《直角三角形》PPT课件

合集下载

直角三角形的三边关系ppt(共24张PPT)

直角三角形的三边关系ppt(共24张PPT)
解:在直角三角形中,依勾股定理可得:
依勾股定理可得:
3、如果一个直角三角形的两条边长分别是5厘米和12厘米,那么这个三角形的周长是多少厘米?
c2 = a2 + b2
8 + X =17 2 2 =13
2、求出以下直角三角形中未知边的长度。
2
52+ 122= X2
即:X=√172-82
即:X=√52+122
3、如果一个直角三角形的两条边长分别 是5厘米和12厘米,那么这个三角形的周
长是多少厘米?
可要留神噢!
在直角△ABC中, a=3, b=4, 那么求c的值?
勾股定理
求以下阴影局部的面积:
〔1〕 阴影局部是正方形; 〔2〕 阴影局部是长方形; 〔3〕 阴影局部是半圆.
C
BC
B
A
A
C
B
A
1.如图,小方格都是边长为1的正方形,
=15
=13
一起练一练
1、求以下图中字母所代表的正方形的面积。
A
225
400
625
81
B
225
144
2、求出以下直角三角形中未知边的长度。
x
10
6
8
x
12
1
5
3
勾股定理
例题:如图,有一长为12米的电线杆,想在距离电线 杆底部5米远处用一钢丝绳把它固定在地面上,问 要用
多长的钢丝绳才能把它固定呢?
解:如图,在Rt△ABC中, ∠ACB=90゜
AC=12, BC=5,
根据勾股定理得:
12
AB AC2BC2
5
122 52
13
答:要用13米长的钢丝绳才能把电线杆固定.

直角三角形的性质PPT教学课件

直角三角形的性质PPT教学课件

等于斜边的一半。
A
几何语言:
30°
在Rt△ABC中,
∠ACB=90°
∵∠A=30°

C
B ∴BC= 1 AB
2
“生主学导”课程模式
《直角三角形的性质》

当堂检测:
1、判断
(1)直角三角形两锐角互余 .


√ (2)在直角三角形中,斜边上的中线等于斜边的一半. (
(3)有两个角互余的三角形是直角三角形 . (

(4)在直角三角形中,如果一个锐角等于30°.
那么它所对的直角边等于斜边的一半. (

) ) )

“生主学导”课程模式
《直角三角形的性质》
当堂检测:
A
2、 在△ABC中, ∠ACB=90 °,CE是
E
AB边上的中线,那么与CE相等的线段有
__A__E_、_B__E_,若∠A=35°,那么∠ECB=
动中的探索与创新,感受数学的严谨性,激发学生的好 奇心和求知欲,培养学习的自信心。
“生主学导”课程模式
《直角三角形的性质》
探 活动一:
合 (1)画一个直角三角形ABC, ∠C=90°; 作 (2)量一量斜边AB的长度; 探 (3)标出斜边AB的中点,用字母D表示; 究 (4)画出斜边上的中线CD;
《直角三角形的性质》

直角三角形的性质 3:
直角三角形斜边上的中线等于
斜边的一半。
A
几何语言:
在Rt△ABC中,
D
∠ACB=90°
∵ AD=BD
C
B
∴CD=
1
2 AB
“生主学导”课程模式
《直角三角形的性质》

直角三角形的性质课件

直角三角形的性质课件
1/2 × a × b,其中a、b为直角 边。
若已知直角三角形的斜边和一条 直角边的长度,可以利用三角函 数求出另一条直角边的长度,进
而求出面积。
若已知直角三角形的两条直角边 的长度和夹角,可以利用正弦、
余弦或正切函数求出面积。
03 直角三角形判定方法
基于角度的判定
有一个角为90度的三角形是直角三角形
30-60-90三角形
其中一个锐角为30度,另一个为60度, 三边之比为1:√3:2。
02 直角三角形性质探究
角度性质
01
直角三角形的内角和为180度,其中一个角为90度,其余 两个角之和为90度。
02
直角三角形中的锐角互余,即两个锐角的度数之和等于90 度。
03
直角三角形斜边上的中线等于斜边的一半,且该中线与直 角顶点连线将直角三角形分为两个等腰三角形。
这是直角三角形最基本的判定方法,只要三角形中有一个角是90度,那么这个三角 形就是直角三角形。
其余两角之和为90度
除了一个90度的角外,其余两个角的度数之和也为90度,这是直角三角形的另一个 重要性质。
基于边长的判定
勾股定理
在直角三角形中,直角边的平方和等于斜边的平方。即a² + b² = c²,其中a和 b是直角三角形的两个直角边,c是直角三角形的斜边。
利用三角函数判定
在直角三角形中,正弦、余弦和正切等三角函数有特定的值。因此,可以通过计算这些函数的值来判断一个三角 形是否为直角三角形。例如,如果sinA = 1或cosA = 0(A为三角形的一个角),那么这个角就是90度,三角形 就是直角三角形。
04 直角三角形应用举例
在几何问题中的应用
01
直角三角形的性质课 件

