连接AO并延长交⊙O于点D,交BC于点E,BF平分∠ABC,交AD于点F,连接BD,C D.(1)求证:△BDE≌△CDE;(2)填空:①连接CF,当∠BAC=时,四边形BDCF是菱形;②当∠FBD=时,四边形ABDC是正方形.第11题图12.如图,已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=O C.(1)求证:四边形OCAD是平行四边形;(2)探究:①当∠B=时,四边形OCAD是菱形;②当∠B满足什么条件时,AD与⊙O相切?请说明理由.第12题图参考答案类型一与切线判定有关的证明与计算1.(1)证明:如解图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC,∴∠BDC+∠ODB=90°,即∠ODC=90°.∵OD是⊙O的半径,∴CD是⊙O的切线;第1题解图(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴在Rt△NDM中,由勾股定理得,MN=DM2+DN2=2 2.2.(1)证明:如解图,连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACO=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A,∵OA为⊙O的半径,∴P A是⊙O的切线;第2题解图(2)解:如解图,过点C 作CE ⊥AB 于点E . 在Rt △BCE 中,∠B =60°,BC =2, ∴BE =BC ·cos B =1,CE =3, ∵AB =3,∴AE =AB -BE =2,∴在Rt △ACE 中,AC =AE 2+CE 2=7, ∴AP =AC =7.∴在Rt △P AO 中,OA =tan30°·7=33×7=213, ∴⊙O 的半径为213. 3. (1)证明:∵AC 是⊙O 的直径, ∴∠ADC =90°. ∴∠A +∠ACD =90°, ∵∠BCD =∠A ,∴∠BCD +∠ACD =∠ACB =90°, ∴OC ⊥BC .又∵OC 为⊙O 的半径, ∴BC 是⊙O 的切线;(2)解:如解图,过点O 作OE ⊥CD 于点E . 在Rt △BCD 中,∵BC =5,BD =3, ∴CD =4.∵∠ADC =∠CDB =90°,∠BCD =∠A , ∴Rt △BDC ∽Rt △CDA . ∴CD AD =BD CD =34, ∴AD =163.∵OE ⊥CD , ∴E 为CD 的中点. 又∵点O 是AC 的中点, ∴OE =12AD =83.∴点O 到CD 的距离为83.第3题解图4. (1)证明:∵D 是AC ︵的中点, ∴OD ⊥AC ,即∠AFO =90°, ∴∠CAB +∠AOF =90°.又∵∠CAE =2∠C =2∠B =∠AOF ,∴∠CAE +∠CAB =∠AOF +∠CAB =90°=∠EAO , ∴EA ⊥AB .又∵AB 为⊙O 的直径, ∴AE 是⊙O 的切线; (2)解:如解图,连接AD ,∵∠C =∠B =∠HDF ,D 是AC ︵的中点, ∴∠C =∠DAH =∠B , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∴Rt △ADH ∽Rt △BDA , ∵tan C =34,∴AD BD =DH DA =34, ∵DH =9,∴AD =12,BD =16,在Rt △DAB 中,AB =AD 2+BD 2=20.第4题解图类型二 与切线性质有关的证明与计算1. (1)证明:如解图,连接OC , ∵直线MN 与⊙O 相切于点C , ∴OC ⊥MN . ∵BD ∥MN , ∴OC ⊥BD . ∴BC ︵=CD ︵. ∴∠BAE =∠CAD . 在△ABE 和△ACD 中,⎩⎪⎨⎪⎧∠ABE =∠ACD AB =AC ∠BAE =∠CAD, ∴△ABE ≌△ACD (ASA);第1题解图(2)解:由(1)知∠BAC =∠CAD =∠CBD , ∴△BCE ∽△ACB . ∴BC AC =CECB. ∵AC =AB =5,BC =3, ∴CE =95.∴AE =AC -CE =165.2. (1)证明:如解图,连接OE , ∵AC 与⊙O 相切于点E , ∴OE ⊥AC . ∵∠C =90°, ∴BC ⊥AC . ∴OE ∥BC . ∴∠CBE =∠OEB . ∵OE =OB , ∴∠EBO =∠OEB . ∴∠CBE =∠EBO , ∵CE ⊥BC ,EH ⊥AB , ∴CE =EH .在Rt △EBC 和Rt △EBH 中,∵⎩⎪⎨⎪⎧CE =HE ,BE =BE , ∴Rt △EBC ≌Rt △EBH (HL). ∴BC =BH ;第2题解图(2)解:∵AB =5,AC =4,∴在Rt △ABC 中,根据勾股定理可得BC =AB 2-AC 2=3. ∵BC =BH , ∴BH =3.∴AH =AB -BH =5-3=2. 设CE =EH =x ,则AE =4-x ,在Rt △AEH 中,根据勾股定理可得AH 2+EH 2=AE 2, 即22+x 2=(4-x )2, 解得x =32,∴CE =32.3. (1)证明:如解图,连接OD . ∵DE 是半圆O 的切线,切点为D , ∴OD ⊥DE ,∵BD =CD ,OA =OB , ∴OD 是△ABC 的中位线, ∴OD ∥AC . ∴DE ⊥AC ;第3题解图(2)解:如解图,连接AD , ∵AB 是半圆O 的直径, ∴∠ADB =90°,即AD ⊥BC , 又∵DC =BD =2,∴AD 是BC 的垂直平分线, ∴AB =AC , ∴∠ABD =∠ACD . 又∵DE ⊥AC , ∴∠CED =90°, ∴∠ADB =∠DEC , ∴△ABD ∽△DCE . ∴DE AD =DCAB ,即DE =AD ·DC AB, 在Rt △ABD 中,BD =2,AB =3BD =6, ∴AD =62-22=42,∴DE =42×26=423.4. (1)证明:∵BM 是⊙O 的切线, ∴∠ABM =90°. ∵BC 平分∠ABM , ∴∠ABC =12∠ABM =45°.∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴∠BAC =45°, ∴∠CAE =∠CBA ;(2)证明:如解图,连接OC 和OD . ∵OC =DO ,DE =OE , ∴∠OCD =∠ODC =∠DOE . ∴△OCD ∽△EDO , ∴DO OE =DCOD,即DO 2=OE ·DC . 又∵OA =DO , ∴OA 2=OE ·DC ;第4题解图(3)解:由(1)知,△ACB 为等腰直角三角形, ∴C 为AB ︵的中点,CO ⊥AB , 如解图,过点E 作EF ⊥AC 于点F , 设圆的半径为r ,∠DCO =θ,则有∠EOD =∠CDO =θ,∠CEO =∠EOD +∠CDO =2θ,由θ+2θ=90°,得θ=30°, 在Rt △COE 中,OE =33r ,则AE =r -33r =3-33r ,AC =2r . 在Rt △AEF 中,AF =EF =22×3-33r =32-66r , ∴CF =AC -AF =2r -32-66r =32+66r ,∴tan ∠ACD =EFCF =32-66r 32+66r =2- 3.类型三 特殊四边形的动态探究题1.解:(1)BF =AE . 证明如下:由题意可知∠A =∠BFC =90°,BC =BE . ∵AD ∥BC , ∴∠AEB =∠FBC , 在△ABE 与△FCB 中, ⎩⎪⎨⎪⎧∠EAB =∠BFC ∠AEB =∠FBC BE =CB, ∴△ABE ≌△FCB (AAS). ∴AE =BF ; (2)①8;【解法提示】设运动时间为t 秒,∵四边形EPCQ 是矩形,∴∠APC =90°,∴四边形ABCP 是矩形,∴AP =BC .由勾股定理知AE =5,∴EP =13-5=8,∴t =8.②13.【解法提示】∵四边形EPCQ 是菱形,∴QE =QC ,∴点Q 与点B 重合,∴CQ =CB =13,∴t =13. 2. (1)证明:∵AD 与⊙O 相切于点 A , ∴OA ⊥AD , ∵CD ∥OA , ∴∠ADC =90°, ∵BC 是⊙O 的直径, ∴∠BAC =90°, ∴∠BAC =∠ADC , 又∵CD ∥OA , ∴∠ACD =∠CAO , ∵OA =OC , ∴∠ACO =∠CAO , ∴∠ACD =∠ACO , ∴△ACD ∽△BCA ; (2)解:① 45°;【解法提示】∵四边形AOCD 为正方形,∴∠AOC =90°,∵OA =OC ,∴∠OCA =∠OAC =45°,∵∠BAC =90°,OA =OB ,∴∠B =∠OAB =90°-45°=45°.② 60°.【解法提示】如解图,连接AE ,∵AD 为切线,∴∠DAE =∠ECA ,∠OAD =90°.∵四边形AOCE 为菱形,∴∠OAC =∠EAC ,∴∠DAE =∠ECA =∠OAC =30°,∴∠ACO =30°,∴∠AOB =∠ACO +∠OAC =30°+30°=60°,∵OA=OB,∴∠B=60°.第2题解图3. (1)证明:如解图,连接OD,BD,∵∠ABC=90°,AB是⊙O的直径,∴BC是⊙O的切线.∵DE是⊙O的切线,∴BE=DE.∴∠EBD=∠EDB.∵AB是⊙O的直径,∴∠ADB=90°.∴∠EBD+∠C=90°,∠EDB+∠CDE=90°.∴∠C=∠EDC.∴DE=CE.∴EB=EC;第3题解图(2)解:① 30°;【解法提示】当△CDE为等边三角形时,则∠CDE=∠C=60°,∵∠ABC=90°,∴∠BAC=90°-60°=30°.②45°.【解法提示】当四边形OBED是菱形时,BO=DE,DE∥OB,BE=OD,BE∥OD,∵∠ABC=90°,∴∠BOD=90°,∵OD=OA,∴∠BAC=45°.4. (1)证明:∵AC是⊙O的直径,CE⊥AC,∴CE是⊙O的切线.又∵DF是⊙O的切线,且交CE于点F,∴DF=CF,∴∠CDF=∠DCF,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCF+∠E=90°,∠CDF+∠EDF=90°,∴∠E=∠EDF,∴DF=EF,∴EF=FC;(2)解:① 45°;【解法提示】如解图,连接OD ,∵四边形ODFC 是正方形,∴∠DOC =90°,又∵OD =OC ,∴∠OCD =∠ODC =45°,∴∠ACD =∠OCD =45°.第4题解图② 9.【解法提示】∵AC 为⊙O 的直径,∴∠ADC =∠ABC =90°,∵AD =4,DC =2,∴AC =AD 2+CD 2=25,∴要使四边形ABCD 的面积最大,则△ABC 的面积最大,∴当△ABC 是等腰直角三角形时,△ABC 的面积最大,∴四边形ABCD 的最大面积=12×4×2+12×25×5=9.5. (1)证明:如解图,连接OD , ∵OA =OD , ∴∠OAD =∠ODA , ∵AD 平分∠EAF , ∴∠DAE =∠DAO , ∴∠DAE =∠ADO , ∴OD ∥AE , ∵AE ⊥EF , ∴OD ⊥EF ,又∵OD 为⊙O 的半径, ∴EF 是⊙O 的切线;第5题解图(2)解:① 60°;【解法提示】如解图,连接CD ,当四边形ACDO 为菱形时,AO ∥CD ,AC ∥OD ,已知AD 为∠BAC 的平分线,∴∠OAD =∠ODA =∠ADC =∠CAD ,又∵∠CDA =∠CBA ,∠ACB =90°,∴∠ABC =30°,∠BAC =60°.②8.【解法提示】如解图,设OD 与BC 交于点G ,∵AB 为直径,∴∠ACB =90°,∵DE ⊥AC ,∴四边形CEDG 是矩形,∴DG =CE ,∵AC =3CE ,∴OG =12AC =32CE ,∴OD =52CE =5,∴CE =2,∴AC =6,∵AB =2×5=10,∴BC =AB 2-AC 2=8.6. (1)证明:如解图,∵PC 与⊙O 相切于点P , ∴OP ⊥PC . ∵AC ⊥PC ,∴AC ∥OP . ∴∠1=∠3. ∵OP =OA , ∴∠2=∠3, ∴∠1=∠2, ∴AP 平分∠CAB ;第6题解图(2)解:① 22;【解法提示】∵AOPC 为正方形,∴OP =OA =2,∠POA =90°,∴AP =OP 2+OA 2=2 2. ②23π或43π. 【解法提示】当AD =AP =OP =OD 时,∵四边形ADOP 为菱形,∴△AOP 和△AOD 为等边三角形,则∠AOP =60°,lAP ︵=60×2π180=23π;当AD =DP =PO =OA 时,∵四边形ADPO 为菱形,∴△AOD 和△DOP为等边三角形,则∠AOP =120°,lAP ︵=120×2π180=43π.综上所述,当弧AP 为23π或43π时,以A ,D ,O ,P为顶点的四边形是菱形.7. (1)证明:如解图,连接AE ,第7题解图∵AB 为⊙O 的直径, ∴∠AEB =90°, ∵P A =AB , ∴E 为PB 的中点, ∵AO =OB , ∴OE ∥P A ,∴∠ADO =∠DOE ,∠A =∠EOB , ∵OD =OA , ∴∠A =∠ADO , ∴∠EOB =∠DOE , ∵OD =OE =OB , ∴∠EDO =∠EBO ; (2)解:① 8;【解法提示】∵AB =8,∴OA =4,当OA 边上的高最大时,△AOD 的面积最大,此时点D 是AB ︵的中点,∴OD ⊥AB ,∴S △AOD =12×4×4=8. ② 4.【解法提示】当四边形OBED 为菱形时,OD =OB =BE =DE =12AB ,∴DE =4. 8. (1)证明:∵OA =OB ,∴∠OAB =∠OBA ,∵AF =BE ,∴AE =BF ,在△OAE 和△OBF 中,⎩⎪⎨⎪⎧OA =OB ∠OAB =∠OBA AE =BF,∴△OAE ≌△OBF (SAS),∴OE =OF ;(2)解:①120°;② 2.【解法提示】①如解图,连接OC ,∵四边形AOBC 是菱形,∴OA =AC =BC =OB ,∵OA =OC ,∴OA =AC =BC =OB =OC ,∴△AOC 和△BOC 都是等边三角形,∴∠AOC =∠BOC =60°,∴∠AOB =∠AOC+∠BOC =60°+60°=120°;②如解图,设OC 与AB 交于点D ,∵点C 是劣弧AB ︵的中点,∴OC ⊥AB ,∵OA =OB ,∴AD =BD ,∠AOC =∠BOC =45°,∴OD =BD ,∵OB =2,∴BD =OD =1,∴AB =2,∴S 四边形AOBC =S △AOB +S △ACB =12AB ·OD +12AB ·CD =12AB ·OC =12×2×2= 2.第8题解图9. (1)证明:如解图,连接CO 并延长交AB 于点E ,∵CD 与⊙O 相切于点C ,∴CE ⊥CD ,∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴CE ⊥AB ,∴AE =BE ,∴CA =CB ;第9题解图(2)解:当AC =AP 时,△APC ≌△CBA .理由如下:∵CA =CB ,AC =AP ,∴∠ABC =∠BAC ,∠APC =∠ACP ,∵∠ABC =∠APC ,∴∠BAC =∠ACP ,在△APC 与△CBA 中,⎩⎪⎨⎪⎧∠APC =∠CBA ∠ACP =∠CAB AC =CA,∴△APC ≌△CBA (AAS);(3)解:60°.【解法提示】∵ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =DA ,由(1)可知,CA =CB ,∴△ABC 是等边三角形,∴∠D =∠B =60°.10. (1)证明:如解图,连接AD ,∵AB 是⊙O 的直径,∴∠BDA =90°.∵D 为BC 的中点,∴BD =DC ,∴AB =AC ,∴△ABC 是等腰三角形;(2)解:① 60°;② 67.5°.【解法提示】①当∠B =60°时,四边形BDEO 是菱形.如解图,连接OD ,∵∠B =60°,∴△ABC 是等边三角形,△OBD 是等边三角形,∴△AOE 是等边三角形,△DOE 是等边三角形,∴OB =BD =DE =EO , ∴四边形BDEO 是菱形;②若△AOE 是直角三角形, 只有一种情况,即∠AOE =90°,∵OA =OE ,∴∠OAE =∠AEO =45°,由(1)知 △ABC 是等腰三角形,∴∠B =∠C =180°-45°2=67.5°.第10题解图11. (1)证明:∵AD 是⊙O 的直径,∴∠ABD =∠ACD =90°.在Rt △ABD 和Rt △ACD 中,∵⎩⎪⎨⎪⎧AB =AC AD =AD , ∴Rt △ABD ≌Rt △ACD (HL),∴∠ADB =∠ADC ,BD =CD ,在△BDE 和△CDE 中,⎩⎪⎨⎪⎧BD =CD ∠ADB =∠ADC DE =DE,∴△BDE ≌△CDE (SAS);(2)解:① 60°;② 67.5°.【解法提示】①∵四边形BDCF 是菱形,∴∠FBC =∠DBC ,∵BF 平分∠ABC ,∴∠ABF =∠FBC =∠DBC ,又∵∠ABD =90°,∴∠ABF =∠FBC =30°,∴∠ABC =60°,又∵AB =AC ,∴△ABC 为等边三角形,∴∠BAC =60°;②∵四边形ABDC 是正方形,∴∠ABC =∠DBC =45°,∵BF 平分∠ABC ,∴∠ABF =∠FBC =22.5°,∴∠FBD =∠FBC +∠DBC =22.5°+45°=67.5°.12. (1)证明:∵OA =OC ,AD =OC ,∴OA =AD ,∠OAC =∠OCA ,∴∠AOD =∠ADO ,∵OD ∥AC ,∴∠OAC =∠AOD ,∴∠OAC =∠OCA =∠AOD =∠ADO ,∴∠AOC =∠OAD ,∴OC ∥AD ,∵OC =AD ,∴四边形OCAD 是平行四边形;(2)解:①30°;【解法提示】∵四边形OCAD 是菱形,∴OC =AC ,又∵OC =OA ,∴OC =OA =AC ,∴∠AOC =60°,∴∠B =12∠AOC =30°. ②当∠B =45°时,AD 与⊙O 相切.理由如下:∵AD 与⊙O 相切,∴∠OAD =90°,∵AD ∥OC ,∴∠AOC =90°,∴∠B =12∠AOC =45°.。

