高等代数习题答案.doc

合集下载

高等代数习题答案

高等代数习题答案

《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --121 7、3 8、- 48 9、相 10、相11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、T A ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2-2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→cba2)31131031605510019182402113------→9532001235250019182402113-----→409201235250019182402113=-----→3)1103100321011111033100321011111993952032101111=→→→4)()()()xaan x a x an x a a an x111-+-+-+→()[]a n x 1-+=xaa x a a111→()[]a n x 1-+ax a x a a --001=()[]()11---+n a x a n x5)n n y x +6)nna a a a a1001010011110---→nn a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→572527003542 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x t x t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000004720123018144472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x t t x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131111202121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→022********220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020*******11111 则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1283001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21123124112 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1243012210011101101201221000111110111010012001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→3132341032313201031313100112430323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---AA A 3421322123111=⎪⎭⎫⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00CA ⎥⎦⎤⎢⎣⎡==A X CX A X CX E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--112121221100C A AX X X 则⎥⎦⎤⎢⎣⎡=---00111ACX10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定 2)064320222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t tt t t t t则054<<-t12、1)031610213510610213112311213≠-=---→---→----03321021112210211131021211≠=-→--→,故为3P 的两组基 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→0721010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000110201000003306031155033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10010001,11000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,100110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。

高等代数与解析几何1~4章习题答案(DOC)

高等代数与解析几何1~4章习题答案(DOC)

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数二练习题答案

高等代数二练习题答案

高等代数二练习题答案一、多项式运算1. 给定多项式 \( p(x) = x^3 - 3x^2 + 2x - 1 \) 和 \( q(x) =x^2 + 1 \),求 \( p(x) \) 除以 \( q(x) \) 的商和余数。

2. 计算多项式 \( r(x) = 2x^3 - 5x^2 + 7x - 3 \) 和 \( s(x) =x - 2 \) 的乘积。

3. 证明多项式 \( t(x) = x^4 - 5x^3 + 6x^2 + 8x - 9 \) 可以分解为两个二次多项式的乘积。

二、矩阵运算1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 和 \( B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \),求矩阵 \( A \) 与 \( B \) 的乘积。

2. 若矩阵 \( C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \),求 \( C \) 的逆矩阵。

3. 判断矩阵 \( D = \begin{bmatrix} 2 & 1 \\ 1 & 2\end{bmatrix} \) 是否可对角化,并给出相应的对角矩阵。

三、线性方程组1. 解线性方程组:\[\begin{align*}x + 2y - z &= 1 \\3x - y + 2z &= 0 \\2x + y + z &= -1\end{align*}\]2. 判断下列线性方程组是否有唯一解:\[\begin{align*}x + y &= 3 \\2x + 2y &= 6\end{align*}\]3. 用克拉默法则解线性方程组:\[\begin{align*}x - y + z &= 2 \\2x + y - z &= 1 \\-x + 2y + z &= 3\end{align*}\]四、特征值与特征向量1. 求矩阵 \( E = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \) 的特征值和对应的特征向量。

