海南洋浦中学2020-2020学年七年级上期末考试试卷--数学

合集下载

七年级上册海南中学数学期末试卷测试卷 (word版,含解析)

七年级上册海南中学数学期末试卷测试卷 (word版,含解析)

同理: ∴ ∴
(2)解:∠ AOD 与∠ BOC 的大小关系为: 量关系为: (3)解: 理由如下:∵
∠ AOB 与∠ DOC 存在的数 仍然成立.
又∵ ∴
【解析】【分析】(1)先计算出
再根据
( 2 ) 根 据 (1) 中 得 出 的 度 数 直 接 写 出 结 论 即 可 . ( 3 ) 根 据
若不能,说明理由。
【答案】 (1)解:
设 A 点表示的数为原点,则 B 点表示的数为 12,P 点表示的
数为 3t,则 M 点表示的数为 t,点 Q 表示的数为 12+2t,点 N 表示的数为 12+t,
M 在 N 左侧,MN=12+t- t=12- t,
∵ MN= =4,
(2)若 AB=2DE,线段 DE 在直线 AB 上移动,且满足关系式 ________. 【答案】 (1)解:①
,则
又 E 为 BC 中点
②设 当

,因点 F(异于 A、B、C 点)在线段 AB 上,


时,
可知:
Hale Waihona Puke 此时可画图如图 2 所示,代入
解得:
,即 AD 的长为 3
得:

时,
此时可画图如图 3 所示,代入
即可得到
利用周角定义得
∠ AOB+∠ COD+∠ AOC+∠ BOD=360°,而∠ AOC=∠ BOD=90°,即可得到∠ AOB+∠ DOC=180°.
2.已知点 C 在线段 AB 上,AC=2BC,点 D、E 在直线 AB 上,点 D 在点 E 的左侧
(1)若 AB=18,DE=8,线段 DE 在线段 AB 上移动 ①如图 1,当 E 为 BC 中点时,求 AD 的长; ②点 F(异于 A,B,C 点)在线段 AB 上,AF=3AD,CE+EF=3,求 AD 的长;

海口市七年级上册数学期末试卷及答案-百度文库

海口市七年级上册数学期末试卷及答案-百度文库

C.赚了 20 元钱
D.亏了 20 元钱
二、填空题
13.从一个 n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形
分割为 6 个三角形,则 n 的值是___________.
14.把一张长方形纸按图所示折叠后,如果∠AOB′=20°,那么∠BOG 的度数是_____.
15.多项式 2x3﹣x2y2﹣1 是_____次_____项式.
16.若 3xm5 y 2 与 x2 y n 的和仍为单项式,则 mn __________.
17.在数轴上,点 A , B 表示的数分别是 8 ,10 .点 P 以每秒 2 个单位长度从 A 出发沿数 轴向右运动,同时点 Q 以每秒 3 个单位长度从点 B 出发沿数轴在 B , A 之间往返运动,设运
22.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉 约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切 的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七 个字.有一本诗集,其中五言绝句比七言绝句多 13 首,总字数却反而少了 20 个字.问两 种诗各多少首?设七言绝句有 x 首,根据题意,可列方程为______. 23.一个水库的水位变化情况记录:如果把水位上升 5cm 记作+5cm,那么水位下降 3cm 时水位变化记作_____. 24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫 月历,每页显示全年信息的叫年历如图是 2019 年 1 月份的月历,用一个方框圈出任意
()
A.15°
B.25°
C.35°
D.45°
11.若 ab2m 与 2a b n1 6 是同类项,则 m n ( )

2020学年七年级上学期期末考试数学试题(含答案)

2020学年七年级上学期期末考试数学试题(含答案)

2019—2020学年第一学期期末测试初一数学试题一、单选题(每题3分共36分)1.2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为( )2.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )3.绝对值大于2且小于5的所有的整数的和是( )4.下列各数:-12,-0.7,-9,25,π,0,-7.3中,分数有( )个.5.有理数(-1)2,(-1)3,-12,|-1|,-(-1)中,其中等于1的个数是( )6.下列各组中的两个项不属于同类项的是( )7.在解方程2x+12-x−33=1时,去分母正确的是( )8.一艘船从甲码头到乙码头顺流而行用了2小时,从乙码头到甲码头逆流而行用了2.5小时,已知水流的速度是3km/h,则船在静水中的速度是( )km/h.9.已知点A 、B 、C 在一条直线上,AB=5,BC=3,则AC 的长为( )10.用量角器度量∠AOB 如图所示,则∠AOB 的补角是( )()(10题图) (11题图)A .125°B .55°C .45°D .135°11数学是研究数量关系和空间形式的科学.数学是人类文化的重要组成部分,数学素养是现代社会每个公民应该具有的基本素养.一个正方体盒子每个面上分别写一个字,一共有“数学核心素养”六个字,如图是这个正方体盒子的平面展开图,那么“素”字对面的字是( ) 12.下列生活生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( )二、填空题(每题3分,共30分))×3=.13.计算:−3÷(−1314. 关于x的一元一次方程2x+3m=4的解为x=-1,则m的值为15.若|x-1|+|y+3|=0,则x-y= .16. 若|a|=3,|b|=5,且a>b,则a-b= .17.已知方程(a-5)x|a|-4+2=0是关于x的一元一次方程,则a的值是.18.如图,数轴上A、B两点所表示的数分别是-4和2,点C是线段AB的中点,则点C所表示的数是.19.如图,BD平分∠ABC,过点B作BE垂直BD,若∠ABC=40°,则∠ABE= °.(19题图)(20题图)20.如图,将一个直角三角板的直角顶点C放在直线EF上,若∠ACE=60°,则∠BCF 等于度.21.根据图提供的信息,可知一个杯子是 元.22.用火柴棒按如图的方式搭图形,第n 个图形需要 根火柴.三、解答题(54分)23.(6分)计算:-12-12×(-12+13-16).24.(6分)先化简再求值:2a 2-4ab+a-(a 2+a-3ab).其中a= -2,b=325.(12分)解方程(每题6分)(1)5(x+2)=2(5x-1).(2)3x+12−4x−25=1.26.(6分)一个角的余角的3倍比它的补角小10°,求这个角的度数.27.(8分)制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?28.(6分)填空,完成下列说理过程如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°.求证:OD是∠AOC的平分线.证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE.(_______________________)因为∠DOE=90°,所以∠DOC+∠______=90°,且∠DOA+∠BOE=180°-∠DOE=______°.所以∠DOC+∠______=∠DOA+∠BOE.所以∠______=∠______.所以OD是∠AOC的平分线.29.(10分)七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.(1)小红同学参加了竞赛,成绩是96分,请问小红在竞赛中答对了多少题?(5分) (2)小明也参加了竞赛,考完后他说:“这次竟赛中我一定能拿到110分.”请问小明有没有可能拿到110分?试用方程的知识来说明理由.(5分)参考答案:一、DCCCBB DACDBC二、13题 .27 14 题 2 15.题 4 16.题 8或2 17.题 -518 题 -1 19题. 70 20.题 30 21题8 22.题(2n+1) 三.23.解:原式=-1-12×(-12)-12×13-12×(-16)(2分) =-1+6-4+2 (4分) =3. (6分) 24.解:原式=2a 2-4ab+a-a 2-a+3ab=a 2-ab .(4分)当a=-2,b=3时原式=(-2)-(-2)×3=4+6=10 (6分) 25.(1)解:去括号得:5x+10=10x-2,移项合并得:-5x=-12, 解得:x=2.4.(2) 解去分母得:15x+5-8x+4=10,移项合并得:7x=1, 解得:x =17.26.解:设这个角是x°,根据题意,得3(90-x)=(180-x)-10,解得x=50.答:这个角的度数为50°.27.解:计划用x立方米木材制作桌面,则用(24-x)立方米木材制作桌腿.由题意,得20x×4=(24-x)×400.整理得:6x=120,解得:x=20.24-20=4(立方米).答:计划用20立方米木材制作桌面,4立方米木材制作桌腿.28.证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE(角平分线定义),因为∠DOE=90°,所以∠DOC+∠COE=90°,且∠DOA+∠BOE=180°-∠DOE=90°.所以∠DOC+∠COE=∠DOA+∠BOE.所以∠DOC=∠DOA.所以OD是∠AOC的平分线.29. (1)解:设小红在竞赛中答对了x道题,则不答或答错了(30-x)道题,根据题意得:4x-2(30-x)=96,解得:x=26.答:小红在竞赛中答对了26道题.(2)解:小明没有可能拿到110分,理由如下:设小明在竞赛中答对了y 道题,则不答或答错了(30-y)道题, 根据题意得:4y-2(30-y)=110,解得:y=853.∵y 为整数,∴y=853不合题意 舍去, ∴小明没有可能拿到110分.。