中考数学压轴题提升训练圆中证明及计算问题含解析

中考数学压轴题提升训练圆中证明及计算问题含解析

圆中证明及计算问题【例1】如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:AB•CP=BD•CD;(3)当AB=5 cm,AC=12 cm时,求线段PC的长.【答案】见解析.【解析】(1)证明:连接OD.∵∠BAD=∠CAD,∴弧BD=弧CD,∴∠BOD=∠COD=90°,∵BC∥PA,∴∠ODP=∠BOD=90°,即OD⊥PA,∴PD是⊙O的切线.(2)证明:∵BC∥PD,∴∠PDC=∠BCD.∵∠BCD=∠BAD,∴∠BAD=∠PDC,∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,∴∠ABD=∠PCD,∴△BAD∽△CDP,∴AB BD,CD CP∴AB•CP=BD•CD.(3)∵BC是直径,∴∠BAC=∠BDC=90°,∵AB=5,AC=12,由勾股定理得:BC=13,由(1)知,△BCD是等腰直角三角形,∴BD=CD=∵AB•CP=BD•CD..∴PC=16910【变式1-1】如图,△ABC内接于⊙O,且AB=AC,延长BC 到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为.。

【答案】(1)见解析;(2)60;92【解析】(1)证明:连接CE,∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD+∠BCE=∠BAE +∠BCE=180°,∴∠ECD=∠BAE,同理,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE;(2)①60;连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC =60,∴∠AEC =∠AOC =120°,∵OA =OC ,∴∠OAC =∠OCA =30°,∵AB =AC ,∴△ABC 是等边三角形,∴∠ACB =60°,∵∠ACB =∠CAD +∠D ,AC =CD ,∴∠CAD =∠D =30°,∴∠ACE =30°,∴∠OAE =∠OCE =60°,即四边形AOCE 是平行四边形,∵OA =OC ,∴四边形AOCE 是菱形;②由(1)得:△ABE ≌△CDE ,∴BE =DE =8,AE =CE =6,∠D =∠EBC ,由∠CED =∠ABC =∠ACB ,得△ECD ∽△CFB , ∴CE CF DE BC==68, ∵∠AFE =∠BFC ,∠AEB =∠FCB ,∴△AEF ∽△BCF , ∴EF CF AE BC=, 即668EF =,∴EF=9.2【例2】如图,AB为⊙O的直径,点C为AB上方的圆上一动点,过点C作⊙O的切线l,过点A作直线l的垂线AD,交⊙O于点D,连接OC,CD,BC,BD,且BD与OC交于点E.(1)求证:△CDE≌△CBE;(2)若AB=4,填空:①当弧CD的长度是时,△OBE是等腰三角形;②当BC=时,四边形OADC为菱形.;2.【答案】(1)见解析;(2)2【解析】(1)证明:延长AD交直线l于点F,∵AD垂直于直线l,∴∠AFC=90°,∵直线l为⊙O切线,∴∠OCF=90°,∴∠AFC=∠OCF=90°,∴AD∥OC,∵AB为⊙O直径,∴∠ADB =90°,∴∠OEB =90°,∴OC ⊥DB ,∴DE =BE ,∠DEC =∠BEC =90°,∵CE =CE ,∴△CDE ≌△CBE ;(2)①如图2,连接OD ,由(1)知∠OEB =90°,当△OBE 是等腰三角形时,则△OEB 为等腰直角三角形,∴∠BOE =∠OBE =45°,∵OD =OB ,OE ⊥BD ,∴∠DOC =∠BOE =45°,∵AB =4,∴OD =2,∴弧CD 的长=452180π⨯=2π;②当四边形OADC 为菱形时,则AD =DC =OC =AO =2,由(1)知,BC =DC ,∴BC =2.【变式2—1】(2019·河南南阳一模)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则弧AC 的长为( )A. 2πB. π C 。

北京中考专题 圆的有关计算及证明(解析版)

北京中考专题 圆的有关计算及证明(解析版)