高等代数期末试题及答案

高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。

求解该线性方程组的解。

1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。

令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。

选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。

高等代数答案

高等代数答案

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-+=-⎪⎪-+--=⎨⎪-++-=⎪⎪++-+=-⎩ 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩1234234124234234433)31733x x x x x x x x x x x x x -+-=⎧⎪-+=-⎪⎨+++=⎪⎪-++=-⎩ 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=⎪⎪-++=-⎩123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=⎧⎪-+-=⎪⎨+-+=-⎪⎪-+-=⎩ 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩ 解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥→------⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦102101100101003212000212002000002000000000000000011100010000--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪-+=⎩ 解得123451022x k x k x x k x k=+⎧⎪=⎪⎪=⎨⎪=⎪⎪=--⎩ 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→⎢⎥⎢⎥----⎢⎥⎢⎥---⎣⎦⎣⎦ 120321120321033451033451252982529800110011333333003325297000001--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦1012210008011130100300201200201200482400080---⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦因为()()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-⎧⎪=⎪⎨=⎪⎪=⎩ 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦ 17891789017192001719200171920000003438400000--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥→→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦即原方程组德同解方程组为123423478901719200x x x x x x x +-+=⎧⎨-+-=⎩由此可解得1122123142313171719201717x k k x k k x k x k ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪=⎩ 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦ 2111121111700147001410000210000210000300001--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦因为()4()3rank A rank A =≠=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦2020000000552020570211611010015555101001010*******0000-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→→-----⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦即原方程组的同解方程组为23341357261550x x x x x x +=⎧⎪⎪-+=-⎨⎪-+=⎪⎩ 解之得123427551655x k x k x k x k =⎧⎪⎪=-⎪⎨=⎪⎪=-+⎪⎩其中k 是任意常数.2.把向量β表成1234,,,αααα的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)βαααα===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)βαααα=====--解 1)设有线性关系11223344k k k k βαααα=+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=⎧⎪+--=⎪⎨-+-=⎪⎪--+=⎩ 解之,得15,4k =21,4k = 31,4k =- 414k =- 因此123451114444βαααα=+--2)同理可得13βαα=-3.证明:如果向量组12,,,r ααα 线性无关,而12,,,,r αααβ 线性相关,则向量可由12,,,r ααα 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k + 使112210r r r k k k k αααβ+++++=显然10r k +≠.事实上,若10r k +=,而12,,,r k k k 不全为零,使11220r r k k k ααα+++=成立,这与12,,,r ααα 线性无关的假设矛盾,即证10r k +≠.故11rii i r k k βα=+=-∑即向量β可由12,,,r ααα 线性表出.4.12(,,,)(1,2,,)i i i in i n αααα== ,证明:如果0ij α≠,那么12,,,n ααα 线性无关.证 设有线性关系11220n n k k k ααα+++=代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k ααααααααα+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 由于0ij α≠,故齐次线性方程组只有零解,从而12,,,n ααα 线性无关.5.设12,,,r t t t 是互不相同的数,r n ≤.证明:1(1,,,)(1,2,,)n i i i t t i r α-==是线性无关的.证 设有线性关系11220r r k k k ααα+++=则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-≠∏所以方程组有惟一的零解,这就是说12,,,r ααα 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t βββ---⎧=⎪=⎪⎨⎪⎪=⎩ 则由上面1)的证明可知12,,,r βββ 是线性无关的.而12,,,r ααα 是12,,,r βββ 延长的向量,所以12,,,r ααα 也线性无关.6.设123,,ααα线性无关,证明122331,,αααααα+++也线性无关. 证 设由线性关系112223331()()()0k k k αααααα+++++=则131122233()()()0k k k k k k ααα+++++=再由题设知123,,ααα线性无关,所以13122300k k k k k k +=⎧⎪+=⎨⎪+=⎩ 解得1230k k k ===所以122331,,αααααα+++线性无关.7.已知12,,,s ααα 的秩为r ,证明:12,,,s ααα 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir ααα 是12,,,s ααα 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s α= 都可由12,,,i i ir ααα 线性表出就可以了.事实上,向量组12,,,,i i ir j αααα 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j α可由12,,,i i ir ααα 线性表出,再由j α的任意性,即证.8.设12,,,s ααα 的秩为r ,12,,,r i i i ααα 是12,,,s ααα 中的r 个向量,使得12,,,s ααα 中每个向量都可被它们线性表出,证明:12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.证 由题设知12,,,ri i i ααα 与12,,,s ααα 等价,所以12,,,ri i i ααα 的秩与12,,,s ααα 的秩相等,且等于r .又因为12,,,ri i i ααα 线性无关,故而12,,,ri i i ααα 是12,,,s ααα 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量α不能由向量组(Ⅱ)线性表出,此时将α添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)α=-,2(0,3,1,2)α=,3(3,0,7,14)α=4(1,1,2,0)α=-,5(2,1,5,6)α=1) 证明:12,αα线性无关.2) 把12,αα扩充成一极大线性无关组.证 1)由于12,αα的对应分量不成比例,因而12,αα线性无关. 2)因为3123ααα=+,且由1122440k k k ααα++=可解得1240k k k ===所以124,,ααα线性无关.再令112244550k k k k αααα+++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,αααα线性相关,所以5α可由124,,ααα线性表出.这意味着124,,ααα就是原向量组的一个极大线性无关组.注 此题也可将1245,,,αααα排成54⨯的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)αααα=-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)ααααα=-===-=解 1)设12346411210234149162271013A αααα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦ 对矩阵A 作行初等变换,可得411192600000102341023404111926004569980114223101142231A --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→→⎢⎥⎢⎥---⎢⎥⎢⎥----⎣⎦⎣⎦所以1234,,,αααα的秩为3,且234,,ααα即为所求极大线性无关组.3) 同理可得124,,ααα为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n ααα 是一组维向量,已知单位向量12,,,n εεε 可被它们线性表出,证明:12,,,n ααα 线性无关.证 设12,,,n ααα 的秩为r n ≤,而12,,,n εεε 的秩为n . 由题设及上题结果知n r ≤从而r n =.故12,,,n ααα 线性无关.14.设12,,,n ααα 是一组n 维向量,证明:12,,,n ααα 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n ααα 线性无关,但是1n +个n 维向量12,,,,n αααβ 必线性相关,于是对任意n 维向量β,它必可由12,,,n ααα 线性表出.充分性.任意n 维向量可由12,,,n ααα 线性表出,特别单位向量12,,,n εεε 可由12,,,n ααα 线性表出,于是由上题结果,即证12,,,n ααα 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 对任何12,,,n b b b 都有解的充分必要条件是系数行列式0ij a ≠.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b ααααβ===则原方程组可表示为1122n n x x x βααα=+++由题设知,任意向量β都可由线性12,,,n ααα 表出,因此由上题结果可知12,,,n ααα 线性无关.进而,下述线性关系12220n n k k k ααα+++=仅有惟一零解,故必须有0ij A a =≠,即证.16.已知12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,证明: 与121,,,,,,r r s ααααα+ 等价.证 由于12,,,r ααα 与121,,,,,,r r s ααααα+ 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r ααα 的极大线性无关组也必为121,,,,,,r r s ααααα+ 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r βαααβααα=+++=+++ 121r r βααα-=+++证明:12,,,r βββ 与12,,,r ααα 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r βββ 可由12,,,r ααα 线性表出.现在把这些等式统统加起来,可得12121()1r r r βββααα+++=+++- 于是121111(1)1111i i r r r r r αββββ=+++-++---- (1,2,,)i r =即证12,,,r ααα 也可由12,,,r βββ 线性表出,从而向量组12,,,r βββ 与12,,,r ααα 等价.18.计算下列矩阵的秩:1)01112022200111111011-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥-⎣⎦ 2)11210224203061103001-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦3)141268261042191776341353015205⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 4)10014010250013612314324563277⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5)1010011000011000011001011⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b λ取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ 2)122123123(3)(1)23(1)(3)3x x x x x x x x x λλλλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩3)1221231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩解 1)因为方程组的系数行列式21111(1)(2)11D λλλλλ==-+所以当1λ=时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--⎧⎪=⎨⎪=⎩ 其中12,k k 为任意常数.当2λ=-时,原方程组无解.当1λ≠且2λ≠-时,原方程组有惟一解.且12231212(1)2x x x λλλλλ+⎧=-⎪+⎪⎪=⎨+⎪⎪+=⎪=⎩2)因为方程组的系数行列式231211(1)333D λλλλλλλλ+=-=-++所以当0λ=时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1λ=时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0λ≠,且1λ≠时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x λλλλλλλλλλλλλλ⎧+-+=⎪-⎪⎪-+⎪=⎨-⎪⎪--+=⎪-⎪⎩3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ≠时,即1a ≠且0b ≠时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -⎧=⎪-⎪⎪=⎨⎪+-⎪=⎪-⎩当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。

