圆周角定理及推论1
圆周角定理和圆内四边形的性质典例精析
圆周角定理和圆内四边形的性质典例精析一圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
二 圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,∵四边形ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠利用圆周角定理的推论求角的度数BABA O例1 (2016·四川眉山)如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64° B.58° C.72° D.55°【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.例2 (2016海南)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.例3(2016·山东省滨州市)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD 分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤【考点】圆的综合题.【分析】①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.利用圆周角定理的推论进行推理论证例4 (2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.例5 如图所示,BC是⊙O的直径,AD⊥BC,垂足为D,AB=AF,BF和AD相交于点E;求证:BE=AE.分析:由BC是⊙O的直径,根据直径所对的圆周角是直角,可得∠BAC=90°,又由AD⊥BC,即可得∠BAD=∠C,又由AB=AF,根据圆周角定理,易得∠ABF=∠F=∠C,则可证得∠ABF=∠BAD,继而证得结论.利用圆内接四边形的性质求度数例6(2015湖南邵阳第7题3分)如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC 的大小是()利用圆内接四边形的性质进行推理证明 例 7 (2015南京)(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.圆周角定理与相似三角形的综合例 8 (2016·天津市南开区·一模)如图,AB 是⊙O 的直径,C ,P 是上两点,AB=13,AC=5.(1)如图(1),若点P 是的中点,求PA 的长; (2)如图(2),若点P 是的中点,求PA 的长.(第26题)例 9 (肇庆市2012)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE 、AD 交于点P . 求证: (1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .圆内接四边形性质的综合应用例10 (2009•内江)如图,四边形ABCD 内接于圆,对角线AC 与BD 相交于点E ,F 在AC 上,AB =AD ,∠BFC =∠BAD =2∠DFC =β.求证:(1)∠ABD =90°-β (2)CD ⊥DF ; (3)BC=2CD .圆周角定理与函数的综合例 1 1 如图,AB 是圆O 的直径,CD 是弦,CD ⊥AB 于点E ,(1)求证:△ACE ∽△CBE ;(2)若AB=4,设OE=x (0<x <2),CE=y ,请求出y 关于x 的函数解析式图7。
24.3_第1课时_圆周角定理及推论
24.3 圆周角第1课时 圆周角定理及推论1.理解圆周角的概念,学会识别圆周角;2.了解圆周角与圆心角的关系,能够理解和掌握圆周角定理及推论,并进行简单的计算与证明(重点,难点).一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第六届东亚四强赛于2015年在武汉举行,共有来自亚洲的8支球队参加赛事,共进行24场比赛决定冠军队伍.比赛如图所示,甲队员在圆心O 处,乙队员在圆上C 处,丙队员带球突破防守把球传给乙,乙依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理 【类型一】 利用圆周角定理求角如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A.方法总结:在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 同弦所对圆周角中的分类讨论思想已知⊙O 的弦AB 长等于⊙O 的半径,求此弦AB 所对的圆周角的度数.解析:弦AB 的长恰好等于⊙O 的半径,则△OAB 是等边三角形,则∠AOB =60°.而弦AB 所对的弧有两段,一段是优弧,一段是劣弧,因此本题要分类讨论.解:分下面两种情况:如图①所示,连接OA ,OB ,在⊙O 上任取一点C ,连接CA ,CB .∵AB =OA =OB ,∴∠AOB =60°,∴∠ACB =12∠AOB =30°.即弦AB 所对的圆周角等于30°.如图②所示,连接OA ,OB ,在劣弧上任取一点D ,连接AD ,OD ,BD ,则∠BAD =12∠BOD ,∠ABD =12∠AOD .∴∠BAD +∠ABD =12(∠BOD +∠AOD )=12∠AOB .∵AB 的长等于⊙O 的半径,∴△AOB 为等边三角形,∠AOB =60°.∴∠BAD +∠ABD =30°,∠ADB =180°-(∠BAD +∠ABD )=150°,即弦AB 所对的圆周角为150°.综上所述,弦AB 所对的圆周角的度数是30°或150°.方法总结:本题考查了等边三角形的判定和性质、圆周角定理和圆内接四边形的性质.要注意的是弦AB 所对的圆周角有两种情况,需分类讨论,解题时可分别作图,结合图形求解,以免漏解.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:圆周角定理的推论 【类型一】 利用圆周角定理的推论1解题如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A.55B.255 C .2 D.12解析:根据同弧或等弧所对的圆周角相等来求解,∵∠E =∠ABD ,∴tan ∠AED =tan ∠ABD =AC AB =12.故选D.方法总结:解题的关键是在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意与三角函数的结合.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用圆周角定理的推论2解题如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C .∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题. 变式训练:见《学练优》本课时练习“课堂达标训练”第7题三、板书设计1.圆周角的概念2.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半.3.圆周角定理的推论推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.教学过程中,经历圆周角定理及其推论的探究,使学生掌握圆周角的相关性质;配合练习,巩固所学知识,结合实际应用来提升学生的思维能力.。
人教版九年级数学上章节知识点深度解析 圆周角 第1课时 圆周角定理及推论
证明:由圆周角定理推出∠ A =∠ C ,∠ D =∠B ,
在△ ADM 和△ CBM 中,
∠=∠,
ቐ=,
∠=∠,
∴△ ADM ≌△ CBM (ASA).∴ AM = CM .
