7.5《三角形内角和定理》

合集下载

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

课题:三角形内角和定理教学目标:1.掌握“三角形内角和定理”,理解三角形内角和定理的证明方法及证明过程.2.灵活运用三角形内角和定理解决相关问题.3.通过猜想、推理等数学活动,探究三角形内角和定理的证明思路和过程,初步体会辅助线在证明中的作用.教学重点与难点:重点:三角形内角和定理及其证明.难点:三角形内角和定理的证明及灵活应用解决相关问题.课前准备:多媒体课件、三角形纸板等 .一、创设情境,复习引入问题1:平行线的性质?问题2:证明一个命题有哪些步骤?问题3: 关于三角形的知识,你都知道哪些呢?问题4:如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、C D的延长线相交所成的角是不是符合规定?为什么?处理方式:教师出示题目,学生回答问题,问题的设置不仅起到复习的目的,也为新课的引入做了铺垫.预设学生回答.1.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角相等.2.证明一个命题的一般步骤:(1)分清命题的条件和结论,根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.3.三角形两边之和大于第三边;三角形具有稳定性;三角形按角分为直角三角形,锐角三角形和钝角三角形;三角形按边分为不等边三角形、等边三角形和等腰三角形;三角形三个内角和为180°......4.不符合规定.延长AB、CD交于点O,∵△AOC中,∠BAC=32°,∠DCA=65°,∴∠AOC=180°-∠BAC-∠DCA=180°-32°-65°=83°<80°,∴模板不符合规定.师导语:三角形的内角和从小学就开始学习,七年级又有了新的认识,这一节课我们将进一步通过动手操作、观察、合作、交流探究等方法来验证这一定理,并通过这一定理来解决有关问题.设计意图:设置问题情景,与学生前面所学知识紧密相连,在教学过程设计上从学生熟悉的知识创设情境,让学生简单地对三角形内角和的知识加以回忆,激发学生探究三角形内角和的兴趣.二、情境再现,探究新知(一)探索三角形内角和等于180°我们知道,三角形内角和等于180°.1.你还记得这个结论的探索过程吗?2.如图,如果我们只把∠A移到∠1的位置,你能说明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?处理方式:对于第一个问题教师引导学生可以用量角器测量,用准备好的三角形纸片或三角形纸板进行折叠或剪拼,完成后小组讨论并展示结果.对于第二个问题,教师结合学生的完成情况,让学生代表说出结论和思路,针对学生的回答教师给予肯定和补充.预设学生回答:1.(1)用测量的方法:由于误差原因,有时可能不是180°.(2)用折纸的方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行,然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合,最后得图示的结果.(3)用剪拼(撕纸)的方法:剪三个角,拼成一个平角;剪两个角,也是拼成一个平角;剪一个角,构造平行线,利用平行线判定和性质说明.2.构造平行线,可得同样效果.设计意图:在回忆中学习,在学习中探索,在探索中验证,通过学生亲身经历的探索活动,让学生进一步理解验证三角形内角和等于180°,不仅调动小组愉快的合作学习,也激发学生的学习兴趣.(二)证明三角形内角和等于180°根据前面给出的基本事实和定理,你能用自己的语言说说“三角形内角和等于180°”这一结论的证明思路吗?处理方式:结合探索三角形内角和,引导学生小组完成问题,学生发言后教师总结并板书证明过程及三角形内角和定理.已知:如图,△ABC.求证:∠A+∠B+∠C=180°。

7.5 三角形内角和定理 知识考点梳理(课件)北师大版数学八年级上册

7.5 三角形内角和定理  知识考点梳理(课件)北师大版数学八年级上册

巧 点
又 ∵∠C=90°,
拨 ∴∠D=180°-90°-55°=35°.
[答案] A
返回目录

分 析
领悟提能 三角形的外角是由三角形的一边与另一边的
反向延长线组成的,由外角的性质可以把不在同一个三角
形中的几个内角联系起来.
7.5 三角形内角和定理
返回目录
方 ■方法:转化法求角度
法 技
用已知角的度数求未知角的度数时,若几个角的位置分
巧 点
布比较分散,那么我们利用平行线的性质、对顶角的性质
拨 等将所求角与已知角“转移”到一个图形中求解.
7.5 三角形内角和定理
● 考点清单解读 ● 重难题型突破 ● 易错易混分析 ● 方法技巧点拨
7.5 三角形内角和定理
返回目录
考 ■考点一 三角形内角和定理

清 三角形内角和
单 解
定理
三角形的内角和等于 180°
读 如图,在△ABC 中,∠A+∠B+∠C=180°
数学语言描述
7.5 三角形内角和定理
7.5 三角形内角和定理
返回目录
方 例 如图,已知∠A=35°,∠B=∠C=90°,则∠D 的度

技 数是 (

巧 点
A. 35° B. 45°
C. 55°
D. 65°

7.5 三角形内角和定理
方 [解析] ∵∠A=35 ° ,∠B=90°,
法 技 ∴∠COD=∠AOB=180°-90°-35°=55°.
________(选填“增加”或“减少”)_______°.
7.5 三角形内角和定理
返回目录
重 [解析]如解析图,延长 EF,交 CD 于点 G.

数学 7.5 三角形内角和定理-课件

数学 7.5 三角形内角和定理-课件
A.360°B.250°
C.180° D.140°
9.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )
A.90° B.100°
C.130° D.180°
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
10.如图是由线段AB,CD,DF,BF,CA组成的平面图形.若∠D=28°,则∠A+∠B+∠C+∠F的度数
C,∠1=30°,∠B=60°,∠C=20°,则∠2= 50° ,∠A= 70° .
-3-
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
拓展探究突破练
6.( 改编 )如图,∠1,∠2,∠3之间的大小关系为 ∠2<∠3<∠1 ( 用“<”连接 ).
-4-
第七章
7.5 三角形内角和定理
知识要点基础练
∴∠AFC=180°-∠FAC-∠FCA=120°,
∴∠EFD=∠AFC=120°.
( 2 )FE=FD.
在 AC 上截取 AG=AE,连接 FG.
∵AD 是∠BAC 的平分线,∴∠BAD=∠DAC,
又∵AF=AF,∴△AEF≌△AGF( SAS ),
∴FE=FG,∠AFE=∠AFG=60°,
∴∠CFG=60°.
于点F.
( 1 )求∠EFD的度数;
( 2 )判断FE与FD之间的数量关系,并证明你的结论.
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
解:( 1 )∵△ABC 中,∠ACB=90°,∠B=60°,