高等代数习题答案

高等代数习题答案

目录第一章 多项式 第二章 行列式 第三章 线性方程组 第四章 矩阵 第五章 二次型 第六章 线性空间 第七章 线性变换 第八章 λ—矩阵第九章 欧氏空间第十章 双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY CY AX X '=''='-12222122221n p p p y y y y y y ----+++=++ΛΛ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y ===Λ21,1,021=====++n p p y y y Λ则可得一线性方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++11002211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21Λ=使()0111000<--=----+++='p n AX X s sΛΛ, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数(上)_习题集(含答案)

高等代数(上)_习题集(含答案)

《高等代数(上)》课程习题集一、填空题11. 若31x -整除()f x ,则(1)f =( )。

2. 如果方阵A 的行列式0=A ,则A 的行向量组线性( )关。

3. 设A 为3级方阵,*A 为A 的伴随矩阵,且31=A ,则=--1*A A ( )。

4. 若A 为方阵,则A 可逆的充要条件是——( )。

5. 已知1211A ⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥⎣⎦,且3AB C A B +=+,则矩阵C =( )。

6. 每一列元素之和为零的n 阶行列式D 的值等于( )。

7. 设行列式014900716=--k,则=k ( )8. 行列式22357425120403---的元素43a 的代数余子式的值为( )9. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则=α( )10. 设A 为3阶矩阵,51=A ,则12--A =( ) 11. 已知:s ααα,,,21 是n 元齐次线性方程组0=Ax 的基础解系,则系数矩阵A 的秩=)(A R ( )12. 多项式)(),(x g x f 互素的充要条件是( ) 13. 多项式)(x f 没有重因式的充要条件是( )14. 若排列n j j j 21的逆序数为k ,则排列11j j j n n -的逆序数为( )15. 当=a ( )时,线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 有零解。

16. 设A 为n n ⨯矩阵,线性方程组B AX =对任何B 都有解的充要( )17. 设00A X C ⎡⎤=⎢⎥⎣⎦,已知11,A C --存在,求1X -等于( ) 18. 如果齐次线性方程组0=AX 有非零解,则A 的列向量组线性( )关 19. )(x p 为不可约多项式,)(x f 为任意多项式,若1))(),((≠x f x p ,则( ) 20. 设A 为4级方阵,3-=A ,则=A 2( )21. 设m ααα,,,21 是一组n 维向量,如果n m >.,则这组向量线性( )关22. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,11k α⎛⎫⎪= ⎪ ⎪⎝⎭,若αA 与α线性相关,则k=( )。

《高等代数》各章习题+参考答案 期末复习用

《高等代数》各章习题+参考答案 期末复习用

1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。

2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。

3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。

4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。

5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。

高等代数习题参考答案

高等代数习题参考答案

第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V 中,A ,其中 V 是一固定的向量;4) 在 P 3 中,A (X I ,X 2,X 3) (2X 15) 在 P[ X ]中,A f (x) f (x 1)6) 在P[ X ]中,A f (X) f(X o ),其中X o P 是一固定的数;7) 把复数域上看作复数域上的线性空间, A8)在P nn 中,A X=BXC 其中B,C P n n 是两个固定的矩阵.解1)当 0时,是;当 0时,不是。