1
2
3
4
5
谢谢观看
Thank you for watching!
.
定理的 2.半圆(或直径)所对的圆周角是 直角
推论 90°的圆周角所对的弦是 直径 .
,
图例
90°直径ຫໍສະໝຸດ 圆周角内容图例
①在圆中,利用“直径所对的圆周角是直
解题
角”构造直角三角形解题.
策略
②一条弦所对的圆周角有两种情况:相等
或互补.
当堂检测
1. 如图,已知圆心角∠ BOC =78°,则圆周角∠ BAC
的度数是( C
)
A. 156°
B. 78°
C. 39°
D. 12°
第1题图
1
2
3
4
5
2. 如图, AB 是圆 O 的直径,点 C 在圆 O 上,若∠ A =
30°,则∠ B 的度数为( B
A. 75°
B. 60°
C. 45°
D. 15°
)
第2题图
1
2
3
4
5
3. 如图, AB , BC 是☉ O 的弦, AB =3,∠ ACB =
30°,则☉ O 的半径等于(
A. 1.5
B. 3
C. 4.5
D. 6
)
B
第3题图
1
2
3
初三数学圆周角知识点
初三数学圆周角知识点初三数学圆周角知识点初三数学圆周角知识点11、定义:顶点在圆上,角的两边都与圆相交的角。
(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。
(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。
(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。
2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角最大其次是圆周角,最小的是圆外角。
初三数学圆周角知识点2一、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )b.它们对着同一条弧或者对的两条弧是等弧c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.二、圆周角定理的推论推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的`圆周角等于90°;90°的圆周角所对的弦是直径推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形三、推论解释说明圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.。
第1课时 圆周角定理及其推论
45°
.
半圆(或直径)所对的圆周角是
《名校课堂》
名 校 名 师 打 造
预
习
反
馈
5.如图所示,点A,B,C在圆周上,∠A=65°,则∠D的度数为 65° .
6.如图,A,B,C均在⊙O上,且AB是⊙O的直径,AC=BC,则∠C= 90° ,∠A
= 45° .
《名校课堂》
名 校 名 师 打 造
名
课
堂
流 程
学 习 目 标
预 习 反 馈
预 习 反 馈
名 校 讲 坛
课 堂 小 结
24.1.4
圆周角
第1课时 圆周角定理及其推论
学
习
目
标
1.理解圆周角的定义,会区分圆周角和圆心角.
2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处
理相关问题.
《名校课堂》
名 校 名 师 打 造
更 多 名 校 选 择
为 60° .
《名校课堂》
名 校 名 师 打 造
更 多 名 校 选 择
名
知识点2
校
讲
坛
圆周角定理的推论
例2 (教材P87例4)如图,⊙O的直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交
⊙O于D,求BC,AD,BD的长.
《名校课堂》
名 校 名 师 打 造
更 多 名 校 选 择
名
例3
校
讲
坛
2
,
(教材补充例题)如图,△ABC的顶点都在⊙O上,AD是⊙O的直径,AD= .
