正弦定理练习题(含答案),推荐文档

合集下载

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析1.在四边形ABCD中,AD⊥CD,AD=5,AB=7,∠BDA=60º,∠CBD=15º,求BC长.【答案】4【解析】利用已知条件及正余弦定理,即可求得BC的长.试题解析:在ΔABCD中,由余弦定理得AB2=AD2+BD2-2AD•BDcos60º,即BD2-5BD-24=0,解得BD=8.(6分)在ΔBCD中,由正弦定理得:.(12分)【考点】解三角形,正弦定理,余弦定理2.在中,内角A,B,C所对应的边分别为,若,则的值为()A.B.C.1D.【答案】D【解析】由正弦定理得:,又,所以选D.【考点】正弦定理3.如图,在平面四边形中,.(1)求的值;(2)若,,求的长.【答案】(1) (2)【解析】试题分析:(1)题目已知三角形的三条边,利用的余弦定理即可得到该角的余弦值.(2)利用(1)问得到的的余弦结合正余弦之间的关系即可求的该角的正弦值,再利用正余弦之间的关系即可得到,而与之差即为,则利用正弦的和差角公式即可得到角的正弦值,再利用三角形的正弦定理即可求的边长.(1)由关于的余弦定理可得,所以.(2)因为为四边形内角,所以且,则由正余弦的关系可得且,再由正弦的和差角公式可得,再由的正弦定理可得.【考点】三角形正余弦定理正余弦之间的关系与和差角公式4.在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则=()A.B.C.2D.2【答案】D【解析】S=bcsin120°=,即c×=,∴c=4,∴a2=b2+c2-2bccos120°=21,△ABC∴a=,∴由等比例性质得==2.5.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cosB=1,a=2c,则C=()A.或 B. C.或 D.【答案】B【解析】∵cos(A-C)+cosB=1,∴cos(A-C)-cos(A+C)=1,2sinA·sinC=1.又由已知a=2c,根据正弦定理,得sinA=2sinC,∴sinC=,∴C=或.∵a>c,∴A>C,∴C=.6.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC,则sinA-cos(B+)的最大值为()A.B.2C.D.2【答案】D【解析】由正弦定理得sinCsinA=sinAcosC.因为0<A<π,所以sinA>0,从而sinC=cosC.又cosC≠0,所以tanC=1,又0<C<π,故C=,于是sinA-cos(B+)=sinA-cos(π-A)=sinA+cosA=2sin(A+),又0<A<,所以<A+<,从而当A+=,即A=时,2sin(A+)取最大值2.7.已知△ABC中,内角A,B,C的对边分别为a,b,c,其中a=2,c=.(1)若sinC=,求sinA的值;(2)设f(C)=sinCcosC-cos2C,求f(C)的取值范围.【答案】(1)(2)(-1,]【解析】解:(1)由正弦定理得=,∴sinA===.(2)在△ABC中,由余弦定理,得c2=b2+a2-2bacosC,∴3=b2+4-4bcosC,即b2-4cosC·b+1=0,由题知关于b的一元二次方程应该有解,令Δ=(4cosC)2-4≥0,得cosC≤- (舍去)或cosC≥,∴0<C≤.∴f(C)=sin2C-=sin(2C-)- (-<2C-≤),∴-1<f(C)≤.故f(C)的取值范围为(-1,].8.在中,已知,且.(1)求角和的值;(2)若的边,求边的长.【答案】(1),;(2).【解析】(1)利用并结合两角差的余弦公式求出,然后再结合的范围求出的值,利用三角形的内角和定理得到,最后再利用两角和的正弦公式求出的值;(2)在(1)的基础上直接利用正弦定理求出的长度.(1)由,,得且,可得,,,,,在中,,;(2)在中,由正弦定理得:,.【考点】1.两角和与差的三角函数;2.内角和定理;3.正弦定理9.(2013•湖北)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.【答案】(1)(2)【解析】(1)由cos2A﹣3cos(B+C)=1,得2cos2A+3cosA﹣2=0,即(2cosA﹣1)(cosA+2)=0,解得(舍去).因为0<A<π,所以.(2)由S===,得到bc=20.又b=5,解得c=4.由余弦定理得a2=b2+c2﹣2bccosA=25+16﹣20=21,故.又由正弦定理得.10.在中,角对的边分别为,已知.(1)若,求的取值范围;(2)若,求面积的最大值.【答案】(1);(2)【解析】(1)在中,角对的边分别为,已知,且.由正弦定理可用一个角B表示出b,c的值.再根据三角函数角的和差化一公式,以及角B范围.求出最值,再由三角形的三边的关系即可得到结论.(2)由,可得到三角形边b,c与角A的余弦值的关系式,即可得角A的正弦值.再由余弦定理通过放缩以及三角形的面积公式即可得到结论.(1),(2分)(4分).(6分)(2),(8分)(10分)当且仅当时的面积取到最大值为. . (12分)【考点】1.正余弦定理.2.三角形的面积公式.3.不等式的基本公式.3.最值的求法.11.在中,角所对的边分别为,点在直线上.(1)求角的值;(2)若,且,求.【答案】(1)角的值为;(2).【解析】(1)由正弦定理先化角为边,得到;再由余弦定理求得,所以角的值为;(2)先用二倍角公式化简,再结合正弦函数的性质可求角,由正弦定理知.试题解析:(1)由题得,由正弦定理得,即.由余弦定理得,结合,得.(2)因为因为,且所以所以,.【考点】正余弦定理、二倍角公式.12.设函数.(1)求的值域;(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.【答案】(1);(2).【解析】(1)根据两角和的余弦公式展开,再根据二倍角公式中的降幂公式展开,然后合并同类项,利用进行化简;利用三角函数的有界性求出值域.(2)若,,得到角的取值,方法一:可以利用余弦定理,将已知代入,得到关于的方程,方法二:利用正弦定理,先求,再求角C,然后利用特殊三角形,得到的值.试题解析:(1)4分因此的值域为[0,2]. 6分(2)由得,即,又因,故. 9分解法1:由余弦定理,得,解得. 12分解法2:由正弦定理,得. 9分当时,,从而; 10分当时,,又,从而. 11分故a的值为1或2. 12分【考点】两角和的余弦公式、二倍角公式、余弦定理、正弦定理.13.在锐角中,角、、所对的边分别为、、,若,且,则的面积为()A.B.C.D.【答案】A【解析】,,,又是锐角三角形,.选A.14.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(1)求B;(2)若b=2,求△ABC面积的最大值。

正弦定理(含答案)

正弦定理(含答案)

正弦定理一、单选题(共10道,每道10分)1.在△ABC中,下列错误的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正弦定理的应用2.在△ABC中,内角A、B、C的对边分别为a、b、c,若A=135°,B=30°,,则b等于( )A.1B.C. D.答案:A解题思路:试题难度:三颗星知识点:正弦定理的应用3.已知△ABC的角A,B,C所对的边分别为a,b,c,若,,,则边=( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:正弦定理的应用4.在△ABC中,若,则等于( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:正弦定理的应用5.在△ABC中,角A,B,C所对的边分别为a,b,c,若,则为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:正弦定理的应用6.在△ABC中,,,,则=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正弦定理的应用7.在△ABC中,若,,,则=( )A. B.C. D.或答案:A解题思路:试题难度:三颗星知识点:正弦定理的应用8.在△ABC中,若,,,则=( )A. B.C. D.或答案:A解题思路:试题难度:三颗星知识点:正弦定理的应用9.在△ABC中,∠A=30°,,,则等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正弦定理的应用10.在△ABC中,,,,则=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:正弦定理的应用。

正弦定理习题(含答案)

正弦定理习题(含答案)