海南中学数学七年级上学期期末数学试题题

海南中学数学七年级上学期期末数学试题题

海南中学数学七年级上学期期末数学试题题一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1062.如图,点A,B在数轴上,点O为原点,OA OB=.按如图所示方法用圆规在数轴上截取BC AB=,若点A表示的数是a,则点C表示的数是( )A.2a B.3a-C.3a D.2a-3.如图所示,数轴上A,B两点表示的数分别是2﹣1和2,则A,B两点之间的距离是()A.22B.22﹣1 C.22+1 D.14.将图中的叶子平移后,可以得到的图案是()A.B.C.D.5.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm6.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A .﹣7B .﹣1C .9D .7 7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 8.下列式子中,是一元一次方程的是( )A .3x+1=4xB .x+2>1C .x 2-9=0D .2x -3y=09.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 10.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°11.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟二、填空题13.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.14.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.15.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.16.分解因式: 22xy xy +=_ ___________17.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)18.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.19.数字9 600 000用科学记数法表示为 .20.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.21.已知代数式235x -与233x -互为相反数,则x 的值是_______. 22.-2的相反数是__. 23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.单项式()26a bc -的系数为______,次数为______. 三、解答题25.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD ∠的度数.(2)试判断OD 是否平分AOC ∠,并说明理由.26.(1)已知∠AOB =25°42′,则∠AOB 的余角为 ,∠AOB 的补角为 ; (2)已知∠AOB =α,∠BOC =β,OM 平分∠AOB ,ON 平分∠BOC ,用含α,β的代数式表示∠MON 的大小;(3)如图,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,且∠AOB =25°,则经过多少时间后,△AOB 的面积第一次达到最大值.27.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 28.已知:∠AOD=150°,OB ,OM ,ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当射线OB 绕点O 在∠AOD 内旋转时, ∠MON= °;(2)OC 也是∠AOD 内的射线,如图2,若∠BOC=m°,OM 平分∠AOC ,ON 平分∠BOD , 求∠MON 的大小(用含m 的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC 在∠AOD 内部绕O 点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.29.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.30.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.四、压轴题31.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.32.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.3.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1;故选:D .【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.4.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A ,其它三项皆改变了方向,故错误.故选:A .【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.5.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x 2−9=0是一元二次方程,故本选项错误;D. 2x −3y=0是二元一次方程,故本选项错误。

2020年七年级数学上期末试题(含答案)

2020年七年级数学上期末试题(含答案)
【详解】
解:∵∠AOB=∠COD=90°,∠AOD=125°,
∴∠BOD=∠AOD-∠AOB=125°-90°=35°,
∴∠BOC=∠COD-∠BOD=90°-35°=55°.
故答案为C.
【点睛】
本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.
3.C
解析:C
【解析】
【分析】
根据合并同类项法则逐一判断即可.
设亏损的进价是y元,则y-25%y=60,
y=80.
60+60-48-80=-8,
∴亏了8元.
故选C.
考点:一元一次方程的应用.
7.C
解析:C
【解析】
【分析】
设白色的部分面积为x,由题意可知a=36-x,b=25-x,根据整式的运算即可求出答案.
【详解】
设白色部分的面积为x,
∴a+x=36,b+x=25,
【详解】
x=1时, ax3﹣3bx+4= a﹣3b+4=7,
解得 a﹣3b=3,
当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.
故答案为:1.
【点睛】
本题考查了代数式的求值,整体思想的运用是解题的关键.
17.35°【解析】【分析】设这个角为x度根据一个角的补角比它的余角的3倍少20°构建方程即可解决问题【详解】解:设这个角为x度则180°-x=3(90°-x)-20°解得:x=35°答:这个角的度数是3
解析:18块(4n+2)块.
【解析】
【分析】
由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.