浙教八年级数学上册《直角三角形》课件(共18张PPT)

浙教八年级数学上册《直角三角形》课件(共18张PPT)
CD=3厘米,则AB=_6_厘米
直角三角形的判定
1.有一个角是直角的三角形叫做直角三角形
∵∠C=90°
A
∴△ABC是直角三角形
B
C
2.有两个角互余的三角形是直角三角形
∵∠A+∠B=90°
∴△ABC是直角三角形
练一练
1. 根据下列条件判断△ABC是不是直角三角 形,并说明理由
(1)∠B=50°,∠C=40°. (2) ∠B=∠C=45° (3)∠A,∠B,∠C的度数比为5:3:2.
点.






拓展提高:
2、如图,在△ABC中,AD ⊥BC,DE、DF分别是AC、 AB边上的中线。 (1)若AB=AC,则△DEF是什么形状的三角形? (2)请补充一个条件,使△DEF为等腰三角形。
A
F
E
B
D
C
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月22日星期五2022/4/222022/4/222022/4/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/222022/4/222022/4/224/22/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/222022/4/22April 22, 2022
∵ ∆ABC是Rt∆ABC
C
∠A=30 °
BC 1 AB A
30°
B
2
性质1:直角三角形的两个锐角互余 性质2:直角三角形斜边上的中线等于斜边的一半。

解直角三角形完整版PPT课件

解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

《直角三角形》课件

《直角三角形》课件
《直角三角形》PPT课件
本课件将介绍直角三角形的定义、性质和判定方法,特殊直角三角形的性质 和判定方法,以及勾股定理在直角三角形中的应用和计算问题的解答方法。
什么是直角三角形?
直角三角形是一种特殊的三角形,其中一个角度为90度,也就是直角。除了 直角外,直角三角形还有其他特殊的性质和判定方法。
直角三角形的定义
直角三角形是指一个三角形中有一个角度为9
直角三角形的两个直角边的平方和等于斜边的平 方。
特殊边长关系
在直角三角形中,直角边的长度可以有特殊的关 系,如45°-45°-90°和30°-60°-90°三角形。
直角三角形的判定方法
判定一个三角形是否为直角三角形,可使用勾股定理、角度关系等方法。
3
特殊直角三角形的判定方法
可通过边长关系、角度关系等方法判定一个三角形是否为特殊直角三角形。
勾股定理与直角三角形
1
勾股定理的概念
直角三角形中,两个直角边的平方和等于斜边的平方。
2
勾股定理的应用
通过勾股定理可以计算直角三角形的边长、角度等未知量。
直角三角形的计算问题
1
已知两边求第三边
通过勾股定理可以计算直角三角形中已知两个边的情况下,第三边的长度。
2
已知一边一角求其他未知量
通过三角函数可以计算直角三角形中已知一边和一个角的情况下,其他未知量的 值。
3
利用三角函数求解问题
可以使用正弦、余弦、正切等三角函数来解决直角三角形的计算问题。
特殊直角三角形
特殊直角三角形是指具有特殊边长关系的直角三角形,如45°-45°-90°和30°-60°-90°三角形。
特殊直角三角形的性质
1
45°-45°-90°三角形的性质

冀教版八年级数学上册17.2《直角三角形》 (共22张PPT)

冀教版八年级数学上册17.2《直角三角形》 (共22张PPT)