7.5三角形内角和定理的证明

7.5三角形内角和定理的证明
B 证明: ∵ DE ∥ BC ,∠ C=700 (已知)
D
E C
(第3题)
∴ ∠ AED= ∠ C = 700 (两直线平行,同位角相等)
∵ ∠ A+ ∠ AED+ ∠ ADE=1800(三角形的内角和定理) ∠ A=600(已知) ∴ ∠ ADE=1800—600—700=500(等量代换) 即∠ ADE= 500
证明: 因为 ∠A+∠B+∠ACB=180°(三角形内角和定理)
所以 ∠A+∠B=180°-∠ACB(等式性质) 又因为 ∠ACF+∠ACB=180°(三角形外角定义) 所以 ∠ACF=180°-∠ACB(等式性质)
所以 ∠ACF=∠A+∠B(等量代换)
• 在任意一个三角形中,无论这个三角形的形状如 何,三角形的内角和总等于180度。
1、△ABC中,∠C=90°,∠A=30°,∠B=? 2、 △ABC中∠A=50°,∠B=∠C,则∠B=?
练一练
3、三角形的三个内角中,只能有__个直角或__个钝角 4、任意一个三角形,至少有__个锐角,至多有__个锐角 5、任意一个三角形,最大的角一定不小于 度; 6、三角形中三角之比为1∶2∶3,则三个角各为多少度?
证明: 因为 ∠A+∠B+∠ACB=180°(三角形内角和定理)
所以 ∠A+∠B=180°-∠ACB(等式性质) 又因为 ∠ACF+∠ACB=180°(三角形外角定义) 所以 ∠ACF=180°-∠ACB(等式性质)
所以 ∠ACF=∠A+∠B(等量代换)
实际问题
如图,一艘轮船按箭头所示方向行驶, C处有一灯塔,轮船行驶到哪一点时距离 灯塔最近?当轮船从A点行驶到B点时, ∠ACB的度数是多少?当轮船行驶到距离 灯塔最近点时呢? C

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角说课稿 (新版北师大版)

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角说课稿 (新版北师大版)

八年级数学上册7.5三角形的内角和定理第2课时三角形的外角说课稿(新版北师大版)一. 教材分析《八年级数学上册7.5三角形的内角和定理第2课时三角形的外角》这一节,主要介绍了三角形的外角的性质和定理。

通过这一节的学习,让学生能够理解三角形的外角的定义,掌握三角形外角的性质,能够运用三角形的外角定理解决一些几何问题。

二. 学情分析学生在学习这一节之前,已经学习了三角形的基本概念,角的性质,以及一些基本的几何证明方法。

但是,对于三角形的外角的性质和定理,可能还存在一些理解上的困难。

因此,在教学过程中,需要注重引导学生理解三角形外角的性质,并通过例题让学生熟练运用外角定理解决实际问题。

三. 说教学目标1.知识与技能目标:让学生掌握三角形的外角的定义,理解三角形外角的性质,能够运用三角形的外角定理解决一些几何问题。

2.过程与方法目标:通过观察、思考、证明等过程,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:让学生体验数学的严谨性和美感,增强对数学的兴趣和信心。

四. 说教学重难点1.教学重点:三角形的外角的定义,三角形外角的性质,三角形外角定理的应用。

2.教学难点:三角形外角的性质的证明,三角形外角定理的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、几何画板等辅助教学,直观展示三角形的外角的性质和定理。

六. 说教学过程1.导入:通过复习三角形的基本概念和角的性质,引出三角形的外角的定义。

2.探究:引导学生观察三角形的外角的性质,让学生通过几何画板软件自主探索,发现三角形外角的性质。

3.证明:引导学生用已学的知识证明三角形外角的性质,培养学生的逻辑思维能力。

4.应用:通过例题讲解,让学生熟练运用三角形的外角定理解决实际问题。

5.总结:对本节课的主要内容进行总结,强调三角形外角的性质和定理。

7.5.2 三角形的内角和定理

7.5.2  三角形的内角和定理

八年级数学(上)导学案班级姓名学号7.5.2三角形的内角和定理学习目标:掌握三角形内角和定理的两个推论,能利用这两个推论进行简单的证明和计算。

.一、复述回顾:(二人小组完成)1.三角形内角和定理是什么?2.邻补角有什么性质?.二、设问导读:阅读课本P181-182完成下列问题:1.如图7-17,外角的特征有三条:①顶点是三角形的一个____.如:∠ABD的顶点B是△ABC的一个顶点.②一条边是三角形的_____.如:∠ABD的一条边____正好是△ABC的一条边.③另一条边是三角形某条边的延长线.如:∠ABD 的边____是△ABC的____边的延长线.2.把三角形各边向两方____,就可以画出一个三角形所有的外角.一个三角形有___个外角,其中有三个与另外三个______,所以研究时,只讨论三个外角的性质.3.完成“议一议”如图7-17,根据三角形___________,可得:∠2+∠3=________.∠1与∠4组成一个平角,所以∠1=______,因此可得:∠1=∠2+∠3.由和大于任何一个非零加数,可得:∠1___∠2,∠1___∠3. 由此可得结论:三角形的一个外角等于_____________________的和,大于______________________内角.4.由一个_______或______直接推出的_____叫做这个基本事实或定理的_____.它可以当做_____使用.5.在例3中,要证明AD∥BC,只需证明“同位角相等”即:____________;也可证“___________”即:__________;也可证“_____________”即:____+____=180°.三、自学检测:1.已知,如图,在△ABC中,外角∠DCA=105°,∠A=45°.求∠B和∠ACB的度数.2.在△ABC中,若∠A:∠B:∠C=1:2:3,则∠A=___,∠B___,∠C___,△ABC的形状为______.3.如图所示,用“>”连接∠1,∠2,∠3,∠4为____________.(写出解题过程)四、巩固训练:1.如图,下列结论:①∠A >∠ACD;②∠B+∠ACB=180-∠A;③∠B+∠ACB<180°;④∠HEC>∠B.其中正确的是(填上你认为正确的所有序号)2.以下命题中正确的是()A.三角形的三个内角与三个外角的和为540°B.三角形的外角大于它的内角C.三角形的外角都比锐角大D.三角形中的内角中没有小于60°的3.如果一个三角形的一个外角小于和它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形4.在△ABC中,如果∠C=2∠A=∠B+20°,求∠A、∠B、∠C的度数.五、拓展延伸1.如图,∠A=40°∠B=37°∠C=43°则∠BDC=______.2.如图所示,在△ABC中,∠B的平分线与∠C的外角平分线相交于点D,•请比较∠D与∠A的大小关系.3.如图是一个五角形ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的大小吗?当点B,E移动到∠CAD的内部时,结论又如何?A.10 B.15C.20 D.304.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.5.已知:Rt△ABC的两边为3和4,求第三边的平方.六、我的收获(反思静悟、体验成功)D。