∠B=∠DAC,则AC= 1
【归纳总结】 1.圆周角定理及其推论中的转化思想: (1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆 心角之间的转化; (2)在同圆或等圆中,90°的圆周角和直径之间可以相互转 化.
3.4圆周角定理及其推论1(教案)
1.教学重点
(1)圆周角定理:理解圆周角定理的概念,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
举例:如图,弧AB所对的圆周角∠ACB与圆心角∠AOB的关系,∠ACB = 1/2∠AOB。
(2)圆周角定理的推论1:掌握直径所对的圆周角是直角。
举例:如图,直径CD所对的ห้องสมุดไป่ตู้周角∠CDB是直角。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角定理及其推论1的基本概念。圆周角定理指出,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。这个定理对于解决与圆有关的问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆的某个特定情况下圆周角和圆心角的关系,展示圆周角定理在实际中的应用,以及它如何帮助我们解决问题。
(3)应用圆周角定理及其推论1解决实际问题:能运用定理和推论解决与圆有关的问题,如求圆周角、圆心角、弧长等。
2.教学难点
(1)圆周角定理的理解:学生需要理解圆周角与圆心角的关系,特别是“同弧或等弧所对的圆周角相等”这一条件。
(2)圆周角定理的推论1的证明:学生需要掌握直径所对的圆周角是直角的证明过程,理解其中的逻辑推理。
同学们,今天我们将要学习的是《3.4圆周角定理及其推论1》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解圆周角或圆心角的情况?”(例如:在修路时,测量员如何确定圆形转角的大小。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角定理及其推论1的奥秘。
4.应用圆周角定理及其推论1解决实际问题。
圆周角的定理及推论的应用
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
圆周角定理及推论
圆周角定理及推论圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的性质:圆周角等于它所对的弧所对的圆心角的一半。
圆周角的推论:①同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
②900的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角。
③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
④圆内接四边形的对角互补;外角等于它的内对角例1:如图,点A、B 、C都在圆O上,如果∠AOB+∠ACB=840,那么∠ACB的大小是例2:如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=360,则∠ADC的度数是()A.44°B.54°C.72°D.53°例3:如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD,(1)证明:C B∥P D;(2)若B C=3,,求⊙O的直径.1、(北京四中模拟)如图,弧BC与弧AD的度数相等,弦AB与弦CD交于点E,︒=∠80CEB,则CAB∠等于()A.︒30B.︒40C.︒45D.︒602.(2011年北京四中中考全真模拟16)已知一弧长为L的弧所对的圆心角为120°那么它所对的弦长为( )A、3 34ΠL B、3 24ΠL C、3 32ΠL D、3 22ΠL(第3题图)3.(2011浙江杭州模拟7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75o ,∠C=45o ,那么∠AEB 度数为( )A. 30o B . 45o C. 60o D. 75o4.(2011浙江省杭州市10模) 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .25.(浙江省杭州市党山镇中2011年中考数学模拟试卷)如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 ( )A .35︒B .40︒C .50︒D .80︒C ABD (第5题) O(第4题图)。
圆周角定理及其推论
圆周角定理及其推论一、圆周角定理圆周角定理是几何学的重要定理,它源于古希腊数学家弥尔顿(Archimedes)的研究。
圆周角定理规定:任何两个正夹角的正弦之积等于它们之间的乘积,也就是学术上说的“正夹角全乘积等于余弦。
”以上是圆周角定理的文字表示,而在数学上,圆周角定理又有如下式子体现:Sin(α+β)= Sinα×Cosβ+Cosα×Sinβ二、圆周角定理的推论1、正弦定理:一个三角形角α,β,γ的正弦值分别为Sinα,Sinβ,Sinγ,那么有Sinα:Sinβ:Sinγ=a:b:c;2、余弦定理:每个三角形角α,β,γ的余弦值分别为Cosα,Cosβ,Cosγ,那么有a2+b2=c2-2abCosγ;3、正切定理:任一三角形角α,β,γ的正切值分别为tanα,tanβ,tanγ,那么有tanα×tanβ=tanγ/1-tanαtanβ;4、正割定理:一个三角形角α,β,γ的正割值分别为cotα,cotβ,cotγ,那么有cotα+cotβ=cotγ/1+cotα cotβ;5、互补定理:任一角α,它的余角β满足Cosα=Sinβ;Cosβ=Sinα;6、倒数定理:对一角α,其余角β均有Secα=1/Cosα;Secβ=1/Cosβ;7、士角定理:一角α,其余角β乘积等于正弦定理,那么Sinα×Sinβ=Cos角γ/2;8、三边定理:任一三角形角α,β,γ的边长分别为a,b,c,那么有a/(Sinα)=b/(Sinβ)=c/(Sinγ);9、兰勃托定理:一个等腰三角形,其底边和对边相较于当前对角之正弦的比值之和等于1,也就是说:Sinα/(a/2)+Sinβ/(a/2)=1;10、马克斯定理:一个三角形边长abc,那么有cosA+cosB+cosC=4cosA/2cosB/2cosC/2=3/2。
圆周角定理及推论1
曲方园
学习目标
1 理解圆周角概念 理解圆周角定理及其推论,
2 并能进行相关的证明和计算
温故
圆心角 概念
顶点在圆心的角
圆心角、
关系
弧、弦
O.
