三角函数基础测试题及答案
三角函数练习题含答案
三角函数练习题含答案一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()3cos 33f t f t t ⎛⎫⎛⎫≤-+- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.平面向量i a 满足:1(0,1,2,3)i a i ==,且310i i a ==∑.则012013023a a a a a a a a a ++++++++的取值范围为________.3.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.4.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.5.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 6.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 7.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.8.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且23,3a A π==.若mb nc +(0,0m n >>)有最大值,则nm的取值范围是__________. 9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c+的取值范围为________.10.△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于1A ,1B ,1C .则111coscos cos 222sin sin sin A B C AA BB CC A B C++++的值为_____________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A 2 B 3C 3D 213.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④14.已知函数()132,f x x x R =∈,若当02πθ≤≤时,(sin )(1)0f m f m θ+->恒成立,则实数m 的取值范围是( ) A .0,1 B .,0C .1,D .(),1-∞15.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π 16.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1617.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④18.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( )A .1B C .32D .219.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .220.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .3三、解答题21.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由.22.已知函数2()23sin 2sin cos ()f x x x x a a R =-++∈,且(0)3f =. (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.23.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围.24.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.25.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值.26.已知向量a ,b 满足2sin ,6sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos ,2cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 27.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )[1,2]x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.28.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 29.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.30.函数f (x )=A sin (2ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示 (1)求A ,ω,φ的值;(2)求图中a ,b 的值及函数f (x )的递增区间; (3)若α∈[0,π],且f (α)=2,求α的值.【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦,2.23,4⎡⎤⎣⎦34.②④5.47,912ππ⎧⎫⎨⎬⎩⎭ 678.1,22⎛⎫ ⎪⎝⎭9.( 10.4 二、单选题 11.A 12.A 13.B 14.D 15.A 16.B 17.A 18.B 19.D 20.B 三、解答题21.(1)S =⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)100001 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值.【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积 1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xyxy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题. 22.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.23.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)]【解析】(1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可. (2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解.【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值,此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ(2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ= 在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ=所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈令sin cos t θθ=+,则21sin cos 2t θθ-=所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)] 【点睛】本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减.∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题. 25.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 26.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n +【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题. 27.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()22222g x g m ==-⨯-=-⇒=(舍)故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.28.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sin A C = ∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题.29.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=.