正弦定理习题姓名_______班级______一、选择题1. 设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,若a =3,b =√3,A =π3,则B =( ) A. π6 B. 5π6 C. π6或5π6 D. 2π32. 在△ABC 中,若∠A =60°,∠B =45°,BC =3√2,则AC =( ) A. 4√3 B. 2√3 C. √3 D. √323. 在△ABC 中,已知a =√3,b =√2,B =45°,则角A 的值为( )A. 60°或120°B. 120°C. 60°D. 30°或150°4. 已知△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c ,若c =2bcosA ,则此三角形必是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形5. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosC =2√23,bcosA +acosB =2,则△ABC 的外接圆的面积为( )A. 4πB. 8πC. 9πD. 36π 二、填空题6. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =√6,c =3,则A =______.7. 设ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c.若a =√3,sin B =12,C =π6,则b =_________.答案和解析1.【答案】A【解析】【分析】本题考查正弦定理,大边对大角,特殊角的三角函数值在解三角形中的应用,属于基础题.由已知及正弦定理可求sinB=bsinAa =12,利用大边对大角可求B为锐角,利用特殊角的三角函数值即可得解B的值.【解答】解:∵a=3,b=√3,A=π3,∴由正弦定理可得:sinB=bsinAa =√3×√323=12,∵a>b,∴B为锐角,B=π6.故选A.2.【答案】B【解析】【分析】本题主要考查正弦定理在解三角形中的应用,属于基础题.结合已知,根据正弦定理,BCsinA =ACsinB可求AC.【解答】解:根据正弦定理,BCsinA =ACsinB,则AC=BC⋅sinBsinA =3√2×√22√32=2√3,故选:B.3.【答案】A【解析】【分析】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.由B的度数求出sin B的值,再由a与b的值,利用正弦定理求出sin A的值,根据a大于b,得到A大于B,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵a=√3,b=√2,B=45°,∴由正弦定理asinA =bsinB,得:sinA=asinBb =√3×√222=√32,∵b<a,∴B<A,即45°<A<180°,∴A=60°或120°.故选:A.4.【答案】B【解析】【分析】本题考查三角形形状的判断,考查正弦定理的运用以及两角和与差的三角函数公式等内容,考查运算能力,属于基础题.利用正弦定理、两角和与差的三角函数公式化简即可判断.【解答】解:∵c=2bcosA,由正弦定理,可得:,即,,∴sinAcosB−sinBcosA=0,即,∵A、B是△ABC的内角,∴A=B,故△ABC是等腰三角形,故选B.5.【答案】C【解析】【解答】解:∵bcosA+acosB=2,∴由余弦定理可得:b×b2+c2−a22bc +a×a2+c2−b22ac=2,整理解得:c=2,又∵cosC=2√23,可得:sinC=√1−cos2C=13,∴设三角形的外接圆的半径为R,则2R=c sinC=213=6,可得:R=3,∴△ABC的外接圆的面积S=πR2=9π.故选C.【分析】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由余弦定理化简已知等式可求c的值,利用同角三角函数基本关系式可求sin C的值,进而利用正弦定理可求三角形的外接圆的半径R的值,利用圆的面积公式即可计算得解.6.【答案】75°【解析】【分析】本题考查了三角形的内角和以及正弦定理,属于基础题.根据正弦定理和三角形的内角和计算即可.【解答】解:根据正弦定理可得bsinB =csinC,C=60°,b=√6,c=3,∴sinB=√6×√3 23=√22,∵b<c,∴B=45°,∴A=180°−B−C=180°−45°−60°=75°,故答案为75°.7.【答案】1【解析】【分析】本题考查了正弦定理、三角形的内角和定理,熟练掌握定理是解本题的关键. 由sinB =12,可得B =π6或B =5π6,结合a =√3,C =π6及正弦定理可求b . 【解答】解:∵sinB =12,∴B =π6或B =5π6, 当B =π6时,a =√3,C =π6,A =2π3, 由正弦定理可得,√3sin 2π3=b12,则b =1;当B =5π6时,C =π6,与三角形的内角和为π矛盾. 故答案为:1.。

解三角函数:正弦定理习题及详细答案

解三角函数:正弦定理习题及详细答案

1.在△ABC 中,A =60°,a =43,b =42,则( ) A .B =45°或135° B .B =135° C .B =45° D .以上答案都不对.以上答案都不对解析:选C.sin B c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 解析:选D.由正弦定理6sin 120°=2sin C ⇒sin C =12, 于是C =30°⇒A =30°⇒a =c = 2. 3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________. 解析:在△ABC 中,若tan A =13,C =150°, ∴则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC D,求证:BD DC =AB AC. 证明:如图所示,设∠ADB =θ,则∠ADC =π-θ. 在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BDAB =sin A2sin θ;① 在△ACD 中,CD sin A 2=ACsin (π-θ),解三角函数:正弦定理=22,∵a >b ,∴B =45°45°. . 2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若A 为锐角,sin A =110,BC =1,的平分线,交对边BC 于∴CDAC =sinA2 sin θ.②由①②得BDAB=CDAC,∴BDDC=ABAC. 一、选择题1.在△ABC中,a=5,b=3,C=120°,则sin A∶sin B的值是() A.53 B.35C.37 D.5B=ab=53. 2.在△ABC中,若sin Aa=cos Cc,则C的值为() A.30°B.45°C.60°D.90°解析:选B.∵sin Aa=cos Cc,∴sin Acos C=ac,又由正弦定理ac=sin Asin C. ∴cos C=sin C,即C=45°,故选B. 3.15,b=10,A =60°,则cos B=() A.-223 B.223C.-63D.63解析:选D.由正弦定理得15sin 60°=10sin B,∴sin B=10·10·sin 60°sin 60°15=10×3215=33. ∵a>b,A 7解析:选A.根据根据正弦定理正弦定理得sin A sin (2010年高考湖北卷)在△ABC中,a==60°,∴B为锐角.∴cos B=1-sin2B=1-(33)2=63. 4.在△ABC中,a=b sin A,则△ABC一定是() A.锐角三角形.锐角三角形 B.直角三角形C.钝角三角形.钝角三角形 D.等腰三角形解析:选B.由题意有a sin A =b =bsin 3,a =3,b =1,则c =( ) A .1 B .2 C.3-1 D.3 解析:选 B..两解.两解 B .一解.一解 C .无解.无解 D .无穷多解.无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________. 解析:AB =sin C sin A BC =2BC=2 5. 答案:25 8.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________. 解析:A =180°-30°-120°=30°, 由正弦定理得: a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3. 答案:1∶1∶3 在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 解析:由正弦定理,有3sin 2π3=1sin B , B ,则sin B =1,即角B 为直角,故△ABC是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°150°. . 由a >b ,得A >B ,∴B =30°30°. . 故C =90°,由,由勾股定理勾股定理得c =2. 6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( ) A9.(2010年高考北京卷)=6,=. =a2R∶b2R∶c2R=×4A=bsin B,得=a sin Bb=×322=534>=532,所以cos(π-cos(π-cos(π2-cos(π2-a·a2Rcos(π2-cos(π2-2.=π15=根据正弦定理正弦定理asin =b·b2R,。

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ­ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。

正弦定理练习题(含答案)

正弦定理练习题(含答案)

A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32 = 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1 ,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. =3A.3 B.3C.3或3 D.3或3 D.=,求出=3,∵1AB =2,6A.6 C.3 D.2 由正弦定理得6=2, =1. = 2. 3,π,则A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43,∴a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得,得2R sin A =2·2·22R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C . 答案:等腰三角形答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.,∴此三角形无解.答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?=BC ·sin ∠ABCsin A =20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. =π4. 3π4,∴=2A =b sin B =c sin C 得5a =10b =2c ,即a =2b ,c =5b ∵a -b =2-1,∴2b -b =2-1,∴=2,c = 5. ABC 中,ab =603,153,求边=1153=1603×3×sin =12,∴∠603,a sin A =b sin B ,∴215. 215. 2. :a sin 。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理测试题一、选择题:1.在△ABC中,a=15,b=10,A=60°,则 cos B=() 22226 A.-3 B.3C.-3D.6 32.在△ABC中,内角A,B,C的对边分别是a,b,c.若 a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°3.E,F是等腰直角△ABC斜边AB上的三平分点,则tan ∠ECF =()16233A. 27B. 3C.3D.4.△中,若-lg c ==-lg 2且∈ 0,π,则△ABC4ABC lg a lgsin B B2的形状是 ()A.等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形5.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,假如a、b、c 成等差数列,∠ B=30°,△ ABC的面积为,那么 b 为()A.1+ 3B.3+ 3 C.3+ 3D.2+ 3 36.已知锐角A是△ABC的一个内角,a、b、c是三角形中各内角的对应边,若 sin2-cos2=1,则 ()A A2A.b+c=2a B .b+c<2a C.b+c≤2a D.b+c≥2a7、若ABC的内角A知足sin 2A 2,则 sin A cos A 3A.153 B.153C.5D.5338、假如A1 B1C1的三个内角的余弦值分别等于A2 B2C2的三个内角的正弦值,则A.A1B1C1和A2B2C2都是锐角三角形B.A1B1C1和A2 B2C2都是钝角三角形C.A1 B1C1是钝角三角形,A2 B2C2是锐角三角形D.A1B1C1是锐角三角形,A2 B2C 2是钝角三角形9、VABC的三内角A,B,C所对边的长分别为 a, b, c 设向量ur r ur rp (a c, b) , q (b a, c a) ,若 p // q ,则角C的大小为(A)(B)(C)(D)233 6210、已知等腰△ABC的腰为底的 2 倍,则顶角A的正切值是()A.3B. 3C.15D.15 28711、ABC的内角 A、B、C的对边分别为a、b、c,若 a、b、c 成等比数列,且 c2a ,则 cosBA .1B.3C .24 44D.2312、在△ABC中,角A、B、C的对边分别为a、b、c, A=, a= 3 , b=1,3则 c=(A)1(B)2(C)3—1(D)3二、填空题:13 、在ABC中,若sin A:sin B :sin C5:7:8 ,则B的大小是___________.14、在 ABC中,已知a 3 3,=,=°,则=.b 4 A30sinB415、在△ ABC中,已知 BC=12,A=60°, B=45°,则 AC=16、已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边 BC上的中线 AD的长为.三、解答题:11 17。