三角形的内角和定理

三角形的内角和定理

三角形的内角和定理三角形是几何学中最基本的图形之一,它的内角和定理是关于三角形内角之和的一个重要定理。

本文将介绍三角形的内角和定理,并从不同角度解释该定理的证明过程。

一、三角形的内角和三角形是由三条边所围成的闭合图形,在三角形内部可以构造至多三个不重合的角,我们称之为三角形的内角。

根据三角形的定义,三角形的内角和应该等于180度,即∠A + ∠B + ∠C = 180°。

这个定理被称为三角形的内角和定理。

二、证明三角形的内角和定理的方法1.几何证明法几何证明法是通过构造几何图形来证明三角形的内角和定理。

在这种证明方法中,我们可以画出一个辅助线,将三角形分割为两个或多个已知三角形,并利用这些已知三角形的内角和来推导出原始三角形内角的和。

2.代数证明法代数证明法是通过运用代数知识来证明三角形的内角和定理。

我们可以利用三角形的定义和代数运算的性质,将三角形的内角和表示为已知的角度或角度差,然后进行运算得出等式成立的结果。

三、三角形的内角和定理的应用三角形的内角和定理在几何学和数学中有广泛的应用。

以下是一些常见的应用场景:1.判断三角形的性质:通过测量三角形的内角和,我们可以判断一个三角形是锐角三角形(内角和小于180度)、直角三角形(内角和等于180度)还是钝角三角形(内角和大于180度)。

2.解决问题:在解决与三角形相关的问题时,我们可以利用内角和定理来计算缺失的角度或验证已知的角度,以便求解其他未知量。

3.三角形的分类:根据三角形的内角和定理,我们可以将三角形分为等腰三角形、等边三角形、直角三角形等不同类型,从而研究它们各自的性质和特点。

四、结论三角形的内角和定理是三角形几何学中的重要定理,它表明三角形的内角和恒为180度。

通过几何和代数两种证明方法,我们可以理解该定理的原理和证明过程。

此外,该定理还具有广泛的应用,用于判断三角形性质、解决问题以及分类三角形。

了解和掌握三角形的内角和定理对于深入理解和研究三角形及相关知识至关重要。

最新七年级下册数学《7.5 三角形的内角和》教案 (5)

最新七年级下册数学《7.5 三角形的内角和》教案 (5)
学以致用,师生互动,锻炼学生的口头表达能力,进一步提升学生有条理的表达能力.例2得出结果之后,追问:若不给出具体角度,你能说明∠A+∠B与∠C+∠D之间有怎样的数量关系吗?
知识应用——练习
1.在△ABC中,若∠A+∠B=90°,则
△ABC一定是__________三角形.
2.在△ABC中,若∠A∶∠B∶∠C=2∶3∶4,求∠A、∠B、∠C的度数.
7.5 多边形的内角和与外角和(1)
教学目标
1.探索并了解“三角形三个内角之和等于180°”;
2.经历举例、操作(画图、度量、拼图)、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力.
教学重点
探索并掌握“三角形三个内角之和等于180°”.
教学难点
理解用推理的方法说明为什么三角形的三个内角之和一定等于180°.
共同小结.
师生互动,总结学习成果,体验成功.
课后作业:
课本P34习题7.5第1~5小题.
课后完成.
巩固、运用.
3.课本P29练一练第2小题.
1.作答.
2.学生代表口头交流解答思路与过程,其余学生聆听并作补充或纠错.
进一步巩固新课知识,并在训练中提升学生有条理的书面表达能力.
其中,通过练习1,让学生了解“有两个角互余的三角形是直角三角形”.反之,“直角三角形的两个锐角互余”也成立.
小结:
通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢?说出来告诉大家.
师生互动,进行说理.
经历说理,体会说理的必要性.
知识应用——牛刀小试
课本P29练一练第1、3小题.
口答.
熟练运用所学得的知识,解决简单问题.口答形式能较好地看出学生对性质的掌握情况与应用意识.

北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例

北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
此外,我还注重培养学生的几何直观能力。通过多媒体展示三角形内角和定理的证明过程,让学生更加直观地理解定理的含义。同时,我鼓励学生动手操作,进行小组讨论,从实践中感受和理解三角形内角和定理。这样的教学方式有助于提高学生的几何思维水平,培养他们的空间想象力。
在教学过程中,我还注重引导学生运用三角形内角和定理解决实际问题。例如,我设计了一些实际问题,让学生运用所学知识进行解答。这样不仅能够巩固学生对三角形内角和定理的理解,还能够培养他们学以致用的能力。
在教学过程中,我注重培养学生的动手操作能力和合作意识。设计了小组讨论和动手实践环节,让学生在合作中发现问题、解决问题。同时,我还运用多媒体教学手段,展示了三角形内角和定理的证明过程,使学生更加直观地理解定理的含义。
针对不同学生的学习情况,我采用了分层教学法,设置了不同难度的题目,让每个学生都能在课堂上发挥自己的优势。对于学困生,我给予了耐心指导,帮助他们克服学习困难;对于优秀生,我则引导他们拓展思维,提升解题能力。
(二)过程与方法
1.培养学生独立思考、合作探讨的学习方式,提高他们的自主学习能力。
2.引导学生运用图形直观分析问题,培养他们的几何直观能力。
3.培养学生运用三角形内角和定理解决实际问题的能力,提高他们的实践操作能力。
为了实现上述目标,我在教学过程中采用了以下方法:
首先,我采用了启发式教学法。通过设计富有挑战性的问题,引导学生独立思考,激发他们的学习兴趣。同时,我鼓励学生积极参与课堂讨论,培养他们的合作精神。
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例
一、案例背景
北师大版数学八年级上册7.5《三角形内角和定理》优秀教学案例,以三角形内角和定理为核心内容。本节课主要让学生掌握三角形内角和定理,即三角形的三个内角之和等于180度。通过学习,学生能够理解并运用三角形内角和定理解决实际问题。

北师大版八年级(上)数学《三角形内角和定理》同步练习4(含答案)

北师大版八年级(上)数学《三角形内角和定理》同步练习4(含答案)