②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+.综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能. 30.(1)π2,1,6A ωϕ===;(2)7π,112a b =-=,递增区间为()πππ,π36k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(3)π24或7π24. 【解析】 【分析】(1)利用函数图像可直接得出周期T 和A ,再利用=2Tπω,求出ω,然后利用待定系数法直接得出ϕ的值.(2)通过第一问求得的值可得到()f x 的函数解析式,令()=0f x ,再根据a 的位置确定出a 的值;令0x =得到的函数值即为b 的值;利用正弦函数单调增区间即可求出函数的单调增区间.(3)令()f α=0απ,即可求得α的取值.【详解】解:(1)由图象知A =2,34T =512π-(-3π)=912π, 得T =π, 即22πω=2,得ω=1,又f (-3π)=2sin[2×(-3π)+φ]=-2, 得sin (-23π+φ)=-1,即-23π+φ=-2π+2k π, 即ω=6π+2k π,k ∈Z , ∵|φ|<2π,∴当k =0时,φ=6π,即A =2,ω=1,φ=6π;(2)a =-3π-4T =-3π-4π=-712π,b =f (0)=2sin 6π=2×12=1,∵f (x )=2sin (2x +6π),∴由2k π-2π≤2x +6π≤2k π+2π,k ∈Z ,得k π-3π≤x ≤k π+6π,k ∈Z ,即函数f (x )的递增区间为[k π-3π,k π+6π],k ∈Z ;(3)∵f (α)=2sin (2α+6π)即sin (2α+6π) ∵α∈[0,π],∴2α+6π∈[6π,136π], ∴2α+6π=4π或34π,∴α=24π或α=724π.【点睛】关于三角函数图像需记住: 两对称轴之间的距离为半个周期; 相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为14个周期.关于正弦函数单调区间要掌握:当2,222x k k ππωϕππ⎡⎤+∈-+⎢⎥⎣⎦时,函数单调递增;当32+,222x k k ππωϕππ⎡⎤+∈+⎢⎥⎣⎦时,函数单调递减.。
三角函数及解三角形测试题(含答案)
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数10道大题带答案
三角函数1.函数()4cos sin()16f x x x π=+-.〔Ⅰ〕求 ()f x 的最小正周期; 〔Ⅱ〕求()f x 在区间[,]64ππ-上的最大值和最小值.2、函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ〔Ⅰ〕求函数)(x f 的最小正周期; 〔Ⅱ〕求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、函数()tan(2),4f x x =+π〔Ⅰ〕求()f x 的定义域与最小正周期; 〔II 〕设0,4⎛⎫∈ ⎪⎝⎭πα,假设()2cos 2,2f =αα求α的大小4、函数xxx x x f sin 2sin )cos (sin )(-=.〔1〕求)(x f 的定义域及最小正周期; 〔2〕求)(x f 的单调递减区间.5、设函数2())sin 24f x x x π=++. 〔I 〕求函数()f x 的最小正周期;〔II 〕设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时,1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+〔0,0A ω>>〕的最大值为3,其图像相邻两条对称轴之间的距离为2π, 〔1〕求函数()f x 的解析式; 〔2〕设(0,)2πα∈,那么()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω 〔Ⅰ〕求函数y f (x )=的值域〔Ⅱ〕假设y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期的图象如下图,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.〔Ⅰ〕求ω的值及函数()f x 的值域;〔Ⅱ〕假设0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、,,a b c 分别为ABC ∆三个角,,A B C 的对边,cos sin 0a C C b c --= 〔1〕求A ; 〔2〕假设2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,角A ,B ,C 的对边分别为a ,b ,c .cos A =23,sin B cos C . (Ⅰ)求tan C 的值;(Ⅱ)假设a∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】〔Ⅰ〕因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.〔Ⅱ〕因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 〔1〕2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+函数()f x 的最小正周期为22T ππ==〔2〕32sin(2)11()444444x x x f x ππππππ-≤≤⇒-≤+≤⇒≤+≤⇔-≤≤当2()428x x πππ+==时,()max f x =2()444x x πππ+=-=-时,min ()1f x =- 【点评】该试题关键在于将的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进展解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进展变换、化简求值.【精讲精析】〔I 〕【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π 〔II 〕【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解〔1〕:sin 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;〔2〕函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 那么322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、此题考察两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等根底知识,考察分类讨论思想和运算求解能力. 【解析】2111())sin cos 2sin 2(1cos 2)4222f x x x x x x π=++=-+-11sin 222x =-, 〔I 〕函数()f x 的最小正周期22T ππ== 〔II 〕当[0,]2x π∈时,11()()sin 222g x f x x =-= 当[,0]2x π∈-时,()[0,]22x ππ+∈11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】〔1〕∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.〔2〕∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:〔1〕()314sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪ ⎪⎝⎭22223cos 2sin cos sin x x x x x ωωωωω=++-321x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为13,13⎡+⎣〔2〕因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()3sin 21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 此题主要考察三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等根底知识,考察根本运算能力,以及数形结合思想,化归与转化思想. [解析]〔Ⅰ〕由可得:2()6cos33(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,那么BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分〔Ⅱ〕因为,由538)(0=x f 〔Ⅰ〕有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin )34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:〔1〕由正弦定理得:cos 3sin 0sin cos 3sin sin sin a C a C b c A C A C B C --=⇔=+sin cos 3sin sin()sin 13cos 1sin(30)2303060A C A C a C C A A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=〔2〕1sin 342S bc A bc ==⇔=,2222cos 4a b c bc A b c =+-⇔+= 10. 此题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A 251cos A -=又5cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5cos C +23sin C . 整理得:tan C 5(Ⅱ)由图辅助三角形知:sin C =56.又由正弦定理知:sin sin a cA C=, 故3c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =(舍去).∴∆ABC 的面积为:S .。