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析

高三数学正弦定理试题答案及解析1.在中,,则的面积等于___ __.【答案】【解析】由余弦定理得:.所以.【考点】解三角形.2.在中,的对边分别为且成等差数列.(1)求的值;(2)求的范围.【答案】(1);(2)【解析】(1)先利用等差中项的定义找出等量关系,再利用三角恒等变换化简求解;(2)先由(1)得,从而代入,转化为只含A的三角函数,利用三角公式将其化为的形式,再注意到,进而转化成三角函数求值域问题求解.试题解析:(1)由正弦定理得,,即:,.又在中,,.(2),所以,的范围是.【考点】1.等差数列的性质;2.正弦定理;3.三角函数的图象和性质.3.如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高________.【答案】150【解析】根据题意,在中,已知,易得:;在中,已知,易得:,由正弦定理可解得:,即:;在中,已知,易得:.【考点】1.空间几何体;2.仰角的理解;3.解三角形的运用4.若的内角满足,则的最小值是 .【答案】【解析】由已知及正弦定理可得,,当且仅当即时等号成立.【考点】正弦定理与余弦定理.5.在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,则=____________.【答案】【解析】2sin2=sinA⇔1-cosA=sinA⇔sin=,又0<A<π,所以<A+<,所以A+=,所以A=.再由余弦定理,得a2=b2+c2+bc①将sin(B-C)=2cosBsinC展开,得sinBcosC=3cosBsinC,所以将其角化边,得b·=3··c,即2b2-2c2=a2②将①代入②,得b2-3c2-bc=0,左右两边同除以bc,得-3×-1=0,③解③得=或=(舍),所以==.6.在△ABC中,角A,B,C所对应的边分别为a,b,c且c=3,a=2,a=2bsin A,则△ABC的面积为________.【答案】【解析】由题意知,bsin A=1,又由正弦定理得:bsin A=2sin B,故解得sin B=,所以△ABC的面积为acsin B=.7.设函数f(x)=cos+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC的内角A、B、C的对边长分别为a、b、c,若f(B)=1,b=1,c=,求a的值.【答案】(1)[0,2] (2)1或2【解析】(1)f(x)=cos xcos -sin xsin +cos x+1=-cos x-sin x+cos x+1=cos x-sin x+1=sin+1,因此f(x)的值域为[0,2].(2)由f(B)=1得sin+1=1,即sin=0,又因0<B<π,故B=.方法一由余弦定理b2=a2+c2-2accos B,得a2-3a+2=0,解得a=1或2.方法二由正弦定理=,得sin C=,C=或.当C=时,A=,从而a==2;当C=时,A=,又B=,从而a=b=1.故a的值为1或2.8.已知分别为三个内角A、B、C的对边,若,则=_________.【答案】【解析】【考点】正弦定理和余弦定理.9.设函数.(1)求的值域;(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.【答案】(1);(2).【解析】(1)根据两角和的余弦公式展开,再根据二倍角公式中的降幂公式展开,然后合并同类项,利用进行化简;利用三角函数的有界性求出值域.(2)若,,得到角的取值,方法一:可以利用余弦定理,将已知代入,得到关于的方程,方法二:利用正弦定理,先求,再求角C,然后利用特殊三角形,得到的值.试题解析:(1)4分因此的值域为[0,2]. 6分(2)由得,即,又因,故. 9分解法1:由余弦定理,得,解得. 12分解法2:由正弦定理,得. 9分当时,,从而; 10分当时,,又,从而. 11分故a的值为1或2. 12分【考点】两角和的余弦公式、二倍角公式、余弦定理、正弦定理.10.已知向量,设函数(1)求函数的单调递增区间;(2)在中,角、、的对边分别为、、,且满足,,求的值.【答案】(1);(2)【解析】(1)利用数量积的坐标表示,先计算,然后代入中,利用正弦的二倍角公式和降幂公式,将函数解析式化为,然后利用复合函数的单调性和正弦函数的单调区间,求出函数的单调递增区间;(2)三角形问题中,涉及边角混合的式子,往往进行边角转换,或转换为边的代数式,或转换为三角函数问题处理.将利用正弦定理转换为,同时结合已知和余弦定理得,,从而求,进而求的值.试题解析:(1)令 6分所以所求增区间为 7分(2)由,, 8分,即 10分又∵, 11分 12分【考点】1、正弦定理;2、余弦定理;3、三角函数的图象和性质.11.的三个内角A,B,C所对的边分别为,则()A.B.C.D.【答案】B【解析】根据正弦定理可知,即,所以,选B.12.在ABC中,sin(C-A)=1,sinB=.(1)求sinA的值;(2)设AC=,求ABC的面积.【答案】(1)(2)【解析】(1)∵sin(C-A)=1且A,B,C为三角形之内角,∴C-A=,又C+A=-B,∴A=-∴sinA=sin(-)=(cos-sin),∴sin2A =(cos2+sin2-2sin cos)即,又,∴(2)如图,由正弦定理得∴,又∴13.已知函数.(1)求函数的最小正周期;(2)在中,若的值.【答案】(1)(2)【解析】(1)要得到的最小正周期,必须对进行化简,首先观察与之间的关系,可以发现,故利用诱导公式(奇变偶不变符号看象限)把,再利用正弦的倍角公式即可得到函数的最简形式,利用周期即可得到最小正周期.(2)把带入(1)得到的中,化简即可求的C角的大小,A角已知,所以可以求的C,A两个角的正弦值,利用正弦定理可得所求比值即为A,C两个角的正弦之比,带入即可求出.试题解析:(1)因为,所以函数的最小正周期为 6分(2)由(1)得,,由已知,,又角为锐角,所以,由正弦定理,得 12分【考点】诱导公式正弦定理周期正弦倍角公式14.在三棱锥中,,,,则与平面所成角的余弦值为.【答案】【解析】作PO⊥面ABC,垂足为O,连结AO,BO,CO,∴∠PBO是PB与面ABC所成的角,因,∴≌≌,∴AO=BO=CO,∴O是△ABC的外心,由正弦定理知,===12(R为△ABC外接圆半径),∴R=6,∴在Rt△POB中,∠BPO=30,∴∠PBO=,其余弦值为.【考点】1.正弦定理;2.线面角.15.已知函数.(1)若,求的取值范围;(2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.【答案】(1) (2)【解析】(1)首先利用正弦和差角公式展开,再利用正余弦的二倍角与辅助角公式化简,得到,则从x的范围得到的范围,再利用正弦函数的图像得到的取值范围,进而得到的取值范围.(2)把带入第(1)问得到的解析式,化简求值得到角A,再利用角A的余弦定理,可以求出a的值,再根据正弦定理,可以求的B角的正弦值,再利用正余弦之间的关系可以求的A,B的正余弦值,根据余弦的和差角公式即可得到的值.试题解析:(1).4分∵,∴,.∴. .7分(2)由,得,又为锐角,所以,又,,所以,. .10分由,得,又,从而,.所以, 14分【考点】三角形正余弦定理正余弦和差角与倍角公式正弦函数图像16.在△ABC中,A、B、C所对的边分别是a、b、c,且bcosB是acosC、ccosA的等差中项.(1)求B的大小;(2)若a+c=,b=2,求△ABC的面积.【答案】(1)B=(2)【解析】(1)由题意,得acosC+ccosA=2bcosB.由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,即sin(A+C)=2sinBcosB.∵A+C=π-B,0<B<π,∴sin(A+C)=sinB≠0.∴cosB=,∴B=.(2)由B=,得=,即=,∴ac=2.∴S=acsinB=.△ABC17.已知函数,的最大值为2.(1)求函数在上的值域;(2)已知外接圆半径,,角所对的边分别是,求的值.【答案】(1);(2).【解析】本题主要考查三角函数的最值问题、函数的单调性、正弦定理等基础知识,同时考查运算转化能力和计算能力.第一问,利用最大值为,可以解出m的值,利用两角和的正弦公式化简,根据函数定义域求的值域;第二问,利用第一问的表达式,化简,再利用正弦定理将角转化成边,由,从而得到的值.试题解析:(1)由题意,的最大值为,所以. 2分而,于是,. 4分在上递增.在递减,所以函数在上的值域为; 5分(2)化简得. 7分由正弦定理,得, 9分因为△ABC的外接圆半径为.. 11分所以 12分【考点】1.两角和的正弦公式;2.正弦定理;3.三角函数值域.18.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】由正弦定理,得sinBcosC+cosBsinC=sin2A,则sin(B+C)=sin2A,由三角形内角和定理及互为补角的诱导公式,得sin(B+C)=sin2A=1,所以A=,故选A.19.△ABC的内角A、B、C所对的边分别为a、b、c.若B=2A,a=1,b=,则c等于()(A)2 (B)2 (C) (D)1【答案】B【解析】由正弦定理,得=,∵B=2A,a=1,b=,∴==,∵sinA≠0,∴cosA=得A=,B=,C=.∴c==2.故选B.20.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为()A.2+2B.+1C.2-2D.-1【答案】B【解析】由正弦定理知c==2.又sinA=sin(π-B-C)=sin(B+C)=sinBcosC+cosBsinC=,所以△ABC的面积S=bcsin A=+1.故选B.21.在中,角、、所对的边分别为、、,若,则为()A.B.C.D.【答案】B【解析】由于,故,所以,由正弦定理可得,故选B.【考点】1.二倍角公式;2.正弦定理22.在△ABC中,内角A,B,C所对的边分别是a,b,c,若C=120°,c=a,则() A.a>b B.a<bC.a=b D.a与b的大小关系不能确定【答案】C【解析】因为sin 120°=sin A,所以sin A=,则A=30°=B,因此a=b23.设△ABC的内角A,B,C所对的边分别为a,b,c且cos A=,cos B=,b=3,则c=________.【答案】【解析】因为cos A=,cos B=,所以sin A=,sin B=.由正弦定理得,即,所以a=.由余弦定理得b2=a2+c2-2accos B,即9=+c2-2c,解得c= (负值舍去).24.△ABC的三个内角A,B,C的对边分别a,b,c,且a cos C,b cos B,c cos A成等差数列,则角B等于()A.30°B.60°C.90°D.120°【答案】B【解析】由题意,得2b cos B=a cos C+c cos A,根据正弦定理可得2sin B cos B=sin A cos C+cos A sin C,即2sin B cos B=sin(A+C)=sin B,解得cos B=,所以B=60°25.