7.5 三角形内角和定理4一、七彩题:1.(一题多解)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD•的度数.2.(巧题妙解题)一个零件的形状如图所示,按规定∠A应等于90°,∠B,∠C应分别等于32°和21°,检验工人量得∠BDC=148°就断定零件不合格.请你运用三角形有关知识说明零件不合格的原因.二、知识交叉题:3.(科内交叉题)如图所示,D是AB上一点,E是AC上一点,BE,CD 相交于点F,•∠A=62°,∠ACD=35°,∠ABE=20°,求∠BDC和∠BFD的度数.4.(科内交叉题)如图,已知BE,CE分别是△ABC的内角∠ABC,外角∠ACD的平分线,若∠A=50°,你能求出∠E吗?若∠A= ,则∠E是多少?三、实际应用题5.在足球比赛中,球员越接近球门,射门角度(射球点与球门两边A,B 间的夹角)•就越大,如图所示,你如何证明.四、经典中考题6.(黄冈,3分)如图所示,∠1大于∠2的是()7.(浙江,3分)如图所示,AB∥CD,∠1=110°,∠ECD=70°,∠E的大小是()A.30°B.40°C.50°D.60°五、探究学习:1.(旋转变换题)如图所示,把一个直角三角尺ABC绕着30°角的顶点B 顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连接CD,试判断△CBD的形状;(3)求∠BDC的度数;2.(阅读理解题)关于三角形内角和定理的证明,•小马和小虎又各自找到了一种“创新”证法.如图1,已知△ABC,求证:∠A+∠B+∠C=180°.图1 图2 图3小马的证法:如图2,延长BC到点D,则∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠ACD+∠ACB=180°(平角的定义),所以∠A+∠B+∠ACB=180°.小虎的证法:如图3,过点A作AD⊥BC于点D,则∠1+∠B=90°,∠2+∠C=90°(直角三角形的两锐角互余),所以(∠1+∠2)+∠B+∠C=180°,即∠BAC+∠B+∠C=•180°.你认为他们的证法对吗?说说你的看法,请给出一种你认为比较简单且正确的证法.3.如图所示,在△ABC中,AD⊥BC,∠BAD>∠CAD,求证:AB>AC.参考答案一、1.解法一:如图1,延长ED交BC于点F,因为AB∥DE,所以∠BFE=∠B=80°(两直线平行,内错角相等),所以∠DFC=100°,所以∠BCD=∠CDE-∠DFC=140°-•100°=40°(三角形的一个外角等于和它不相邻的两个内角的和).图1 图2解法二:如图2,过点C作CF∥DE,所以∠DCF=180°-∠CDE=180°-140•°=40°(两直线平行,同旁内角互补).因为AB∥DE,所以AB∥CF(•平行于同一条直线的两条直线互相平行),所以∠BCF=∠ABC=80°(两直线平行,内错角相等),所以∠BCD=∠BCF-∠DCF=80°-40°=40°.2.解:如答图,延长CD交AB于E.因为∠C=21°,∠A=90°,所以∠BED=∠A+•∠C=90°+21°=111°.又因为∠CDB=∠B+∠BED,∠B=32°.所以∠CDB=32°+111°=143°≠148°,•故零件不合格.点拨:本题的巧妙之处在于通过作辅助线,•两次利用“三角形的外角等于和它不相邻的两个内角和”,迅速求出∠CDB的值,然后与148°相比较,得出零件不合格.三、3.解:因为∠BDC是△ADC的一个外角,所以∠BDC=∠A+∠ACD.又因为∠A=62°,∠ACD=35°,所以∠BDC=∠A+∠ACD=62°+32°=97°.在△BDF中,∠ABE=20•°,•∠BDC=97°.所以∠BFD=180°-20°-97°=63°.4.解:因为∠ECD是△BCE的外角,所以∠ECD=∠EBC+∠E.因为BE,CE•分别平行∠ABC,∠ACD,所以∠EBC=12∠ABC,∠ECD=12∠ACD.所以12∠ACD=12∠ABC+∠E,•所以∠ACO=•∠ABC+2∠E.又因为∠ACD是△ABC的外角.所以∠ACD=∠A+∠ABC.所以∠A+•∠ABC=•∠ABC+2∠E.所以∠A=2∠E,所以∠E=12∠A=12×50°=25°,若∠A=α,则∠E=12α.三、5.证明:如图,延长AD交BC于E,因为∠BEA>∠C,∠ADB>∠BEA,•所以∠ADB>∠C.四、6.C7.B 点拨:因为AB∥CD,所以∠EDF=∠1=∠110°,因为∠ECD=70°,所以∠EDF=∠ECD+∠E,110°=70°+∠E,所以∠E=40°.五、探究学习1.解:(1)三角板旋转的度数为180°-30°=150°.(2)因为CB=BD,所以△CBD为等腰三角形,(3)因为∠DBE为△CBD的外角,所以∠DBE=∠BCD+∠BDC,又因为△CBD•为等腰三角形,所以∠BCD=∠BDC.所以2∠BDC=∠DBE=30°,所以∠BDC=15°.点拨:这是一类动手操作题.在操作过程中要注意发现规律,•要有把现实模型抽象为数学问题,从而进一步解决问题的能力.2.解:他们两人的证法都不对,•因为小马所使用的“三角形的一个外角等于和它不相邻的两个内角的和”与小虎所用“直角三角形的两锐角互余”都是建立在三角形内角和定理的基础上的,不能逆过来证明三角形的内角和定理,这是犯了“循环证明”的错误.证明:如图,过点A作DE∥BC,因为DE∥BC,所以∠DAB=∠B,∠EAC=∠C,•又因为点D,A,E在同一条直线上,所以∠DAB+∠BAC+∠EAC=180°,所以∠BAC+∠B+∠C=180°,即三角形的内角和是180°.点拨:一定要清楚三角形内角和定理及其两个推论之间的关系,不要乱用定理.3.证明:如图所示,在BD上找一点E,使DE=DC.因为AD⊥BC,所以在△ADE•与△ADC中,90,AD ADADE ADCDE DC=⎧⎪∠=∠=︒⎨⎪=⎩,所以△ADE≌△ADC,所以∠C=∠AED.又因为∠AED是△ABE的一个外角,所以∠AED>∠B,所以∠C>∠B,所以AB>AC.。

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大版初中数学八年级上册《7.5 三角形内角和定理》同步练习卷(含答案解析