2)当o 时,是;当 o 时,不是。

3)不是•例如当(1,0,0), k 2 时,k A ( ) (2,0,0) , A (k ) (4,0,0),A (k )k A()。

4)是•因取(X 1,X 2,X 3),(y 1, y 2, y 3),有A()= A(X 1y 「X 2 y 2 ,X 3 y 3)= (2X 1 2y 1 X 2 y 2,X 2 y= (2X 1X 2, X 2 X 3,X 1) (2y 1=A+ A ,A (k ) A (kX 1, kX 2, kX 3)(2kx 1kx 2, kx 2=k A (), 3故A 是P 上的线性变换。

5)是.因任取 f(x) P[x], g(x) P[ X],并令u(x) f(x) g(x)则A ( f (x)g(x)) = A u(x)=u(x 1) = f(x 1) g(x 1)=A f(x) + A (g(x)),再令 v( x) kf (x)则 A (kf (x)) A (v( x)) v(x 1) kf (x 1) k A ( f (x)),故A 为P[x]上的线性变换。

6)是.因任取 f (x)P[x], g(x) P[ x]则.A (f(x) g(x))=f(x 0) g(X 0 ) A ( f (x)) A (g(x)),2) 3) 在线性空间V 中,A 在 P 3 中,A(X l ,X 2,X 3)其中(X I 2,X 2V 是一固定的向量;2、X 3,X 3 ); X 2, X 2 X 3,X I ).X 3 y 3,X 1 yj y 2,y 2 y 3,y 1)(2kx 1kx 2, kx 2kx 3,kxjkx 3,kxjA(kf (x)) kf (x0) k A( f (x))。

(完整word)高等代数(北大版)第6章习题参考答案

(完整word)高等代数(北大版)第6章习题参考答案

第六章 线性空间1.设,N M ⊂证明:,M N M M N N ==I U 。

证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M I ∈α即证M N M ∈I 。

又因,M N M ⊂I 故M N M =I 。

再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。

但,N M N Y ⊂所以M N N =U 。

2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。

证 ),(L N M x Y I ∈∀则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。

反之,若)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ⊂于是)()()(L M N M L N M I Y I Y I =。

若x M N L M N L ∈∈∈UI I (),则x ,x 。

在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )。

,,N L x M N X M L M N M M N M N ∈∈∈∈∈⊂U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。

高等代数习题答案.doc

高等代数习题答案.doc

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个 n 级实对称矩阵,且 A0 ,证明:必存在实 n 维向量 X 0 ,使X AX 0 。

证因为 A0,于是 A0 ,所以 rank An ,且 A 不是正定矩阵。

故必存在非退化线性替换 XC 1Y 使XAX YC 1ACYY BYy 12 y 22y p 2y p 21y p 2 2y n 2 ,且在规范形中必含带负号的平方项。

于是只要在Z C 1Y 中,令 y y2 yp10, y p 1 y p2y n 1, 则可得一线性方程组c 11x 1c 12x2c 1n xnc p 1x1c p 2 x2c pnx n,c p 1,1x1c p 1, 2 x2c p1,nxn1c n1x 1c n 2 x2c nn xn1由于 C 0 ,故可得唯一组非零解X s x 1s , x 2s , , x ns 使X s AX s 0 00 1 11n p 0 ,即证存在 X 0,使 X AX0 。

13 .如果 A, B 都是 n 阶正定矩阵,证明:A B 也是正定矩阵。

证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且X AX 0 ,X BX 0 ,因此X A B X X AX X BX 0 ,于是 XA B X 必为正定二次型,从而A B 为正定矩阵。

14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。

证 必要性。

采用反证法。

若正惯性指数p 秩 r ,则 pr 。

即f x 1 , x 2 , , x ny 2 y 2y 2y 2y 2 ,12pp 1r若令y1 y2 y p 0 , y p 1 y r 1 ,则可得非零解x1 , x2 , , x n 使 f x1, x2 , , x n 0 。

高等代数习题及答案

高等代数习题及答案

高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“V” ,错的打“X”;每小题1分,共10分)1、p(x)若是数域F上的不可约多项式,那么p(x)在F中必定没有根。

()2若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。

()3、实二次型f(x i,x2, ,x n)正定的充要条件是它的符号差为n。

()4、W x1t x2 ,x3 x i R,i 1,2,3;为x2 x3是线性空间R1 2 3的一个子空间。

()5、数域F上的每一个线性空间都有基和维数。

()6、两个n元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。

()7、零变换和单位变换都是数乘变换。

()8线性变换的属于特征根°的特征向量只有有限个。

()9、欧氏空间V上的线性变换是对称变换的充要条件为关于标准正交基的矩阵为实对称矩阵。

()n10、若1, 2, , n是欧氏空间V的标准正交基,且人i ,那么i 1① f n x ,g n x f x ,g x1.n11。

()二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10 分)1、关于多项式的最大公因式的下列命题中,错误的是(②f1, f2, , f n 1 f i, f j 1, i j,i, j 1,2, ,n ;③ f x ,g x f x g x ,g x ;④若f x , g x 1 f x g x , f x g x 1 。