三角函数练习题(含答案)
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中数学三角函数基础练习含答案
三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
三角函数练习题含答案
三角函数练习题含答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .415.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( )A .1B .27764C .1693192D .9816.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.26.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?27.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π2.23⎛ ⎝⎭33(21)+ 475.3+36.1π-##1π-+7.80π 8.9[,4]4-9.1或2##2或110.( 二、单选题 11.A 12.B 13.A 14.B 15.B 16.A 17.A 18.C 19.B 20.C 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 26.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题27.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】 【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。
三角函数综合测试题(含答案)
三角函数分解测试题(本试卷满分150分,测验时光120分)第Ⅰ卷(选择题 共40分)一.选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是相符标题请求的) 1.若点P 在32π的终边上,且OP=2,则点P 的坐标()A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(- 2.已知=-=-ααααcos sin ,45cos sin 则() A .47B .169-C .329-D .3293.下列函数中,最小正周期为2π的是()A .)32sin(π-=x yB .)32tan(π-=x yC .)62cos(π+=x y D .)64tan(π+=x y4.等于则)2cos(),,0(,31cos θππθθ+∈=( )A .924-B .924C .97-D .97 5.将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于()A .12π-B .3π-C .3πD .12π6. 50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-7.在△ABC 中,sinA >sinB 是A >B 的( )A .充分不须要前提B .须要不充分前提C .充要前提D .既不充分也不须要前提 8.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πBC .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB第Ⅱ卷(非选择题 共110分)二.填空题(本大题共5小题,每小题6分,共30分,把答案填在题中横线上)9.已知3sin()45x π-=,则sin 2x 的值为;10.在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________11.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______. 12.函数x x y 2cos )23cos(--=π的最小正周期为__________.13.关于三角函数的图像,有下列命题:①x y sin =与x y sin =的图像关于y 轴对称;②)cos(x y -=与x y cos =的图像雷同;③x y sin = 与)sin(x y -=的图像关于y 轴对称;④x y cos =与)cos(x y -=的图像关于y 轴对称;个中准确命题的序号是___________.三.解答题(本大题共6小题,共80分.解答应写出须要的文字解释,证实进程或演算步调)α,其地点的圆的半径为R .(1)若060α=,R=10cm,求扇形的弧长及该弧地点的弓形的面积; (2)若扇形的周长为定值p ,当α为若干弧度时,该扇形有最大的面积?这一最大面积是若干?)0(3cos >-=b x b a y 的最大值为23,最小值为21-,求函数bx a y 3sin 4-=的单调区间.最大值和最小正周期.(1)若a 与2b c -垂直,求tan()αβ+的值; (2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .ABC ∆中,C B A ∠∠∠、、所对的边长分离为c b a 、、,设c b a 、、知足前提222a bc c b =-+和321+=b c,乞降A ∠B tan 的值.18.在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA 的值.ABC 的内角A B C ,,的对边分离为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值规模. 1~8 DCBDCDCD9.725-10.4315 11.31- 12.3π14.②④15.(1)设弧长为l ,弓形面积为S 弓,则∵0603πα==,R=10,∴10()3l cm π=, 211011010sin 2323S S S ππ∆=-=⨯⨯-⨯弓扇250()3cm π=-;(2)∵扇形周长22p R l R R α=+=+,∴2pR α=+, ∴222111()422224p p S R ααααα===⨯+++扇,由44αα+≥,得216p S ≤扇,∴当且仅当4αα=,即2α=时,扇形取得最大面积216p .16.[解答]由已知前提得⎪⎪⎩⎪⎪⎨⎧-=-=+;,2123b a b a 解得⎪⎩⎪⎨⎧==;,121b a ∴x y 3sin 2-=,其最大值为2,最小正周期为32π,在区间[326326ππππk k ++-,](Z k ∈)上是增函数, 在区间[322326ππππk k ++,](Z k ∈)上是减函数. 18.解:由余弦定理212cos 222=-+=bc a c b A ,是以,︒=∠60A 在△AB C 中,∠C=180°-∠A-∠B=120°-∠B. 由已知前提,运用正弦定理BB BC bc sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B 解得,2cot =B 从而.21tan =B 19.解:设E 为BC 的中点,衔接DE,则DE//AB,且36221==AB DE ,设BE =x在ΔBDE 中运用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去)故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,故2sin A =1470sin =A 20.解:(Ⅰ)由2sin a b A =,依据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =.(Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =+3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=.2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值规模为322⎛⎫⎪⎪⎝⎭,.。