北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.616.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.422.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=度.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=度.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=°.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D=.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=°.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为°.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=(度).40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为.三.解答题(共9小题)41.如图,在△ABC中,AD是高线,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠EAD与∠BOA的度数.42.在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.43.动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点Aˊ处.观察猜想(1)如图1,若∠A=40°,则∠1+∠2=°;若∠A=55°,则∠1+∠2=°;若∠A=n°,则∠1+∠2=°.探索证明:(2)利用图1,探索∠1、∠2与∠A有怎样的关系?请说明理由.拓展应用(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中结论求∠BA′C的度数.44.在△ABC中,BM平分∠ABC交AC于点M,点P是直线AC上一点,过点P 作PH⊥BM于点H.(1)如图1,当∠ACB=110°,∠BAC=30°,且点P与点C重合时,∠APH=°;(2)如图2,当点P在AC的延长线上时,求证:2∠APH=∠ACB﹣∠BAC;(3)如图3,当点P在线段AM上(不含端点)时,①补全图形;②直接写出∠APH、∠ACB、∠BAC之间的数量关系:.45.如图,在△ABC中,∠CAB=∠CBA,过点A向右作AD∥BC,点E是射线AD 上的一个动点,∠ACE的平分线交BA的延长线于点F.(1)若∠ACB=40°,∠ACE=38°,求∠F的度数;(2)在动点E运动的过程中,的值是否发生变化?若不变,求它的值;若变化,请说明理由.46.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.47.已知:如图,AM,CM分别平分∠BAD和∠BCD.①若∠B=32°,∠D=38°,求∠M的度数;②探索∠M与∠B、∠D的关系并证明你的结论.48.△ABC中,AD是∠BAC的平分线,AE⊥BC,垂足为E,作CF∥AD,交直线AE于点F.设∠B=α,∠ACB=β.(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).49.(1)如图1的图形我们把它称为“8字形”,则∠A,∠B,∠C,∠D四个角的数量关系是;(2)如图2,若∠BCD,∠ADE的角平分线CP,DP交于点P,则∠P与∠A,∠B的数量关系为∠P=;(3)如图3,CM,DN分别平分∠BCD,∠ADE,当∠A+∠B=80°时,试求∠M+∠N的度数(提醒:解决此问题可以直接利用上述结论);(4)如图4,如果∠MCD=∠BCD,∠NDE=∠ADE,当∠A+∠B=n°时,试求∠M+∠N的度数.北师大新版八年级上学期《7.5 三角形内角和定理》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.故选:C.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.2.如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC 的度数是()A.115°B.110°C.100°D.90°【分析】根据三角形内角和定理得到∠ABC+∠ACB=130°,根据角平分线的定义,三角形内角和定理计算.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵BE、CF是△ABC的角平分线,∴∠EBC=∠ABC,∠FCB=∠ACB,∴∠EBC+∠FCB=×(∠ABC+∠ACB)=65°,∴∠BDC=180°﹣65°=115°,故选:A.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.3.如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB的度数为()A.10°B.20°C.30°D.40°【分析】依据三角形外角性质,即可得到∠ABO+∠BAO=∠BOD=70°,再根据角平分线的定义,即可得到∠ABC+∠BAC=140°,进而得出∠C的度数.【解答】解:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=70°,又∵AD和BE是角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×70°=140°,∴∠ACB=180°﹣140°=40°,故选:D.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.4.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=β,那么∠A等于()A.180°﹣B.180°﹣2βC.90°﹣βD.90°﹣【分析】在△BCD中利用三角形内角和定理可求出∠BCD+∠CBD的度数,由角平分线的定理可得出∠CBE+∠BCF的度数,由邻补角互补可求出∠ABC+∠ACB 的度数,再在△ABC中利用三角形内角和定理即可求出∠A的度数.【解答】解:∵∠BCD+∠CBD+∠D=180°,∠D=β,∴∠BCD+∠CBD=180°﹣β.∵BD平分∠CBE,CD平分∠BCF,∴∠CBE+∠BCF=2(∠BCD+∠CBD)=360°﹣2β,∴∠ABC+∠ACB=180°﹣∠CBE+180°﹣∠BCF=360°﹣(∠CBE+∠BCF)=2β.又∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣2β.故选:B.【点评】本题考查了三角形内角和定理、邻补角以及角平分线的性质,利用三角形内角和定理、角平分线的性质及邻补角互补求出∠ABC+∠ACB的度数是解题的关键.6.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.7.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCDE外点A'的位置,则下列结论正确的是()A.∠1+∠2=∠A B.∠1+∠2=2∠A C.∠1﹣∠2=∠A D.∠1﹣∠2=2∠A 【分析】根据折叠的性质和三角形的外角的性质解答即可.【解答】解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,∵∠1=∠A+∠3,∠3=∠A′+∠2,∴∠1=∠A+∠A′+∠2,∴∠1﹣∠2=2∠A,故选:D.【点评】本题考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°【分析】利用角平分线的定义结合∠1的度数可得出∠CAE的值,进而可得出∠DAE、∠BAD的值,在△ABD中利用三角形内角和定理可求出∠B的值,此题得解.【解答】解:∵AE平分∠BAC,∠1=30,∴∠CAE=∠1=30°,∴∠DAE=∠CAE﹣∠2=10°,∴∠BAE=∠1+∠DAE=40°.∵AD⊥BC,∴∠ADB=90°,∴∠B=180°﹣∠BAD﹣∠ADB=50°.故选:D.【点评】本题考查了三角形内角和定理,牢记三角形内角和是180°是解题的关键.9.已知:如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.60°B.65°C.75°D.85°【分析】先根据EF⊥BC,∠DEF=15°可得出∠ADB的度数,再由三角形外角的性质得出∠CAD的度数,根据角平分线的定义得出∠BAC的度数,由三角形内角和定理即可得出结论.【解答】解:∵EF⊥BC,∠DEF=15°,∴∠ADB=90°﹣15°=75°.∵∠C=35°,∴∠CAD=75°﹣35°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣80°﹣35°=65°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°【分析】根据三角形内角和定理求出∠A和∠C,根据垂直的定义得到∠BDC=90°,计算即可.【解答】解:∵∠A+∠C+∠ABC=180°,∠C=∠ABC=2∠A,∴2∠A+2∠A+∠A=180°,解得,∠A=36°,则∠C=72°,∵BD是边AC上的高,∴∠BDC=90°,∴∠DBC=90°﹣∠C=18°,故选:C.【点评】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.12.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=()A.80°B.82.5°C.90°D.85°【分析】根据三角形的内角和定理可得∠BAC=100°,再利用角平分线的性质得到∠EDC=47.5°,最后利用三角形外角的性质得出结果.【解答】解:∵∠B=45°,∠C=35°,∴∠BAC=180°﹣45°﹣35°=100°,∵AD平分∠BAC,∴∠BAD═50°,∵∠ADC=∠B+∠BAD=50°+45°=95°,∵DE平分∠ADC,∴∠EDC═47.5°,∵∠AED=∠C+∠EDC,∴∠AED=35°+47.5°=82.5°.故选:B.【点评】本题考查了三角形的内角和定理、角平分线的性质及三角形外角的性质,解题的关键是熟练掌握三角形的内角和及三角形外角的性质.13.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.14.如图,△ABC中,BD为△ABC的角平分线,CE为△ABC的高,CE交BD于点F,∠A=80°,∠BCA=50°,那么∠BFC的度数是()A.110°B.l15°C.120°D.125°【分析】依据三角形内角和定理,即可得到∠ABC=50°,依据BD为△ABC的角平分线,可得∠ABD=25°,根据CE为△ABC的高,即可得到∠BEF=90°,再根据三角形外角性质,即可得到∠BFC=∠BEF+∠ABD.【解答】解:∵∠A=80°,∠BCA=50°,∴∠ABC=50°,又∵BD为△ABC的角平分线,∴∠ABD=25°,∵CE为△ABC的高,∴∠BEF=90°,∴∠BFC=∠BEF+∠ABD=90°+25°=115°,故选:B.【点评】本题考查了三角形的内角和定理、三角形外角的性质以及角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.15.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.6【分析】由三角形内角和定理可得出∠ABC+∠ACB=30°,由∠A1BA=∠ABC、∠A1CA=∠ACB结合三角形内角和定理可求出∠A1=120°,同理可求出∠A2=90°、∠A3=60°、…、∠A n=180°﹣30°•(n+1),令∠A n>0°,求出n的最大值即可.【解答】解:∵∠A=150°,∴∠ABC+∠ACB=180°﹣∠A=30°.∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=2(∠ABC+∠ACB)=60°,∴∠A1=180°﹣(∠A1BC+∠A1CB)=120°.同理可得:∠A2=90°,∠A3=60°,…,∠A n=180°﹣30°•(n+1),∴当∠A n>0°时,180°﹣30°•(n+1)>0°,解得n<5,∴至多能进行4步.故选:B.【点评】本题考查了三角形内角和定理,根据三角形内角和定理找出∠A n=180°﹣30°•(n+1)是解题的关键.16.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.17.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【解答】解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.【点评】此题考查三角形内角和,关键是根据三角形的内角和定理和三角形外角性质解答.18.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()A.40°B.41°C.42°D.43°【分析】连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=100°,推出2∠DAO+2∠FBO=100°,推出∠DAO+∠FBO=50°,由此即可解决问题.【解答】解:如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=100°,∴2∠DAO+2∠FBO=100°,∴∠DAO+∠FBO=50°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=140°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣140°=40°,故选:A.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.19.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA 与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°【分析】根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.【解答】解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=139°,∴∠C=180°﹣∠A﹣∠B=180°﹣139°=41°,故选:D.【点评】本题考查三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键21.