2、设D是一个n阶行列式,那么()①行列式与它的转置行列式相等;②D中两行互换,则行列式不变符号;③若D 0 ,则D中必有一行全是零;④若D 0,则D中必有两行成比例。

3、设矩阵A的秩为r(r>1),那么()①A中每个s(s <r)阶子式都为零;②A中每个r阶子式都不为零;③A中可能存在不为零的r 1阶子式;④A中肯定有不为零的r阶子式。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数真题答案

高等代数真题答案
(b) Span(S1 ∪ S2 ) = Span(S1) + Span(S2 ) .
(c) Span(S1 ∩ S2 ) ⊆ Span(S1) ∩ Span(S2 ) .
姓名
学号
(高等代数习题册)
3
6. 如果 f1, f2, f3 是实数域上一元多项式全体所成的线性空间 R[x] 中三个互素的多项式, 但其中任意两个 都不互素, 那么它们线性无关.试证之.
}∞ n=0
|
xn

R}
关于数列的加法和数乘.
2. 设V 是数域 F 上的线性空间, 证明 k(α − β) = kα − kβ , 这里 α,β ∈V , k ∈ F.
姓名
学号
(高等代数习题册)
2
3. 下述集合是否是 M n (R) 的子空间
(a) V = {A∈ M n (R) | AT = − A}
姓名
学号
(高等代数习题册)
8
3. 设V ,W 是数域 F 上的两个线性空间, L(V ,W ) 是V 到W 的所有线性映射所组成的集合.证明 L(V ,W )
关于线性映射的加法与数量乘法, 成为数域 F 上的一个线性空间.
4.
在 F[x] 中,
定义
T1 (
f
( x))
:=
df (x) dx
,
T2 ( f (x)) := xf (x) , 证明: T1T2 − T2T1 = E
⎜⎝ 5 ⎟⎠
⎛1 5 8 1⎞
⎛0 2 3 4⎞
15.
设 AP = PB,
其中
P
=
⎜ ⎜ ⎜
0 0
2 0
6 3
9 7
⎟ ⎟ ⎟

《高等代数》习题与参考答案

《高等代数》习题与参考答案

《高等代数》习题与参考答案数学系第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()(ΛΛi j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a ΛM O MM ΛΛ212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

完整版高等代数习题解答(第一章)

完整版高等代数习题解答(第一章)

完整版高等代数习题解答(第一章)高等代数题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)=x-5与g(x)=a(x-2)^2+b(x+1)+c(x^2-x+2)相等?提示:比较系数得a=-1,b=-1,c=6.补充题2.设f(x),g(x),h(x)∈[x],f^2(x)=xg^2(x)+x^3h^2(x),证明:假设f(x)=g(x)=h(x)不成立。

若f(x)≠0,则∂(f^2(x))为偶数,又g^2(x),h^2(x)等于或次数为偶数,由于g^2(x),h^2(x)∈[x],首项系数(如果有的话)为正数,从而xg^2(x)+x^3h^2(x)等于或次数为奇数,矛盾。

若g(x)≠0或h(x)≠0,则∂(xg^2(x)+x^3h^2(x))为奇数,而f^2(x)为偶数,矛盾。

综上所证,f(x)≠g(x)或f(x)≠h(x)。

1.用g(x)除f(x),求商q(x)与余式r(x):1)f(x) =x^3-3x^2-x-1,g(x) =3x^2-2x+1;2)f(x) =x^4-2x+5,g(x) =x^2-x+2.1)解法一:待定系数法。

由于f(x)是首项系数为1的3次多项式,而g(x)是首项系数为3的2次多项式,所以商q(x)必是首项系数为1的1次多项式,而余式的次数小于2.于是可设q(x)=x+a,r(x)=bx+c。

根据f(x)=q(x)g(x)+r(x),即x^3-3x^2-x-1=(x+a)(3x^2-2x+1)+bx+c,右边展开,合并同类项,再比较两边同次幂的系数,得a=-1/3,b=-2/3,c=-1,故得q(x)=x-1/3,r(x)=-x-1/3.2)解法二:带余除法。

用长除法得商q(x)=x^2+x-1,余式r(x)=-5x+7.2.m,p,q适合什么条件时,有1)x^2+mx-1/x^3+px+q;2)x^2+mx+1/x^4+px^2+q.解:1)将x^3+px+q除以x^2+mx-1得商为x+m+1/(x+m-1),所以当m≠1时有解。