北京中考专题07 圆的有关计算及证明一.选择题(共9小题)1.(2020•丰台区一模)在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD̂=CD̂,根据垂径定理即可判断A、B、C正确,再【分析】根据作图过程可知:AD是⊙O的直径,BD根据DC=OD,可得AD=2CD,进而可判断D选项.【解答】解:根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,̂=CD̂,∴BD∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.2.(2020•海淀区一模)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若OC=12OA,则∠C等于()A.15°B.30°C.45°D.60°【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,OC=12 OA,∴∠C=∠OBC,OB=12OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选:B.3.(2020•平谷区一模)已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧DE,交射线OB于点F,连接CF;(2)以点F为圆心,CF长为半径作弧,交弧DE于点G;(3)连接FG,CG.作射线OG.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BOG=∠AOB B.若CG=OC,则∠AOB=30°C.OF垂直平分CG D.CG=2FG【分析】依据作图即可得出△OCF≌△OGF(SSS),即可得到对应角相等;再根据等边三角形的性质,即可得到∠AOB=30°;依据OC=OE,FC=FG,即可得出OF垂直平分CG,CG=2MG<2FG.【解答】解:由作图可得,OC=OE,FC=FG,OF=OF,∴△OCF≌△OGF(SSS),∴∠BOG=∠AOB,故A选项正确;若CG=OC=OG,则△OCG是等边三角形,∴∠COG=60°,∴∠AOB=12∠COG=30°,故B选项正确;∵OC=OE,FC=FG,∴OF垂直平分CG,故C选项正确;∴CG=2MG<2FG,故D选项错误;故选:D.4.(2020•石景山区一模)如图,点A ,B ,C ,D 在⊙O 上,弦AD 的延长线与弦BC 的延长线相交于点E .用①AB 是⊙O 的直径,②CB =CE ,③AB =AE 中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为( )A .0B .1C .2D .3【分析】根据题意和图形,可以写出其中的两个为题设,一个为结论时的命题是否为真命题,然后写出理由即可.【解答】解:当①②为题设时,③为结论,这个命题是真命题, 理由:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠ACE =90°, 在△ACB 和△ACE 中, {AC =AC∠ACB =∠ACE BC =EC, ∴△ACB ≌△ACE (SAS ), ∴AB =AC ;当①③为题设,②为结论时,这个命题是真命题, 理由:∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠ACB =∠ACE =90°, 在Rt △ACB 和Rt △ACE 中, {AB =AE AC =AC, ∴Rt △ACB ≌Rt △ACE (HL ), ∴CB =CE ;当②③为题设,①为结论时,这个命题是真命题, 理由:在△ACB 和△ACE 中,{AB =AE AC =AC CB =CE, ∴△ACB ≌△ACE (SSS ), ∴∠ACB =∠ACE ,又∵∠ACB +∠ACE =180°, ∴∠ACB =∠ACE =90°, ∴AB 是⊙O 的直径; 故选:D .5.(2020•西城区一模)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点.若∠CAB =65°,则∠ADC 的度数为( )A .65°B .35°C .32.5°D .25°【分析】首先利用直径所对的圆周角是直角确定∠ACB =90°,然后根据∠CAB =65°求得∠ABC 的度数,利用同弧所对的圆周角相等确定答案即可. 【解答】解:∵AB 是直径, ∴∠ACB =90°, ∵∠CAB =65°,∴∠ABC =90°﹣∠CAB =25°, ∴∠ADC =∠ABC =25°, 故选:D .6.(2020•延庆区一模)如图,在⊙O 中,点C 在优弧AB ̂上,将弧BC ̂沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为√5,AB =4,则BC 的长是( )A .2√3B .3√2C .5√32D .√652【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD =BD =12AB =2,于是根据勾股定理可计算出OD =1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到AĈ=CD ̂,所以AC =DC ,利用等腰三角形的性质得AE =DE =1,接着证明四边形ODEF 为正方形得到OF =EF =1,然后计算出CF 后得到CE =BE =3,于是得到BC =3√2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB ,∴AD =BD =12AB =2,在Rt △OBD 中,OD =√(√5)2−22=1, ∵将弧BĈ沿BC 折叠后刚好经过AB 的中点D . ∴弧AC 和弧CD 所在的圆为等圆, ∴AC ̂=CD ̂, ∴AC =DC , ∴AE =DE =1,易得四边形ODEF 为正方形, ∴OF =EF =1,在Rt △OCF 中,CF =√(√5)2−12=2, ∴CE =CF +EF =2+1=3, 而BE =BD +DE =2+1=3, ∴BC =3√2.故选:B.7.(2020•朝阳区一模)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=12,则AB的长为()A.2.5B.4C.5D.10【分析】首先根据垂径定理和CD的长求得CE和DE的长,然后根据同弧所对的圆周角相等确定∠B=∠C,根据正切的定义求得AE和BE的长即可求得答案.【解答】解:∵AB⊥CD,CD=4,∴CE=DE=2,∵∠B=∠C,tan C=1 2,∴tan B=1 2,∴AE=1,BE=4,∴AB=AE+BE=1+4=5,故选:C.8.(2020•朝阳区一模)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE 【分析】根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.【解答】解:∵直线l1∥l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,∴∠ABC=180°−40°2=70°,故A正确;∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.9.(2020•大兴区一模)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°【分析】由圆周角定理知,∠ACB=12∠AOB=40°.【解答】解:∵∠AOB=80°∴∠ACB=12∠AOB=40°.故选:D.二.填空题(共6小题)10.(2020•北京一模)已知⊙O.如图,(1)作⊙O的直径AB;(2)以点A为圆心,AO长为半径画弧,交⊙O于C,D两点;(3)连接CD交AB于点E,连接AC,BC.根据以上作图过程及所作图形,有下面三个推断:①CE=DE;②BE=3AE;③BC=2CE.所有正确推断的序号是.̂=AD̂,再根据垂径定理即可判断;【分析】①连接OC,根据作图过程可得AC②根据作图过程可得AC=OA=OC,即△AOC是等边三角形,再根据等边三角形的性质即可判断;③可以根据直角三角形30度角所对直角边等于斜边的一半,也可以根据三角形相似对应边成比例得结论.【解答】解:如图,连接OC,①∵AB是⊙O的直径,∴∠ACB=90°,∵以点A为圆心,AO长为半径画弧,交⊙O于C,D两点,̂=AD̂,∴AC根据垂径定理,得AB⊥CE,CE=DE,所以①正确;②∵AC=OA=OC,∴△AOC是等边三角形,∵AB⊥CE,∴AE=OE,∴BE=BO+OE=3AE,∴②正确; ③方法一:∵∠CAO =60°,∠ACB =90°,∠CBE =30°, ∴BC =2CE . 所以③正确. 方法二:由△ACE ∽△CBE ,∴AC :AE =BC :CE =2:1, ∴BC =2CE , 所以③正确.11.(2020•东城区一模)如图,半径为√3的⊙O 与边长为8的等边三角形ABC 的两边AB 、BC 都相切,连接OC ,则tan ∠OCB = .【分析】根据切线长定理得出∠OBC =∠OBA =12∠ABC =30°,解直角三角形求得BD ,即可求得CD ,然后解直角三角形OCD 即可求得tan ∠OCB 的值. 【解答】解:连接OB ,作OD ⊥BC 于D , ∵⊙O 与等边三角形ABC 的两边AB 、BC 都相切, ∴∠OBC =∠OBA =12∠ABC =30°, ∴tan ∠OBC =ODBD , ∴BD =ODtan30°=√333=3,∴CD =BC ﹣BD =8﹣3=5, ∴tan ∠OCB =ODCD =√35. 故答案为√35.12.(2020•石景山区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为寸.【分析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE 的长,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.【解答】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.13.(2020•延庆区一模)把光盘、含60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=CB=2,∠OBA=60°,根据OA=AB tan∠OBA可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,如图所示:由切线长定理知AB=CB=2,OA平分∠ABC,∴∠OBA=60°,在Rt△ABO中,OA=AB tan∠OBA=2√3,∴光盘的直径为4√3,故答案为:4√3.14.(2020•房山区一模)如图,AC是⊙O的弦,AC=6,点B是⊙O上的一个动点,且∠ABC=60°,若点M、N分别是AC、BC的中点,则MN的最大值是.【分析】作直径AD,如图,先判断NM为△CAB的中位线得到MN=12AB,再根据圆周角定理得到∠ACD=90°,利用含30度的直角三角形三边的关系得到AD=4√3,由于AB=AD时,AB的值最大,从而得到MN的最大值.【解答】解:作直径AD,如图,∵点M、N分别是AC、BC的中点,∴NM为△CAB的中位线,∴MN=12AB,∵AD为直径,∴∠ACD=90°,∵∠ADC=∠ABC=60°∴CD=√33AC=2√3,AD=2CD=4√3,当AB=AD时,AB的值最大,∴AB最大值为4√3,MN的最大值为2√3.故答案为2√3.15.(2020•密云区一模)如图,AB为⊙O直径,点C为⊙O上一点,点D为AĈ的中点,且OD与AC相交于点E,若⊙O的半径为4,∠CAB=30°,则弦AC的长度为.【分析】利用垂径定理得到OD⊥AC,AE=CE,然后利用含30度的直角三角形三边的关系求出AE,从而得到AC的长.【解答】解:∵点D为AĈ的中点,∴OD⊥AC,∴AE=CE,在Rt△OAE中,∵∠OAE=30°,∴OE=12OA=2,AE=√3OE=2√3,∴AC=2AE=4√3.故答案为4√3.三.解答题(共14小题)16.(2020•北京一模)如图,AB为⊙O的直径,AC为弦,点D为BĈ中点,过点D作DE⊥直线AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若EF=4,sin∠F=35,求⊙O的半径.【分析】(1)如图,连接BC,OD,根据圆周角定理得到∠ACB=90°,求得OD⊥BC,得到OD⊥EF,于是得到结论;(2)解直角三角形得到AE=3,AF=5,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图,连接BC,OD,∵AB 是⊙O 的直径, ∴∠ACB =90°, 又∵EF ⊥AE , ∴BC ∥EF , ∵点D 为BC ̂中点, ∴OD ⊥BC , ∴OD ⊥EF ,又∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:在Rt △AEF 中,∠AEF =90°,EF =4,sin ∠F =35, ∴AE =3,AF =5, ∵OD ∥AE , ∴△ODF ∽△AEF , ∴OD AE=OF AF,设⊙O 的半径为r ,则OD =r ,OF =AF ﹣AO =5﹣r , ∴r3=5−r 5,解得r =158, ∴⊙O 的半径为158.17.(2020•海淀区一模)如图,在Rt △ABC 中,∠BAC =90°,点D 为BC 边的中点,以AD 为直径作⊙O ,分别与AB ,AC 交于点E ,F ,过点E 作EG ⊥BC 于G . (1)求证:EG 是⊙O 的切线;(2)若AF =6,⊙O 的半径为5,求BE 的长.【分析】(1)先判断出EF是⊙O的直径,进而判断出OE∥BC,即可得出结论;(2)先根据勾股定理求出AE,再判断出BE=AE,即可得出结论.【解答】(1)证明:如图,连接EF,∵∠BAC=90°,∴EF是⊙O的直径,∴OA=OE,∴∠BAD=∠AEO,∵点D是Rt△ABC的斜边BC的中点,∴AD=BD,∴∠B=∠BAD,∴∠AEO=∠B,∴OE∥BC,∵EG⊥BC,∴OE⊥EG,∵点E在⊙O上,∴EG是⊙O的切线;(2)∵⊙O的半径为5,∴EF=2OE=10,在Rt△AEF中,AF=6,根据勾股定理得,AE=2−AF2=8,由(1)知OE∥BC,∵OA=OD,∴BE=AE=8.18.(2020•平谷区一模)如图,等边△ABC,作它的外接圆⊙O,连接AO并延长交⊙O于点D,交BC于点E,过点D作DF∥BC,交AC的延长线于点F.(1)依题意补全图形并证明:DF与⊙O相切;(2)若AB=6,求CF的长.【分析】(1)根据题意补全图形即可;(2)连接DC,根据等边三角形的性质和直径所对圆周角是直径即可求出CF的长.【解答】解:(1)如图,依题意补全图形.证明:∵等边△ABC,∴AB=AC,̂=AĈ,∴AB∵AD过圆心O,由垂径定理,∠AEC=90°,∵DF∥BC,∴∠ADF=90°,∴DF与⊙O相切.(2)解:连接DC,∵等边△ABC,∴AB=AC=BC=6,∠BAC=60°,∵AD⊥BC,∴∠DAC=30°,∵AD是直径,∴∠ACD=90°,∴DC=2√3,∵∠DCF=90°,∠F=60°,∴CF=2.19.(2020•顺义区一模)如图,在▱ABCD中,∠B=45°,点C恰好在以AB为直径的⊙O上.(1)求证:CD是⊙O的切线;(2)连接BD,若AB=8,求BD的长.【分析】(1)连接OC,欲证明CD是⊙O的切线,只要证明CD⊥OC即可.(2)连接AC,BD交于点E.求出BE,再根据BD=2BE可得结论.【解答】(1)证明:连接OC.∵OB=OC,∠B=45°,∴∠BCO=∠B=45°.∴∠BOC=90°,∵四边形ABCD是平行四边形,∴AB∥DC.∴∠OCD=∠BOC=90°,∴OC⊥CD,∴CD是⊙O的切线.(2)解:连接AC,BD交于点E.∵AB是直径,AB=8,∴∠ACB=90°.∴BC=AC=4√2,∵四边形ABCD是平行四边形,∴CE=12AC=2√2,∴BE=2+CE2=√40=2√10,∴BD=2BE=4√10.20.(2020•东城区一模)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l 上一点,连接CP并延长,交⊙O于点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若tan∠ACB=12,求线段BP的长.【分析】(1)连接OB,由等腰三角形的性质可得∠ACB=∠ABC,∠OBP=∠OPB=∠CP A,由余角的性质可求∠ABO=90°,可得结论;(2)过点O作OD⊥BP于D,设AP=x,AC=2x,由勾股定理可求AP=2,AC=4,由勾股定理可求CP的长,通过证明△ACP∽△DOP,可求PD的长,由等腰三角形的性质可求BP的长.【解答】证明:(1)连接OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,∵AB=AC,∴∠ACB=∠ABC,∵OA⊥l,∴∠OAC=90°,∴∠ACB+∠CP A=90°,∴∠ABP+∠OBP=90°,∴∠ABO=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)如图,过点O作OD⊥BP于D,∵tan ∠ACB =AP AC =12, ∴设AP =x ,AC =2x , ∴AB =2x ,OP =OB =5﹣x , ∵AO 2=OB 2+AB 2, ∴25=(5﹣x )2+4x 2, ∴x =2, ∴AP =2,AC =4 ∴OB =OP =3, ∴CP =√AC 2+AP2=√16+4=2√5,∵∠CAP =∠ODP =90°,∠APC =∠OPD , ∴△ACP ∽△DOP , ∴PD PA=OP CP=OD CA,∴PD =OP⋅PA CP=35√5, ∵OB =OP ,OD ⊥BP , ∴BP =2PD =6√55. 21.(2020•石景山区一模)如图,AB 是⊙O 的直径,直线PQ 与⊙O 相切于点C ,以OB ,BC 为边作▱OBCD ,连接AD 并延长交⊙O 于点E ,交直线PQ 于点F . (1)求证:AF ⊥CF ;(2)连接OC ,BD 交于点H ,若tan ∠OCB =3,⊙O 的半径是5,求BD 的长.【分析】(1)连接OC,如图,根据平行四边形的性质得到DC∥OB,DC=OB,推出四边形OCDA是平行四边形,得到AF∥OC,根据切线的性质得到∠OCQ=90°,于是得到结论;(2)过点B作BN⊥OC于点N,如图,根据平行四边形的性质得到BD=2BH,CH=12CO=52.tan∠NCB=BNCN=3,设CN=x,BN=3x,求得ON=5﹣x.根据勾股定理即可得到结论.【解答】(1)证明:连接OC,如图,∵四边形OBCD是平行四边形,∴DC∥OB,DC=OB,∵AO=OB,∴DC∥AO,DC=AO,∴四边形OCDA是平行四边形,∴AF∥OC,∵直线PQ与⊙O相切于点C,OC是半径,∴∠OCQ=90°,∴∠AFC=∠OCQ=90°,即AF⊥CF;(2)解:过点B作BN⊥OC于点N,如图,∵四边形OBCD是平行四边形,∴BD=2BH,CH=12CO=52.在Rt△BNC中,tan∠NCB=BNCN=3,设CN=x,BN=3x,∴ON=5﹣x.在Rt△ONB中,(5﹣x)2+(3x)2=52,解得x1=0(舍),x2=1.∴BN=3x=3,HN=52−x=32.在Rt△HNB中,由勾股定理可得BH=3√5 2.∴BD=2BH=3√5.22.(2020•西城区一模)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若AD̂=AĈ,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,̂=CD̂,∴AD̂=AĈ,∵AD̂=CD̂=AĈ,∴AD∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.23.(2020•通州区一模)已知:△ABC为等边三角形.(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.①根据题意,将(1)中图形补全;②求证:EF∥BC;③若DE=2,求EF的长.【分析】(1)直接利用外接圆的作法作出三角形任意两边的垂直平分线,进而得出外接圆圆心,进而得出答案;(2)①按题意画出图形即可;②连接OB,OC,证明AE⊥BC.可得出AE⊥EF,则结论得证;③得出∠BOD=60°,设OD=x,则OB=OE=2+x,得出cos∠BOD=ODOB=x2+x=12,求出x=2,得出tan∠BAD=EFAE=EF8=√33,则可求出EF的值.【解答】解:(1)如图所示:⊙O即为所求.(2)①如图2,补全图形:②证明:连接OB,OC,∵OB=OC,∴点O在线段BC的垂直平分线上,∵△ABC为等边三角形,∴AB=AC,∴点A在线段BC的垂直平分线上,∴AO垂直平分BC,∴AE⊥BC.∵直线EF为⊙O的切线,∴AE⊥EF,∴EF∥BC;③解:∵△ABC为等边三角形,∴∠BAC=60°,∵AB=AC,AE⊥BC,∴∠BAD=12∠BAC,∴∠BAD=30°,∴∠BOD=60°,∵DE=2,设OD=x,∴OB=OE=2+x,在Rt△OBD中,∵OD⊥BC,∠BOD=60°,∴cos∠BOD=ODOB=x2+x=12,∴x=2,∴OD=2,OB=4,∴AE=8,在△AEF中,∵AE⊥EF,∠BAD=30°,∴tan∠BAD=EFAE=EF8=√33,∴EF=8√3 3.24.(2020•延庆区一模)如图,AB是⊙O的直径,点C是⊙O上的一点,点D是弧BC的中点,连接AC,BD,过点D作AC的垂线EF,交AC的延长线于点E,交AB的延长线于点F.(1)依题意补全图形;(2)判断直线EF与⊙O的位置关系,并说明理由;(3)若AB=5,BD=3,求线段BF的长.【分析】(1)依据几何语言进行画图即可;(2)连接OD.求得∠FDO=90°,即可得到直线EF是⊙O的切线;(3)连接AD.依据△ABD∽ADE,即可得到AE=3.2.设BF=x,则OF=2.5+x,AF=5+x.再根据△ODF∽△AEF,即可得到BF=45 7.【解答】解:(1)如图所示:(2)相切,理由如下:如图,连接OD.∵点D是弧BC的中点,∴∠BOD=∠F AE.∴OD∥AE.∴∠FDO=∠E.∵AE⊥EF,∴∠E=90°.∴∠FDO=90°.∴直线EF是⊙O的切线.(3)如图,连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵AB=5,BD=3,∴AD=4.∵∠E =∠ADB =90°,∠BAD =∠DAE , ∴△ABD ∽ADE , ∴AE AD=AD AB,∴AE =3.2.设BF =x ,则OF =2.5+x ,AF =5+x . ∵OD ∥AE , ∴△ODF ∽△AEF , ∴OD OF=AE AF,∴2.52.5+x=3.25+x,解得x =457. ∴BF =457. 25.(2020•门头沟区一模)如图,∠APB ,点C 在射线PB 上,PC 为⊙O 的直径,在∠APB 内部且到∠APB 两边距离都相等的所有的点组成图形M ,图形M 交⊙O 于D ,过点D 作直线DE ⊥P A ,分别交射线P A ,PB 于E ,F .(1)根据题意补全图形; (2)求证:DE 是⊙O 的切线;(3)如果PC =2CF ,且DF =√3,求PE 的长.【分析】(1)根据要求画出图形即可.(2)欲证明DE 是⊙O 的切线,只要证明DE ⊥OD 即可.(3)首先证明OF =2OD ,推出∠OFD =30°,解直角三角形求出OD ,OF ,PF 即可解决问题. 【解答】(1)解:图形如图所示:(2)证明:连接OD.∵OD=OP,∴∠ODP=∠OPD,∴PD平分∠APB,∴∠APD=∠POD,∴∠APD=∠ODP,∴OD∥P A,∵DE⊥P A,∴DE⊥OD,∴DE是⊙O的切线.(3)解:∵PC=2CF,∴可以假设CF=x,则PC=2x,OD=12OF,∵∠ODF=90°,∴∠OFD=30°,∵DF=√3,∴OD=DF•tan30°=1,∴OF=2OD=2,PF=3,在Rt△PEF中,∵∠PEF=90°,∠PFE=30°,∴PE=12PF=32.26.(2020•朝阳区一模)如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O 到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.【分析】(1)根据题意可得三角形ABC是直角三角形,再根据切线长定理即可求出a的值;(2)①根据题意可得点O是三角形ABC的内心,再根据三角形内角和即可得结论;②作OE⊥MN于点E,根据角平分线的性质可得OD=OE,所以得OE为圆O的半径,进而可得MN为圆O的切线,即可得出结论.【解答】解:(1)如图,∵AB=3,AC=4,BC=5,∴33+42=52,∴∠A=90°,∴△ABC是直角三角形,由题意可知:图形G是以O为圆心,a为半径的圆,AB,AC,BC与圆O相切,设切点分别为F,D,Q,连接OF,OD,OQ,∴OF⊥AB,OD⊥AC,OQ⊥BC,∴四边形AFOD为正方形,∴AF=AD=OF=OD=a,根据切线长定理可知:BF=BQ=3﹣a,CD=CQ=4﹣a,∴3﹣a+4﹣a=5,解得a=1;(2)①由题意可知:点O是△ABC的内心,∴∠ABM=∠CBM,∵MA⊥AB,MB⊥BC,∴∠A=∠BNM=90°,∴∠BMA=∠BMN;②如图,作OE⊥MN于点E,∵∠BMA=∠BMN,∵OD⊥AC,∴OD=OE,∴OE为圆O的半径,∴MN为圆O的切线,∴直线MN与图形G的公共点个数为1.27.(2020•密云区一模)如图,AB为⊙O的直径,点C、点D为⊙O上异于A、B的两点,连接CD,过点C作CE⊥DB,交DB的延长线于点E,连接AC、AD.(1)若∠ABD=2∠BDC,求证:CE是⊙O的切线.(2)若⊙O的半径为√5,tan∠BDC=12,求AC的长.【分析】(1)连接OC,可证明OC∥DE,由于CE⊥DB,∠CED=90°,所以∠OCE=90°,OC⊥CE,根据切线的判定即可求出答案.(2)连接BC,由于∠BDC=∠BAC,所以tan∠BAC=tan∠BDC=12,设BC=x,AC=2x,所以AB=√5x,列出方程即可求出x的值.【解答】解:(1)连接OC,∵OC =OA ,∴∠OCA =∠OAC ,∴∠COB =2∠OAC ,∵∠BDC =∠OAC ,∠ABD =2∠BDC ,∴∠COB =∠ABD ,∴OC ∥DE ,∵CE ⊥DB ,∠CED =90°,∴∠OCE =90°,OC ⊥CE ,∴CE 是⊙O 的切线.(2)连接BC ,∵∠BDC =∠BAC ,∴tan ∠BAC =tan ∠BDC =12,∵AB 是⊙O 的直径,∴∠BCA =90°,∴BC AC =12, 设BC =x ,AC =2x ,∴AB =√5x ,∵⊙O 的半径为√5,∴√5x =2√5,∴x =2,∴AC =2x =4.28.(2020•大兴区一模)已知:如图,在△ABC 中,∠B =∠C .以AB 为直径的⊙O 交BC 于点D ,过点D作DE ⊥AC 于点E .(1)求证:DE 与⊙O 相切;(2)延长DE交BA的延长线于点F,若AB=8,sin B=√55,求线段F A的长.【分析】(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可;(2)连接AD,根据圆周角定理得到∠ADB=90°,根据三角函数的定义得到AD=AB•sin B=8√55,求得∠B=∠ADE,得到sin B=sin∠ADE=AEAD=√55,求得AE=√55AD=√55×8√55=85,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,则OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C.∴∠ODB=∠C,∴OD∥AC.∴∠ODE=∠DEC=90°,∴DE是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=8,sin B=√5 5,∴AD=AB•sin B=8√5 5,∵∠ODB+∠ADO=∠ADO+∠ADE=90°,∴∠BDO=∠ADE,∴∠B=∠ADE,∴sin B=sin∠ADE=AEAD=√55,∴AE=√55AD=√55×8√55=85,∵OD∥AE,∴△F AE∽△FOD,∴FAFO =AEOD,∵AB=8,∴OD=AO=4,∴FAFA+4= 2 5∴F A=8 3.29.(2020•丰台区一模)在Rt ABC∆中,90A∠=︒,22.5B∠=︒,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC 延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE BD⊥交图形W于点E,EP的延长线交AB于点F,当2a=时,求线段EF的长.【分析】(1)连接AP,根据圆周角定理得到45APD∠=︒,求得DA AP a==,得到45D APD∠=∠=︒,推出D A PA⊥,于是得到结论;(2)根据等腰三角形的性质得到22.5BAP B∠=∠=︒,求得67.5PAC PCA∠=∠=︒,推出点C在P上,根据垂径定理得到AC CE=,求得90APE∠=︒,于是得到结论.【解答】解:(1)直线DA与图形W的公共点的个数为1个;点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∠=︒,22.5B∴∠=︒,45APD点D到点A的距离也等于a,∴==,DA AP aD APD∴∠=∠=︒,45∴∠=︒,PAD90∴⊥,DA PA∴为P的切线,DA∴直线DA与图形W的公共点的个数为1个;(2)AP BP=,∴∠=∠=︒,BAP B22.5BAC∠=︒,90∴∠=∠=︒,PAC PCA67.5∴==,PA PC a∴点C在P上,⊥交图形W于点E,AE BD=,∴AE CE∴=,AC CEDPE APD∴∠=∠=︒,45APE∴∠=︒,90===,2EP AP a∴=,45AE∠=︒,E⊥,∠=︒,AE BDB22.567.5BAE ∴∠=︒,67.5AFE BAE ∴∠=∠=︒.EF AE ∴==。