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.∴正确的为:①②③,故选:C.【点评】本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.22.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求结论.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣128°=52°①,在△BGC中,x+2y=180°﹣114°=66°②,解得:①+②:3x+3y=118°,∴∠A=180°﹣(3x+3y)=180°﹣118°=62°,故选:B.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.23.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【分析】根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=130°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数.【解答】解:在△ABC中,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=130°﹣90°=40°;故选:C.【点评】本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和为180°,此题难度不大.二.填空题(共17小题)24.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE交于点M.若MN⊥BC于N,∠A=60°,则∠1﹣∠2=30度.【分析】利用三角形内角和和角平分线的定义,构建方程组即可解决问题;【解答】解:∵BD平分∠ABC,CE平分∠ACB,∴∠MBC=∠ABC,∠MCB=∠ACB,∴∠BMC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠1+∠BMN=120°①,∵MN⊥BC,∴∠2+∠BMN=90°②,①﹣②得:∠1﹣∠2=30°.故答案为:30【点评】此题考查了三角形内角和定理、角平分线的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.25.如图所示,在△ABC中,∠A=52°,若∠ABC与∠ACB的角平分线交于点D1,得到∠D1,∠ABD1与∠ACD1的角平分线交于点D2,得到∠D2;依此类推,∠ABD4与∠ACD4的角平分线交于点D5,得到∠D5,则∠D5的度数是56°.【分析】根据角平分线的性质和三角形的内角和定理可得.【解答】解:∵∠A=52°,∴∠ABC+∠ACB=180°﹣52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=∠ABC,∠ACD1=∠BCD1=∠ACB,∴∠CBD1+∠BCD1=(∠ABC+∠ACB)=×128°=64°,∴∠BD1C=180°﹣(∠ABC+∠ACB)=180°﹣64°=116°,同理∠BD2C=180°﹣(∠ABC+∠ACB)=180°﹣96°=84°,依此类推,∠BD5C=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.【点评】此题主要考查角平分线的性质和三角形的内角和定理,解决本题的关键是利用三角形内角和定理.26.如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的一个角折叠,使点C落在△ABC内,∠α=25°,则∠β=65°.【分析】首先根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,再算出∠C的度数,代入相应数值,即可算出∠β.【解答】解:根据四边形内角和定理可得:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,∵∠A=75°,∠B=60°,∴∠C=45°,∵∠α=25°,∴25°+∠β+180°﹣45°+75°+60°=360°,解得∠β=65°.故答案为:65°.【点评】本题主要考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.27.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=55°,∠1=95°,则∠2的度数为15°.【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=125°,再根据邻补角的性质可得∠FEB+∠EFC=360°﹣125°=235°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,然后计算出∠1+∠2的度数,进而得到答案.【解答】解:∵∠A=55°,∴∠AEF+∠AFE=180°﹣55°=125°,∴∠FEB+∠EFC=360°﹣125°=235°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=235°,∴∠1+∠2=235°﹣125°=110°,∵∠1=95°,∴∠2=110°﹣95°=15°,故答案为:15°.【点评】本题考查了三角形的内角和定理,翻折变换的性质,四边形的内角和等于360°,熟记定理并准确识图是解题的关键.28.如图,将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=135°,∠A=15°,则∠A′DB的度数为120°.【分析】根据三角形的内角和等于180°求出∠B,根据两直线平行,同位角相等可得∠ADE=∠B,再根据翻折变换的性质可得∠A′DE=∠ADE,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠C=135°,∠A=15°,∴∠B=180°﹣∠A﹣∠C=180°﹣15°﹣135°=30°,∵△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=30°,∠A′DE=∠ADE=30°,∴∠A′DB=180°﹣30°﹣30°=120°.故答案为120°.【点评】本题考查了平行线的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.29.如图,在△ABC中,D、E分别是边AB、AC上一点,将△ABC沿DE折叠,使点A落在边BC上.若∠A=55°,则∠1+∠2+∠3+∠4=235度.【分析】依据三角形内角和定理,可得△ABC中,∠B+∠C=125°,再根据∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,即可得出∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=235°.【解答】解:∵∠A=55°,∴△ABC中,∠B+∠C=125°,又∵∠1+∠2+∠B=180°,∠3+∠4+∠C=180°,∴∠1+∠2+∠3+∠4=360°﹣(∠B+∠C)=360°﹣125°=235°,故答案为:235.【点评】本题主要考查了三角形的内角和定理,综合运用各定理是解答此题的关键.30.如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C 平分∠ACB,若∠BA′C=110°,则∠1+∠2=80°.【分析】连接AA′.首先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.【解答】解:连接AA′.∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,∴∠A′BC+∠A′CB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°,∵∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°,故答案为80°.【点评】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识,属于中考常考题型.31.如图,在△ABC中,点D是BC边上的一点,∠B=48°,∠BAD=28°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=104°.【分析】根据折叠的性质求出∠FAD=∠BAD=28°,根据三角形外角性质求出∠ADF,再根据三角形外角性质求出∠AFC即可.【解答】解:∵∠BAD=28°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,∴∠BAD=∠FAD=28°,∵∠B=48°,∴∠ADF=∠B+∠BAD=48°+28°=76°,∴∠AFC=∠FAD+∠ADF=28°+76°=104°,故答案为:104.【点评】本题考查了折叠的性质和三角形外角的性质,能根据折叠的性质求出∠FAD的度数是解此题的关键.32.如图,已知AB、CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D= 64°.【分析】根据三角形内角和定理即可求出答案.【解答】解:∵∠A+∠D=∠C+∠B,∴∠D=64°,故答案为:64°【点评】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理,本题属于基础题型.33.如图,在△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于点P,若∠A=70°,则∠BPC=110°.【分析】根据四边形的内角和等于360°,求出∠DPE的度数,再根据对顶角相等解答.【解答】解:∵CD、BE分别是AB、AC边上的高,∴∠DPE=360°﹣90°×2﹣70°=110°,∴∠BPC=∠DPE=110°.故答案为:110°.【点评】本题考查了多边形的内角和,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.34.如图,△ABE和△ACD是△ABC分别沿着AB、AC翻折而成的,若∠1=140°,∠2=25°,则∠α度数为80°.【分析】依据∠1=140°,∠2=25°,可得∠3=15°,利用翻折变换前后对应角不变,得出∠2=∠EBA,∠3=∠ACD,进而得出∠BCD+∠CBE的度数,再根据三角形外角性质,即可得到∠α的度数.【解答】解:∵∠1=140°,∠2=25°,∴∠3=15°,由折叠可得,∠2=∠EBA=25°,∠3=∠ACD=15°,∴∠EBC=50°,∠BCD=30°,∴由三角形外角性质可得,∠α=∠EBC+∠DCB=80°,故答案为:80°.【点评】此题主要考查了翻折变换的性质以及三角形外角的性质的运用,利用翻折变换前后对应角不变得出是解题关键.35.如图,点D、E、F、G、H分别是△ABC的边上一点,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在△ABC内点O处,则∠1+∠2为180°.【分析】根据折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,中间以O 的顶点的周角为360°,和三角形内角和定理可得结论.【解答】解:由折叠的性质得:∠A=∠DOE,∠B=∠GOH,∠C=∠EOF,∵∠A+∠B+∠C=180°,∴∠DOE+∠GOH+∠EOF=180°,∴∠1+∠2=360°﹣180°=180°,故答案为;180.【点评】本题考查了三角形内角和定理和折叠的性质,熟练掌握折叠前后的两个角相等是关键.36.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB 的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.【点评】本题考查角平分线的性质及三角形的内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.37.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=180°.(用度数表示)【分析】根据三角形外角性质,可得∠1=∠C+∠2,∠2=∠A+∠D,那么有∠1=∠C+∠A+∠D,再根据三角形内角和定理有∠1+∠B+∠E=180°,从而易求∠A+∠B+∠C+∠D+∠E=180°.【解答】解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.【点评】本题考查了三角形内角和定理、三角形外角的性质.三角形的外角等于和它不相邻的两个内角的和.38.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为70°.【分析】根据三角形内角和定理求出x+y=145,在△FDC中,根据三角形内角和定理求出即可.【解答】解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.【点评】本题考查了三角形内角和定理,能求出x+y=145是解此题的关键.39.如图,在△ABC中,∠ABC=100°,∠ACB的平分线交AB边于点E,在AC边取点D,使∠CBD=20°,连接DE,则∠CED的大小=10(度).【分析】根据题意和图象,通过作辅助线,可以求得∠CED的度数,本题得以解决.【解答】解:延长CB到F,∵在△ABC中,∠ABC=100°,∠CBD=20°,∴∠ABF=80°,∠ABD=80°,∴AB平分∠FBD,又∵∠ACB的平分线交AB边于点E,∴点E到边BF,BD,AC的距离相等,∴点E在∠ADB的平分线上,即DE平分∠ADB,∵∠DBC=∠ADB﹣∠ACB,∠DBC=20°,∴,∴10°=,∵∠DEC=∠ADE﹣∠ACE=,∴∠DEC=10°,故答案为:10.【点评】本题考查三角形内角和定理,解答本题的关键是明确题意,利用数形结合的思想解答.40.如图,在△ABC中,∠A=70°∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为110°或50°.【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC ﹣∠B可得答案.【解答】解:∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上,∠BDF的度数为110°或50°,故答案为:110°或50°.【点评】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.。