2020年初一上册数学期末考试题及答案

2020年初一上册数学期末考试题及答案

2020年初一上册数学期末考试题及答案一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共40分.在每小题给出的四个选项中,只有一项是准确的,请将准确选项代号填入表格中.1.|﹣2010|倒数的相反数是()A.2010 B.﹣2010 C. D.【考点】倒数;相反数;绝对值.【分析】求一个数的相反数,即在这个数的前面加上负号;求一个数的倒数,即用1除以这个数.【解答】解:|﹣2010|倒数的相反数是=﹣,故选D【点评】本题主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为()A.0.38×106 B.0.38×105 C.3.8×104 D.3.8×105【考点】科学记数法—表示较大的数.10,n为整数.确定n的值【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:38万=3.8×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中10,n为整数,表示时关键要准确确定a的值以及n的值.1≤|a|<3.有理数a,b在数轴上对应点的位置如图所示,下列各式准确的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.>0【考点】数轴.【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,准确,符合题意;C、ab<0,错误,不符合题意;D、<0,错误,不符合题意;故选B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.4.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为()A.1 B.2 C.3 D.﹣2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,得a﹣1=0,解得a=1,故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中 B.钓 C.鱼 D.岛【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.下列说法中,准确的有()个①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点⑤射线AB和射线BA是同一条射线⑥直线有无数个端点.A.2个 B.3个 C.4个 D.5个【考点】直线、射线、线段.【分析】利用直线,射线及线段的定义求解即可.【解答】解:①过两点有且只有一条直线,准确,②连接两点的线段叫做两点间的距离,不准确,应为连接两点的线段的长度叫做两点间的距离,③两点之间,线段最短,准确,④若AB=BC,则点B是线段AC的中点,不准确,只有点B在AC上时才成立,⑤射线AB和射线BA是同一条射线,不准确,端点不同,⑥直线有无数个端点.不准确,直线无端点.共2个准确,故选:A.【点评】本题主要考查了直线,射线及线段,解题的关键是熟记直线,射线及线段的联系与区别.7.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC 长3cm,AC比BC长()A.6cm B.4cm C.3cm D.1.5cm【考点】两点间的距离.【分析】设NC=x,则MC=x+3,再根据点M是AC的中点,点N是BC的中点得出AC及BC的长,进而可得出结论.【解答】解:设NC=x,则MC=x+3,∵点M是AC的中点,点N是BC的中点,∴AC=2MC=2x+6,BC=2NC=2x,∴AC﹣BC=2x+6﹣2x=6cm.故选A.【点评】本题考查了线段中点的性质,能够利用方程解决此类问题.8.由3点15分到3点30分,时钟的分针转过的角度是()A.90° B.60° C.45° D.30°【考点】钟面角.【分析】根据分针旋转的速度乘以旋转的时间,可得答案.【解答】解:3点15分到3点30分,时钟的分针转过的角度是6×(30﹣15)=90°,故选:A.【点评】本题考查了钟面角,利用分针旋转的速度乘以旋转的时间是解题关键,注意分针每分钟旋转6°.9.在式子,﹣中,单项式的个数是()A.5个 B.4个 C.3个 D.2个【考点】单项式.【分析】根据单项式的概念对各个式子实行判断即可.【解答】解:﹣ abc,0,﹣2a,是单项式,故选B.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.10.如果x=y,a为有理数,那么下列等式不一定成立的是()A.4﹣y=4﹣x B.x2=y2 C. D.﹣2ax=﹣2ay【考点】等式的性质.【分析】A、等式两边先同时乘﹣1,然后再同时加4即可;B、根据乘方的定义可判断;C、根据等式的性质2判断即可;D、根据等式的性质2判断即可.【解答】解:A、∵x=y,∴﹣x=﹣y.∴﹣x+4=﹣y+4,即4﹣y=4﹣x,故A一定成立,与要求不符;B、如果x=y,则x2=y2,故B一定成立,与要求不符;C、当a=0时,无意义,故C不一定成立,与要求相符;D、由等式的性质可知:﹣2ax=﹣2ay,故D一定成立,与要求不符.故选:C.【点评】本题主要考查的是等式的性质,掌握等式的性质是解题的关键.11.按如图所示的程序计算:若开始输入的x值为﹣2,则最后输出的结果是()A.352 B.160 C.112 D.198【考点】代数式求值.【专题】图表型.【分析】观察图形我们首先要理解其计算顺序,能够看出当x≥0时就计算上面那个代数式的值,反之计算下面代数式的值,不管计算哪个式子当结果出来后又会有两种情况,第一种是结果大于等于100,此时直接输出最终结果;第二种是结果小于100,此时刚要将结果返回再次计算,直到算出的值大于等于100为止,即可得出最终的结果.2<0,∴代入代数式x2+6x计算得,(﹣2)2+6×(﹣2)=﹣8<100,【解答】解:∵x=﹣∴将x=﹣8代入继续计算得,(﹣8)2+6×(﹣8)=16<100,∴需将x=16代入继续计算,注意x=16>0,所以应该代入计算得,结果为160>100,∴所以直接输出结果为160.故选:B.【点评】本题主要考查的是求代数式的值,解答本题的关键就是弄清楚题目所给出的计算程序并能够按照运算程序实行计算12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣α﹣∠β).准确的有()α+∠β);④(∠90°;③(∠A.4个 B.3个 C.2个 D.1个【考点】余角和补角.【专题】压轴题.【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①准确;β=∠α+∠β﹣90°=180°﹣90°=90°,②也准确;又∠α﹣90°+∠β=90°+∠β≠90°,所以③错误;(∠α+∠β)+∠β= ×180°+∠(∠α﹣∠β)+∠β= (∠α+∠β)= ×180°=90°,所以④准确.综上可知,①②④均准确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.二、填空题:本大题共4小题,每小题4分,共16分,把答案写在题中横线上.13.当k= 5 时,多项式x2﹣(k﹣3)xy﹣3y2+2xy﹣5中不含xy项.【考点】多项式;合并同类项;解一元一次方程.【专题】计算题;整式.【分析】多项式不含有xy项,说明整理后其xy项的系数为0,可得方程,解方程可得k的值.【解答】解:整理多项式中含xy的项,得[﹣(k﹣3)+2]xy,即(﹣k+5)xy∵多项式x2﹣(k﹣3)xy﹣3y2+2xy﹣5中不含xy项∴﹣k+5=0,解得:k=5,故答案为:5.【点评】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0,列出方程是关键.14.已知:如图,点D是AB的中点,BC= ,DC=2,则AB的长为12 .【考点】两点间的距离.【分析】根据线段中点的性质,可得BD的长,根据线段的和差,可得关于AB的方程,根据解方程,可得答案.【解答】解:由点D是AB的中点,BC= ,得BD= AB.由线段的和差,得DC=DB﹣BC,即AB﹣ AB=2.解得AB=12.故答案为:12.【点评】本题考查了两点间的距离,利用线段的和差得出关于AB的方程是解题关键.15.若a2﹣3b=2,则6b﹣2a2+2015= 2011 .【考点】代数式求值.【专题】计算题;实数.【分析】原式前两项提取﹣2变形后,将已知等式代入计算即可求出值.3b=2,【解答】解:∵a2﹣∴原式=﹣2(a2﹣3b)+2015=﹣4+2015=2011,故答案为:2011.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.