三角函数10道大题(带答案)
三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
三角函数测试题及答案
三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
(完整版)三角函数基础练习题答案
三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数练习题附答案
三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠==,则四面体ABCD 体积的最大值为___________.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.若函数()sin12xf x x π=+,则(1)(2)(3)(2021)f f f f +++⋯⋯+=__________5.已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.6.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知当()0,x π∈时,不等式2cos 23sin 20cos 4sin 1x x x x +-≤--的解集为A ,若函数()()()sin 0f x x =+<<在x A ∈上只有一个极值点,则ϕ的取值范围为______.9.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >12.如图,设1F ,2F 是双曲线()22210xy a a -=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=13.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( ) A .9B .8C .7D .514.在三棱锥A BCD -中,2AB AD BC ===,13CD =22AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π15.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( ) A .103πB .3πC .3π D 316.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1418.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16319.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()(2cos 2g x x =.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A.BC. D20.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .8三、解答题21.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.22.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值. 23.已知向量()2cos ,1a x =,()3sin cos ,1b x x =+-,函数()f x a b =⋅.(1)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值; (2)若函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数,求正数ω的取值范围. 24.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 25.已知函数()23sin 212cos f x x x =+-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.26.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .27.已知函数22()cos sin 3sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.28.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?29.已知函数()f x 的图象是由函数()sin g x x =的图象经如下变换得到:先将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向左平移3π个单位长度.(1)求函数(2)y f x =在[0,]π上的单调递增区间;(2)已知关于x 的方程2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β.求26cos(22)m αβ--的值.30.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.【参考答案】一、填空题1.982.1)2314.30325.)1⎡++∞⎣ 6.14- 7.80π8.2(0,)(,)33πππ⋃910.二、单选题11.A 12.B 13.A 14.A 15.B 16.B 17.C 18.A 19.D 20.D 三、解答题21.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.22.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭ 即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4. 【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大. 23.(12)104ω<≤ 【解析】 【分析】(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由()065f x =,结合026x π+的范围以及平方关系得出0cos 26x π⎛⎫+ ⎪⎝⎭的值,由002266x x ππ⎛⎫+- ⎪⎝⎭=结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间2,33ππ⎛⎫⎪⎝⎭应该包含在()y f x ω=的一个增区间内,根据包含关系列出不等式组,求解即可得出正数ω的取值范围. 【详解】(1)())2cos cos 12cos 22sin 26f x a b x x x x x x π⎛⎫=⋅=+-=+=+ ⎪⎝⎭因为()065f x =,所以062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭.因为0,42x ππ⎡⎤∈⎢⎥⎣⎦,所以0272366x πππ≤+≤所以04cos 265x π⎛⎫+=- ⎪⎝⎭.所以00001cos 2cos 22sin 266626x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦413525⎛⎫=-+⨯=⎪⎝⎭ (2)()2sin 26y f x x πωω⎛⎫==+ ⎪⎝⎭.令222262k x k ππππωπ-≤+≤+,k Z ∈得36k k x ππππωωωω-≤≤+,k Z ∈ 因为函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数 所以存在0k Z ∈,使得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭所以有0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩因为0>ω,所以016k >-又因为2123322πππω-≤⨯,所以302ω<≤,则03312k ≤+,所以056k ≤ 从而有01566k -<≤,所以00k =,所以104ω<≤.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题. 25.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴; (2)先求平移后的函数解析式,再求值域. 【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2. 【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题. 26.