A
B
在同圆或等圆中,有一组量相 等,其余各组量也分别相等
知新
圆心角 概念
顶点在圆心的角
O.
A
B
概念 圆周角
顶点在圆上,并且两边 都与圆相交 的角
相交于点 P,A 42,APD 77 ,则 B _3_5
B C
P
A
D
课 堂 1个概念,1个定理,2个推论 小 分类讨论和化一般为特殊的化归思想 结
巩固反馈
1.如图,在⊙O 中,∠ABC=50°,
则∠AOC 等于( D )
A、50°;
B、80°;
C、90°;
D、100°
巩固反馈
推论1:同弧或等弧所对的圆周角相等
练
如图,点A、B、C、D在同一个圆上,四边形ABCD
的对角线把4个内角分成8个角,这些角中哪些是
相等的角?
探究
半圆(或直径)所对的圆周角有什么特殊性?
推 对问∠题的论C1圆22:、:周如∠半图C角3圆,的是A度(B直是数或角⊙是直O_,的_径9_0直_°_)径_ 所,请问:∠C1、 是问直90直题径角圆2:。,周那若角么∠所∠C1A、对OB∠的是C12弦、80是∠°,C3
A6 A...
B
C
同一条弧所对的圆周角有无数个
探究
根据圆周角与圆心的位置关系进行分类
猜想:圆 一条周弧角所与对圆的心圆角周的角大等小于关它系所对 的圆心角的一半
圆周角定理
圆周角定理圆周角定理:1.同弧或等弧所对圆周角等于它所对圆心角的一半。
2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
3.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆。
中文名圆周角定理应用学科数学1圆周角▪定义▪性质2圆周角定理▪定义▪推论一:▪推论二:▪推论三:3证明1圆周角定义顶点在圆上,并且两边都与圆相交的角叫做圆周角圆周角图性质(1)一条弧所对的圆周角等于它所对的圆心角的一半;(2)圆周角的度数等于它所对的弧度数的一半;(3)在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。
2圆周角定理定义圆周角定理:同弧或等弧所对圆周角等于它所对圆心角的一半。
推论一:在同圆或等圆中,同弧或等弧所对的圆周角相等。
推论二:半圆(直径)所对的圆周角是直角。
推论三:90°的圆周角所对的弦是直径。
注意:在圆中,同一条弦所对的圆周角有两个,一个是优弧所对的角,一个是劣弧所对的角。
3证明已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:2∠BOC=∠BAC.证明:情况1:如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图1∵OA、OC是半径解:∴OA=OC∴∠BAC=∠ACO(等边对等角)∵∠BOC是△AOC的外角∴∠BOC=∠BAC+∠ACO=2∠BAC情况2:如图2,,当圆心O在∠BAC的内部时:连接AO,并延长AO交⊙O于D图2∵OA、OB、OC是半径解:∴OA=OB=OC∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)∵∠BOD、∠COD分别是△AOB、△AOC的外角∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 情况3:如图3,当圆心O在∠BAC的外部时:图3连接AO,并延长AO交⊙O于D解:∵OA、OB、OC、是半径∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC)∵∠DOB、∠DOC分别是△AOB、△AOC的外角∴∠DOB=∠BAD+∠ABO=2∠BAD∠DOC=∠CAD+∠ACO=2∠CAD∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC。
九年级数学上册(人教版)圆周角-定理及推论1教学课件
第24章 圆
24.1 圆的有关性质
24.1.4(1) 圆周角-定理及推论1
情境导入 探究新知 知识归纳 典例精讲 当堂训练
温故知新
圆周角---定理及推论
情境导入
A
B C
E D
站在哪一个位置踢球,最容易进
01 圆周角的定义
知识要点 02
圆周角定理
精讲精练
03 圆周角定理的推论1
圆周角---定理及推论
1.顶点在圆上 2.两边都与圆相交的角
知识梳理
圆周角 同弧或等弧所对的圆周角等于该弧所对
定理
圆周角
的圆心角的一半;
推论 同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧相等.