么PD等于( )
4 A.1
5 B.2
6 C.4 7 D.8
〔来自?点拨?〕
知3-练
2在Rt△ABC中,∠A=30°,那么以下结论正确 的是( D ) A.BC= 1 AB B.BC≠ 2AB C.当∠B1=90°时,BC= AB D.当∠C2=90°时,BC= 1 AB 2 1 2
〔来自?典中点?〕
C
又∠A+∠B=90º,且∠A=30º,
∴∠B=60º,
∴△BCD是等边三角形, ∴ BC CD BD 1 AB.
2
60º B
30º A
直角三角形的性质定理
在直角三角形中,如果一个锐角等 于30º,那么它所对的直角边等于斜边的 一半.
用几何语言表示为:
C
在Rt△ABC中,∠C=90º,
∵ ∠A=30º,
直角三角形的判定定理:
如果一个三角形的两个角互余,那么 这个三角形是直角三角形.
小试牛刀
(1)在直角三角形中,有一个锐角为52°,那么另一 个锐角度数为 38° .
(2)在Rt △ ABC中,∠C=90°,∠A-∠B=30°,那么 ∠A= 60 ° ,∠B= 30 ° .
(3)如下图,在△ ABC中,∠ACB=90°,CD是斜边 AB上的高,
D
C
A
E
B
知识点 3 含30°角的直角三角形的性质
知3-导
证明:在直角三角形中,30°角所对的直角边 等于斜边的一半.
动脑筋?
如图,在Rt△ABC中,∠BCA=90º,假设 ∠A=30º那么BC与斜边AB有什么关系呢?
取线段AB的中点D,连接CD,
即CD是Rt△ABC斜边上的中线.
那么CD=AD=BD.

解直角三角形(共30张)PPT课件

解直角三角形(共30张)PPT课件

比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。

直角三角形ppt课件

直角三角形ppt课件

2. 已知直角三角形的两边长分别为 3,2,求另一条边长. 解:当斜边的长为 3 时,另一条边长
当两条直角边长分别为 3、2时,斜边长
3. 说出下列命题的逆命题,并判断每对命题的真假:
(1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果 ab = 0,那么 a = 0,b = 0.
(单位:dm):AB = 3,AD = 4,BC = 12,CD = 13.且∠DAB = 90°.你能
求出这个零件的面积吗?
解:如图,连接 BD. 在Rt△ABD 中,
在△BCD 中, BD2 + BC2 = 52 + 122 = 132 = CD2. ∴△BCD 为直角三角形,∠DBC = 90°.
课堂小结
定理 定理
直角三角形的两个锐角互余.
互逆命

有两个角互余的三角形是直角三角形. 题
勾股定理 直角三角形两条直角边的平 方和等于斜边的平方.
定理 如果三角形两边的平方和等于第三 边的平方,那么这个三角形是直角三角形.
互逆命 题
逆命题:如果两个有理数的平方相等,那 么这两个有理数相等.
原命题是真命题,逆命题是假命题.
如果一个定理的逆命题经过证明是真命 题,那么它也是一个定理,其中一个定理称为另 一个定理的逆定理.
随堂演练
1. 在 Rt△ABC 中,∠C = 90°. (1)已知 c = 25,b = 15,求 a;
(2)已知 a = 2 ,∠A = 60°,求 b,c.
解:(1)多边形是四边形.原命题是真,逆命 题是假.(2)同旁内角互补,两直线平行.原命题 是真,逆命题是真.(3)如果那么 a = 0, b = 0,那么 ab = 0.原命题是假,逆命题是真.

直角三角形性质PPT课件

直角三角形性质PPT课件
勾股定理是直角三角形的基本性质之一,具有广泛的应 用。
勾股定理证明方法
拼图法
通过将四个相同的直角三角形拼成一个 正方形来证明。
相似三角形法
利用相似三角形的性质来证明勾股定理 。
代数法
通过代数运算来证明勾股定理,例如使 用余弦定理推导。
面积法
利用三角形的面积公式来证明勾股定理 。
勾股定理逆定理及应用
精度检测和校准。
其他领域应用举例
01
02
03
物理学
在物理学中,直角三角形 用于描述和计算力的矢量 合成与分解、运动的位移 和速度等问题。
地理学
在地理学中,利用直角三 角形的性质可以计算地球 表面的距离、经纬度等地 理信息。
艺术领域
在绘画、摄影等艺术领域 ,直角三角形的构图原则 被广泛运用,以创造出和 谐、平衡的作品。
对应边成比例。
04
05
面积比等于相似比的平方。
相似直角三角形判定方法
如果两个直角三角形有一个锐角 相等,则这两个三角形相似。
如果两个直角三角形的两组对应 边成比例,则这两个三角形相似 。
基于角的判定
基于边的判定
如果一个直角三角形的斜边和一 条直角边与另一个直角三角形的 斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
THANKS
角度关系
01
两锐角互余
02
锐角与斜边关系
直角三角形中,两个锐角的度数之和为90°,即∠A + ∠B = 90°。
锐角的对边长度小于斜边长度,且随着锐角度数的增大,对边长度也 增大。
特殊直角三角形性质
等腰直角三角形
当直角三角形的两条直角边长度相等时,该三角形为等腰直角三角形。此时,两 个锐角的度数均为45°。