观察下面的一列单项式:﹣2x、4x3、﹣8x5、16x7、…根据你发现的规律,第n个单项式为(﹣1)n2nx2n﹣1 .【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2x=(﹣1)121x1;4x3=(﹣1)222x3;8x3=(﹣1)323x5;﹣16x4=(﹣1)424x7.第n个单项式为(﹣1)n2nx2n﹣1.故答案为:(﹣1)n2nx2n﹣1.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题:本大题共6小题,共64分,解答应写出文字说明、证明过程或演算步骤.17.(1)计算:﹣24(2)解方程:(3)已知:A=x2﹣5x,B=3x2+2x﹣6,求3A﹣B的值,其中x=﹣2.【考点】有理数的混合运算;整式的加减—化简求值;解一元一次方程.【专题】实数;整式;一次方程(组)及应用.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)把A与B代入3A﹣B中,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=﹣16+4﹣(﹣1)×(﹣)+ ﹣2=﹣12﹣ + ﹣2=﹣14;(2)方程去分母得:5x﹣10﹣(2x+2)=3,去括号得:5x﹣10﹣2x﹣2=3,移项得:5x﹣2x=10+2+3,合并同类项得:3x=15,系数化为1得:x=5;(3)∵A=x2﹣5x,B=3x2+2x﹣6,∴3A﹣B=3x2﹣15x﹣3x2﹣2x+6=﹣17x+6,则当x=﹣2时,原式=34+6=40.【点评】此题考查了有理数的混合运算,整式的加减﹣化简求值,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.已知:如图所示,∠AOB:∠BOC=3:2,OD平分∠BOC,OE平分∠AOC,且的度数.∠DOE=36°,求∠BOE【考点】角的计算;角平分线的定义.【专题】常规题型.【分析】用比例巧设方程,用x去表示各角,利用角与角之间的关系从而得出结论.【解答】解:设∠AOB=3x,∠BOC=2x.则∠AOC=∠AOB+∠BO C=5x.∵OE是∠AOC的平分线,OD是∠BOC的平分线,∴∠COE═∠AOC= x∠COD= ∠BOC=x,x= x,∴∠DOE=∠COE﹣∠COD= x﹣∵∠DOE=36°,∴ x=36°,解得,x=24°,∴∠BOE=∠COE﹣∠COB= ×24﹣2×24=12°.【点评】本题主要考查的是角的计算,解题中巧设未知数为本题带来了解题的便利,解题的关键是角的平分线的使用.19.一项工程,如果由甲单独做,需要12小时完成;如果由乙单独做,需要15小时完成.甲先做3小时,剩下的工程由甲乙合作完成,则在完成此项工程中,甲一共干了多少小时?【考点】一元一次方程的应用.【分析】设设甲一共干了x小时,根据题意列出方程解答即可.【解答】解:设甲一共干了x小时,依题意有,解得x=8,答:在完成此项工程中,甲一共干了8小时.【点评】此题考查一元一次方程的应用,此题解答关键是把这项工程看作单位“1”,根据工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.20.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.的度数是多少?(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON与α的数量关系;(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【考点】角的计算;角平分线的定义.OC﹣【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠M∠NOC求出即可;求出即(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC可;求出即和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC(3)求出∠AOC度数,求出∠MOC可.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC= ∠AOC=75°,∠NOC= ∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON= α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC= ∠AOC= α+30°,∠NOC= ∠BOC=30°α.∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=(3)如图3,∠MON= α,与β的大小无关.α,∠BOC=β,理由:∵∠AOB=∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,α+β),∴∠MOC= ∠AOC= (∠NOC= ∠BOC= β,α+β﹣β=α+ β.∴∠AON=∠AOC﹣∠NOC=∴∠MON=∠MOC﹣∠NOC= (α+β)﹣β= α即∠MON= α.的【点评】本题考查了角平分线定义和角的相关计算,关键是求出∠AOC、∠MOC、∠NOC 度数和得出∠MON=∠MOC﹣∠NOC.21.列方程解应用题:五莲县新玛特购物中心第一次用5000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表(注:获利=售价﹣进价)甲乙进价(元/件) 20 30售价(元/件) 29 40(1)新玛特购物中心将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该购物中心第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元,求第二次乙种商品是按原价打几折销售?【考点】一元一次方程的应用.【分析】(1)设第一次购进甲种商品x件,则乙种商品的件数是( x+15),等量关系是:购进x件甲种商品的进价+购进( x+15)件乙种商品的进价=5000,依此列出方程求出其解即可;(2)设第二次乙种商品是按原价打y折销售,根据第二次两种商品都销售完以后获得总利润比第一次获得的总利润多160元建立方程,求出其解即可.【解答】解:(1)设第一次购进甲种商品x件,则乙的件数为( x+15)件,根据题意得,20x+30( x+15)=5000,解得 x=130,则 x+15=65+15=80(件),(29﹣20)×130+(40﹣30)×80=1970(元).答:两种商品全部卖完后可获得1970元利润;(2)设第二次乙种商品是按原价打y折销售,30)×80×3=1970+160,由题意,有(29﹣20)×130+(40×﹣解得 y=8.5.答:第二次乙种商品是按原价打8.5折销售.【点评】本题考查了列一元一次方程解实际问题的使用,利润=售价﹣进价的使用及一元一次方程的解法的使用.解答时根据题意建立方程是关键.22.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存有点P,使点P到点A、点B的距离之和为8?若存有,请求出x的值;若不存有,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由点P为AB的中点,而A、B对应的数分别为﹣1、3,根据中点公式即可确定点P对应的数;(2)根据题意可知,点P在B点右边时,根据点P到点A、点B的距离之和为8,列出方程求出x的值即可.(3)分两种情况讨论,①当点A在点B左边两点相距3个单位时,②当点A在点B右边时,两点相距3个单位时,分别求出t的值,然后求出点P对应的数即可.【解答】解:(1)∵点P是AB的中点,点A、B对应的数分别为﹣1、3,∴点P对应的数是(﹣1+3)÷2=1;(2)点P在B点右边时,x﹣3+x﹣(﹣1)=8,解得:x=5,即存有x的值,当x=5时,满足点P到点A、点B的距离之和为8;(3)①当点A在点B左边两点相距3个单位时,此时需要的时间为t,则3+0.5t﹣(2t﹣1)=3,解得:t= ,则点P对应的数为﹣6× +1=﹣3;②当点A在点B右边两点相距3个单位时,此时需要的时间为t,则2t﹣1﹣(3+0.5t)=3,1.5t=7解得:t= ,27;则点P对应的数为﹣6× +1=﹣综上可得当点A与点B之间的距离为3个单位长度时,求点P所对应的数是﹣3或﹣27.【点评】此题考查了一元一次方程的应用,比较复杂,读题是难点,所以解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.------精选范文、公文、论文、和其他应用文档,如需本文,请下载-----。