中考专题复习——圆的相关证明(附答案)

中考专题复习——圆的相关证明(附答案)

中考复习专题——圆的相关证明题1.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若P ∠︒=42,求∠CAB 的大小; (Ⅱ)如图②,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P , 若∠CAB ︒=10,求∠P 的大小.2.已知AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交AB 的延长线于点P .(Ⅰ)如图①,连接AC ,BC ,若OB BP =,求A ∠和∠P 的大小;(Ⅱ)如图②,过点P 作⊙O 的切线PD ,切点为D ,连接CD ,BD ,若∠BDC =32°,求BDP ∠的大小.图①图②O B COB D CPE AC3.已知点A ,B ,C 是⊙O 上的三个点,︒=∠120AOB . (Ⅰ)如图①,若AC =BC ,求C ∠和CAO ∠的大小;(Ⅱ)如图②,过点C 作⊙O 的切线,交BA 的延长线于点D ,若AC =AD ,求CAO ∠的大小.4.已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(Ⅰ)如图①,求证:AC 平分DAB ∠;(Ⅱ)如图②,过B 作BF AD ∥交⊙O 于点F ,连接CF ,若45AC =4DC =,求CF 和⊙O 半径的长. ABCDEO图①ABCDEO图②F5.已知,△DBC内接于⊙O,DB=DC.(Ⅰ)如图①,过点B作射线BE交⊙O于点A,若∠EAD=75°,求∠BDC的度数.(Ⅱ)如图②,分别过点B、点D作⊙O的切线相交于点E,若∠E=30°,求∠BDC的度数.①②6.已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.7.在ABC △中90B ∠=︒D 为AC 上一点,以CD 为直径的⊙O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.8. 已知:在⊙O 中OA BC ⊥垂足为E ,点D 在⊙O 上.(Ⅰ)如图①若50AOB ∠=︒,求ADC ∠和∠CAO 的大小;(Ⅱ)如图②CD ∥AO ,过点D 作⊙O 的切线,与BC 的延长线相交于点P ,若26∠=︒ABC 求∠P 的大小.图①图②ABCF OED ABCOED F 图①O EDCBA图②POE DCBA9.如图,在⊙O 中,直径AB 与弦CD 相交于点E ,58ABC ∠=︒. (Ⅰ)如图①若85AEC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②若CD AB ⊥过点D 作⊙O 的切线DF ,与AB 的延长线相交于点F ,求F ∠的大小.10. 已知AB 是⊙O 的直径,CD 、CB 是⊙O 的弦,且AB CD ∥.(Ⅰ)如图①若25ABC ∠=︒,求BAC ∠和ODC ∠的大小;(Ⅱ)如图②过点C 作⊙O 的切线,与BA 的延长线交于点F 若OD CF ∥求ABC ∠的大小.图①图②EABO DCFE ABO DC图②图①11. 如图,⊙O 是△ABC 的外接圆,AE 切⊙O 于点A ,AE 与直径BD 的延长线相交于点E .(Ⅰ)如图①,若∠C =71°,求∠E 的大小;(Ⅱ)如图②,当AE =AB ,DE =2时,求∠E 的大小和⊙O 的半径.12. 已知DA 、DC 分别与⊙O 相切于点A 点C ,延长DC 交直径AE 的延长线于点P . (Ⅰ)如图①若DC =PC ,求∠P 的度数;(Ⅱ)如图②在⊙O 上取一点B ,连接AB 、BC 、BE ,当四边形ABCD 是平行四边形时,求∠P 及∠AEB 的大小. OEEDCBAD O C BA图①图②DECAPOB图① 图②ECAPOD13.如图①,AB 是⊙O 的弦,OE ⊥AB ,垂足为P ,交AB 于点E ,且OP =3PE ,AB =74.(Ⅰ)求⊙O 的半径;(Ⅱ)如图②过点E 作⊙O 的切线CD ,连接OB 并延长与该切线交于点D ,延长OA 交CD 于C ,求OC 的长. 图②图①EP A BCODP EOBA参考答案1.解:(Ⅰ)如图,连接OC∵ ⊙O 与PC 相切于点C ∴ OC PC ⊥,即90OCP ∠=︒ ∵ 42P ∠=︒∴ 9048COB P ∠=︒-∠=︒ 在Rt OPC △中,48CAB ACO COP ∠+∠=∠=︒ ∵OA =OC ∴∠CAB =∠ACO ∴ 24CAB ∠=︒(Ⅱ)∵ E 为AC 的中点∴ OD AC ⊥,即90AEO ∠=︒在Rt AOE △中,由10EAO ∠=︒得9080AOE EAO ∠=︒-∠=︒ ∴ 1402ACD AOD ∠=∠=︒∵ ACD ∠是ACP △的一个外角∴ 30P ACD CAP ∠=∠-∠=︒2. 解:(Ⅰ)如图①连接OC ∵PC 是⊙O 的切线∴︒=∠90OCP ∵OB BP =∴OB BC =∵OC OB =∴BOC ∆为等边三角形, ∴∠BOC=60° ∴︒=∠=∠3021BOC A ∠P=90°-∠COB =30°(Ⅱ)如图② 连接OC 、OD 设CD 交OP 于点E∵PC ,PD 是⊙O 的切线∴PD PC = ︒=∠=∠90ODP OCP ∵OD OC =∴OP 为CD 的垂直平分线 ∴︒=∠=∠90DEP CEP∵∠BDC =32°∴∠OBD =90°-∠BDC =58° ∵OB OD =∴∠ODB =∠OBD =58° ∴∠BDP =90°-58°=32°3.解: (Ⅰ)∵︒=∠120AOB ∴∠ACB= 12 ∠AOB=60°如图① 连接OC∵AC =BC ∴∠AOC=∠BOC∵∠AOC+∠BOC +∠AOB=360° ∴∠AOC =12 (360°-120°)=120° ∵OA OC ∴∠CAO=∠ACO=12(180°-120°)=30°O AB PCOAB D CPE(Ⅱ)如图② 连接OC设∠ACD= x ∵ACAD ∴∠ACD =∠ADC= x∴∠CAB=2x ∵∠AOB=120°OAOB ∴∠OAB =∠OBA= 12(180°-120°)=30°∵CD 是⊙O 的切线∴∠OCD=90° ∵OAOC ∴∠OCA =∠OAC∴90°-x=2x -30° 解得x=40° ∴∠CAB=80°∴∠CAO=∠CAB -∠OAB =50°4.(Ⅰ)证明:连接OC ∵CD 为⊙的切线∴OC CD ⊥即90OCM OCD ∠=∠=︒ ∵AD CD ⊥垂足为D ∴90ADC ∠=︒ ∵90ADC OCM ∠=∠=︒∴OC AD ∥ ∴DAC ACO ∠=∠∵OC OA =∴CAO ACO ∠=∠∴DAC CAO ∠=∠∴AC 平分DAB ∠ (Ⅱ)解:连接AF 延长CO 交AF 于G ∵AB 为⊙的直径 ∴=90AFB ∠︒ ∵OC AD BF AD ∥,∥ ∴CO BF ∥∴90AFB AGC ∠=∠=︒ ∴OC AF ⊥由垂径定理可得AC=CF∴45AC CF == ∵90ADC ∠=︒22O O ABC DEOF GABCDEOM∴90ADC DCO AGC ∠=∠=∠=︒ ∴四边形ADCG 是矩形∴8AD CG == 4CD AG == 在Rt AGO 中,得222AG OG AO += 设OC x =则,8OA x OG x ==- 可得方程()22248x x +-=解得5x =. ∴⊙半径的长为545CF =.5.(Ⅰ)解:∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠C =180° ∵∠EAD +∠DAB =180° ∴∠C =∠EAD ∵∠EAD =75° ∴∠C =75° ∵DB =DC∴∠DBC =∠C =75°∴∠BDC =180°﹣∠C ﹣∠DBC =30°(Ⅱ)解:连结OB OD∵EB ED 与⊙O 相切于点B 点D∴ED OD ⊥⊥,EB OB ∴ ︒=∠︒=∠90ODE 90,OBE∵︒=∠+∠+∠+∠360BOD ODE E OBE ︒=∠30E ∴︒=∠150BOD∴︒=∠=∠7521BOD C ∵DB =DC ,∴∠DBC =∠C =75°,∴∠BDC =180°﹣∠C ﹣∠DBC =30° O6. (I )解:连接OB∵P A 、PB 与圆O 相切于点A 点,B∴PO 平分∠APB 且∠PBO =90° ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° ∴∠BPO =90°-∠BOP =90°-56°=34° ∴∠APB =2∠BPO =2×34°=68°又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC = 62)56180(21=-∴∠APB =68°∠BDC= 62 (II )连接OB∵BC =CE ∴∠CBE =∠CEB∵∠BCP =28° ∴∠CBE =76228180=-∵OB =OC ∴∠OBC =∠OCB =28° ∴∠EBO =∠CBE -∠OBC =76°-28°=48° ∵P A 与圆O 相切于点A∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42°7.解:(Ⅰ)如图连接OE .∵ AB 与⊙O 相切∴ OE AB ⊥,即90AEO ∠=︒ ∵ 27ACE ∠=︒∴ 254AOE ACE ∠=∠=︒ ∴ 9036A AOE ∠=︒-∠=︒ ∵ OE OC =∴ OEC OCE ∠=∠∵ 90B ∠=︒∴ //OE BC ∴ ECB OEC ∠=∠ ∴ 27ECB ∠=︒ (Ⅱ)如图,连接OE OF∵ //OE BC //EF AC ∴ 四边形OEFC 为平行四边形 ∴ OE CF = ∴ OC OF CF == ∴ 60ACB ∠=︒∴ 9030A ACB ∠=︒-∠=︒ABCOED F ABCF OED8. 解:(Ⅰ)∵OA BC ⊥ ∴AB AC = 90∠=︒AEC∴∠=∠ACB ADC ∵1252∠=∠=︒ACB AOB∴25∠=∠=︒ADC ACB9065∠=︒-∠=︒CAO ACB(Ⅱ)连接BD . 由OA BC ⊥知,90∠=∠=︒AEB BEO∴ 9064∠=︒-∠=︒OAB ABC ∵AO ∥CD ∴90∠=∠=︒BCD BEO ∴BD 是⊙O 的直径又PD 与⊙O 相切∴⊥BD PD . 即90∠=︒BDP∵=OA OB ∴64∠=∠=︒OBA OAB∴642636∠=∠-∠=︒-︒=︒CBD ABO ABC ∴9052∠=︒-∠=︒P CBD9. (Ⅰ)∵∠AEC 是ΔBEC 的一个外角 58ABC ∠=︒85AEC ∠=︒27C AEC ABC ∴∠=∠-∠=︒∵在⊙O 中BAD C ∠=∠27BAD ∴∠=︒ AB 为⊙O 的直径90ADB ∴∠=︒ ∵在⊙O 中58ADC ABC ∠=∠=︒ 又CDB ADB ADC ∠=∠-∠32CDB ∴∠=︒(Ⅱ)连接OD∵CD ⊥AB 90CEB ∴∠=︒.9032E E CB BC =-∴∠=∠︒︒∴264DOB DCB ∠=∠=︒ ∵DF 是⊙O 的切线∴90ODF ∠=︒90906426F DOB ∴∠=︒-∠=︒-︒=︒图②POE DCBA图①O E DCBA10. 解:(Ⅰ)如图连接OC ∵ AB 是⊙O 的直径 ∴ 90ACB ∠=︒∴ 90BAC ABC ∠+∠=︒由25ABC ∠=︒得65BAC ∠=︒又AB CD ∥得25ABC BCD ∠=∠=︒ ∵ OB OC = ∴ 25OCB ABC ∠==∠=︒ 则50OCD OCB BCD ∠=∠+∠=︒ 由OC OD =得50ODC OCD ∠=∠=︒(Ⅱ)如图,连接OC∵CF 切⊙O 于点C ∴OC FC ⊥则90OCF ∠=︒∵ OD CF ∥ ∴ 90DOC OCF ∠=∠=︒ 又OC OD =则45ODC OCD ∠==∠=︒ 由AB CD ∥得45BOD ODC ∠=∠=︒∴135BOC DOC BOD ∠=∠+∠=︒ ∵ OC OB = ∴22.5ABC OCB ∠=∠=︒11. 解:(Ⅰ)连接OA .∵AE 切⊙O 于点A ∴OA ⊥AE ,∴∠OAE =90° ∵∠C =71° ∴∠AOB =2∠C =2×71°=142° 又∵∠AOB +∠AOE =180° ∴∠AOE =38° ∵∠AOE +∠E =90° ∴∠E =90°﹣38°=52° (Ⅱ)连接OA 设∠E = x .∵AB =AE ∴∠ABE =∠E = x ∵OA =OB ∴∠OAB =∠ABO = x ∴∠AOE =∠ABO +∠BAO =2x∵AE 是⊙O 的切线∴OA ⊥AE ,即∠OAE =90°在△OAE 中∠AOE +∠E =90°即2x +x =90°解得30x =︒∴∠E =30° 在Rt △OAE 中OA =21OE∵OA =OD ∴OA =OD =DE∵DE =2∴OA =2即⊙O 的半径为212.解:(Ⅰ)∵DA 、DC 是⊙O 的切线 ∴DA =DC OA ⊥DA ∴∠DAO =90°∵DC =PC ∴DA =DC =PC ∵∠DAP =90° ∴sin P=DP AD =21∴∠P=30° (Ⅱ)连接OC 、AC∵DA ,DC 是⊙O 的切线 ∴DA =DC∵四边形ABCD 是平行四边形∴□ABCD 是菱形 ∴DA =DC =CB =AB ∠ABC =∠ADC ∵∠AOC =2∠ABC ∴∠AOC =2∠ADC∵DA 、DC 是⊙O 的切线∴OA ⊥AD OC ⊥DC ∴∠DAO =∠DCO =90°∵∠ADC +∠DCO+∠AOC +∠DAO =360° ∴∠ADC +∠AOC =180°∴3∠ADC =180°∴∠ADC =60°∴∠P =90°-∠ADC =30°,∠ABC =60°又AB =BC ∴△ABC 是等边三角形 ∴∠ACB =60° ∴∠AEB =∠ACB=60°13. 解:(Ⅰ)∵OE ⊥AB∴1272APAB 设PE =x 则OP =3x OA =OE =4x在Rt OAP △中222OA OP AP =+即2216928x x =+ 解得x =2(负舍)∴4x =8 ∴半径OA 为8 (Ⅱ)∵ CD 为⊙O 的切线 ∴OE ⊥CD又∵OE ⊥AB ∴AB //CD ∴34OA OP OCOE∴323OCECAPODB。