见解析 【解析】选择①:利用三角形面积公式和余弦定理可以求接求出AC 的长;选择②:在ABC ∆,ACD ∆中,分别运用正弦定理,可以求接求出AC 的长; 【详解】 解:选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC == 选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC θ=- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin θ=,所以2sin AC θ== 【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力. 27.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得. 【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+-()2sin(2)36f x x π∴=+-由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+-1sin(2)16x π-≤+≤当0a >时,232sin(2)3236a a x a π--≤+-≤-则有234a --=- 解得12a =当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤--则有234a -=-解得12a =-综上 12a ∴=或12a =-.【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题. 28.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()g x =当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题29.(1)(2 )y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦(2)6-【解析】 【分析】(1)先求出()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数的图像和性质求函数(2)y f x =在[0,]π上的单调递增区间;(2)先化简得2()422f x g x π⎛⎫-+ ⎪⎝⎭223x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的性质求出cos )αβ-(的值得解. 【详解】(1)将()sin g x x =图象上所有点的纵坐标伸长到原来的2倍,得到2sin y x =的图象,再将2sin y x =的图象向左平移3π个单位长度后得到2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222232k x k πππππ-++,k ∈Z51212k x k ππππ-+,k ∈Z ,又[0,]x π∈所以(2)y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦.(2)2()422f x g x π⎛⎫-+ ⎪⎝⎭24sin 4sin 232x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos 24cos 23x x π⎛⎫=-+- ⎪⎝⎭23cos 22x x =-+223x π⎛⎫=-+ ⎪⎝⎭.因为2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β,所以23x m π⎛⎫-= ⎪⎝⎭在[0,)π内有两个不同的解α,β,且52,333x πππ⎡⎫-∈-⎪⎢⎣⎭,所以2233ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或22333ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.于是56παβ+=或116παβ+=. 当56παβ+=时,5cos()cos 6παβαα⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭5cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭ sin 23πα⎛⎫=-= ⎪⎝⎭当116παβ+=时, 11cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭113cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ sin 23πα⎛⎫=--= ⎪⎝⎭,因此,26cos(22)m αβ--()2262cos ()1m αβ=---22621612m m ⎛⎫=⋅--=- ⎪⎝⎭. 【点睛】本题主要考查三角函数图像的变换和三角函数的单调区间的求法,考查三角函数图像的零点问题,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.30.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.。
三角函数测试题(带答案)
一、选择题1 .若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 ( )A .0B .33C .1D .32 .若角α的终边经过点M (5,2--),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3 .若角α的终边经过点()3,4λλ-,且0λ≠,则sin cos sin cos αααα+-等于( )A .17-B .17 C .-7D .74 .已知α是第四象限角,5tan()12πα-=,则sin α=( ).15 B .15-C .513D .513-5 .623sin π等于( )A .23-B .21-C .21 D .23 6 .记k =︒-)80cos(,那么=︒100tan( )A .kk 21-B .-kk 21- C .21kk - D .-21kk -7 .已知),0(,137cos sin πααα∈=+,则αtan 等于 ( )A .512B .512-C .125D .125-8 .已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-9 .已知1sin 2x >,且[]0,2x π∈,则x 的取值范围是( )A .5,66ππ⎡⎤⎢⎥⎣⎦ B .5,66ππ⎛⎫⎪⎝⎭C .2,33ππ⎡⎤⎢⎥⎣⎦ C .2,33ππ⎛⎫⎪⎝⎭10.已知函数)0)(6sin(2)(>+=ωπωx x f 的最小正周期为π4,则该函数的图象 ( )A .关于点⎪⎭⎫⎝⎛0,3π对称 B .关于点⎪⎭⎫⎝⎛0,35π对称 C .关于直线3π=x 对称D .关于直线35π=x 对称 11.函数()sin()4f x x π=-的一个单调增区间为( )A .37(,)44ππB .3(,)44ππ-C .(,)22ππ- D .3(,)44ππ-12.函数x cos 4x sin 3y 2--=的最小值为( )A .-2B .-1C .-6D .-3二、填空题13.已知扇形的周长为8cm ,则该扇形面积的最大值为________cm 2。
三角函数基础测试题及答案
三角函数单元测试题一、选择题:(12ⅹ5分=60分)1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )A )sin ,cos (αα-B )sin ,(cos ααC )sin ,(cos αα-D );sin ,cos (αα--2.已知角α的终边经过点P (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-3.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对 4.函数)62sin(5π+=x y 图象的一条对称轴方程是( ))(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( )A. 2或0B. 2-或2C. 0D. 2-或07.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1D.2- 8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B.5(,)(,)424ππππC.353(,)(,)2442ππππD.33(,)(,)244ππππ9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个B .2个C .3个D .4个10.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是( ) A .)62sin(π+=x y B . )32cos(π+=x y C . )62sin(π-=x y D . )62cos(π-=x y12.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b二、填空题(4x4分=16分)13.