海口市七年级上册数学期末试卷及答案-百度文库

海口市七年级上册数学期末试卷及答案-百度文库

海口市七年级上册数学期末试卷及答案-百度文库一、选择题1.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .2.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,33.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -4.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2275.将图中的叶子平移后,可以得到的图案是()A .B .C .D .6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 8.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣39.3的倒数是( ) A .3B .3-C .13D .13-10.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元12.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题13.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.已知单项式245225n m xy x y ++与是同类项,则m n =______.16.若a a -=,则a 应满足的条件为______.17.如果一个数的平方根等于这个数本身,那么这个数是_____.18.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)19.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.20.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 21.8点30分时刻,钟表上时针与分针所组成的角为_____度.22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.快车以200km/h 的速度由甲地开往乙地再返回甲地,慢车以75km/h 的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km ,则 (1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?26.(1)已知∠AOB =25°42′,则∠AOB 的余角为 ,∠AOB 的补角为 ; (2)已知∠AOB =α,∠BOC =β,OM 平分∠AOB ,ON 平分∠BOC ,用含α,β的代数式表示∠MON 的大小;(3)如图,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,且∠AOB =25°,则经过多少时间后,△AOB 的面积第一次达到最大值.27.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.28.先化简,再求值:()()223a 4ab 2a ab ---,其中a 2=-,1b 2=. 29.解方程:4x+2(x ﹣2)=12﹣(x+4)30.如图1,在一条可以折叠的数轴上,点A ,B 分别表示数-9和4. (1)A ,B 两点之间的距离为________.(2)如图2,如果以点C 为折点,将这条数轴向右对折,此时点A 落在点B 的右边1个单位长度处,则点C 表示的数是________.(3)如图1,若点A 以每秒3个单位长度的速度沿数轴向右运动,点B 以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A 、B 两点相距4个单位长度?四、压轴题31.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.33.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.2.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.3.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.4.B解析:B【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,3是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.6.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.8.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.9.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.11.A解析:A 【解析】 【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解. 【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A. 【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.12.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键.二、填空题 13.8 【解析】 【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答. 【详解】设多边形有n 条边, 则n−2=6, 解得n=8. 故答案为8. 【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.14.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.15.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.16.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.17.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.19.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.20.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题25.(1)甲乙两地相距900千米.(2)出发3636115或小时后,两车相遇.(3)3211或4011或6.4或8或2103小时, 【解析】【分析】(1) 设甲乙两地相距x 千米根据题意列出方程222520075x x -=解出x 值即可; (2)分为两种情况:①快车到达乙地之前两车相遇,②快车到达乙地之后返回途中相遇,根据两种情况分别列出方程求出答案即可;(3)分类去讨论:①快车到达乙地之前,且两车相遇前,②快车到达乙地之前,且两车相遇后,③快车到达乙地之后,且返回途中两车相遇前,④快车到达乙地之后,且返回途中两车相遇后,⑤快车到达乙地停止后,并分别求出其时间即可.【详解】解:(1)设:甲乙两地相距x 千米.222520075x x -= 解得900x =答:甲乙两地相距900千米.(2)设:从出发开始,经过t 小时两车相遇.①快车到达乙地之前,两车相遇20075900t t += 解得3611t = ②快车到达乙地之后,返回途中两车相遇20075900t t -= 解得365t = 答:出发3611小时或365小时后两车相遇. (3)设:从出发开始,t 小时后两车相距100千米.①快车到达乙地之前,且两车相遇前,两车相距100千米20075900100t t +=- 解得3211t = ②快车到达乙地之前,且两车相遇后,两车相距100千米20075900+100t t +=解得4011 t=③快车到达乙地之后,且返回途中两车相遇前,两车相距100千米200-75900100t t=-解得 6.4t=④快车到达乙地之后,且返回途中两车相遇后,两车相距100千米200-75900+100t t=解得8t=⑤快车到达乙地停止后,两车相距100千米2(1800200)(225100)75=103÷+-÷答:出发3211或4011或6.4或8或2103小时后,两车相距100千米.【点睛】本题考查的是一元一次方程的应用问题,解题关键在于分别去讨论所发生的情况去分别求解即可.26.(1)64°18′,154°18′;(2)∠MON=2β+a;(3)150 11分【解析】【分析】(1)依据余角和补角的定义即可求出∠AOB的余角和补角;(2)依据角平分线的定义表示出∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,最后再依据∠MON与这些角的关系求解即可;(3)当OA⊥OB时面积最大,此时∠AOB=90°,根据角的和差关系可得求出三角形OBC面积第一次达到最大的时间.【详解】解:(1)∵∠AOB=25°42',∴∠AOB的余角=90°﹣25°42'=64°18′,∠AOB的补角=180°﹣25°42'=154°18′;故答案为:64°18′,154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=90°+30°=120°∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=2β+a;②如图2,∠MON=∠BOM﹣∠BON=a2β-;③如图3,∠MON =∠BON ﹣∠BOM =2βα-. ∴∠MON 为2β+a 或a 2β-或2βα-. (3)当OA ⊥OB 时,△AOB 的面积第一次达到最大值,此时∠AOB =90°,设经过x 分钟后,△AOB 的面积第一次达到最大值,根据题意得:6x+25﹣60x ×30=90, 解得x =15011. 【点睛】 此题考查了是角平分线的定义、角的和差、余角和补角的定义、三角形的面积以及角的计算以及钟面角,熟练掌握相关知识是解题的关键,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.27.30°.【解析】【分析】依据平行线的性质,即可得到∠DOE =60°,再根据三角形外角性质,即可得到∠E 的度数.【详解】解:∵AB ∥CD ,∠A =60°,∴∠DOE =∠A =60°,又∵∠C =∠E ,∠DOE =∠C+∠E ,∴∠E =12∠DOE =30°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.28.2a 2ab -,6.【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式2223a 4ab 2a 2ab a 2ab =--+=-当a 2=-,1b 2=时, 原式()1422422=-⨯-⨯=+ 6=.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.29.x =127【解析】【分析】 方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】去括号得:4x+2x ﹣4=12﹣x ﹣4,移项合并得:7x =12,解得:x =127. 【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.30.(1)13;(2)-2;(3)t= 9秒或17秒.【解析】【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C 表示的数是x ,分别表示出AC 、BC ,再根据AC-BC=1列出方程解答即可; (3)运动t 秒后,可知点A 表示的数为-9+3t ,点B 表示的数为4+2t ,再根据AB 的距离为4,可得方程,解方程即可.【详解】解:(1)AB=4-(-9)=13(2)设点C 表示的数是x ,则AC=x-(-9)=x+9,BC=4-x ,∵A 落在点B 的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x )=2x+5=1,解得:x=-2,∴点C 表示的数是-2.故答案为:-2.(3) 设运动t 秒后,点A 与点B 相距4个单位,由题意可知点A 表示的数为-9+3t ,点B 表示的数为4+2t , ∴()93424t t -+-+=(), ∴()93424t t -+-+=()或()93424t t -+-+=-() 解得t=17或9.答:运动9秒或17秒后,点A 与点B 相距4个单位.本题主要考查数轴,解决此题的关键是能利用数轴上两点间的距离公式表示出线段的长度.四、压轴题31.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.32.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+;如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.33.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.【详解】解:(1)设所求数为x ,当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;故答案为:2或10;(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,分三种情况:①P 为(A ,B )的优点.由题意,得PA=2PB ,即x ﹣(﹣20)=2(40﹣x ),解得x=20,∴t=(40﹣20)÷4=5(秒);②P 为(B ,A )的优点.由题意,得PB=2PA ,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B 为(A ,P )的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2020年七年级数学上册期末试卷 含解析