初三数学专题02 圆的证明与计算题研究(含答案)

初三数学专题02 圆的证明与计算题研究(含答案)

专题二:圆的证明与计算题研究【题型导引】题型一:与圆的性质有关的证明与计算(1)与圆内三角形、四边形为背景研究形状及其线段、周长面积等问题;(2)圆内多边形关于角的问题;(3)已知圆内特殊三角形背景下线段的长度计算等。

题型二:与圆的切线有关的证明与计算(1)已知圆的切线与特殊三角形的关系,计算半径、线段等问题;(2)已知圆与特殊三角形相关条件判定圆的切线及其线段计算等问题;(3)已知圆与特殊四边形相关条件判定圆的切线及其线段计算等问题。

题型三:与扇形、弧长等有关的计算(1)根据圆的性质及其相关条件进行计算弧长、扇形面积等问题;(2)根据圆的性质及其相关条件进行计算圆锥等问题; 【典例解析】类型一:与圆的性质有关的证明与计算例题1:(2019•湖北省荆门市•10分)已知锐角△ABC 的外接圆圆心为O ,半径为R . (1)求证:sin ACB=2R ; (2)若△ABC 中∠A =45°,∠B =60°,AC =3,求BC 的长及sin C 的值.【解答】解:(1)如图1,连接AO 并延长交⊙O 于D ,连接CD , 则∠CD =90°,∠ABC =∠ADC , ∵sin ∠ABC =sin ∠ADC =AC AD =2ACR∴sin ACB=2R ; (2)∵sin ACB=2R ,同理可得:sin AC B -sin AB C =sin BCA=2R ,∴2R =3sin 60︒=2,∴BC =2R •sin A =2sin45°=2, 如图2,过C 作CE ⊥AB 于E , ∴BE =BC •cos B =2cos60°=22,AE =AC •cos45°=62, ∴AB =AE +BE =622+, ∵AB =AR •sin C ,∴sin C ==624+.技法归纳:圆的性质综合运用题中,经常用到的重要性质及技法:①运用圆是轴对称图形也是中心对称图形可以对相关结论作合理的猜测;②利用垂径定理,通过在由半弦、半径、弦心距组成的直角三角形,运用勾股定理或锐角三角函数进行计算;③在同圆或等圆中,圆心角、弧、弦、弦心距等量对等量关系,可以转化相等关系;④由直径所对的圆周角是直角构造直角三角形;⑤相似三角形、锐角三角函数、勾股定理是计算线段长度及其线段数量关系的重要手段. 类型二:与圆的位置关系有关的证明与计算例题2:(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E . (1)当PB 是⊙O 的切线时, 求证:∠PBD =∠DAB ; (2)求证:BC 2-CE 2=CE ·DE ;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【解析】 (1)∵AB 是⊙O 的直径, ∴∠ADB =90°,∴∠BAD +∠ABD =90°. ∵PB 是⊙O 的切线,∴∠ABP =90°,∴∠PBD +∠ABD =90°, ∴∠BAD =∠PBD .(2)∵∠A =∠DCB ,∠AED =∠CEB , ∴△ADE ∽△CBE , ∴DE BE =AECE,即DE ·CE =AE ·BE . 如图,连接OC .设圆的半径为r , 则OA =OB =OC =r ,则DE ·CE =AE ·BE =(OA -OE )(OB +OE )=r 2-OE 2. ∵AC ︵=BC ︵,∴∠AOC =∠BOC =90°, ∴CE 2=OE 2+OC 2=OE 2+r 2, BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2, ∴BC 2-CE 2=DE ·CE .(3)∵OA =4,∴OB =OC =OA =4, ∴BC =OB 2+OC 2=4 2. 又∵E 是半径OA 的中点, ∴AE =OE =2,则CE =OC 2+OE 2=42+22=2 5. ∵BC 2-CE 2=DE ·CE , ∴(42)2-(25)2=DE ·25,解得DE =655.技法归纳:与切线有关的证明与计算,最常用的辅助线是连接经过切点的半径,利用直径构造直角三角形,利用圆周角相等转移角的位置等.运用三角形全等、三角形相似、勾股定理、锐角三角函数等知识进行证明与计算.类型三:与扇形面积有关的证明与计算例题3:(2019•湖北武汉•8分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN 于D .C 两点. (1)如图1,求证:AB 2=4AD •BC ;(2)如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积.【解答】(1)证明:连接OC .OD ,如图1所示: ∵AM 和BN 是它的两条切线, ∴AM ⊥AB ,BN ⊥AB , ∴AM ∥BN ,∴∠ADE +∠BCE =180° ∵DC 切⊙O 于E , ∴∠ODE =12∠ADE ,∠OCE =12∠BCE , ∴∠ODE +∠OCE =90°, ∴∠DOC =90°, ∴∠AOD +∠COB =90°, ∵∠AOD +∠ADO =90°, ∴∠AOD =∠OCB , ∵∠OAD =∠OBC =90°, ∴△AOD ∽△BCO ,∴AD OA BO BC=,∴OA2=AD•BC,∴(12AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD 3 OA,Rt△BOC中,BC3OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB3∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×12×332120(3)π⨯3π.技法归纳:求与圆有关的阴影部分的面积时,常常是通过把不规则图形的面积,用扇形的面积和三角形的面积的和差来解决.特别地,对于旋转图形,要利用旋转的性质,确定旋转的中心(扇形的圆心)和旋转半径(相应的线段)的位置的变化,常常运用三角形全等进行面积的割补.【变式训练】1. 如图所示,在△ABC中,AB=AC,其内切圆⊙O与边BC,AC,AB分别切于点D,E,F.(1)求证:BF=CE;(2)若∠ACB=30°,CE=2 3,求AC的长.【解析】:(1)证明:连结AO并延长,∵AB=AC,∴AO的延长线交BC于切点D,则BD=CD.又由切线长定理,得BF=BD,CD=CE,∴BF=CE.(2)∵CE=2 3,∴CD=2 3.又∵AD⊥BC,∴∠ADC=90°.又∵∠ACB=30°,∴AC=CDcos∠ACB=2 3cos30°=2 332=4.2. (2019•黑龙江省齐齐哈尔市•8分)如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC=4,求图中阴影部分的面积.【解答】(1)证明:连接OA,则∠COA=2∠B,∵AD=AB,∴∠B=∠D=30°,∴∠COA=60°,∴∠OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即CD是⊙O的切线;(2)解:∵BC=4,∴OA=OC=2,在Rt△OAD中,OA=2,∠D=30°,∴OD=2OA=4,AD=2,所以S△OAD=OA•AD=×2×2=2,因为∠COA=60°,所以S扇形COA==π,所以S阴影=S△OAD﹣S扇形COA=2﹣.3. (2018辽宁抚顺)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD =CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.【解答】(1)证明:连接O C.∵CB =CD ,CO =CO ,OB =OD , ∴△OCB ≌△OCD , ∴∠ODC =∠OBC =90°, ∴OD ⊥DC , ∴DC 是⊙O 的切线. (2)解:设⊙O 的半径为r . 在Rt △OBE 中,∵OE 2=EB 2+OB 2, ∴(8﹣r )2=r 2+42, ∴r =3, ∵tan ∠E ==,∴=,∴CD =BC =6, 在Rt △ABC 中,AC =22AB BC += 2266+=62.4. (2019•甘肃庆阳•8分)已知:在△ABC 中,AB =A C .(1)求作:△ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法) (2)若△ABC 的外接圆的圆心O 到BC 边的距离为4,BC =6,则S ⊙O = .【解答】解:(1)如图⊙O 即为所求.(2)设线段BC 的垂直平分线交BC 于点E . 由题意OE =4,BE =EC =3, 在Rt △OBE 中,OB =2234 =5, ∴S 圆O =π•52=25π. 故答案为25π.5. (2018云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF .(1)求证:AD ⊥ED ;(2)若CD =4,AF =2,求⊙O 的半径.【解答】(1)证明:连接OC ,如图, ∵AC 平分∠BAD , ∴∠1=∠2, ∵OA =OC , ∴∠1=∠3, ∴∠2=∠3, ∴OC ∥AD ,∵ED 切⊙O 于点C , ∴OC ⊥DE , ∴AD ⊥ED ;(2)解:OC 交BF 于H ,如图, ∵AB 为直径, ∴∠AFB =90°,易得四边形CDFH 为矩形, ∴FH =CD =4,∠CHF =90°, ∴OH ⊥BF , ∴BH =FH =4, ∴BF =8,在Rt △ABF 中,AB = 22AF BF += 2228+=217,∴⊙O 的半径为17.6. (2019•四川省凉山州•8分)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F . (1)求证:DF 是⊙O 的切线; (2)若OB =BF ,EF =4,求AD 的长.【解答】解:(1)如图,连接OD ,BD , ∵AB 为⊙O 的直径, ∴∠ADB =∠BDC =90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.7. (2019•山东省德州市•12分)如图,∠BPD=120°,点A.C分别在射线PB.PD上,∠P AC=30°,AC =3.(1)用尺规在图中作一段劣弧,使得它在A.C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)根据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段P A .PC 围成的封闭图形的面积.【解答】解:(1)如图,(2)已知:如图,∠BPD =120°,点A .C 分别在射线PB .PD 上,∠P AC =30°,AC =3过A .C 分别作PB .PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB .PC 为⊙O 的切线;证明:∵∠BPD =120°,P AC =30°,∴∠PCA =30°,∴P A =PC ,连接OP ,∵OA ⊥P A ,PC ⊥OC ,∴∠P AO =∠PCO =90°,∵OP =OP ,∴Rt △P AO ≌Rt △PCO (HL )∴OA =OC ,∴PB .PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°﹣30°=60°,∴△OAC 为等边三角形,∴OA =AC =3AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP 33=2,∴劣弧AC 与线段P A .PC 围成的封闭图形的面积=S 四边形APCO ﹣S 形AOC =2×12×3×2260(23)360=3﹣2π.8. (2019湖北省鄂州市)(10分)如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O 于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,P B.(1)求证:PB是⊙O的切线;(2)求证:E为△P AB的内心;(3)若cos∠P AB=1010,BC=1,求PO的长.【解答】(1)证明:连结OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP =∠OAP ,∵P A 为⊙O 的切线,∴∠OAP =90°,∴∠OBP =90°,∴PB 是⊙O 的切线;(2)证明:连结AE ,∵P A 为⊙O 的切线,∴∠P AE +∠OAE =90°,∵AD ⊥ED ,∴∠EAD +∠AED =90°,∵OE =OA ,∴∠OAE =∠AED ,∴∠P AE =∠DAE ,即EA 平分∠P AD ,∵P A 、PD 为⊙O 的切线,∴PD 平分∠APB∴E 为△P AB 的内心;(3)解:∵∠P AB +∠BAC =90°,∠C +∠BAC =90°,∴∠P AB =∠C ,∴cos ∠C =cos ∠P AB在Rt △ABC 中,cos ∠C =BC AC =1AC ,∴AC AO ∵△P AO ∽△ABC , ∴PO AO AC BC,∴PO =AO AC BC 5.9. 已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.10. (2019•山东威海•12分)(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=A C.求证:BD=AD+C D.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=A C.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,B D.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.【解答】解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM2AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD =BM +DM =CD AD ;【探究2】如图③,∵若BC 是⊙O 的直径,∠ABC =30°, ∴∠BAC =90°,∠ACB =60°,过A 作AM ⊥AD 交BD 于M ,∵∠ADB =∠ACB =60°,∴∠AMD =30°,∴MD =2AD ,∵∠ABD =∠ACD ,∠AMB =∠ADC =150°,∴△ABM ∽△ACD ,∴BM CD =AB AC ,∴BM ,∴BD =BM +DM +2AD ;故答案为:BD CD +2AD ;(3)拓展猜想:BD =BM +DM =b c CD +ba AD ; 理由:如图④,∵若BC 是⊙O 的直径,∴∠BAC =90°,过A 作AM ⊥AD 交BD 于M ,∴∠MAD =90°,∴∠BAM =∠DAC ,∴△ABM ∽△ACD , ∴BM CD =AB AC =bc , ∴BM =b c CD , ∵∠ADB =∠ACB ,∠BAC =∠NAD =90°,∴△ADM ∽△ACB , ∴AD DM =AC BC =b a, ∴DM =b a AD ,∴BD =BM +DM =b c CD +v A D . 故答案为:BD =b c CD +b a AD。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