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C等于________.【答案】【解析】先用正弦定理求出角B的余弦值,再求解.由,且8b=5c,C=2B,所以5c sin 2B=8c sin B,所以cos B=.所以cos C=cos 2B=2cos2B-1=.26.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos B-sin(A-B)sin B+cos(A+C)=-.(1)求cos A的值;(2)若a=4,b=5,求向量在方向上的投影.【答案】(1)-(2)【解析】(1)由2cos2cos B-sin(A-B)sin B+cos(A+C)=-,得[cos(A-B)+1]cos B-sin(A-B)sin B-cos B=-,∴cos(A-B)cos B-sin(A-B)sin B=-.则cos(A-B+B)=-,即cos A=-.(2)由cos A=-,0<A<π,得sin A=,由正弦定理,有,所以,sin B=.由题知a>b,则A>B,故B=,根据余弦定理,有(4)2=52+c2-2×5c×,解得c=1或c=-7(舍去).故向量在方向上的投影为||cos B=.27.如图,嵩山上原有一条笔直的山路BC,现在又新架设了一条索道AC,小李在山脚B处看索道AC,发现张角∠ABC=120°;从B处攀登400米到达D处,回头看索道AC,发现张角∠ADC=150°;从D处再攀登800米方到达C处,则索道AC的长为______米.【答案】400【解析】如题图,在△ABD中,BD=400米,∠ABD=120°.因为∠ADC=150°,所以∠ADB=30°.所以∠DAB=180°-120°-30°=30°.由正弦定理,可得所以,得AD=400 (米).在△ADC中,DC=800米,∠ADC=150°,由余弦定理,可得AC2=AD2+CD2-2×AD×CD×cos∠ADC=(400)2+8002-2×400×800×cos 150°=4002×13,解得AC=400(米).故索道AC的长为400米.28.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin B sin C的值.【答案】(1)A=(2)【解析】(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=,(2)由S=bc sin A=bc·=bc=5,得bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=.又由正弦定理得sin B=sin A,sin C=sin A.∴sin B·sin C=sin2A=×=.29.在△ABC中,∠ABC=,AB=,BC=3,则sin ∠BAC=().A.B.C.D.【答案】C【解析】在△ABC中,由余弦定理得AC2=BA2+BC2-2BA·BC cos ∠ABC=()2+32-2××3cos =5.∴AC=,由正弦定理得sin ∠BAC=.30.已知函数f(x)=sin x cos x+cos 2x-,△ABC三个内角A,B,C的对边分别为a,b,c,且f(B)=1.(1)求角B的大小;(2)若a=,b=1,求c的值.【答案】(1)B=,(2)c=1【解析】(1)因为f(x)=sin 2x+cos 2x=sin ,所以f(B)=sin =1,又∈,所以2B+=,所以B=(2)法一由余弦定理b2=a2+c2-2ac cos B得c2-3c+2=0,所以c=1,或c=2.法二由正弦定理得sin A=,所以A=或A=,当A=时,C=,所以c=2;当A=时,C=,所以c=1.31.类比正弦定理,如图,在三棱柱ABC-A1B1C1中,二面角B-AA1-C,C-BB1-A,B-CC1-A的平面角分别为α,β,γ,则有________.【答案】==【解析】根据正弦定理得==,即==,而AA1=BB1=CC1,且EF·BB1=SBB1C1C,DF·CC1=SAA1C1C,DE·AA1=SAA1B1B,因此==32.在△ABC中,A=120°,AB=5,BC=7,则的值为().A.B.C.D.【答案】D【解析】由余弦定理,得BC2=AB2+AC2-2AB·AC·cos A,即72=52+AC2-10AC·cos 120°,∴AC=3.由正弦定理,得==.33.设锐角的三内角、、所对边的边长分别为、、,且,,则的取值范围为().A.B.C..D.【答案】A【解析】要求的范围,首先用正弦定理建立一个关系,,从而,因此我们只要确定出的取值范围,就可求出的取值范围了,,从而,又,,所以有,,所以.【考点】正弦定理,锐角三角形的判定.34.在中,角所对的边分别为,已知,(1)求的大小;(2)若,求的周长的取值范围.【答案】(1);(2).【解析】(1)本小题的突破口主要是抓住条件可使用正弦定理,得到,然后利用三角函数即可求得;(2)本小题首先通过正弦定理把三边用角表示出来,,然后把周长的问题转化为三角函数的值域求解问题;当然本小题也可采用余弦定理建立三边之间的关系,然后根据基本不等式求得,再根据三角形中两边之和大于第三边可得,于是,又,所以求得周长范围为.试题解析:(1)由条件结合正弦定理得,从而,∵,∴ 5分(2)法一:由正弦定理得:∴,, 7分9分∵ 10分∴,即(当且仅当时,等号成立)从而的周长的取值范围是 12分法二:由已知:,由余弦定理得:(当且仅当时等号成立)∴(,又,∴,从而的周长的取值范围是 12分【考点】1 正弦定理;2 余弦定理;3 基本不等式35.在中,角所对的边分别为满足,,, 则的取值范围是 .【答案】【解析】∵,∴,∴,∴为钝角,∵,∴,∴,∵,∴,,∴,∵,,∴,,∴.【考点】1.向量的数量积;2.余弦定理;3.正弦定理;4.三角函数的值域.36.已知中,角的对边分别为,且满足.(I)求角的大小;(Ⅱ)设,求的最小值.【答案】(I);(Ⅱ)当时,取得最小值为0.【解析】(I)利用正弦定理或余弦定理,将已知式化为:,再利用三角函数相关公式(两角和的正弦公式、诱导公式等),结合三角形内角和定理将其化简,即可求得角的大小;(Ⅱ)由已知及平面向量的数量积计算的坐标公式,可得的函数关系式:.由(I),,从而,只需求函数的最小值即可.试题解析:(I)由正弦定理,有, 2分代入得. 4分即.. 6分,. 7分. 8分(Ⅱ), 10分由,得. 11分所以,当时,取得最小值为0. 12分【考点】1.利用正弦定理、余弦定理解三角形;2.平面向量的数量积运算;3.三角函数的最值.37.已知a,b,c分别为△ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且∥.(1)求角A的大小;(2)若a=2,b=2,求△ABC的面积.【答案】(1);(II)△ABC的面积为或.【解析】(1)根据向量平行的坐标运算解答;(2)由(1)得出角A的大小,利用正弦定理计算,计算角大小,然后利用三角形中计算角,根据三角形面积公式解答即可.试题解析:(1) 4分(2)由正弦定理可得,,或. 6分当时,; 9分当时,. 11分故,△ABC的面积为或. 12分【考点】平面向量的坐标运算、正弦定理、解三角形、三角形面积公式.38.的角的对边分别为,已知.(Ⅰ)求角;(Ⅱ)若,,求的值.【答案】(Ⅰ) ;(Ⅱ) .【解析】(Ⅰ)先根据正弦定理将已知表达式:,全部转化为边的关系,然后根据余弦定理求出角的余弦值,结合特殊角的三角函数值以及三角形的内角求角;(Ⅱ)先根据三三角形的面积公式求出,然后根据余弦定理的变形,求得,将已知的与代入此式可解得.试题解析:(1)根据正弦定理,原等式可转化为:, 2分, 4分∴. 6分(Ⅱ),∴, 8分, 10分∴. 12分【考点】1.正弦定理;2.余弦定理及其变形;3.解三角形;4.三角形的面积公式;5.特殊角的三角函数值39.在中,角的对边分别为,已知.(1)求的值;(2)若,求和的值.【答案】(1);(2),;【解析】(1)本小题主要通过正弦定理得边角互化把条件转化为,然后利用余弦定理化简可得;(2)本小题通过展开得,然后根据正弦定理求得,.试题解析:(1)由正弦定理得由余弦定理得故 6分(2)故13分【考点】1.正弦定理;2.余弦定理.40.在中,角的对边分别为,,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)根据已知条件,建立的方程组即可得解.(Ⅱ)应用余弦定理可首先.进一步应用正弦定理即得.试题解析:(Ⅰ)由和可得, 2分所以, 3分又所以. 5分(Ⅱ)因为,,由余弦定理可得 7分,即. 9分由正弦定理可得 11分, 12分所以. 13分【考点】正弦定理、余弦定理的应用,三角形面积.41.在△中,角的对边分别为,若,则等于.【答案】【解析】因为,,,所以,,由正弦定理得,.【考点】,三角函数同角公式,正弦定理.42.已知的三个内角满足,则角的取值范围是.【答案】.【解析】设的外接圆的半径为,则三个内角、、的对边分别为、、,由于,则有,即,故有,由余弦定理得,,当且仅当的时候,上式取等号,,,即角的取值范围是.【考点】正弦定理与余弦定理、基本不等式43.在中,内角的对边分别为.已知.(Ⅰ)求的值;(Ⅱ)若为钝角,,求的取值范围.【答案】(Ⅰ)3(Ⅱ)【解析】(I)由正弦定理,设则所以………………4分即,化简可得又,所以因此……………….6分(II)由得由题意,…10分……………………………………12分【考点】正余弦定理解三角形点评:正弦定理,余弦定理,,,两定理可以实现三角形中边与角的互相转化44.如图,在某港口处获悉,其正东方向20海里处有一艘渔船遇险等待营救,此时救援船在港口的南偏西据港口10海里的处,救援船接到救援命令立即从处沿直线前往处营救渔船.(Ⅰ) 求接到救援命令时救援船据渔船的距离;(Ⅱ)试问救援船在处应朝北偏东多少度的方向沿直线前往处救援?(已知).【答案】 (Ⅰ) 接到救援命令时救援船据渔船的距离为海里.(Ⅱ)救援船应沿北偏东的方向救援.【解析】本题考查正弦定理、余弦定理在三角形中的应用,注意方位角与计算的准确性,考查计算能力.(Ⅰ):△ABC中,求出边长AB,AC,∠CAB,利用余弦定理求出BC,即可求接到救援命令时救援船据渔船的距离;(Ⅱ)△ABC中,通过正弦定理求出sin∠ACB的值,结合已知数据,得到∠ACB即可知道救援船在C处应朝北偏东多少度的方向沿直线前往B处救援.解:(Ⅰ) 由题意得:中,,……………3分即,所以接到救援命令时救援船据渔船的距离为海里. (6)(Ⅱ)中, ,,由正弦定理得即………9分,,故救援船应沿北偏东的方向救援. …………… 12分45.在中,,,则 ( )A.B.C.或D.或【答案】C【解析】由正弦定理,,故B>A,所以或,选C46.在中,若,则角B为()A.B.C.D.【答案】B【解析】因为,所以.47.在△中,内角、、的对边分别为、、,已知,,,则.【答案】【解析】因为由正弦定理可知,得到sinB=,由于b<a,因此48.(本小题满分14分)中,角A,B,C的对边分别是且满足(1)求角B的大小;(2)若的面积为为,求的值;【答案】(1). ⑵a+c=.【解析】本试题主要是考查了解三角形中正弦定理和余弦定理的综合运用,求解边和角的关系,同时也考查了三角形面积公式的运用。