2020年七年级数学上册期末试卷  含解析

七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错,不选或多选均得零分.1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.2.a的平方与b的和,用式子表示,正确的是()A.a+b2B.a2+b C.a2+b2D.(a+b)23.若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<04.若﹣x m+(n﹣3)x+4是关于x的二次三项式,则m、n的值是()A.m=2,n=3 B.m=2,n≠3C.m≠2,n=3 D.m=2,n为任意数5.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10 B.﹣10 C.8 D.﹣86.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.7.小明用x元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是()A.B.C.D.8.若将一副三角板按如图所示的不同方式摆放,则图中∠a与∠β相等的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.|x|<3,且x为整数,则x的最小值是10.若|a+4|+|b﹣2|=0,则(a+1)b的值是.11.若(k﹣2)x|k|﹣1+3=0是关于x的一元一次方程,则k的值为.12.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是.13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人.14.若A、B、P是数轴上三点,且点A表示的数为﹣1,点B表示的数为3,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值可以是三.解答题(共58分)15.(1)计算:22×(﹣)﹣16+(﹣2)3;(2)计算:(36°5'﹣20°18″)×3.16.(1)解方程:;(2)求值:2(4﹣3a2)﹣3(a﹣2a2),其中a=﹣2.17.已知线段AB=7cm,直线AB上有一点C,且BC=3cm,M是线段AC的中点,求线段AM 的长.18.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.19.若有a,b两个数,满足关系式:a+b=ab﹣1,则称a,b为“共生数对”,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对”.(1)若(x,﹣2)是“共生数对”,求x的值;(2)若(m,n)是“共生数对”,判断(n,m)是否也是“共生数对”,请通过计算说明.(3)请再写出两个不同的“共生数对”20.用火柴棒按下列方式搭建三角形:(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒根;当三角形个数为n时,需火柴棒根(用含n的代数式表示);(2)当火柴棒的根数为2019时,求三角形的个数?(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.某校七年级(1)班和(2)班共104人去东方风景区,当两班都以班为单位分别购票时,则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?22.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM 与∠CON的数量关系,并说明理由.参考答案与试题解析一.选择题(共8小题)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:﹣2的倒数是﹣,故选:C.2.a的平方与b的和,用式子表示,正确的是()A.a+b2B.a2+b C.a2+b2D.(a+b)2【分析】根据题意,可以列出相应的代数式,本题得以解决.【解答】解:a的平方与b的和可以表示为:a2+b,故选:B.3.若|x﹣3|=|x|+3,则x的取值范围是()A.x≥0 B.x≤0 C.x>0 D.x<0【分析】根据绝对值的性质,要化简绝对值,可以就x>3,0≤x≤3,x<0三种情况进行分析.【解答】解:①当x>3时,原式可化为:x+3=x﹣3,无解;②当0≤x≤3时,原式可化为:x+3=3﹣x,此时x=0;③当x<0时,原式可化为:﹣x+3=3﹣x,等式恒成立.综上所述,则x≤0.故选:B.4.若﹣x m+(n﹣3)x+4是关于x的二次三项式,则m、n的值是()A.m=2,n=3 B.m=2,n≠3C.m≠2,n=3 D.m=2,n为任意数【分析】让最高次项的次数为2,保证第二项的系数不为0即可.【解答】解:由题意得:m=2;n﹣3≠0,∴m=2,n≠3.故选:B.5.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10 B.﹣10 C.8 D.﹣8【分析】把x=2代入已知方程得到关于a的新方程,通过解新方程求得a的值,再代入计算即可求解.【解答】解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.6.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【解答】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.7.小明用x元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是()A.B.C.D.【分析】首先根据题意表示出一枝水笔的价格是元,一个笔记本的价格是元,再根据关键语句“一支水笔比一本笔记本便宜1元”列出方程即可.【解答】解:由题意得:一枝水笔的价格是元,一个笔记本的价格是元,则方程为:=﹣1.故选:A.8.若将一副三角板按如图所示的不同方式摆放,则图中∠a与∠β相等的是()A.B.C.D.【分析】A、由图形可得两角互余,不合题意;B、由图形可分别求出∠α与∠β的度数,即可做出判断;C、由图形可分别求出∠α与∠β的度数,即可做出判断;D、由图形得出两角的关系,即可做出判断.【解答】解:A、由图形得:∠α+∠β=90°,不合题意;B、由图形得:∠β=45°,∠α=90°﹣45°=45°,符合题意;C、由图形得:∠α=90°﹣45°=45°,∠β=90°﹣30°=60°,不合题意;D、由图形得:90°﹣∠β=60°﹣∠α,即∠α+30°=∠β,不合题意.故选:B.二.填空题(共6小题)9.|x|<3,且x为整数,则x的最小值是﹣2【分析】由题意|x|<3,得﹣3<x<3,再根据x为整数和x的最小值进行求解.【解答】解:因为|x|<3,所以﹣3<x<3,因为x为整数,所以x取值为﹣2,﹣1,0,1,2,所以x的最小值是﹣2,故答案为:﹣2.10.若|a+4|+|b﹣2|=0,则(a+1)b的值是9 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:因为|a+4|+|b﹣2|=0,所以a+4=0,b﹣2=0,解得a=﹣4,b=2,所以,(a+1)b=(﹣4+1)2=9.故答案为:9.11.若(k﹣2)x|k|﹣1+3=0是关于x的一元一次方程,则k的值为﹣2 .【分析】一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意,知k﹣2≠0且|k|﹣1=1,解得,k=﹣2;故答案为:﹣2.12.若点O是直线AB上一点,OC是一条射线,当∠AOC=50°时,则∠BOC的度数是130°.