函数y =的定义域是14. 函数]0,[)(62sin(2ππ-∈+=x x y 的单调递减区间是 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________.16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍; ② ()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③ ()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称; ④ ()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.三.解答题:(5ⅹ12分+14分=74分)17.(本题共12分)化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-18.(本题共12分)已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值.19.(本题共12分)已知函数12sin()63y x π=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ?20.(本题共12分)函数)2,0,0(),sin()(πθθ<>>+=w A wx A x f 的图象如右,求出它的解析式,并说出它的周期、振幅、初相。
第一章三角函数测试题 (含详细答案)
必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。
三角函数测试题及答案
三角函数测试题及答案试题一:一、选择题1. 下列各三角函数式中,值为正数的是 ( )A. B. C. D.2. 若=,且为锐角,则的值等于 ( )A. B. C. D.3. 若=,,则的值为 ( )A. 1B. 2C.D.4. 已知,则 ( )A. B.C. D.5. a=,则成立的是 ( )A. ab>c C. a6. 函数的定义域是( )A. B.C. D.7. 下面三条结论:①存在实数,使成立;②存在实数,使成立;③若cosacosb=0,则其中正确结论的个数为( )A. 0B. 1C. 2D. 38. 函数的值域是 ( )A. [-2,2]B. [-1,2]C. [-1,1]D. [,2]9. 函数y=-x·cosx的部分图象是( )10. 函数f(x)=cos2x+sin(+x)是( )A. 非奇非偶函数B. 仅有最小值的奇函数C. 仅有最大值的偶函数D. 既有最大值又有最小值的偶函数二、填空题1、函数的最小值等于并使函数y 取最小值的x的集合为2、若函数的图象关于直线对称,则函数的值域为3、已知函数三、解答题1、已知,求的值2、在DABC中,已知三边满足,试判定三角形的形状。
试题二:1、若sinα=-5/13,且α为第四象限角,tanα=?(文.6)A.12/5B.-12/5C.5/12D.-5/12解析:主要考察基础知识。
α是第四象限角,所以cosα为正,tanα为负。
cos2α=1-sin2α,且cosα是正数,所以cosα=12/13,t anα=sinα/cosα=-5/12,选D。
2、已知函数f(x)=10√3sin(x/2)*cos(x/2)+10cos2(x/2)1)求f(x)的最小正周期2)将f(x)的函数图像向右平移π/6个单位长度,再向下平移a个单位长度后得到g(x)的函数图像,且函数g(x)的`最大值为2.i)求g(x)的解析式ii)证明存在无穷多互不相同个正整数x0,使得g(x0)>0.解析:1)函数的化简,可以看到两个式子都跟两倍角公式有关系,可以考虑先都变成两倍角。
三角函数习题及答案
任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。
则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。
7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。
8.设则Y的取值范围是▁▁▁▁▁▁▁。
9.已知cosx-sinx<-1,则x是第▁▁▁象限角。
三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。
11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。
12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。
同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。
8.已知,则的值为▁▁▁▁▁▁。
9.=▁▁▁▁▁。
10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。
解答题:11.已知:,求的值。
12.已知,求证:13.已知,且,求的值。
14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。
(完整版)三角函数练习题(含答案)
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
三角函数50题精选题附答案
1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
三角函数练习题(含答案)
点后观察到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为 ___________结果保留根号). 7.求值:sin260°+cos260°=___________. 8.在直角三角形 ABC 中,∠A= 900 ,BC=13,AB=12,那么
tan B ___________.
9.根据图中所给的数据,求得避雷针 CD 的长约为_______m(结果精 确的到 0.01m).(可用计算器求,也可用下列参考数据 求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈ 0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°
地,此时王英同学离 A 地 ( )
(A) 50 3 m (B)100 m (C)150m (D)100 3 m
11、如图 1,在高楼前 D 点测得楼顶的仰角为 300,向高楼前进 60 米到 C 点,又测得仰角
为 450,则该高楼的高度大约为(
)
A.82 米 B.163 米
C.52 米 D.70 米
≈0.8391)
10.如图,自动扶梯 AB 段的长度为 20 米,倾斜 角 A 为α,高度 BC 为___________米(结果用含 α的三角比表示).
11.如图 2 所示,太阳光线与地面成 60°角,一 棵倾斜的大树与地面成 30°角,这时测得大树在 地面上的影子约为 10 米,则大树的高约为________米.(保
6 2
据供解题使用:sin15°=,cos15°= 4 )
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的 走向是北偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接 通,则乙地所修公路的走向是南偏西___________度.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数单元测试题
一、选择题:(12ⅹ5分=60分)
1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )
A )sin ,cos (αα-
B )sin ,(cos αα
C )sin ,(cos αα-
D );sin ,cos (αα--
2.已知角α的终边经过点P (-3,-4),则)2
cos(απ
+的值为( )
A.54-
B.53
C.54
D.5
3
-
3.已知α、β是第二象限的角,且βαcos cos >,则 ( )
A.βα<;
B.βαsin sin >;
C.βαtan tan >;
D.以上都不对 4.函数)6
2sin(5π
+=x y 图象的一条对称轴方程是( )
)(A ;12
π
-
=x )(B ;0=x )(C ;6π
=
x )(D ;
3π
=
x 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,
如果0,0,||2
A π
ωϕ>><
,则( )
A.4=A
B.1ω=
C.6
π
ϕ=
D.4=B
6.已知函数()2sin()f x x ωϕ=+对任意x 都有(
)(),66
f x f x ππ+=-则()6f π
等于( )
A. 2或0
B. 2-或2
C. 0
D. 2-或0
7.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)
(),2
sin ,(0)
x x f x x x ππ⎧
-≤<⎪=⎨⎪≤<⎩ 则15()4
f π
-等于( ) A. 1 B.