高一数学正弦定理试题答案及解析

高一数学正弦定理试题答案及解析

高一数学正弦定理试题答案及解析1. .若DABC中,,那么=()A.B.C.D.【答案】A【解析】由正弦定理得,设【考点】正弦定理,余弦定理2.在中,角对的边分别为,且.(1)求的值;(2)若,求的面积.【答案】(1);(2).【解析】(1)已知,根据正弦定理和合比定理求的值;(2)由余弦定理得出的值,再根据三角形的面积公式可求出的面积.试题解析:(1)因为,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以.【考点】1、正弦定理;2、余弦定理;3、三角形面积公式.3.在△ABC中,AB=A=45°,C=60°,则BC= .【答案】.【解析】如图,根据正弦定理,,解得.【考点】正弦定理,特殊角的三角函数.4.中,已知,则三角形的形状为 .【答案】等腰或直角三角形【解析】中,,利用余弦定理把用边表示出来,带入原式得整理得,分组分解因式提取公因式,得,三角形的形状为等腰或直角三角形【考点】正余弦定理,三角形形状的判定5.已知圆心角为120°的扇形AOB的半径为1,C为弧的中点,点D,E分别在半径OA,OB上.若,则的最大值是 .【答案】【解析】在△COD中,由余弦定理得CD2=1+OD2-OD,同理在△EOC、△DOE中,由余弦定理分别得CE2=1+OE2-OE,DE2=OE2+OD2+OD·OE,代入整理得,由基本不等式得,所以,解得,即OD+OE的最大值是.【考点】正余弦定理,基本不等式.6.在△中,角,,所对的边分别为,,.(1)若,求角;(2)若,,且△的面积为,求的值.【答案】(1)(2)【解析】(1)将已知应用正弦定理转化为纯角的关系,并用将角C用角A,B表示,再注意到,从而可求得角A的三角函数值,从而得到角A的大小;(2)由于和△的面积为,可将用含量a的代数式表示出来,再由应用余弦定理就可将用含a的代数式表示,最后注意到,从而就可得到关于a的一个一元方程,解此方程就可得到a的值.试题解析:(1),由正弦定理可得.即.即,.注:利用直接得同样给分(2),的面积为,.,①由余弦定理,②由①,②得:,化简得,,(2)或解:由得①由得②由①,②得:,即,,..【考点】1.正弦定理和余弦定理;2.三角形的面积.7.在△ABC中,角A、B、C的对边分别为,∠A、∠B、∠C的大小成等差数列,且(1)若,求∠A的大小;(2)求△ABC周长的取值范围.【答案】(1)(2)【解析】(1)先由A,B,C成等差数列得,再利用正弦定理得,最后根据范围求出∠A的大小;(2)先由正弦定理得到,设周长为y,则y=,然后通过定义域,求出函数的值域,最后写出周长的取值范围.试题解析:(1)∵A,B,C成等差数列,∴解得又∵,,∴∴又∵∴(2)∵∴设周长为y,则∵∴∴∴∴周长的取值范围是【考点】等差数列的定义和性质;三角函数的恒等变换及化简求值;正弦定理的应用.8.在中,角、、所对的边分别为、、,满足.(1)求角;(2)求的取值范围.【答案】(1)(2)【解析】(1)要求角,只能从入手,利用正弦定理,将角化为边,得,进而可得三边关系,利用余弦定理即可求角.(2)从入手,欲找三边关系,用正弦定理将其化简为,将(1)的结论利用起来,代入,同时将代入,使得中只含有,进而根据,讨论的范围.试题解析:(1)根据正弦定理有:,化简得,根据余弦定理有, 所以.(2)根据正弦定理将化简,同时将(1)代入,化简为因为,,所以.故,的取值范围是【考点】正弦定理的应用(角化边);余弦定理;正弦差角;辅助角公式求范围.9.在△ABC中,角A,B,C的对边分别为,,,且.(1)求角的值;(2)若角,边上的中线=,求的面积.【答案】(1);(2).【解析】(1)首先可将条件中变形为,再利用正弦定理进行边角互化可得,再由中,可将等式继续化简为,从而;(2)由(1)及条件可得是等腰三角形,从而,再由边上的中线=,若设,则,可考虑在中采用余弦定理,即有,从而可进一步求得的面积:.试题解析:(1)∵,∴,由正弦定理得, 2分即, 4分∵,∴,∴,又∵,∴,∴; 7分(2)由(1)知,∴,, 8分设,则,又∵在中,由余弦定理:得即, 12分故. 14分【考点】1.三角恒等变形;2.正余弦定理解三角形.10.△ABC中,若,,则等于()A.B.C.D.2【答案】D【解析】由正弦定理得,a="2R" sin A,b=2RsinB,c=2RsinC,所以, .【考点】正弦定理的应用.11.若的三角,则A、B、C分别所对边=()A. B. C. D.【答案】C【解析】由及得,再由正弦定理得。