中考数学点对点-涉及圆的证明与计算问题(解析版)

中考数学点对点-涉及圆的证明与计算问题(解析版)

专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。

纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。

一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

内心是三角形三个角的角平分线的交点。

内心到三角形三边的距离相等。

二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

2020年中考数学题型08 与圆有关的证明与计算题【含解析】

2020年中考数学题型08 与圆有关的证明与计算题【含解析】

2020年中考数学题型08 与圆有关的证明与计算题一、单选题1.如图,是的弦,交于点,点是上一点,,则的AB O OC AB ⊥O C D O 30ADC ∠=︒BOC ∠度数为( ).A .30°B .40°C .50°D .60°【答案】D【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC =∠OCA =∠AOC ,得出△OAC 是等腰三角形,得出∠BOC =∠AOC =60°即可.【详解】解:如图,∵,30ADC ∠=︒∴.260AOC ADC ∠=∠=︒∵是的弦,交于点,AB O OC AB ⊥O C ∴.AC BC =∴.60AOC BOC ∠=∠=︒故选:D .【点睛】本题考查垂径定理,解题关键证明.AC BC =2.如图,为的切线,切点为,连接,与交于点,延长与交于点AB O A AO BO 、BO O C BO O ,连接,若,则的度数为( )D AD 36ABO ∠=oADC ∠A .B .C .D .54o36o32o27o【答案】D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得AOB ∠OAD ODA ∠=∠出ADC∠【详解】切线性质得到90BAO ∠=o903654AOB ∴∠=-=o o oOD OA=Q OAD ODA∠=∠∴AOB OAD ODA∠=∠+∠Q 27ADC ADO ∴∠=∠=o故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键3.如图,是的内接三角形,,过点的圆的切线交于点,则的度数为ABC ∆O 119A ∠=︒C BO P P ∠( )A .32°B .31°C .29°D .61°【答案】A【分析】根据题意连接OC ,为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可COP ∆计算的的度,再根据直角三角形可得的度数.COP ∠P ∠【详解】根据题意连接OC .因为119A ∠=︒所以可得BC 所对的大圆心角为 2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得 23818058COD ︒︒︒∠=-=由于为直角三角形COP ∆所以可得 905832P ︒︒︒∠=-=故选A .【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中O 40AB m =CAB 点,且,则这段弯路所在圆的半径为( )10CD m =A .B .C .D .25m 24m 30m 60m【答案】A【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值.【详解】解:,OC AB ⊥ ,20AD DB m ∴==在中,,Rt AOD ∆222OA OD AD =+设半径为得:,r ()2221020r r =-+解得:,25r m =这段弯路的半径为∴25m故选:A .【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度.5.如图,点为扇形的半径上一点,将沿折叠,点恰好落在上的点处,C OAB OB OAC ∆AC OAB D 且(表示的长),若将此扇形围成一个圆锥,则圆锥的底面半径与母线长:1:3BD AD ''=BD 'BD OAB 的比为( )A .B .C .D .1:31:π1:42:9【答案】D【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可.【详解】解:连接交AC 于.OD M由折叠的知识可得:,,12OM OA=90OMA ∠=︒,30OAM ∴∠=︒,60AOM ∴∠=︒且, :1:3BDAD ''=80AOB ∴∠=︒设圆锥的底面半径为,母线长为,r l ,802180lr ππ=.:2:9r l ∴=故选:.D 【点睛】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.6.如图,边长为的内切圆的半径为( )ABC ∆A .1BC .2D.【答案】A【分析】连接AO 、CO ,CO 的延长线交AB 于H ,如图,利用内心的性质得CH 平分∠BCA ,AO 平分∠BAC ,再根据等边三角形的性质得∠CAB =60°,CH ⊥AB ,则∠OAH =30°,AH =BH = AB =3,然后利用正切的定义12计算出OH 即可.【详解】设的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图,ABC ∆∵为等边三角形,ABC ∆∴CH 平分,AO 平分,∵为等边三角形,BCA ∠BAC ∠ABC ∆∴,,60CAB ︒∠=CH AB ⊥∴,30OAH ︒∠=12AH BH AB ===在中,∵,Rt AOH ∆OHtan tan 30AHOAH ︒∠==∴,1OH ==即内切圆的半径为1.ABC ∆故选A .【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质.7.如图,在Rt △ABC 中,∠ABC =90°,AB =,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )ABC .D .2π2π+π-2π-【答案】A【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,利用∠A 的正切值求出∠A =30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,∠ABC =90°,AB =,BC =2,tan ∠A=,BC AB ==∴∠A =30°,∴OH =OA,AH =AO •cos∠A ,∠BOC=2∠A =60°,1232=∴AD =2AH =,3∴S 阴影=S△ABC -S △AOD -S扇形BOD =,112322⨯-⨯2π-故选A .【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.8.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9【答案】A【分析】先利用勾股定理判断△ABC 为直角三角形,且∠BAC =90°,继而证明四边形AEOF 为正方形,设⊙O 的半径为r ,利用面积法求出r 的值即可求得答案.【详解】∵AB =5,BC =13,CA =12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC =90°,∵⊙O 为△ABC 内切圆,∴∠AFO =∠AEO =90°,且AE =AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE =OF =r ,∴S 四边形AEOF =r ²,连接AO ,BO ,CO,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴,11()22AB AC BC r AB AC++=⋅∴r =2,∴S 四边形AEOF =r ²=4,故选A .【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.9.如图,是的直径,,是上的两点,且平分,分别与,相交AB O C D O BC ABD ∠AD BC OC 于点,,则下列结论不一定成立的是( )E FA .B .C .D .OC BD AD OC ⊥CEF BED ∆≅∆AF FD=【答案】C【分析】由圆周角定理和角平分线得出,,由等腰三角形的性质得出90ADB ∠=︒OBC DBC ∠=∠,得出,证出,选项A 成立;由平行线的性质得出OCB OBC ∠=∠DBC OCB ∠=∠OC BD ,选项B 成立;由垂径定理得出,选项D 成立;和中,没有相等的边,AD OC ⊥AF FD =CEF ∆BED ∆与不全等,选项C 不成立,即可得出答案.CEF ∆BED ∆【详解】∵是的直径,平分,AB O BC ABD ∠∴,,90ADB ∠=︒OBC DBC ∠=∠∴,AD BD ⊥∵,OB OC =∴,OCB OBC ∠=∠∴,DBC OCB ∠=∠∴,选项A 成立;OC BD ∴,选项B 成立;AD OC ⊥∴,选项D 成立;AF FD =∵和中,没有相等的边,CEF ∆BED ∆∴与不全等,选项C 不成立,CEF ∆BED ∆故选C .【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.10.如图,在中,以BC 为直径的半圆O 交斜边AB 于点D ,Rt ABC ∆90304ACB A BC ∠=︒∠=︒=,,,则图中阴影部分的面积为()A .B.C.D.43π23π13π-13π-【答案】A【分析】根据三角形的内角和得到,根据圆周角定理得到,根据扇60B ∠︒∥12090COD CDB ∠︒∠︒=,=形和三角形的面积公式即可得到结论.【详解】解:∵在中,,Rt ABC ∆9030ACB A ∠︒∠︒=,=,60B ∴∠︒=,120COD ∴∠︒=,BC 为半圆O 的直径,4BC =,90CDB ∴∠︒=,2OC OD ∴==,CD ∴==图中阴影部分的面积2120214136023CODCOD S S ππ∆⋅⨯-⨯=扇形=﹣=,故选:A .【点睛】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积。