强化 训练
强化训练
圆周角---定理及推论
提升能力
1.如图,在☉O中,已知直径AB⊥CD于点E,∠CDB=18º.将△OBD绕点O顺时针
∴ BAC 1 BOC
2
典例精讲
圆周角定理
知识点二
【例1】在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)º
和(5x-30)º,求这条弧所对的圆心角和圆周角的度数。
解:由题意得: 2x+100=2(5x-30) 解得:x=20 ∴2x+100=140º,5x-30=70º.
答:这条弧所对的圆心角和圆周角的度数分别为:140º和70º.
B O· A
B
C
O·
C O·
C A
(√1)
A
顶点不(2在) 圆上 B
B 边AC没(3有)和圆相交
O·
B
C
顶点不(4在) 圆上
C A O·
第一章 §2 2.1 圆周角定理
2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。
最新1、圆周角定理及推论
一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。
以下分五种情况证明【证明】情况1:当圆心O在∠BAC的内部时:图1连接AO,并延长AO交⊙O于D解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC【证明】情况2:当圆心O在∠BAC的外部时:图2连接AO,并延长AO交⊙O于D,连接OB、OC。
解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图3∵OA、OC是半径解:∴OA=OC∴∠BAC=∠OCA(等边对等角)∴∠BOC=∠BAC+∠OCA=2∠BAC(三角形的一个外角等于与它不相邻的两个内角和,由AB 为平角180°、三角形△AOC内角和为180°得到。
)【证明】情况4:圆心角等于180°:圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=21∠BOC (BC弧)∠OCB=∠OBC=21∠AOC (AC弧)∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AOB2=∠ACB【证明】情况5:圆心角大于180°:图5圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,∠CAE=∠CBE=90°(圆心角等于180°)∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB∵∠AOB=2∠AEB∴360°-∠AOB=2(180°-∠AEB)=2∠ACB二、圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
第1课时 圆周角定理及推论1
(2)求证:∠1=∠2.
【导2)证明:因为 BC=DC,所以 B»C = C»D , 所以∠BAC=∠CBD,
因为 EC=BC,所以∠CEB=∠CBE, 因为∠CEB=∠1+∠BAC,∠CBE=∠2+∠CBD, 所以∠1+∠BAC=∠2+∠CBD, 所以∠1=∠2.
证明:(1)因为∠ABC=∠ADB,所以 »AC = »AB .所以 AB=AC. (2)因为∠CAD=∠CBD,∠ACD=∠ABD,∠CAD=∠ACD,所以 ∠ABD=∠CBD. 所以BD平分∠ABC.
点击进入 训练案
【导学探究】 1.由AB∥CD可得∠BCD= ∠ABC .
2. B»D 所对的圆心角是 ∠BOD
∠BCD= 1 ∠BOD
系是
2
.
,所对的圆周角是
∠BCD
,两者之间的关
解:因为 AB∥CD,所以∠BCD=∠ABC=40°, 因为∠BCD= 1 ∠BOD,
2 所以∠BOD=2∠BCD=80°.