高二数学正弦定理试题答案及解析

高二数学正弦定理试题答案及解析

高二数学正弦定理试题答案及解析1.在△ABC中,、、分别是角、、的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用正弦定理并化简得,又,所以,因为为三角形的内角,所以.(Ⅱ)将已知条件代入余弦定理得 ac=3,所以.试题解析:(Ⅰ)由正弦定理得将上式代入已知即即∵∵∵为三角形的内角,∴.(Ⅱ)将代入余弦定理得,∴∴.【考点】1.解三角形的正弦定理与余弦定理;2.三角形的面积公式2.已知a,b,c分别为△ABC三个内角A,B,C的对边,a2=b2+c2﹣bc.(Ⅰ)求A;(Ⅱ)若a=2,求bsinB+csinC的最大值.【答案】(Ⅰ);(Ⅱ)2【解析】(Ⅰ)利用余弦定理可解得cosA=,因此A=;(Ⅱ)由正弦定理可知2r==,所以bsinB+csinC=(b2+c2),又b2+c2﹣4=bc≤得b2+c2≤8,所以bsinB+csinC=(b2+c2)≤2,所求的最大值为2.试题解析:(Ⅰ)△ABC中,∵a2=b2+c2﹣bc,∴cosA==,∴A=.(Ⅱ)若a=2,则2r==,∴bsinB+csinC=(b2+c2).∵b2+c2﹣4=bc≤,∴b2+c2≤8,∴(b2+c2)≤2,即bsinB+csinC的最大值为2.【考点】1.正弦定理与余弦定理;2.基本不等式的应用3.在中,角所对的边分别为,已知,(1)求的大小;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)由条件结合正弦定理,构建关于的方程,从而解出的值.(2)求的取值范围,通过正弦定理转化为角或角的三角函数,运用三角函数的知识解决问题,注意角的范围.在三角函数中求式子的取值范围,通常是运用正、余弦定理转化为某个角的三角函数来求范围,很少转化为某条边的代数函数来求范围的.试题解析:(1)由已知条件结合正弦定理有:,从而有:,.(2)由正弦定理得:,,,即:.【考点】1.解三角形;2.三角函数图象与性质.4.在△ABC中,设A、B、C的对边分别为a、b、c,向量,,若(1)求角A的大小;(2)若的面积.【答案】(1);(2)16.【解析】解题思路:(1)利用平面向量的模长公式将条件转化为,再结合角的范围求角A;(2)由正弦定理将边的关系化成角的正弦的关系,进而判定三角形的形状和求三角形的面积.规律总结:以平面向量为载体考查三角函数问题,体现了平面向量的工具性,要灵活选择平面向量知识合理化简,出现三角函数关系式;根据三角函数值求角的,要注意结合所给角的范围;解三角形要根据条件合理选择正弦定理、余弦定理、面积公式.试题解析:(1)又,,,为等腰三角形,.【考点】1.平面向量的模长;2.解三角形.5.中,,,则()A.B.C.D.【答案】C【解析】在中,由正弦定理可得即,所以,因为,,所以为锐角,所以由可得,所以,选C.【考点】正弦定理.6.在中,,则等于A.30°B.60°C.60°或120°D.30°或150【答案】C【解析】由正弦定理得:,∴,∴60°或120°.【考点】正弦定理.7.在中,角A.B.C所对的边分别是..,若,,则等于()A.B.C.D.【答案】B【解析】由正弦定理与题中条件可得即,而为三角形的内角,所以,所以,故选B.【考点】1.正弦定理;2.正弦的二倍角公式.8.辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分.某数学活动小组在青年公园内的A处测得塔顶B处的仰角为45°. 在水平地面上,沿着A点与塔底中心C处连成的直线行走129米后到达D处(假设可以到达),此时测得塔顶B处的仰角为60°.(1)请你根据题意,画出一个ABCD四点间的简单关系图形;(2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).【答案】305米【解析】由题意知,,可用正弦定理求出或的边长,最后在或中用三角函数求的边长。

正弦定理练习题

正弦定理练习题

正弦定理练习题1.在三角形ABC中,已知∠A=45°,∠B=60°,a=2,则b等于(B)2.2.在三角形ABC中,已知a=8,∠B=60°,∠C=75°,则b等于(C)43.3.在三角形ABC中,已知∠A=60°,a=43,b=42,则∠B等于(A)45°或135°。

4.在三角形ABC中,已知a:b:c=1:5:6,则.5.在三角形ABC中,a、b、c分别是∠A、∠B、∠C所对的边,若∠A=105°,∠B=45°,b=2,则c等于(C)2.6.在三角形ABC中,若cosA=cosB,则三角形ABC是(D)等腰三角形或直角三角形。

7.已知三角形ABC中,AB=3,AC=1,∠B=30°,则三角形ABC的面积为(A)3.8.三角形ABC的内角A、B、C的对边分别为a、b、c。

若c=2,b=6,∠B=120°,则a等于(B)2.9.在三角形ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若a=1,c=3,∠C=43°,则∠A=(C)63°。

10.在三角形ABC中,已知a=√3,b=4,∠A=30°,则sinB=(B)1/2.11.在三角形ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=(D)24.12.在三角形ABC中,若a=2bcosC,则三角形ABC的形状为(A)等腰三角形。

13.在三角形ABC中,∠A=60°,a=63,b=12,S△ABC=183,则sinA+sinB+sinC=(C)2.14.已知三角形ABC中,∠A:∠B:∠C=1:2:3,a=1,则sinA-2sinB+sinC=(B)-1.15.在三角形ABC中,a=32,cosC=1/3,S△ABC=43,则b=(A)24.16.在三角形ABC中,b=43,C=30°,c=2,则此三角形有(B)两组解。

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习题共3套(附答案)

正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。

正弦定理测试题及答案

正弦定理测试题及答案

正弦定理测试题及答案一、选择题1. 在三角形ABC中,如果sinA:sinB:sinC = 2:3:4,那么边a:b:c的比例是:A. 2:3:4B. 3:4:5C. 4:3:2D. 1:√2:22. 已知三角形ABC中,a=5, b=7, A=60°,使用正弦定理求边c的长度。

A. 6B. 7C. 8D. 9二、填空题3. 若三角形ABC的三边长分别为a、b、c,且a/sinA = b/sinB =c/sinC,根据正弦定理,可以得出a = ________。

4. 在三角形ABC中,如果sinA = 1/2,且A为锐角,那么角A的度数为 ________。

三、解答题5. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求角A、B、C的度数。

6. 在三角形ABC中,如果a=5,b=7,c=8,且角A=45°,求角B和角C的度数。

四、证明题7. 证明:在任意三角形ABC中,边a、b、c与角A、B、C满足正弦定理的关系。

答案:一、选择题1. 答案:A2. 答案:C二、填空题3. 答案:b*sinA/c4. 答案:30°三、解答题5. 解:根据正弦定理,我们有:a/sinA = b/sinB = c/sinC将已知的边长代入,得到:3/sinA = 4/sinB = 5/sinC由于3:4:5是一组勾股数,我们可以推断出三角形ABC是一个直角三角形,其中角C为直角。