(完整word版)高等代数多项式习题解答

(完整word版)高等代数多项式习题解答

第一章多项式习题解答1. 用g(x)除f(x),求商q(x)与余式r(x).5x2. m, p,q 适合什么条件时,有 1) x 2 mx 11 x 3 px qq(x)x 2 x 1, r(x)5x 7.x 3 0x 2 px q xp 10,q m 时 x 2 mx 11 x 3 px1) f(x)x 3 3x 2 2x3x 232x 3xx 1 3 2 2 1x —x -x3 3 7 24 1 x x 3 37 2 14 7 —x ■ x — 3 9 926 2 —x9 9q(x) £ r (x )26 x92) f(x)2x 5, g(x)4 x 4x0x 3 0x 2 x 3 2x 2 x 3 2x 22x 32x x 2xx2x2x 54x 5 x 2 mx 1当且仅当m 2 i,g(x)x 2x 1 1—x 3 3x 2本题也可用待定系数法求解 .当X 2 mx 1| x 3 px q 时,用x 2 mx 1去除x 3 px q ,余式为零,比较首项系数及常数项可得其商为 x q.于是有因此有m 2 p 1 0, q m .2) x 2 mx 11 x 4 2px q由带余除法可得42/ 2x px q (x mx1)( x2mx 2p 1 m ) m(2pm 2)x (q 1 pm 2) 当且仅当r(x) m(2 p 2m )x (q 1 p m 2) 0 时2x 42mx 11 x pxq .即m(2 p m 2) 2m,即 mQ 或 p 2小m 2,q 1p 0q 1 p,q 1.本题也可用待定系数法求解.当x 2 mx 1|x 4px 2 q 时,用x 2 mx 1去除x 4 px 2 q ,余式为零,比较首项系数及常数项可得其商可设为 x 2 ax q .于是 有3. 求 g(x)除 f (x)的商 q(x)与余式 r(x). 531) f (x) 2x 5x 8x, g(x) x 3; 解:运用综合除法可得 32580 6 18 39 1173272 6 1339 109 327商为 q(x) 2x 4 6x 3 13x 2 39x 109,余式为 r(x) 327.4 2x pxq (x 2ax q)( 2x mx 1)(m a)x 3 (ma2q 1)x(a mq)x q.ma q 1 p,a mq 0.消去a 可得m 0,或2p m 2,q 1 p,q 1.x 4 比较系数可得m a 0,2px q (x q)(x mx 1)x 3 (m q)x 2(mq 1)x q .2) f(x) x 3 x 2x,g(x) x 1 2i .解:运用综合除法得:1 2i 11 1 0 1 2i4 2i 9 8i 1 2i5 2i9 8i商为x 2 2ix (5 2i),余式为9 8i .c 0即为x X o 除f (x)所得的余式,商为q(x) q 可得C 1为x x o 除商q(x)所得的余式,依次继续即可求得展开式的各项系数 解:1)解法一:应用综合除法得•1 1 o o o o o11111 111111 112 3 4 1 1 2 3 4 51 3 6 1 1 3 6 1o1 4 1 1 4 1o 14.把 f(; x)表成x X °的方幂和,即表示成CoC 1(X X o ) C 2(X X o )2的形1) f(x) 5x12) f(x) 4x 2x 23, xo2;3) f(x) 4x2ix 3 (1 i)x 2 3x 7 i,x o1分析: 假设 f(x) 为n 次多项式,令f(x)C o G (x X o ) C 2(X X o )2C n (x X o )n式.x o )n1]C o (x X o )[G C 2(x x o )C n (x C 2(x X 。

高等代数 习题及参考答案

高等代数 习题及参考答案

高等代数习题及参考答案第一章多项式1.用g(x)除f(x),求商q(x)与余式r(x):322f(x)?x?3x?x?1,g(x)?3x?2x?1; 1)2)f(x)?x4?2x?5,g(x)?x2?x?2。

q(x)?17262x?,r(x)??x?3999;解 1)由带余除法,可得2q(x)?x?x?1,r(x)??5x?7。

2)同理可得2.m,p,q适合什么条件时,有23x?mx?1|x?px?q, 1)242x?mx?1|x?px?q。

2)2(p?1?m)x?(q?m)?0,解 1)由假设,所得余式为0,即?p?1?m2?0?23q?m?0x?mx?1|x?px?q。

?所以当时有?m(2?p?m2)?0?2q?1?p?m?02)类似可得?,于是当m?0时,代入(2)可得p?q?1;而当2?p?m2?0时,代入(2)可得q?1。

?m?0?q?1??2242p?q?1p?m?2x?mx?1|x?px?q。

??综上所诉,当或时,皆有3.求g(x)除f(x)的商q(x)与余式:53f(x)?2x?5x?8x,g(x)?x?3; 1)2)f(x)?x?x?x,g(x)?x?1?2i。

32q(x)?2x4?6x3?13x2?39x?109解 1)r(x)??327;q(x)?x2?2ix?(5?2i)2)r(x)??9?8i。

x?x0的方幂和,即表成4.把f(x)表示成c0?c1(x?x0)?c2(x?x0)2?...?cn(x?x0)n??的形式:5f(x)?x,x0?1; 1)42f(x)?x?2x?3,x0??2; 2)432f(x)?x?2ix?(1?i)x?3x?7?i,x0??i。