解直角三角形公开课ppt课件

解直角三角形公开课ppt课件

综合应用举例
具体步骤
根据实际问题建立直角三角形模型,确定已知条件和所求量。然后选择合适的解 法(如已知两边求角、已知两角求边等)进行计算,得出结果并进行检验。
注意事项
在综合应用过程中,需要注意实际问题的背景和限制条件,以及计算结果的合理 性和准确性。同时,还需要掌握多种解法,以便灵活应对不同的问题和情况。
已知两角求边
具体步骤
设已知的两个锐角为α和β,其中α为与已知边相邻的角,β为另一个锐角。则 可以利用正弦函数sin(α) = a/c或余弦函数cos(α) = b/c求解边长a或b,其中c 为斜边。
注意事项
在求解过程中,需要注意角度的单位和范围,以及正弦和余弦函数在不同象限 的正负性。同时,还需要注意已知边与所求边之间的关系,避免出错。
直角三角形两直角边互相 垂直,且斜边是直角边的 平方和的平方根。
直角三角形的元素
包括直角边、斜边和两个 锐角。
解直角三角形的意义
解决实际问题
解直角三角形可以帮助我们解决很多 实际问题,如测量、航海、建筑等。
培养数学思维
为后续学习打下基础
解直角三角形是学习数学的基础,对 于后续学习三角函数、解析几何等具 有重要意义。
力学问题中的解直角三角形
力的分解与合成
在力学中,经常需要将一个力分解为两个或多个分力,或 将多个分力合成为一个力,这时可以利用直角三角形的性 质和三角函数进行计算。
运动学中的问题
在研究物体的运动轨迹、速度、加速度等问题时,可以利 用直角三角形的性质进行求解,如抛物线运动、圆周运动 等。
动力学中的问题
定义、性质、三角函数定义和应用的理解程度等。
学习困难与问题反馈
02
鼓励学生反馈在学习过程中遇到的困难和问题,以便教师及时

《直角三角形》PPT课件

《直角三角形》PPT课件
D
直角三角形的两锐角互余
∴ ∠2= ∠B
于是得 B D' =C D' ( )
等角对等边
直角三角形的性质定理:
在直角三角形中,斜边上的中线等于斜边的一半
1.阅读课本148页的“发现”的证明过程。2.通过阅读你有什么发现?
∵CD是直角三角形ABC斜边上的中线∴CD= AB

60°
练习
如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形
求证: △ABC是直角三角形
练一练
2. 如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?
解:在Rt△ACB和Rt△ADB中,则
∴ Rt△ACB≌Rt△ADB (HL).
练习
在Rt△ABC中, ∠A :∠B: ∠C =1:2:3 ,若AB=10cm,求BC的长2.教材149页A组、B组
小结:这节课你有什么收获呢?与你的同伴进行交流
我们的生活离不开数学,我们要做生活的有心人。
直角三角形的性质定理: 直角三角形的两个锐角互余。 直角三角形的判定定理: 如果一个三角形的两个角互余,那么这个三角形是直角三角形。
147页 观察与思考
直角三角形的性质定理直角三角形斜边上的中线等于斜边的一半。
做一做
证明:在直角三角形中, 角所对的直角边等于斜边的一半。
∴BC=BD(全等三角形对应边相等).
2. 如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。
所以Rt△ABD≌Rt△ACD( HL )所以BD=CD
解:BD=CD 因为∠ADB=∠ADC=90°在Rt△ABD和Rt△ACD中 AB=AC AD=AD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
含30º角的直角三角形的性质 地理课件:/kejian/dili/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
一、我们因梦想而伟大,所有的成功者都是大梦想家:在冬夜的火堆旁,在阴天的雨雾中,梦想着未来。有些人让梦想悄然绝灭,有些人则细心培育维护,直到它安然度过困境,迎来光明和希望,而光明和希望总
是降临在那些真心相信梦想一定会成真的人身上。——威尔逊