因此,角A和角B可以通过以下方式求得: sinA = 3/5, cosA = 4/5, tanA = 3/4sinB = 4/5, cosB = 3/5, tanB = 4/3由于sinA < sinB,我们知道角A < 角B,且角A和角B的度数可以通过反正弦函数求得。

6. 解:已知a=5,b=7,c=8,A=45°,我们可以使用正弦定理求得sinB和sinC:sinB = b*sinA/a = 7*√2/2/5 = 7√2/10sinC = c*sinA/a = 8*√2/2/5 = 8√2/5然后,我们可以通过反正弦函数求得角B和角C的度数。

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案

正弦定理和余弦定理习题及答案正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=15.15.53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A.323 C.158D.15720、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B =b sin A a =33,cos B =1-sin 2B =63,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE =CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。

2024-2025年北师大版数学必修第二册2.6.1.2正弦定理(带答案)

2024-2025年北师大版数学必修第二册2.6.1.2正弦定理(带答案)

第2课时 正弦定理必备知识基础练知识点一 已知两角及一边解三角形1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3 ,sin B =12 ,C =π6,则b =________.2.在△ABC 中,B =45°,C =60°,c =1,则最短边的边长等于________. 知识点二 已知两边及一边的对角解三角形3.在△ABC 中,a =2 ,b =3 ,B =60°,那么角A =( ) A .45° B.45°或135° C .60° D.60°或120° 4.(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b =2 ,c =3 ,C =60°,求角B .(2)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c ,且a =23 ,b =6,A =30°,解三角形.知识点三 正弦定理的应用5.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定6.若△ABC 的内角A 、B 、C 满足sin A ∶sin B ∶sin C =2∶3∶3,则cos B =( ) A .14 B .13 C .12 D .237.在△ABC 中,a =23 ,A =60°,则该三角形外接圆的面积等于________.关键能力综合练一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .下列等式正确的是( ) A .a ∶b =A ∶BB .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .下列关系式中一定成立的是( ) A .a >b sin A B .a =b sin A C .a <b sin A D .a ≥b sin A3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,b =1,C =π6,则△ABC 的面积为( )A .34B .32C .334D .3324.在锐角三角形ABC 中,内角A ,B 所对的边分别为a ,b .若2a sin B =3 b ,则角A=( )A .π3B .π4C .π6D .2π35.(探究题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且若a 2+c 2+ac =b 2,外接圆的半径为1,则△ABC 面积的最大值为( )A .34B .34C .32D .334 二、填空题6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =x ,b =10,cos A =35,则使该三角形有唯一解的x 的值可以是________.(仅需填写一个符合要求的数值)7.在△ABC 中,cos C =35,BC =1,AC =5,则AB =________.若D 是AB 的中点,则CD =________.8.(易错题)在△ABC 中,若B =30°,AB =23 ,AC =2,则AB 边上的高是________. 三、解答题9.(1)在△ABC 中,已知A =60°,BC =43 ,AC =42 ,求角B . (2)在△ABC 中,已知a =22 ,A =30°,B =45°,解三角形.学科素养升级练1.(多选题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .根据下列条件解三角形,其中有两解的是( )A .b =10,A =45°,C =70°B .b =45,c =48,B =60°C .a =14,b =16,A =45°D .a =7,b =5,A =80° 2.(学科素养——数学运算)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2+c 2=ab +bc +ca .(1)证明:△ABC 是正三角形;(2)如图,点D 在边BC 的延长线上,且BC =2CD ,AD =7 ,求sin ∠BAD 的值.第2课时 正弦定理 必备知识基础练1.答案:1解析:因为sin B =12 且B ∈(0,π),所以B =π6 或5π6 ,又C =π6 ,所以B =π6,A =π-B -C =2π3 ,又a =3 ,由正弦定理得a sin A =b sin B ,即3sin 2π3 =b sinπ6.解得b =1.2.答案:63解析:由题意,因为B =45°,C =60°,所以A =180°-B -C =75°,最短边为b ,由正弦定理,得b =c sin B sin C =1×sin 45°sin 60° =63.3.答案:A解析:由正弦定理及已知得,sin A =a sin B b =22.又因为0°<A <180°,b >a ,所以B >A ,所以A =45°.故选A. 4.解析:(1)由正弦定理得bsin B =c sin C ,得2sin B =332,得sin B =22 .又b <c ,∴B <C ,∴B =45°.(2)∵a sin A =b sin B ,∴sin B =b sin A a =6sin 30°23 =32 .∵b >a ,A =30°,∴B >30°,∴B =60°或B =120°.当B =60°时,C =90°,c =a 2+b 2=43 ; 当B =120°时,C =30°,c =a =23 .综上,B =60°,C =90°,c =43 或B =120°,C =30°,c =23 .5.答案:C解析:由正弦定理及已知,得a 2+b 2<c 2,所以a 2+b 2-c 2<0,由余弦定理的推论,得cos C =a 2+b 2-c 22ab<0,所以角C 为钝角,即△ABC 为钝角三角形.故选C. 6.答案:B解析:由正弦定理,得a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶3. 不妨设a =2k ,b =3k ,c =3k ,k >0,则cos B =a 2+c 2-b 22ac =4k 2+9k 2-9k 22×2k ×3k =13.故选B.7.答案:4π解析:由asin A=2R 得R =2,所以S =πR 2=4π.关键能力综合练1.答案:B解析:由正弦定理a sin A =bsin B可得a ∶b =sin A ∶sin B ,可知B 正确.故选B.2.答案:D解析:由正弦定理a sin A =b sin B ,得a =b sin Asin B.在△ABC 中,∵0<sin B ≤1,∴1sin B≥1,∴a ≥b sin A .故选D. 3.答案:A解析:由正弦定理得a =3b ,因为b =1,所以a =3,由三角形面积公式可得12ab sin C=32 ×12 =34 .故选A. 4.答案:A解析:因为2a sin B =3 b ,所以由正弦定理可得,2sin A sin B =3 sin B .又sinB ≠0,所以sin A =32 .因为△ABC 为锐角三角形,所以A =π3.故选A.5.答案:A解析:由a 2+c 2+ac =b 2,得cos B =a 2+c 2-b 22ac =-12 ,∵0°<B <180°,∴B =120°,∵外接圆的半径为1,∴由正弦定理得bsin B=2,则b =3 ,∴a 2+c 2+ac =3,则3-ac=a 2+c 2≥2ac ,∴ac ≤1,当且仅当a =c 时等号成立,∴S △ABC =12 ac sin 120°=34 ac ≤34 ,即△ABC 面积的最大值为34.故选A. 6.答案:8(答案不唯一,满足x =8或x ≥10即可)解析:在△ABC 中,a =x ,b =10,cos A =35,由正弦定理得:asin A =b sin B,则sin B =b sin Aa =10×45x =8x,当0<x <8时,sin B >1,三角形无解;当x =8时,sin B =1,B =π2,三角形有唯一解;当8<x <10时,即a <b ,则A <B ,由cos A >0,得A ∈(0,π2 ),B ∈(0,π2 )或B ∈(π2,π),所以三角形有两解,当x ≥10时,即a ≥b ,则A ≥B ,由cos A >0,得A ∈(0,π2 ),B ∈(0,π2),因为y =sin x 在(0,π2)上单调递增,所以三角形有唯一解;故答案为8(答案不唯一,满足x =8或x ≥10即可). 7.答案:25 22解析:在△ABC 中,cos C =35,BC =1,AC =5,利用余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =1+25-6=20,所以AB =25 .因为D 是AB 的中点,所以CD → =12(CA →+CB → ),故|CD → |2=14 (CA → +CB → )2=14 (CA → 2+2CA → ·CB → +CB → 2)=14×32=8,所以CD =22 .8.答案:1或2解析:由正弦定理AC sin B =AB sin C ,得sin C =AB sin 30°AC =23sin 30°2 =32.∵0°<C <180°,∴C =60°或C =120°.当C =60°时,A =90°,AB 边上的高为2;当C =120°时,A =30°,AB 边上的高为2sin 30°=1.9.解析:(1)根据正弦定理得BC sin A =AC sin B ,即43sin 60° =42sin B ,解得sin B =22.又BC >AC ,所以A >B ,所以角B 的大小为45°.(2)∵a sin A =b sin B =csin C,∴b =a sin B sin A =22sin 45°sin 30° =22×2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30° =22sin 75°12=2+23 . 学科素养升级练1.答案:BC解析:选项A :因为A =45°,C =70°,所以B =65°,三角形的三个角是确定的值,故只有一解.选项B :因为sin C =c sin B b =8315<1,且c >b ,所以角C 有两解.选项C :因为sin B =b sin A a =427 <1,且b >a ,所以角B 有两解.选项D :因为sin B =b sin Aa<1,且b <a ,所以角B 仅有一解.综上所述,故选BC.2.解析:(1)证明:由a 2+b 2+c 2=ab +bc +ca 得(a -b )2+(b -c )2+(c -a )2=0, 所以a -b =b -c =c -a =0, 所以a =b =c ,即△ABC 是正三角形.(2)因为△ABC 是等边三角形,BC =2CD , 所以AC =2CD ,∠ACD =120°.在△ACD 中,由余弦定理可得AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,即7=4CD 2+CD 2-4CD ·CD ·cos 120°, 解得CD =1.在△ABD 中,BD =3CD =3,由正弦定理可得sin ∠BAD =BD ·sin BAD=3·327=32114.。