3)2345f(x)?1?5(x?1)?10(x?1)?10(x?1)?5(x?1)?(x?1)解 1)由综合除法,可得; 2)由综合除法,可得x?2x?3?11?24(x?2)?22(x?2)?8(x?2)?(x?2);432x?2ix?(1?i)x?3x?(7?i) 3)由综合除法,可得42234?(7?5i)?5(x?i)?(?1?i)(x?i)2?2i(x?i)3?(x?i)4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个 n 级实对称矩阵,且 A0 ,证明:必存在实 n 维向量 X 0 ,使X AX 0 。

证因为 A0,于是 A0 ,所以 rank An ,且 A 不是正定矩阵。

故必存在非退化线性替换 XC 1Y 使XAX YC 1ACYY BYy 12 y 22y p 2y p 21y p 2 2y n 2 ,且在规范形中必含带负号的平方项。

于是只要在Z C 1Y 中,令 y y2 yp10, y p 1 y p2y n 1, 则可得一线性方程组c 11x 1c 12x2c 1n xnc p 1x1c p 2 x2c pnx n,c p 1,1x1c p 1, 2 x2c p1,nxn1c n1x 1c n 2 x2c nn xn1由于 C 0 ,故可得唯一组非零解X s x 1s , x 2s , , x ns 使X s AX s 0 00 1 11n p 0 ,即证存在 X 0,使 X AX0 。

13 .如果 A, B 都是 n 阶正定矩阵,证明:A B 也是正定矩阵。

证 因为 A, B 为正定矩阵,所以 X AX , X BX 为正定二次型,且X AX 0 ,X BX 0 ,因此X A B X X AX X BX 0 ,于是 XA B X 必为正定二次型,从而A B 为正定矩阵。

14 .证明:二次型 f x 1 , x 2 , , x n 是半正定的充分必要条件是它的正惯性指数与秩相等。

证 必要性。

采用反证法。

若正惯性指数p 秩 r ,则 pr 。

即f x 1 , x 2 , , x ny 2 y 2y 2y 2y 2 ,12pp 1r若令y1 y2 y p 0 , y p 1 y r 1 ,则可得非零解x1 , x2 , , x n 使 f x1, x2 , , x n 0 。

这与所给条件 f x1 , x2 , , x n0 矛盾,故 p r 。

充分性。

由p r ,知f x1 , x2 , , x n y12 y22 y p2,故有f x1 , x2 , , xn 0 ,即证二次型半正定。

n n 2x i215 .证明: n x i 是半正定的。

i 1 i 1n n 2证 n x i2 x ii 1 i 1n x12 x22 x n2x12 x22 x n2 2x1 x2 2 x1 x n 2x2 x3 2x2 x n 2x n 1x n n 1 x12 x22 x n2 ( 2x1 x2 2x1 x n 2x2 x32 x2 x n 2x n 1 x n)x12 2x1x2 x22 x12 2x1x3 x32 x n21 2x n 1 x n x n2x i x j 2 。

1 i j n可见:1)当x1, x2, , x n不全相等时f x1 , x2 , , x n x i x j 20 。

1 i j n 2)当x1 x2 x n时f x1 , x2 , , x n x i x j 20 。

1 i j n 故原二次型 f x1 , x2 ,, x n是半正定的。

16 .设f x1, x2, , x n X AX是一实二次型,若有实n 维向量 X 1 , X 2使X1 AX 0 ,X2AX2 0。

证明:必存在实n 维向量 X 0 0使 X0AX0 0。

设 A 的秩为r,作非退化线性替换X CY 将原二次型化为标准型X AX d1 y12 d 2 y22 d r y r2,其中 d r为1或-1。

由已知,必存在两个向量X1, X2使X1AX1 0 和X2AX2 0,故标准型中的系数d1 , , d r不可能全为1,也不可能全为 -1 。

不妨设有p 个1, q 个-1,且 p q r ,即X AX y12 y 2p y2p 1 y p2 q ,这时 p 与 q 存在三种可能:p q ,p q ,p q下面仅讨论 p q 的情形,其他类似可证。

令 y1 y q 1,yq 1 y p 0 ,yp 1 y p q 1 ,则由 Z CY 可求得非零向量X 0使X0AX0 y12 y p2 y p2 1 y 2p q 0,即证。

17.A是一个实矩阵,证明:rank A A rank A 。

证由于 rank A rank A A 的充分条件是AX 0与 AAX 0 为同解方程组,故只要证明 AX 0与AAX 0 同解即可。

事实上AX 0 A AX 0 X AAX 0AX AX 0 AX 0 ,即证 AX 0与AAX 0 同解,故rank A A rank A 。

注该结论的另一证法详见本章第三部分(补充题精解)第 2 题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1)x1x2n x2x2 n 1x2x2n 1 x n x n 1;2)x1x2 x2 x3 x n 1 x n;n3)x i2 x i x j;i 1 1 i j nn 2x1 x2 x n。