运用圆周角定理时注意 (1)定理中的圆周角与圆心角所对的弧是同一条弧; (2)从数量关系上看,圆周角的度数等于圆心角度数的一半,换而言之,圆心角 的度数等于圆周角度数的2倍.
3.如图,在☉O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是( D ) (A)64° (B)58° (C)32° (D)26°
4.(2019湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的 度数是 30° .
5.已知点A,B,C,D四点在☉O上. (1)若∠ABC=∠ADB,求证:AB=AC; (2)若∠CAD=∠ACD,求证:BD平分∠ABC.
第1课时 圆周角定理及其推论1
第三章 圆
4 圆周角和圆心角的关系 第1课时 圆周角定理及其推论1
01 基础题
知识点1 圆周角的概念
1.下列四个图中,∠x是圆周角的是(C )
知识点2 圆周角定理
2.如图,A,B,C是⊙O上的三点,BC是⊙O的直径,∠B=30°,
则∠AOC的度数是(A )
A.60°
B.55°
C.50°
易错点 忽略弦所对的圆周角不唯一而致错
11.在直径为4的⊙O中,弦AB=2 3,点C是圆上不同于A,B的点, 那么∠ACB的度数为 60°或120° .
02 中档题
12.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边 形,OF⊥OC交⊙O于点F,则∠BAF等于( B )
A.12.5° B.15° C.20° D.22.5°
AOB=(B )
A.45°
B.50°
C.55°
D.60°
9.如图,⊙O的直径AB过弦CD的中点E.若∠C=25°,则∠D = 65° .
10.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC 于点E,连接CD,AD.求证:DB平分∠ADC.
证明:∵AB=BC, ∴A︵B=B︵C. ∴∠ADB=∠BDC. ∴DB平分∠ADC.
解:(1)∵BC=DC,∴B︵C=D︵C. ∴∠BAC=∠CAD=∠CBD. ∵∠CBD=39°,∴∠BAC=∠CAD=39°. ∴∠BAD=∠BAC+∠CAD=78°.
(2)证明:∵EC=BC, ∴∠CBE=∠CEB. ∵∠CBE=∠1+∠CBD,∠CEB=∠2+∠BAC, ∴∠1+∠CBD=∠2+∠BAC. 又∵∠BAC=∠CBD,∴∠1=∠2.
(2)∵OD⊥AB,OC=3,OA=6,
第1课时 圆周角定理及推论1
4 圆周角和圆心角的关系第1课时圆周角定理及推论11.如图,☉O中,弦AB,CD相交于点P,若∠A=30°,∠APD=70°,则∠B 等于( C )(A)30°(B)35°(C)40°(D)50°2.(2019黄石模拟)如图,A,B,C在☉O上,∠C=20°,∠B=50°,则∠A 等于( C )(A)20°(B)25°(C)30°(D)40°3.如图,A,B,C,D是☉O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( D )(A)45°(B)60°(C)75°(D)85°4.如图,☉O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为( D )(A)(B)5 (C) (D)55.(2019房山区一模)如图,点A,B,C在☉O上,若∠CBO=40°,则∠A 的度数为50°.6.如图,点A,B,C,D在☉O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= 70°.7.已知:如图,E为的中点,点A在☉O上,AE交BC于点D.求证:BE2=AE·DE.证明:因为E为的中点,所以=,所以∠EBD=∠EAB.又因为∠E=∠E,所以△BED∽△AEB.所以=,所以BE2=AE·DE.8.如图,AB是☉O的一条弦,OD⊥AB,垂足为点C,交☉O于点D,点E,F 在☉O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若CD=2,AB=8,求tan∠AFB的值.解:(1)如图,连接OB,因为OD⊥AB,所以=,所以∠BOD=∠AOD=52°,所以∠DEB=∠BOD=26°.