7.5三角形内角和定理(教案)

7.5三角形内角和定理(教案)
2.教学难点
-理解三角形内角和定理的证明过程:对于初中生来说,几何证明是一个难点,尤其是运用平行线性质、同位角相等等方法的推理过程。
-解决实际问题时的灵活运用:学生在解决具体问题时,可能会对如何运用三角形内角和定理感到困惑,不知道从何入手。
-对特殊三角形内角和的理解:如等边三角形、直角三角形等,它们的内角和同样遵循三角形内角和定理,但学生可能会对此产生疑惑。
五、教学反思
在上完这节关于三角形内角和定理的课后,我对整个教学过程进行了深入思考。首先,我发现学生们对于三角形内角和的概念接受度较高,他们能够通过测量和观察,较快地理解并接受三角形内角和为180°这一事实。然而,在定理的证明过程中,学生们遇到了一些困难,尤其是对于几何证明的逻辑推理部分。
我意识到,几何证明对于初中阶段的学生来说是一个难点,因此在讲解证明过程时,我应该更加耐心,逐步引导学生理解每一步的推理,而不是直接给出结论。此外,我应该多设计一些互动环节,让学生参与到证明过程中来,比如通过小组讨论、上台演示等方式,增强他们的参与感和体验感。
举例:在讲解三角形内角和定理的证明过程时,可以采用逐步引导、分步骤讲解的方式,让学生逐步理解证明过程中的每一步。在解决实际问题时,教师可以给出多个不同类型的例子,引导学生分析问题、找出解题思路,提高学生的解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“7.5三角形内角和定理”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算三角形内角度数的情况?”(如拼图、建筑设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和的奥秘。
7.5三角形内角和定理(教案)

三角形内角和定理

三角形内角和定理

三角形内角和定理三角形内角和定理是指在一个三角形中,三个内角的和等于180度。

这个定理在数学中具有重要的意义和应用。

在本文中,我将详细介绍三角形内角和定理的证明以及一些相关的性质和应用。

证明三角形内角和定理的方法有很多种,其中一种是基于平行线的性质。

我们可以通过构造一条平行于边AB的直线,与边AC和BC相交,分别得到两个三角形ABC和ABD。

根据平行线交角相等的性质,可得∠ABC = ∠ADB。

同样地,我们可以构造一条平行于边AC的直线,与边AB和BC相交,得到两个三角形ABC和ACE,可得∠ACB = ∠AEC。

再者,我们可以利用直线上的内角和为180度,即∠ADB + ∠BAC + ∠AEC = 180度。

将前两个等式代入此等式中,得到∠ABC + ∠ACB + ∠A = 180度,即三角形内角和等于180度。

三角形内角和定理的证明还有其他方法,如利用三角形的外角,或者利用正弦定理和余弦定理等。

不同的证明方法都能验证三角形内角和定理的正确性,从而加深我们对这一定理的理解。

除了证明,三角形内角和定理还有一些重要的性质和应用。

其中一个性质是,如果一个三角形中某个角是直角(即90度),那么其他两个角的和也是90度。

这是因为直角三角形的两个锐角之和是90度,符合三角形内角和定理。

另一个性质是,如果一个三角形中某个角大于90度,那么其他两个角的和必然小于90度。

这是因为三角形内角和定理要求三个角的和等于180度,而一个角已经大于90度,所以其他两个角的和必然小于90度。

三角形内角和定理也有一些应用。

例如,在解决三角形相关问题时,我们经常会用到内角和定理来推导和计算一些未知角度。

另外,在平面几何中,利用三角形内角和定理可以推导出其他图形的角度和关系,如四边形、多边形等。

综上所述,三角形内角和定理是一个基础而重要的数学定理。

通过不同的证明方法可以验证其正确性,而其性质和应用也进一步丰富了我们对三角形和其他图形角度关系的认识。

最新版初中数学教案《三角形内角和定理2》精品教案(2022年创作)