4)x i x ,其中 xi 1 n解 1 )作非退化线性替换x1y1y2 nx2y2y2n 1x n y n yn 1 ,x n y n yn 11x2 n 1y2y2n 1x2 n y1y2n即 X TY ,则原二次型的标准形为f y12y22y n2y n21y22n 1y22n,且替换矩阵1 0 0 10 1 1 0T1 1,1 10 1 1 01 0 0 1使11TAT,11其中1 2 12A。

1 1 222)若y 1x 1 x 2 x3 ,y 2x 1 x 2x3 ,22则y 12 y 22y 1y 2 y 1 y 2x 1x 2 x 2 x 3 ,于是当 n 为奇数时,作变换y ix ix i 1x i22y i 1x ix i 1xi 2i1,3,5, , n 2 ,2y nx n则x x2x x3x n 1 xny 2 y2 y 2y 2y 2y 2 ,121234n 2n 1且当 n 4k1时,得非退化替换矩阵为1 11 1 11 1 110 0 0 0 01 1 1 1 1T110 ,11 01当 n 4k 3 时,得非退化替换矩阵为1 1 1 1 1 1 11 1 0 0 0 0 01 1 1 1 1T 1 1 0 0 0 ,1 1 01故当 n 为奇数时,都有1111TAT。

11当 n 为偶数时,作非退化线性替换y i x i x i 1 x i 22y i 1 x i x i 1 x i 22i 1,3,5, , n 3 ,x n x ny n 112y n x n 1 x n2则x x2 x x3xn 1xny2 y 2 y2 y2 y 2 y 2 ,1 2 1 2 3 4 n 1 n 于是当 n 4k 时,得非退化替换矩阵为1 1 1 1 1 11 1 0 0 0 01 1 1 1T 1 1 0 0 ,1 11 1于是当 n 4k 2 时,得非退化替换矩阵为1 1 1 1 1 11 1 0 0 0 01 1 1 1T 1 1 0 0 ,1 11 1故当 n 为偶数时,都有111TAT1。

11 3)由配方法可得1 n 21 n2f x1 x j 3x2 x j2 j 2 43 j 3n1x n2 n 1 xn2,1xn 12 n n 2n 于是可令y11 nx j x12 j 2y2 x2 1 nx j 3 j 3,y n 1 x n 1 1x n ny n x n 则非退化的线性替换为x1 y1 1y21y3 1yn 11y n 2 3 n 1 nx2 y2 1y3 1yn 11y n3 n 1 n,x n 1 yn 11y nnx n y n 且原二次型的标准形为f y12 3y22 n y n21 n 1 y n2,4 2 n 1 2n相应的替换矩阵为1 1 1 1 12 3 n 1 n0 1 1 1 1 3 n 1 nT 0 0 1 11 1 ,n n0 0 0 1 1 n0 0 0 0 1 又因为1 1 1 12 2 211 1 12 2 2A ,1 1 112 2 211 112 2 2所以1 0 0 0 00 30 0 0 440 0 0 06T AT 。

0 0 0 n 02 n 10 0 0 0 n 1 n4)令y1 x1 xy2 x2 x,y n 1 x n 1 xy n x n则nx1 2y1i 2y inx2 y1 2y2 y ii 3。

n 2xn 1 y i 2 y n 1 y ni 1x n y n由于n ny i x i n 1 x x ,i 1 i 1则n 1 n 2 n 1 n 1 2 原式y i2 y n y i y i2 y ii 1 i 1 i 1 i 1n 1y i22 y i y ji 1 1 i j n 12 z12 3z22 n z n21 42 n 12z12 3z22 n z n2 1,2 n 1其中所作非退化的线性替换为y1 z1 1z21z3 1zn 1 2 3 n 1y2 z2 1z31z41z n 1 3 4 n 1,y n 1 z n 1y n z n 故非退化的替换矩阵为1 1 1 12 1 1 1 1 23 n 11 2 1 1 1 0 1 1 1 03 n1 12 1 1 11T 0 0 1 01 1 12 1n 10 0 0 0 1 0 0 0 1 00 0 0 0 12 0 0 0 11 30 0 1 241 10 12 3 。

0 1 1 n1 2 3 n 10 10 0 0又2 x1 xn x2 xx i x x1 x, x2 x, , x n xi 1x n xn 1 1 1 n 1 1 1x1n n n n n nx1 , x2 , , x x 1 n 1 1 1 n 1 1 x2 n n n n n n1 1 n 1 1 1 n 1 x n n n n n n nn 1 1 1 x 1n n n x 1 , x 2 , , x x1 n 1 1 x 2n n n1 1n 1 x nnnnZAZ ,所以2 0 0 0 00 3 0 024T AT0 03 。

0 0 0 n 0n0 010 02. 设实二次型s2f x 1 , x 2 , , x ni 1 a i1 x 1 a i 2 x 2a in x n,证明: f x 1 , x 2 , , x n 的秩等于矩阵a11a12a1nAa 21a 22a 2na s1a s2a sn的秩。

相关文档
最新文档