二、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实才止;像种子在地下一样,一定要萌芽滋长,伸出地面来,寻找阳光。——林语堂
A D
AB=AB,
B
AC=AD.
∴ Rt△ACB≌Rt△ADB (HL).
∴BC=BD
(全等三角形对应边相等).
2. 如图,两根长度为12米的绳子,一端系在旗杆 上,另一端分别固定在地面两个木桩上,两个木桩 离旗杆底部的距离相等吗?请说明你的理由。
解:BD=CD 因为∠ADB=∠ADC=90° 在Rt△ABD和Rt△ACD中
Hale Waihona Puke 顶点C作射线CD'交AB于D',使∠1=∠A,
则有A D' =C D' ( 等角对等边)
又∵∠A+∠B=90°( 直角三角形的两锐角互余)
∠1+∠2=90° ∴ ∠2= ∠B
于是得 B D' =C D' ( 等角对等边 )
1 故得 B D' =A D' =C D' = 2 AB
所以D是斜边AB上的中点,即C D'是斜边AB上的中线,从而 C D'与CD重合,并有CD= 1 AB

30 3
60°
如果三角形一边上的中线等于这条边的一半 ,求证:这个三角形是直角三角形
已知:CD是 △ABC的 AB边上的中线,且CD= 1AB
2
求证: △ABC是直角三角形
2. 如图,AC=AD,∠C,∠D是直角,将上述 条件标注在图中,你能说明BC与BD相等吗?
C
解:在Rt△ACB和Rt△ADB中,则
2
1.阅读课本148页的“发现 ”的证明过程。 2.通过阅读你有什么发现?
直角三角形的性质定理:
1 2
在直角三角形12 中,斜边上的中线等于斜边的一半
∵CD是直1 角三角形ABC斜边上的中线 ∴CD= 2 AB
如图,在Rt△ABC中,∠BCA=90°,如果 ∠A=30°,那么BC与斜边AB有什么关系?
AB=AC AD=AD
所以Rt△ABD≌Rt△ACD( HL )
所以BD=CD
1. 在Rt△ABC中, ∠A :∠B: ∠C =1:2:3 ,若 AB=10cm,求BC的长
2.教材149页A组、B组
小结:这节课你有什么收
获呢?与你的同伴进行交流
我们的生活离不开数学 ,我们要做生活的有心 人。

147页 观察与思考
直角三角形的性质定理
直角三角形斜边上的中 线等于斜边的一半。
做一做
证明:在直角三角形中,30角所对的直角边等于斜边的一半
已。知:如图,在RtABC中,ABC 90,A 30. A
求证:BC 1 AC
2
D
B C
分析:如果中线CD=
1 2
AB,则有∠ACD= ∠A。
于是受到启发,在图中,过Rt △ABC的直角
历史课件:/kejian/lish i/
1.如图,在Rt△ABC中,两锐角的和
∠A+∠B= 90 °
2.在△ABC中,如果∠A+∠B=90°,那么 △ABC是直角三角形吗?
为什么,你能简 单的证明吗?
直角三角形的性质定理:
直角三角形的两个锐角互余。
直角三角形的判定定理:
如果一个三角形的两个角互余,那么 这个三角形是直角三角形。

三、多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。——毛泽东

四、拥有梦想的人是值得尊敬的,也让人羡慕。当大多数人碌碌而为为现实奔忙的时候,坚持下去,不用害怕与众不同,你该有怎么样的人生,是该你亲自去撰写的。加油!让我们一起捍卫最初的梦想。——柳岩
取的线中段线,AB则的有中C点DD= ,1连A结B=CBDD,即CD为Rt△ABC斜边AB上 2
C
A
由此可得出结论:
B
D
在直角三角形中,如果有一个锐角等于30°,那么它所对 的直角边等于斜边的一半
想 一 你能用等边三角形的性质来证明直角三角形的 想 这条性质吗?
1
如图,在Rt△ABC中,如果BC= 么∠A等于多少度?
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
2 AB,那
由此可得出结论

在直角三角形中,如果一条直角边等于斜边的一半,那么 这条直角边所对的角等于30°
例2
在A岛周围20海里(1海里=1852 m)水域内有暗礁, 一轮船由西向东航行到O处时,发现A到在北偏东60° 的方向,且与轮船相距 30 3 海里,如图所示。该船 如果保持航向不变,有触礁的危险吗?
直角三角形
学习目标
• 1.掌握直角三角形的性质定理和判定 定理
• 2.掌握含30º角的直角三角形的性质
学习重点和难点
• 重点:
• 直角三角形的性质定理和判定定理
• •
难点:
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
相关文档
最新文档