【分析】根据补角的定义解答即可.【解答】解:∠BOC=180°﹣∠AOC=130°.故答案为:130°;13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有7 人.【分析】设共有x人,根据该物品的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设共有x人,根据题意得:8x﹣3=7x+4,解得:x=7.答:共有7人.故答案为:7.14.若A、B、P是数轴上三点,且点A表示的数为﹣1,点B表示的数为3,点P表示的数为x,当其中一点到另外两点的距离相等时,则x的值可以是1或7或﹣5【分析】根据题意列方程即可得到结论.【解答】解:∵其中一点到另外两点的距离相等,∴AB=AP,BA=BP,PA=PB,∴|﹣1﹣3|=|﹣1﹣x|,|3﹣(﹣1)|=|3﹣x|,|x﹣(﹣1)|=|x﹣3|,解得:x=1,x=7,x=﹣5,故答案为:1或7或﹣5.三.解答题(共8小题)15.(1)计算:22×(﹣)﹣16+(﹣2)3;(2)计算:(36°5'﹣20°18″)×3.【分析】(1)根据有理数混合运算的法则计算即可;(2)根据有理数混合运算的法则计算即可.【解答】解:(1)原式=4×(﹣)﹣16÷(﹣8)=﹣2+2=0;(2)原式=16°4′42″×3=48°14′6″.16.(1)解方程:;(2)求值:2(4﹣3a2)﹣3(a﹣2a2),其中a=﹣2.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)去分母,得3(1﹣x)=2(x+2)﹣6,去括号,得3﹣3x=2x+4﹣6,移项合并,得﹣5x=﹣5,系数化为1,得x=1;(2)原式=8﹣6a2﹣3a+6a2=﹣3a+8,当a=﹣2时,原式=﹣3×(﹣2)+8=14.17.已知线段AB=7cm,直线AB上有一点C,且BC=3cm,M是线段AC的中点,求线段AM 的长.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:当点C在线段AB上时,有AC=AB﹣BC=4cm,∵点M是AC的中点,∴AM=AC=2cm;当点C在线段AB延长线上时,有AC=AB+BC=10cm,∵点M是AC的中点,∴AM=AC=5cm.18.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.【分析】(1)根据补角的性质,可得∠α、∠β,根据解方程,可得答案;(2)根据余角的定义,可得答案.【解答】解:(1)由∠α、∠β都是∠γ的补角,得∠α=∠β,即(2n+5)°=(65﹣n)°.解得n=20;(2)∠α与∠β互余,理由如下:∠α=(2n+5)°=45°,∠β=(65﹣n)°=45°,∵∠α+∠β=90°,∴∠α与∠β互为余角.19.若有a,b两个数,满足关系式:a+b=ab﹣1,则称a,b为“共生数对”,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对”.(1)若(x,﹣2)是“共生数对”,求x的值;(2)若(m,n)是“共生数对”,判断(n,m)是否也是“共生数对”,请通过计算说明.(3)请再写出两个不同的“共生数对”【分析】(1)根据题意,可以得到关于x的方程,从而可以求得x的值;(2)根据“共生数对”的定义,可以解答本题;(3)本题答案不唯一,只要写出两组符合题意的数对即可【解答】解:(1)∵(x,﹣2)是“共生数对”,∴x﹣2=﹣2x﹣1,解得x=;(2)(n,m)也是“共生数对”,理由:∵(m,n)是“共生数对”,∴m+n=mn﹣1,∴n+m=m+n=mn﹣1=nm﹣1,∴(n,m)也是“共生数对”;(3)由a+b=ab﹣1,得b=,∴当a=3时,b=2;当a=﹣1时,b=0.∴两个“共生数对”可以是(3,2)和(﹣1,0).20.用火柴棒按下列方式搭建三角形:(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒201 根;当三角形个数为n时,需火柴棒(2n+1)根(用含n的代数式表示);(2)当火柴棒的根数为2019时,求三角形的个数?(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.【分析】(1)根据题目中的图形,可以发现火柴棒根数的变化规律,从而可以得到当三角形个数为100时,需火柴棒的根数和当三角形个数为n时,需火柴棒的根数;(2)根据(1)中的结果,可以求得当火柴棒的根数为2019时,三角形的个数;(3)根据(1)中的结果,可以说明组成三角形的火柴棒能否为1000根.【解答】解:(1)由图可得,当n=1时,火柴棒的根数为:1+2×1=3,当n=2时,火柴棒的根数为:1+2×2=5,当n=3时,火柴棒的根数为:1+2×3=7,当n=4时,火柴棒的根数为:1+2×4=9,…,当n=100时,火柴棒的根数为:1+2×100=201,当三角形个数为n时,需火柴棒的根数为:1+2×n=2n+1,故答案为:201,(2n+1);(2)令2n+1=2019,得n=1009,即当火柴棒的根数为2019时,三角形的个数是1009;(3)令1+2n=1000,得n=499.5不是整数,故组成三角形的火柴棒不能为1000根.则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?【分析】(1)最节约的办法就是团体购票,节省的钱=492﹣团体票价;(2)主要考虑有两种情况,分别计算,不符合的情况舍去就可以了;(3)还是采用团体购票,总人数是149,在102﹣150之间,总票价=总人数×单位票价.【解答】解:(1)当两班合起来购票时,需104×4=416元,可节省492﹣416=76元.(2)由104×5=520>492,104×4.5=468<492,知(1)班人数大于52,(2)班人数小于52,设(1)班有x人,(2)班有(104﹣x)人,当104﹣x=51时,x=53,这104×4.5≠492,显然x≠53,当104﹣x<51时,则由题意,得4.5x+5(104﹣x)=492,解得x=56,∴104﹣x=48,∴(1)班有56人,(2)班有48人.(3)3个班共有149人,按149人购票,需付购票费149×4=596元,但按151人购票,需付151×3.5=528.5元,∵528.5<596,∴3个班按151人购票更省钱,共需528.5元.22.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM 与∠CON的数量关系,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,②当∠AOM=∠COM =30°时,③当∠AOC=∠AOM=60°时,根据角的和差即可得到结论;(3)当ON在∠AOC内部时,根据角的和差即可得到结论.【解答】解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°;(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM=60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15;③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24.综上所述,得知t的值为6或15或24;(3)当ON在∠AOC内部时,∠AOM﹣∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON﹣∠AON=(90﹣x)°,∠CON=∠AOC﹣∠AON=(60﹣x)°,∴∠AOM﹣∠CON=(90﹣x)°﹣(60﹣x)°=30°.。