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。

中考数学一轮复习专题解析—圆的证明与计算

中考数学一轮复习专题解析—圆的证明与计算

中考数学一轮复习专题解析—圆的证明与计算复习目标1.了解圆的定义及点与圆的位置关系。

2.掌握圆的基本性质。

3.掌握圆中复杂证明及两圆位置关系中证明。

考点梳理一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作①O,线段OA叫做半径;①圆是到定点的距离等于定长的点的集合.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.①直径:经过圆心的弦叫做直径,如AC是①O的直径,直径是圆中最长的弦.①弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是①O中的弧,分别记作BC,BAC.①半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.①劣弧:像BC这样小于半圆周的圆弧叫做劣弧.①优弧:像BAC这样大于半圆周的圆弧叫做优弧.①同心圆:圆心相同,半径不相等的圆叫做同心圆.①弓形:由弦及其所对的弧组成的图形叫做弓形.①等圆:能够重合的两个圆叫做等圆.①等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中①AOB,①BOC是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中①BAC、①ACB都是圆周角.例1.已知:如图所示,在①O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=23,OC=1,求CD的长;(2)若半径OD=R,①AOB=120°,求CD的长.【答案】解:①半径OD经过弦AB的中点C,①半径OD①AB.(1)①AB=3AC=BC3①OC=1,由勾股定理得OA=2.①CD=OD-OC=OA-OC=1,即CD =1.(2)①OD①AB ,OA =OB , ①①AOD =①BOD .①①AOB =120°,①①AOC =60°. ①OC =OA·cos①AOC =OA·cos60°=12R , ①1122CD OD OC R R R =-=-=.二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:在图中(1)直径CD ,(2)CD①AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径. 3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;①在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.①圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.例2.如图所示,AB=AC,O是BC的中点,①O与AB相切于点D,求证:AC与①O相切.【答案】证明:连接OD,作OE①AC,垂足为E,连结OA.①AB与①O相切于点D,①OD①AB.①AB=AC,OB=OC,①①1=①2,①OE=OD.①OD为①O半径,①AC与①O相切.三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r(1)圆的确定:①过一点的圆有无数个,如图所示.①过两点A、B的圆有无数个,如图所示.①经过在同一直线上的三点不能作圆.①不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.①圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是①O的切线,必须符合两个条件:①直线l经过①O上的一点A;①OA①l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.①三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.3.三角形外心、内心有关知识比较4.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.①同心圆是内含的特殊情况.①圆与圆的位置关系可以从两个圆的相对运动来理解.①“r1-r2”时,要特别注意,r1>r2.四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360 n °.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比. 3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形. 正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n°的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长.圆锥的全面积是它的侧面积与它的底面积的和.1.(2022·四川省宜宾市第二中学校九年级)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =,6AB =,则O 的半径为( )A.3B.4C.5D.无法确定【答案】C【分析】连接OA,由垂径定理得AE=3,设OA=OC=x,根据勾股定理列出方程,进而即可求解.【详解】连接OA,①CD为O的直径,弦AB CD⊥,AB=3,①AE=12设OA=OC=x,则OE=x-1,①()222x x-+=,解得:x=5,13①O的半径为5.故选C.2.(2022·河南九年级期末)如图,AD为①O的直径,6cmAD=,DAC ABC∠=∠,则AC的长度为()A.2B.22C.32D.33【答案】C【分析】连接CD,由圆周角定理可知90∠=∠可知AC CD=,由∠=︒,再根据DAC ABCACD勾股定理即可得出AC的长.【详解】解:连接CD,AD是O的直径,∴∠=︒,ACD90∠=∠,DAC ABC∠=∠,ABC ADC∴∠=∠,DAC ADC∴CD AC=,∴=,AC CD又222AC CD AD+=,22∴=,2AC ADAD=,6∴=AC故选:C.3.(2022·全国九年级课时练习)O的半径为10cm,弦//AB CD.若==,则AB和CD的距离为()AB CD12cm,16cmA.2cm B.14cm C.2cm或14cm D.2cm或10cm 【答案】C【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心异侧时,如图1,过点O作OE①AB于点E,反向延长OE交CD于点F,连接OA,OC,①AB①CD,①OF①CD,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=10cm,①在Rt①AOE中,由勾股定理可得;8EO cm,在Rt①COF中,由勾股定理可得:6OF===cm,①EF=OF+OE=8+6=14cm.当弦AB和CD在圆心同侧时,如图2,过点O作OF①CD,垂足为F,交AB于点E,连接OA,OC,①AB①CD,①OE①AB,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=5cm,在Rt①AOE中,由勾股定理可得:2222=-=-=cm,1068EO OA AE在Rt①COF中,由勾股定理可得:2222=-=-=cm,OF OC CF1086①EF=OE﹣OF=8﹣6=2cm;故选C.4.(2022·全国九年级课时练习)如图,在ABC中,10,8,6===,经过AB AC BC点C且与边AB相切的动圆与,CB CA分别相交于点E,F,则线段EF长度的最小值是()A.42B.4.75C.5D.4.8【答案】D【分析】设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,则有OD①AB,由勾股定理逆定理知,ABC是直角三角形,OC+OD=EF,而OC+OD≥CD,只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知求出CD的长即可.【详解】解:设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,①10,8,6===,AB AC BC①AC2+BC2=AB2,①ABC 是直角三角形,①ACB =90°, ①EF 是①O 的直径, ①OC +OD =EF , ①①O 与边AB 相切, ①OD ①AB , ①OC +OD ≥CD ,即当点O 在直角三角形ABC 的斜边AB 的高上时,OC +OD =EF 有最小值, 此时最小值为CD 的长, ①CD =864.810AC BC AB ⋅⨯==, ①EF 的最小值为4.8. 故选D .5.(2020·沭阳县怀文中学九年级月考)有下列说法:①直径是圆中最长的弦;①等弧所对的弦相等;①圆中90°的角所对的弦是直径;①相等的圆心角对的弧相等;①平分弦的直径垂直于弦;①任意三角形一定有一个外接圆.其中正确的有( ) A .2个 B .3个C .4个D .5个【答案】B 【分析】根据直径的定义对①进行判断;根据圆心角、弧、弦的关系对①①进行判断;根据圆周角定理对①进行判断;根据垂径定理对①进行判断;根据三角形外接圆的定义对①进行判断. 【详解】解:①直径是圆中最长的弦;故①正确,符合题意;①能够重合的弧叫做等弧,等弧所对的弦相等;故①正确,符合题意; ①圆中90°的圆周角所对的弦是直径;故①错误,不符合题意;①在同圆或等圆中,相等的圆心角所对的弧相等;故①错误,不符合题意; ①平分弦(弦不是直径)的直径垂直于弦;故①错误,不符合题意; ①任意三角形一定有一个外接圆;故①正确,符合题意; 其中正确的有①①①, 故选:B .6.(2022·厦门海沧实验中学九年级开学考试)四边形ABCD 中,ACD △是边长为6的等边三角形,ABC 是以AC 为斜边的直角三角形,则对角线BD 的长的取值范围是( ) A .33BD <≤+B .36BD << C .63BD <≤+D .3BD <≤【答案】C 【分析】由①ABC 是以AC 为斜边的直角三角形可知点B 在以AC 为直径的圆上,然后结合点到圆上点的距离求出对角线BD 长度的取值范围. 【详解】①①ABC 是以AC 为斜边的直角三角形, ①点B 在以AC 为直径的圆上,如图中①O ,连接OD 并延长,交①O 于点E 和点B ,①等边①ACD的边长为6,①AC=BE=6,OB=OE=OA=OC=3,OD①AC,①①COD=90°,①OD=2222CD OC-=-=,6333①BD=OD+OB=333+,△是边长为6的等边三角形,ACD当B与,A C重合时,BD最小6=①对角线BD的长度的取值范围为6<BD≤333+.故选:C.7.(2022·河南九年级期末)如图,在ABC∠=︒,30Rt△中,90ACB∠=︒,3ABCAB=,将ABCRt△绕直角顶点C顺时针旋转,当点A的对应点A'落在AB边上时,停止转动,则点B经过的路径长为__.3【分析】首先根据勾股定理计算出BC 长,再根据等边三角形的判定和性质计算出60ACA ∠'=,进而可得60BCB ∠'=,然后再根据弧长公式可得答案.【详解】解:30B ∠=,3AB =,①ACB=90° ①1322AC AB ==,60A ∠=,①22332BC AB AC =-=AC A C =',AA C ∴'是等边三角形, 60ACA ∴∠'=,60BCB ∴∠'=,∴弧长3360321802l ππ⋅⋅==, 故答案为:32π. 8.(2022·河南九年级期末)如图,在ABC 中,90ACB ∠=︒,60B ∠=︒,以AC 为直径做半圆交AB 于点D ,若1BC =,则图中阴影部分的面积为__.3π+【分析】连接OD ,CD ,根据圆周角定理得到90ADC ∠=︒,解直角三角形求得AC =CD OC OD =,32AD =,60COD ∠=︒,然后根据扇形的面积和三角形的面积公式即可得到结论. 【详解】解:连接OD ,CD ,在ABC 中,90ACB ∠=︒,60B ∠=︒, ①9030A B ∠=︒-∠=︒, 又①1BC =, ①22BA BC ==,①AC =AC 为O 的直径,90ADC ∴∠=︒,12OA AC =,又①30A ∠=︒,12CD AC ∴==①32AD , ①30A ∠=︒,260COD A ︒∴∠=∠=,∴阴影部分的面积()()ABC AOD AOD COD COD S S S S S S ∆∆=++--+△半圆扇形扇形 122ABC ACD COD S S S S ⎛⎫=+-+ ⎪⎝⎭△△半圆扇形22601111321222360222ππ⎛⋅ =⨯⋅-+⨯⨯⎪⎝⎭38π+=, 故答案为:38π+.9.(2022·河南九年级期末)如图,在ABC 中,AB BC =,以AB 为直径的①O 交BC 于点D ,交AC 于点F ,过点C 作//CE AB ,且CAD CAE ∠=∠. (1)求证:AE 是①O 的切线; (2)若5AB =,4=AD ,求CE 的长.【答案】(1)见解析;(2)2 【分析】(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明AEC △和ADC 全等即可得到结论;(2)由勾股定理求出2CD =,根据全等三角形的性质可得出答案. 【详解】(1)证明:AB BC =,BAC BCA ∴∠=∠,//CE AB ,BAC ACE ∴∠=∠,ACB ACE ∴∠=∠,在AEC △和ADC 中,CAD CAE AC ACACB ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADC AEC ASA ∴≅△△,ADC E ∴∠=∠, AB 是O 的直径,90ADB ADC ∴∠=∠=︒,90E ∴∠=︒,//AB CE ,180BAE E ∴∠+∠=︒,90BAE ∴∠=︒,AE ∴是O 的切线;(2)解:90ADB ∠=︒,5AB =,4=AD ,3BD ∴==,532CD BC BD ∴=-=-=,①ADC AEC ≅△△,2CE CD ∴==.10.(2022·安庆市第四中学九年级)如图,①O 是①ABC 的外接圆,FH 是①O 的切线,切点为F ,FH ①BC ,连结AF 交BC 于E ,①ABC 的平分线BD 交AF 于D ,连结BF .(1)求证:AF平分①BAC;(2)若EF=4,DE=3,求AD的长.【答案】(1)证明见详解;(2)AD =214.【分析】(1)连结OF,由FH是①O的切线,可得OF①FH,由FH∥BC,可得OF垂直平分BC,根据垂径定理可得BF FC=,根据圆周角性质可得①1=①2即可;(2)根据①ABC的平分线BD,可得①4=①3,可证①FDB=①FBD,可得BF=FD,再证①BFE①①AFB,根据性质可得BF AFFE BF=,再求BF=DF= 7,可求494FA=,即可求AD.【详解】(1)证明:连结OF,①FH是①O的切线,①OF①FH,①FH∥BC,①OF垂直平分BC,①BF FC=,①①1=①2,①AF平分①BAC,(2)解①①ABC 的平分线BD 交AF 于D , ①①4=①3,①1=①2,①①1+①4=①2+①3,①①5=①2,①①1+①4=①5+①3 ,①①FDB =①FBD ,①BF =FD ,在①BFE 和①AFB 中,①①5=①2=①1,①AFB =①EFB , ①①BFE ①①AFB , ①BF AF FE BF=, ①2BF FE FA =⋅, ①2BF FA FE= , ①BF =DF =EF +DE =7,①274944FA ==, ①AD=AF -DF =4974-=214.。

中考数学核心考点强化突破与圆有关的证明与计算含解析

中考数学核心考点强化突破与圆有关的证明与计算含解析

与圆有关的证明与计算类型1 与圆有关的性质有关的证明与计算1.在平面直角坐标系中,点O 为坐标原点,A,B,C 三点的坐标分别为A(2,0),B(4,0),C(0,5),点D 在第一象限内,且∠ADB=45°.线段CD 的长的最小值为.2.如图,AB 是⊙O 的直径,弦CD⊥AB 于点E,点P 在⊙O 上,∠1=∠C.(1)求证:CB∥PD; (2)若BC =3,sin P =35,求⊙O 的直径. 解:(1)证明:∵∠C=∠P ,∠1=∠C ,∴∠1=∠P.∴CB∥PD.(2)连接AC.∵AB 为⊙O 的直径,∴∠ACB=90°.又∵CD⊥AB ,∴BC ︵=BD ︵.∴∠P=∠CAB ,∴sin ∠CAB=35,即BC AB =35.又知,BC =3,∴AB=5.∴⊙O 直径为5.类型2 与圆的切线有关的证明与计算3.已知:如图,P 是⊙O 外一点,过点P 引圆的切线PC(C 为切点)和割线PAB,分别交⊙O 于A,B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA =3,PB =5,求PC 的长.解:(1)证明:连接OC,OA,∵OC=OA,∴∠ACO=∠CAO.∵PC 是⊙O 的切线,C 为切点,∴PC⊥OC.∴∠PCO =90°,∠PCA+∠ACO=90°.在△AOC 中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC =2∠PBC ,∴2∠ACO+2∠PBC=180°.∴∠ACO+∠PBC=90°.∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC.(2)∵∠PCA=∠PBC ,∠P=∠P ,∴△PAC∽△PCB.∴PC PA =PB PC ,即P C 2=PA·PB.∵PA=3,PB =5,∴PC=3×5=15.4.如图,在△ABC 中,AC =BC,∠ACB=90°,⊙O(圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E,过点E 作⊙O 的切线交AC 于点F.延长CO 交AB 于点G,作ED∥AC 交CG 于点D.(1)求证:四边形CDEF 是平行四边形;(2)若BC =3,tan ∠DEF=2,求BG 的值.解:(1)连接CE,∵在△ABC 中,AC =BC,∠ACB=90°,∴∠B=45°,∵EF 是⊙O 的切线,∠FEO=90°,∴∠EOC=2∠B=90°,∴EF∥OD ,又∵DE∥CF,∴四边形CDEF 是平行四边形;(2)过G 作GN⊥BC 于N,∴△GMB 是等腰直角三角形,∴MB=GM,∵四边形CDEF 是平行四边形,∴∠FCD=∠FED ,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD ,∴∠CGM=∠DEF ,∵tan ∠DEF=2,∴tan ∠CGM=CM GM=2,∴CM=2GM,∴CM+BM =2GM +GM =3,∴GM=1,∴BG=2GM = 2.5.已知:如图,AC 是⊙O 的直径,圆心为点O,过A,C 两点分别作⊙O 的切线,过圆心O 的直线分别交这两条切线于B,D 两点.(1)求证:四边形ABCD 是平行四边形;(2)若AB,CD 分别过⊙O 上的点E,F,判断四边形AECF 的形状,并证明你的结论;(3)若⊙O 的半径为3,BC =23,求图中四边形ABCD 被⊙O 割后余下图形(阴影部分)的面积.解:(1)证明:∵AC 为⊙O 的直径,∴OA=OC,∵BC ,AD 分别是⊙O 的切线,∴∠OCB=∠OAD=90°,∵∠AOD =∠COB ,∴△AOD≌△COB ,∴OB=OD,∴四边形ABCD 是平行四边形;(2)四边形AECF 是矩形.∵四边形ABCD 是平行四边形,∴CF∥AE ,∴∠ACF=∠CAE ,∵AC=AC,∴△AFC≌△CEA ,∴AE=CF,∴四边形AECF 是平行四边形,∵AC 是直径,∴∠AEC=90°,∴四边形AECF 是矩形;(3)连接EO.∵⊙O 的半径为3,∴AC=6,∵BC=23,∴∠BAC=30°,∴∠COE=60°,所以S 阴影=2(S △ABC -S △AOE -S 扇形OBC )=2(12×6×23-12×3×332-3π2)=1523-3π.。