最新版初中数学教案《三角形内角和定理2》精品教案(2022年创作)

7.5 三角形内角和定理第1课时 三角形内角和定理第一环节:情境引入活动内容:〔1〕用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行〔图6-38〔1〕〕然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合〔图〔2〕、〔3〕〕,最后得图〔4〕所示的结果〔1〕 〔2〕 〔3〕 〔4〕试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗? 〔2〕实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角呢? 活动目的:比照过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

第二环节:探索新知活动内容:① 用严谨的证明来论证三角形内角和定理.② 看哪个同学想的方法最多?方法一:过A 点作DE ∥BC∵DE ∥BC∴∠DAB=∠B ,∠EAC=∠C 〔两直线平行,内错角相等〕 ∵∠DAB+∠BAC+∠EAC=180°∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC 的延长线CD ,过点C 作射线CE ∥BA .A B C D E AB C ED∵CE∥BA∴∠B=∠ECD〔两直线平行,同位角相等〕∠A=∠ACE〔两直线平行,内错角相等〕∵∠BCA+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)活动目的:用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以到达证明的目的.第三环节:反响练习活动内容:〔1〕△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?假设有1个直角另外两角有什么特点?〔2〕△ABC中,∠C=90°,∠A=30°,∠B=?〔3〕∠A=50°,∠B=∠C,那么△ABC中∠B=?〔4〕三角形的三个内角中,只能有____个直角或____个钝角.〔5〕任何一个三角形中,至少有____个锐角;至多有____个锐角.〔6〕三角形中三角之比为1∶2∶3,那么三个角各为多少度?〔7〕:△ABC中,∠C=∠B=2∠A。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
C
B
A
7.5 三角形内角和定理
一、选择题
1.如图所示,BC⊥AD,垂足是C,∠B=∠D,则∠AED 与∠BED 的关系是( )A.∠AED>∠BED B.∠AED<∠BED
C.∠AED=∠BED
D.无法确定
2.关于三角形内角的叙述错误的是( ) A.三角形三个内角的和是180°; B.三角形两个内角的和一定大于60° C.三角形中至少有一个角不小于60°; D.一个三角形中最大的角所对的边最长
3.下列叙述正确的是 ( )
A.钝角三角形的内角和大于锐角三角形的内角和;
B.三角形两个内角的和一定大于第三个内角;
C.三角形中至少有两个锐角;
D.三角形中至少有一个锐角.
4.△ABC 中,∠A+∠B=120°,∠C=∠A,则△ABC 是( )
D C
B
A
A.钝角三角形
B.等腰直角三角形;
C.直角三角形
D.等边三角形
5.在△ABC 中,∠A -∠B=35°,∠C=55°,则∠B 等于( ) A.50° B.55° C.45° D.40°
6.三角形中最大的内角一定是( )
A.钝角
B.直角;
C.大于60°的角
D.大于等于60°的角 二、填空题
1.直角三角形的两个锐角___________.
2.在△ABC 中,∠A:∠B:∠C=1:2:3,则△ABC 是________三角形.
3.在△ABC 中,∠A=∠B=
1
10
∠C,则∠C=_______. 4.在△ABC 中,∠A+∠B=120°,∠A-∠B+∠C=•120°,•则∠A=• ,• ∠B=______.
5.如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D,则∠B=∠________,
∠C=∠________.
6.在一个三角形中,最多有______个钝角,至少有______个锐角.
三、计算题
1.如图,已知:∠A=∠C. 求证:∠ADB=∠CEB.
E D
C
A
2.如图,在△ABC 中,∠B=30°,∠C=65°,AE⊥BC 于E,AD 平分∠BAC,求∠DAE 的度数.
E
D C
B
A
3.如图,在正方形ABCD 中,已知∠AEF=30°,∠BCF=28°,求∠EFC 的度数.
E
F
D
C
B
A
四、如图,一块梯形玻璃的下底及两腰的一部分被摔碎,量得
∠A=120 °, ∠D=105°,你能否求出两腰的夹角∠P 的度数.
P
D
C
B
A
五、小明在证明“三角形内角和等于180°”时用了如图所示的辅助线的方法,
即延长BC 到D,延长AC 到E,过点C 作CF∥AB,你能接着他的辅助线的做法证明出来吗?
E
F
D
C B
A
六、请你利用“三角形内角和定理”证明“四边形的内角和等于360°”.四边形ABCD 如图所示.
D
C
B
A
七、我们已经证明了“三角形的内角等于180°”,易证“四边形的内角和等于
360°=2×180°,五边形的内角和等于540°=3×180°……”试猜想一下十边形的内角等于多少度?n 边形的内角和等于多少度?
参考答案
一、1.C 2.B 3.C 4.D 5.C 6.D
二、1.互余 2.直角 3.150° 4.90°,30° 5.∠DAC;∠BAD 6.1;2
三、1.∵∠A+∠B+∠ADB=∠C+∠B+∠CEB
又∵∠A=∠C,∠B=∠B
∴∠ADB=∠CEB
2.∵∠B+∠C+∠BAC=180°
∴∠BAC=180°-∠B-∠C=180°-30°-66°=84°
又∵A D平分∠BAC
∴∠DAC=1
2
∠BAC=
1
2
×84°=42°
∵AE⊥BC
∴∠EAC=90°-∠C=90°-66°=24°
∴∠DAE=∠DAC-∠EAC=42°-24°=18°
3.∵四边形ABCD是正方形
∴∠A=∠B=90°
∴∠AFE=90°-∠AEF=90°-30°=60°
∠BFC=90°-∠BCF=90°-28°=62°
∴∠EFC=180°-∠AFE-∠BFC=180°-60°-62°=58°
四、∵∠PAD+∠BAD=180° ∠PDA+∠ADC=180°
∴∠PAD=180°-∠BAD=180°-120°=60°
∠PDA=180°-∠ADC=180°-105°=75°
又∵∠P+∠PAD+∠PDA=180°
∴∠P=180°-∠PAD-∠PDA=180°-60°-75°=45°
五、∵AB∥CF
∴∠A=∠ACF ∠B=∠FCD
又∵∠ACB=∠DCE
∴∠A+∠B+∠C=∠ACF+∠FCD+∠DCE=180°
六、连接AC ∵∠B+∠BAC+∠ACB=180°
∠D+∠DAC+∠ACD=180°
∴ (∠B+∠BAC+∠ACB)+(∠D+∠DAC+∠ACD)=180°+180°∴∠B+∠D+(∠BAC+∠DAC)+(∠ACB+∠ACD)=360°
∴∠B+∠C+∠BAD+∠BCD=360°
即四边形ABCD的内角和等于360°.
七、十边形的内角和:(10-2)×180°=1440°
n边形的内角和:(n-2)×180°.。

相关文档
最新文档