正弦定理余弦定理练习题及答案(供参考)

正弦定理余弦定理练习题及答案(供参考)

正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理复习1.在△ ABC 中,/ A = 45° / B = 60° a = 2,贝U b 等于()A. 6B. 2C. 3 D . 2 6解析:选A.应用正弦定理得: 县=县,求得b =a SJnB = 6.2.在△ ABC 中,已知 a = 8, B = 60°A . 4 .26•在△ ABC 中,若 C0S A = b ,则△ ABC 是()cos B aA .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形b sin B - cos A sin B解析:选D. •一= ,… =:,a sin A cos B sin AsinAcosA = sinBcosB , • sin2A = sin2B即 2A = 2B 或 2A + 2B = n 即 A = B ,或 A + B =才7.已知△ ABC 中,AB = 3, AC = 1,Z B = 30 ° 则厶 ABC 的面积为( )凡B.「 cj 或3D.f 或严电,AB >AC ,•••/ A = 90°或 30° a 、b 、C .若 B . 2 D.辺解析:选D.由正弦定理得 6- = 2 ,sin120 sinC••• si nC =12又••• C 为锐角,则 C = 30° • A = 30°△ ABC 为等腰三角形,a = c = ,2.9.在△ ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 a = 1, C = - 3, C =~3,则 A =asinA sin B'~ sinAC = 75 °则b 等于(C . 46 ) 32 D.^2b =斐唾4 6. sinA *B 、C 的对边分别为 a 、b 、C , A = 60 ° a = 4、/3, b = 4近,则角B 为( )B . 135 °C . 45 °D .以上答案都不对解析:选 C.由正弦定理 先=具得:sinB =四必=爭,又a>b , • B<60° , • B = 45°.si nA si nBa 24. 在△ ABC 中,a : b : C = 1 : 5 : 6,贝U sinA : sinB : sinC 等于( )A . 1 : 5 : 6C . 6 : 1 : 5解析:选A.由正弦定理知sinA : sinB5. 在△ ABC 中,a , b , C 分别是角A , B , 1 解析:选C.A = 45,由正弦定理得3.在△ ABC 中,角A 、 A . 45。

或 135 °a 、B . 6 : 5 : 1D .不确定:sinC = a : b : C = 1 : 5 : 6.C 所对的边,若 A = 105 ° B = 45 ° b = 72,贝U C =( )1D.1 C . 解析:选 D.-AB =-AC ,求出 sinC =sinC sinB•••/C 有两解,即/ C = 60°或 120°1再由&ABC = ^AB ACsinA 可求面积. &△ ABC 的内角A 、B 、C 的对边分别为A. 6 C. 3C =A /2, b = V 6, B = 120 ° 贝y a 等于()答案:n6答案:-2-11 .在△ ABC 中, 解析:C = 180°— 120° — 30° = 30° • a = c ,由f -得,sinA sinB •- a + c = 8 3.答案:8 .;312 .在△ ABC 中,a = 2bcosC ,则△ ABC 的形状为—解析:由正弦定理,得 a = 2R sinA , b = 2R sinB , 代入式子a = 2bcosC ,得2RsinA = 2 2R sinB c osC , 所以 sinA = 2sinB cosC ,即 sinB cosC + cosB sinC = 2sinB cosC , 化简,整理,得sin(B —C)= 0. •/ 0°v B v 180° 0°v C v 180°•••— 180°v B — C v 180° ,• B — C = 0° B = C. 答案:等腰三角形•- c = 6.答案:126解析:由正弦定理得: a = c si nA sinC ,所以sinA = ^•匹c1 2.14.已知△ ABC 中,/ A :/ B :/ C = 1 : 2 : 3, a = 1 a — 2b + c解析:由/ A :Z B :/ C = 1 : a 1• 2R == = 2,si nA sin30又 v a = 2Rsin A , b = 2Rsin B ,a —2b + c2 :3 得,/ A = 30°c = 2Rsi n C ,2R sin A — 2si nB + sin C则 sin A — 2sin B + sin C/ B = 60° / C = 90° sin A — 2s in B + sin C答案:2=2R = 2. sin A — 2si n B + sin C n 又••• a v c 」A v C = 3, ••• A = n6'10.在△ ABC 中,已知a =行3,解析:由正弦定理得 ab = 4, A = 30° 贝U sinB =? sinB =asi nA si nBbsinA 4 込 .3 4 .p — 2 -3已知/ A = 30° / B = 120 ° b = 12,贝U a + c =a +b + c13.在△ ABC 中, A = 60° a = 6也,b = 12, S* 18逅则sinA + sinB + sinC,c =解析:由正弦定理得6逅 sinA + sinB + si nC sinA sin60 a + b + c1 1 =12,又 S AABC = ~bcsinA , • 3x12 >sin60 :°:= 18\T3,解析:依题意,sinC= —3—, ABC= *absinC= 4 '3,解得b= 2肿.答案:2 316. 在△ ABC中,b = 4寸3, C = 30 ° c = 2,则此三角形有1解析:T bsinC = 4 .‘'3^2= 2 3且c= 2,••• c<bsi nC,二此三角形无解.答案:017. 如图所示,货轮在海上以40 km/h的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°航行半小时后船到达C点,观测灯塔A的方位角是65°则货轮到达C点时,与灯塔1解:在△ ABC 中,BC = 40% = 20 ,/ ABC = 140°—110°= 30°,/ ACB = (180 °—140°) + 65°= 105° 所以/ A = 180°—(30 °+ 105°)=45°由正弦定理得BC sin / ABCAC= snA=㈱=10 2创.即货轮到达C点时,与灯塔A的距离是10 '2 km.B 及b、c.解:由sinCcosC =1,得sinC=]n5 n6、「6 .A由sin Bsin C = cos2,,得1sin Bsin C = —[1 —cos(B+ C)],即2sin Bsin C= 1 —cos(B + C),即2sin Bsin C+ cos(B+ C) = 1,变形得cos Bcos C+ sin Bsi n C = 1,即cos(B —C)= 1,所以B= C= £ B = C=寮舍去),2nA = n—(B + C) = 3 .由正弦定理严;=光=匕,得sin A sin B sin C1b=c= as nB =2 ";=2.2故A= 77,B= n,b = c= 2.3 619. (2009年高考四川卷)在厶ABC中,A、B为锐角,角3 io A、B、C所对应的边分别为a、b、c, 且cos 2A=5, sin B =〒0.(1)求A+ B 的值;(2)若a —b= .;2 —1,求a, b, c 的值. 组解.A的距离是多少?18 .在△ ABC中,a、b、c分别为角A、B、C的对边,若a = 2 3, sinCcosC = }, sin Bsin C =又C€ (0, n)所以C = 一或C =—. ,求A、解:(1)T A、B 为锐角,sin B = £0••• cos B= 1 —si n2B = 3^.又cos 2A= 1 —2sin2A= 3,^ sinA=亠5• cos(A + B)= cos Acos B —sin Asi n B =2怦帧£举审5 10 5 10 2 .n又0v A + B v n •- A+ B = 4.(2)由(1)知,C= 3n,• sin C=普.由正弦定理:a b c得sin A sin B sin C 得,5a = , 10b = ,2c,即a= 2b, c= .5b.a —b= i;2 —1 ,•••..;2b —b =、J2 —1, • b = 1.•- a = 2, c= 5.20.A ABC 中,ab = 60 3, sin B= sin C,△ ABC 的面积为15.3,求边b 的长.1 1解:由S= 2absin C 得,15也=2^6^/3 冶in C,1• sin C = 2,二/ C= 30°或150°. 又sin B = sin C,故/ B=Z C.当/C = 30°时,/ B = 30° / A = 120°.又T ab= 60 3, f .b,• b= 2弋15. Y sin A sin B N当/C = 150° 时,/ B = 150° (舍去).故边b的长为2 . 15.cos A=。

相关文档
最新文档