中考数学有关圆的证明与计算题型解析

中考数学有关圆的证明与计算题型解析

中考数学有关圆的证明与计算题型解析关圆的证明与计算涉及到的主要知识点有圆周角定理、垂径定理、解直角三角形、特殊四边形的判定与性质、特殊三角形的性质、全等与相似三角形的判定与性质等.本节主要对其相应的题型总结归纳如下:类型一、切线的性质【例题1】如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C,过点C 作CE⊥AB,交⊙O 于点E,垂足为点D.(1) 求证:∠PCB=∠BAC;(2) 过点B 作BM∥PC 交⊙O 于点M,交CD 于点N,连接AM .①求证:CN=BN;②若cos P = 4/5 , CN = 5 , 求AM 的长 .例题1图【参考答案】(1)证明:如解图1 所示,连接OC,交BM 于点F .解图1∵PC 是⊙O 的切线,∴OC⊥PC .∴∠PCO=90°.∴∠PCB+∠BCO=90°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ACO+∠BCO=90°.∴∠PCB=∠ACO.∵OC=OA,∴∠ACO=∠BAC.∴∠PCB=∠BAC.(2)例题1图①证明:∵BM∥PC,∴∠CBM=∠PCB.∵CE⊥AB,∴︵BC=︵BE .∴∠BAC=∠BCE.∵∠PCB=∠BAC,∴∠BCE=∠PCB=∠CBM. ∴CN=BN.②解:例题1图∴∠MBA=∠P.∴cos ∠MBA=cos P=4/5 .在Rt △BDN 中,cos ∠MBA=BD / BN=4/5,BN=CN=5,∴BD=4.∴CD=CN+ND=8.在Rt △OCD 中,设OC=r,则OD=OB-BD=r-4.由勾股定理,得OC2=OD2+CD2,即r2=(r-4)2+8^2 .解得r=10.∴AB=2r=20.∵AB 是直径,∴∠AMB=90°.在Rt △ABM 中,cos ∠MBA=BM / AB =4 / 5,AB=20,类型二、切线的判定与性质综合——双切线模型【例题2】如图,PB 与⊙O 相切于点B,过点B 作OP 的垂线BA,垂足为点C,交⊙O 于点A,连接PA,AO,AO 的延长线交⊙O 于点E,与PB 的延长线交于点D.(1) 求证:PA 是⊙O 的切线;(2) 若tan ∠BAD=2 / 3,且OC=4,求BD 的长.例题2图【参考答案】解:(1)如解图1 所示,连接OB,则OA=OB .解图1∴AC=BC.∴OP 是AB 的垂直平分线.∴PA=PB.在△PAO 和△PBO 中,∴△PAO ≌△PBO ( SSS ).∴∠PAO=∠PBO.∵PB为⊙O的切线,B 为切点,∴∠PBO=90°.∴∠PAO=90°,即PA⊥OA . ∴PA 是⊙O 的切线.(2)如解图2 所示,连接BE .解图2在Rt △AOC 中,tan ∠BAD=tan ∠CAO=OC / AC=2 / 3,且OC=4,∴AC=BC = 6 .∵PA⊥OA,OP⊥AB,∴∠PAC+∠OAC=90°.∴∠ACP=∠OCA=90°,∠PAC+∠APC=90°.∴∠APC=∠OAC .∴△PAC∽△AOC.∴PC / AC=AC / OC,即PC / 6 =6 / 4 .解得PC=9 .∴OP=PC+OC=13 .解图2在Rt △PCB 中,由勾股定理得,∵AC=BC,OA=OE,∴OC 为△ABE 的中位线.∴BE=2OC=8,OC∥BE.∴△DBE∽△DPO .∴BD / PD = BE / PO ,类型三、切线的判定与性质综合——切割线模型【例题3】如图,在Rt△ABC 中,∠ACB=90°,D 是AC 上一点,过B,C,D 三点的⊙O 交AB 于点E,连接ED,EC,点F 是线段AE 上的一点,连接FD,其中∠FDE=∠DCE .(1) 求证:DF 是⊙O 的切线;(2) 若D 是AC 的中点,∠A=30°,BC=4,求DF 的长.例题3图【参考答案】(1) 证明:如解图1 所示,连接BD.解图1∵∠ACB=90°,点B,D 在⊙O上,∴BD 是⊙O 的直径.又∵∠BDE=∠BCE,∠FDE=∠DCE,∴∠BDE+∠FDE=∠BCE+∠DCE,即∠BDF=∠ACB=90° . ∴DF⊥BD .又∵BD 是⊙O 的直径,∴DF 是⊙O 的切线.(2) 解:解图1∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵点D 是AC 的中点,∴AD=CD=1/2 AC=2√3 .∵BD 是⊙O 的直径,∴∠DEB=90°.∴∠DEA=180°-∠DEB=90°.∴DE=1/2 AD=1/2 ×2√3=√3 . (∠A = 30°)解图1在Rt △BCD 中,在Rt △BED 中,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE.∵∠DEF=∠BED=90°,∴△FDE∽△DBE .∴DF / BD = DE / BE , 即DF / 2√7 = √3 / 5 ,∴DF=2√21 / 5 .类型四、三切线模型【例题4】如图,AB 是⊙O 的直径,AB⊥BD,AC 与⊙O 相切于点A,点E 为⊙O 上一点,且AC=CE,连接CE 并延长交BD 于点D.(1) 求证:CD 为⊙O 的切线;(2) 连接AD,BE 交于点F,⊙O 的半径为2,当点F 为AD 中点时,求BD 的长.例题4图【参考答案】(1) 证明:如解图1,连接OC,OE .解图1∵AB 是⊙O 的直径,AC 与⊙O 相切于点A,∴∠OAC=90°.在△ACO 和△ECO 中,∴△ACO ≌△ECO ( SSS ).∴∠OEC=∠OAC=90°.∴OE⊥DC.∴CD 为⊙O 的切线.(2) 解:如解图2 所示,连接OF,AE,过点F 作FG⊥BD 于点G .解图2∵AB⊥BD,∴∠ABD=∠FGD=∠FGB=90°.∴FG∥AB .∴∠ABF=∠BFG.∵AB 是⊙O 的直径,∴∠AEB=∠FGB=90°.∴△ABE∽△BFG .∴AB / BF =BE / FG .解图2∵点F 为AD 中点,O 为AB 中点,∴OF∥BG .易证四边形OFGB 是矩形.∴FG=OB=2.∵AB 是⊙O 的直径,AB⊥BD,∴BD 是⊙O 的切线.由(1) 知CD 是⊙O 的切线,∴DB=DE.∴∠DEB=∠DBE.∵∠ABD=90°,点F 为AD 中点,∴BF=FD.∴∠DBE=∠FDB.∴∠FDB=∠DEB.解图2又∵∠FBD=∠DBE,∴△FBD∽△DBE .∴BF / BD=BD / BE .∴BD2=BF·BE.设BF=a,BD=n.∵△ABE∽△BFG,∴AB / BF = BE / FG , ∴4 / a = BE / 2 ,∴BE = 8 / a ,∵BD2=BF·BE,∴n2=a ·8 / a .∴n2=8 .∴n=2√2 ( 负值舍去).∴BD 的长为2√2 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学有关圆的证明与计算题型解析
有关圆的证明与计算涉及到的主要知识点有圆周角定理、垂径定理、解直角三角形、
特殊四边形的判定与性质、特殊三角形的性质、全等与相似三角形的判定与性质等.
本节主要对其相应的题型总结归纳如下:
类型一、切线的性质
【例题1】如图,已知AB 是⊙O 的直径,P 是AB 延长线上一点,PC 与⊙O 相切于点C,
过点C 作CE⊥AB,交⊙O 于点E,垂足为点D.
(1) 求证:∠PCB=∠BAC;
(2) 过点B 作BM∥PC 交⊙O 于点M,交CD 于点N,连接AM .
①求证:CN=BN;
②若cos P = 4/5 , CN = 5 , 求AM 的长 .
例题1图
【参考答案】
(1)证明:如解图1 所示,连接OC,交BM 于点F .
解图1
∵PC 是⊙O 的切线,
∴OC⊥PC .
∴∠PCO=90°.
∴∠PCB+∠BCO=90°.
∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠ACO+∠BCO=90°.
∴∠PCB=∠ACO.
∵OC=OA,
∴∠ACO=∠BAC.
∴∠PCB=∠BAC.
(2)
例题1图①证明:
∵BM∥PC,
∴∠CBM=∠PCB.
∵CE⊥AB,
∴︵BC=︵BE .
∴∠BAC=∠BCE.
∵∠PCB=∠BAC,
∴∠BCE=∠PCB=∠CBM.
∴CN=BN.
②解:
例题1图∵BM∥PC,
∴∠MBA=∠P.
∴cos ∠MBA=cos P=4/5 .
在Rt △BDN 中,
cos ∠MBA=BD / BN=4/5,BN=CN=5,∴BD=4.
∴CD=CN+ND=8.
在Rt △OCD 中,设OC=r,
则OD=OB-BD=r-4.
由勾股定理,得OC2=OD2+CD2,
即r2=(r-4)2+8^2 .
解得r=10.
∴AB=2r=20.
∵AB 是直径,
∴∠AMB=90°.
在Rt △ABM 中,cos ∠MBA=BM / AB =4 / 5,AB=20,
∴BM=16 .
类型二、切线的判定与性质综合——双切线模型
【例题2】如图,PB 与⊙O 相切于点B,过点B 作OP 的垂线BA,垂足为点C,交⊙O 于点A,
连接PA,AO,AO 的延长线交⊙O 于点E,与PB 的延长线交于点D.
(1) 求证:PA 是⊙O 的切线;
(2) 若tan ∠BAD=2 / 3,且OC=4,求BD 的长.
例题2图【参考答案】
解:
(1)如解图1 所示,连接OB,则OA=OB .
解图1
∵OP⊥AB,
∴AC=BC.
∴OP 是AB 的垂直平分线.
∴PA=PB.
在△PAO 和△PBO 中,
∴△PAO ≌△PBO ( SSS ).
∴∠PAO=∠PBO.
∵PB为⊙O的切线,B 为切点,
∴∠PBO=90°.
∴∠PAO=90°,即PA⊥OA .
∴PA 是⊙O 的切线.
(2)如解图2 所示,连接BE .
解图2
在Rt △AOC 中,
tan ∠BAD=tan ∠CAO=OC / AC=2 / 3,且OC=4,∴AC=BC = 6 .
∵PA⊥OA,OP⊥AB,
∴∠PAC+∠OAC=90°.
∴∠ACP=∠OCA=90°,∠PAC+∠APC=90°.
∴∠APC=∠OAC .
∴△PAC∽△AOC.
∴PC / AC=AC / OC,即PC / 6 =6 / 4 . 解得PC=9 .
∴OP=PC+OC=13 .
解图2
在Rt △PCB 中,由勾股定理得,
∵AC=BC,OA=OE,
∴OC 为△ABE 的中位线.
∴BE=2OC=8,OC∥BE
.∴△DBE∽△DPO .
∴BD / PD = BE / PO ,
类型三、切线的判定与性质综合——切割线模型
【例题3】如图,在Rt△ABC 中,∠ACB=90°,D 是AC 上一点,
过B,C,D 三点的⊙O 交AB 于点E,连接ED,EC,点F 是线段AE 上的一点,连接FD,
其中∠FDE=∠DCE .
(1) 求证:DF 是⊙O 的切线;
(2) 若D 是AC 的中点,∠A=30°,BC=4,求DF 的长.
例题3图
【参考答案】
(1) 证明:如解图1 所示,连接BD.
解图1
∵∠ACB=90°,点B,D 在⊙O上,
∴BD 是⊙O 的直径.
又∵∠BDE=∠BCE,∠FDE=∠DCE,
∴∠BDE+∠FDE=∠BCE+∠DCE,即∠BDF=∠ACB=90° . ∴DF⊥BD .
又∵BD 是⊙O 的直径,
∴DF 是⊙O 的切线.
(2) 解:
解图1
∵∠ACB=90°,∠A=30°,BC=4,
∴AB=2BC=8.
∵点D 是AC 的中点,
∴AD=CD=1/2 AC=2√3 .
∵BD 是⊙O 的直径,
∴∠DEB=90°.
∴∠DEA=180°-∠DEB=90°.
∴DE=1/2 AD=1/2 ×2√3=√3 . (∠A = 30°)
解图1
在Rt △BCD 中,
在Rt △BED 中,
∵∠FDE=∠DCE,∠DCE=∠DBE,
∴∠FDE=∠DBE.
∵∠DEF=∠BED=90°,
∴△FDE∽△DBE .
∴DF / BD = DE / BE , 即DF / 2√7 = √3 / 5 ,
∴DF=2√21 / 5 .
类型四、三切线模型
【例题4】如图,AB 是⊙O 的直径,AB⊥BD,AC 与⊙O 相切于点A,点E 为⊙O 上一点,
且AC=CE,连接CE 并延长交BD 于点D.
(1) 求证:CD 为⊙O 的切线;
(2) 连接AD,BE 交于点F,⊙O 的半径为2,当点F 为AD 中点时,求BD 的长.
例题4图
【参考答案】
(1) 证明:如解图1,连接OC,OE .
解图1
∵AB 是⊙O 的直径,AC 与⊙O 相切于点A,
∴∠OAC=90°.
在△ACO 和△ECO 中,
∴△ACO ≌△ECO ( SSS ).
∴∠OEC=∠OAC=90°.
∴OE⊥DC.
∴CD 为⊙O 的切线.
(2) 解:如解图2 所示,连接OF,AE,过点F 作FG⊥BD 于点G .
解图2∵AB⊥BD,
∴∠ABD=∠FGD=∠FGB=90°.
∴FG∥AB .
∴∠ABF=∠BFG.
∵AB 是⊙O 的直径,
∴∠AEB=∠FGB=90°.
∴△ABE∽△BFG .
∴AB / BF =BE / FG .
解图2∵点F 为AD 中点,O 为AB 中点,∴OF∥BG .
易证四边形OFGB 是矩形.
∴FG=OB=2.
∵AB 是⊙O 的直径,AB⊥BD,
∴BD 是⊙O 的切线.
由(1) 知CD 是⊙O 的切线,
∴DB=DE.
∴∠DEB=∠DBE.
∵∠ABD=90°,点F 为AD 中点,
∴BF=FD.
∴∠DBE=∠FDB.
∴∠FDB=∠DEB.
解图2又∵∠FBD=∠DBE,
∴△FBD∽△DBE .
∴BF / BD=BD / BE .
∴BD2=BF·BE.
设BF=a,BD=n.
∵△ABE∽△BFG,
∴AB / BF = BE / FG , ∴4 / a = BE / 2 ,
∴BE = 8 / a ,
∵BD2=BF·BE,
∴n2=a ·8 / a .
∴n2=8 .
∴n=2√2 ( 负值舍去).∴BD 的长为2√2 .。

相关文档
最新文档