(2)设OA=OD=r,则OC=r-2,因为OD⊥AB,所以AC=AB=4,=,所以∠AOC=∠AOB,在Rt△AOC中,OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,所以OC=3,因为∠AFB=∠AOB=∠AOC,所以tan ∠AFB=tan ∠AOC==.9.如图,点A,B,C是圆O上的三点,且四边形ABCO是平行四边形, OF⊥OC交圆O于点F,则∠BAF等于( B )(A)12.5°(B)15°(C)20°(D)22.5°10.如图,将☉O沿弦AB折叠,圆弧恰好经过圆心O,点P是☉O上的一点(点A,B除外),则∠APB的度数为( D )(A)45°(B)60°(C)120° (D)60°或120°11.如图,AB是☉O的一条弦,点C是☉O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与☉O交于G,H两点,若☉O的半径为6,则GE+FH的最大值为9 .12.(拓展探究题)如图,AB,AC是☉O的两条弦,M,N分别为,的中点,MN分别交AB,AC于E,F.判断三角形AEF的形状并给予证明. 解:△AEF是等腰三角形.理由如下:如图,连接MC,BN,因为M为的中点,所以=,所以∠C=∠N.因为N是的中点,所以=.所以∠B=∠M,因为∠AEF=∠B+∠N,∠AFE=∠M+∠C,所以∠AEF=∠AFE,所以AE=AF.即△AEF是等腰三角形.13.(实际应用题)足球场上有句顺口溜:“冲向球门跑,越近就越好;歪着球门跑,射点要选好”,可见踢足球是有“学问”的.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到点A时,乙已跟随冲到点B(如图,点B在以MN为弦的圆上).此时甲直接射门好,还是迅速将球回传给乙,让乙射门好?请你应用本节课学习的数学知识进行分析.解:在真正的足球比赛中情况比较复杂,这里仅从数学角度出发对两点的静止状态加以比较,如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点分别对球门的张角大小,当张角较小时,则球容易被对方守门员拦截.如图,连接AM交圆于点C,连接CN,AN,BM,BN.因为∠MCN为△CAN的外角,所以∠MCN>∠A,因为∠MBN与∠MCN对着同一条弧,所以∠MBN=∠MCN,所以∠MBN>∠A,由于乙队员对球门的张角比甲队员对球门的张角大,所以甲队员将球回传给乙,让乙射门比较好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冯康刚进初中时,英语遇到困难,由于他在小学一点英 语也未学过,而其他同学大多学过英语.问题之解决完全靠他 自己的努力,很快就跟上了班,不仅如此,还跃居班上的前 列.整个这段时期之内,他是轻松愉快地进行学习,而不是中 国传统教育强调的苦学,也从来不开夜车(这和他后来的情 况完全不同),即使考试时期,亦是如此.
至于数学,不仅课堂学习成绩优异,他还参考原版的范 氏大代数等国外教本进行学习和解题,应该说他中学数学根 底非常扎实.还有值得一提的是,有一本科普著作对他产生的 深远影响,就是朱言钧著的“数理丛谈”.朱言钧(朱公谨) 是我国前辈数学家,曾在哥廷根大学留学,回国后在上海交 大任教.这本书是通过学者和商人的对话来介绍什么是现代数 学(其中也提到费马大定理、哥德巴赫等问题),这本书有 很强的感染力,使冯康眼界大开,首次窥见了现代数学的神 奇世界,深深为之入迷.这也许是冯康献身数学立志成为数学 家的一个契机.当然,道路并不是笔直的.
XUSUHUA
第二十七章 圆
27.11 圆周角定理及推论1
经典例题
例. 如图,在圆O中,∠ACD=30°,AB=BC =CD. 求∠P.
巩固练习
练1. 如图,在圆O中,弦AB=1,圆周角 ∠ACB=30°,求圆O的直径.
巩固练习
练2. 如图,AD、BC是圆O中两条弦,OA⊥OB,AC⊥BD. 求证:A//BC.——冯康的故事
提高练习
练3. 如图,锐角△ABC内接于⊙O,∠ABC= 60°,∠BAC=36°,作OD⊥AB,交劣弧AB 于点D,连结DC,求∠ODC .
拓展练习
练4. 如图,已知圆O的两条半径OA与OB互相垂
直,C为A⌒MB上一点,且AB2+OB2=BC2.
求∠OAC的度数.
回味无穷
课后作业
《优等生数学》九年级 P46-47 T1、 T2 、T3、T4 写在作业本上. 预习《优等生数学》九年级的第21、22节