22 C. 0 D.22
- 8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )
A .35(
,
)(,
)244ππ
ππ B.5(,)(,)424ππππ
C.353(,)(,)2442ππππ
D.33(,)(,)244
πππ
π
9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)3
22cos(π+=x y 中,最小正周期为π的函数的个数为( )
A .1个
B .2个
C .3个
D .4个
10.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,
则这个多边形是( )
A .正六边形
B .梯形
C .矩形
D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3
π
=x 对称;(3)在]3
,6[π
π-
上
是增函数”的一个函数是( ) A .)62sin(π+=x y B . )3
2cos(π+=x y C .
)62sin(π-=x y D . )6
2cos(π
-=x y
12.已知函数f (x )=f (x ),且当)2
,2(π
π-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则
( )
A.a<b<c
B.b<c<a
C.c<b<a
D.c<a<b 二、填空题(4x4分=16分) 13.函数12
log sin 23y x π⎛⎫
=
- ⎪⎝⎭的定义域是
14. 函数]0,[)(6
2sin(2ππ-∈+=x x y 的单调递减区间是 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的
2倍,然后把所得的图象沿x 轴向左平移
2
π
,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________.
16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝
⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍; ② ()x f y =的表达式可改写为()⎪⎭
⎫ ⎝
⎛-=62cos 4πx x f ;
③ ()x f y =的图象关于点⎪⎭
⎫ ⎝⎛-0,6π 对称; ④ ()x f y =的图象关于直线6
π-=x 对称.以上命题成立的序号是__________________.
三.解答题:(5ⅹ12分+14分=74分)
17.(本题共12分)化简:)
2
9sin()sin()3sin()cos()
211cos()2cos()cos()2sin(απ
απαπαπαπ
απαπαπ+-----++-
18.(本题共12分)已知αsin 、αcos 是方程06242
=++m x x 的两实根,求:
(1) m 的值; (2)αα3
3cos sin +的值.
19.(本题共12分)已知函数1
2sin()63
y x π
=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ?
20.(本题共12分)函数)2
,0,0(),sin()(π
θθ<
>>+=w A wx A x f 的
图象如右,求出它的解析式,并说出它的周期、振幅、初相。
21.(本题共12分)已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b 为常数)的 一段图象(如图)所示. ①求函数的解析式; ②求这个函数的单调区间.
22.(本题共14分)已知函数)2
||,0,0A )(x sin(A )x (f π
<
φ>ω>φ+ω=的图象在y 轴上的截距为2y 轴右侧的第一个最大值点和最小值点分别为)2,(0x 和)2,3(0-+πx . (1)试求)x (f 的解析式;(2)将)x (f y =图象上所有点的横坐标缩短到原来的3
1
(纵坐标不变),然后再将新的图象向x 轴正方向平移
3
π
个单位,然后再将新的图象向y 轴正方向平移1个单位,得到函数)x (g y =的图象.写出函数)x (g y =的解析式并在给出的方格纸上用五
点作图法作出)x (g y =在长度为一个周期的闭区间上的图象.
答案:1--5DCDCC 6--10BBBCD 11--12AD 13.Z k k k ∈++-]6
,
3
[ππ
ππ
14.]3
,65[π
π--
15.)22sin(21)(π-=x x f 16.②③ 17.αtan - 18.(1)1=m
(2)8
6
3-
19.(1)Z k k k ∈---]62,6[ππππ (2))6,62(πππk k --- 20.)32sin(2)(π+=
x x f 21.(1)23)10756sin(23++=πx y (2)Z k k k ∈+-+-]356,35[π
πππ
22.(1))431sin(2)(π+=x x f (2)1)12
sin(2)(+-=π
x x g。