2020年 七年级 数学上册 期末考试卷 带答案

2020年 七年级 数学上册 期末考试卷  带答案

2020—2021学年度上学期阶段质量验收七年级数学试题参考答案一、1.A , 2.C , 3.D , 4.C,5.D, 6.B二、7.-2 ,8 .2 ,9.4,10.140,11.43֯32',12.两点之间,线段最短,13.2 ,14.20三、15.解:|-3|-(-6+4)÷(-)3+(-1)2021=3-2×8+(-1)-------------------------------3分=3-16-1------------------------------------------4分=-14------------------------------------------------5分16.去分母,可得:5(x-1)=10+2(x+1),-------------2分去括号,可得:5x-5=10+2x+2,------------------------3分移项,合并同类项,可得:3x=17,-------------------4分系数化为1,可得:x= -----------------------------5分17.(1)18条棱,12个顶点;-----------------------------2分(2)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.--------------------------------3分18.解:(1)3分(2)2分四、19.解:(1)每空2分,共4分(2)理由:此程序为(m2-m)÷m+1.-------------2分化简这个算式:(m2-m)÷m+1=m-1+1=m.------------------------------------------------3分所以,输出的结果总是与输入的数相同.20.去分母得:2(2x-1)-3(5x+1)=6,----------------4分去括号得:4x-2-15x-3=6,--------------------5分移项合并得:-11x=11,------------------------6分解得:x=-1.-------------------------------------7分21.解:设这些学生共有x人,根据题意得-=2,-------------5分解得x=48.------------------------------------7分答:这些学生共有48人22.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.-----------------------------------3分∴∠BOD=180°-52°=128°.------------------------------4分∵OE平分∠DOB,∴∠BOE= ∠DOB---------5分= ×128°--------6分=64°.--------------7分五、23.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,-----------------------------------------------------------------1分∵AP:PB=5:2.∴BP= AB=8cm,---------------------------------------------------------3分∴OP=OB-BP=14-8=6(cm);---------------------------------------------------4分②当M点在P点的左边时,AM=AB-(PM+BP)=28-(4+8)=16(cm),------------------------------2分当M点在P点的右边时,AM=AB-BM=AB-(BP-PM)=28-(8-4)=24(cm).--------------------2分综上,AM=16cm或24cm.24.解:(1)任选两种方法:各2分共4分(2)根据题意,得3x+1+x+3=0,------------------------------------------------1分解得x=-1,------------------------------------------------------------------------2分x+y=0 -------------------------------------------------------------------------------3分解得y=1.-------------------------------------------------------------------------4分六、25.解:(1)设甲、乙两车合作还需要x天运完垃圾,依题意,得:+ =1,-------------------------------------------------5分解得:x=8.---------------------------------------------------------------------------6分答:甲、乙两车合作还需要8天运完垃圾.(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得:(8+3)(y+100)+8y=3950,-----------------------2分解得:y=150,-------------------------------------------------------3分∴y+100=250.-------------------------------------------------------4分答:甲车每天的租金为250元,乙车每天的租金为150元.26.解:(1)∠AOC=180°-∠BOC=180°-100°=80°;--------------------------------2分(2)由(1)得∠AOC=80°,∵∠COD=90°,∴∠AOD=∠COD-∠AOC=10°,--------------------------------------------2分∵OM是∠AOC的平分线,∴∠AOM= ∠AOC= ×80°=40°,------------------------------------------------------3分∴∠MOD=∠AOM+∠AOD=40°+10°=50°;--------------------------4分(3)由(2)得∠AOM=40°,∵∠BOP与∠AOM互余,∴∠BOP+∠AOM=90°,---------------------------------------------------------1分∴∠BOP=90°-∠AOM=90°-40°=50°,-----------------------------------2分①当射线OP在∠BOC内部时,∠COP=∠BOC-∠BOP=100°-50°=50°;-------------------------------3分②当射线OP在∠BOC外部时,∠COP=∠BOC+∠BOP=100°+50°=150°.----------------------------4分综上所述,∠COP的度数为50°或150°.。

2020年七年级数学上期末试题(附答案)

2020年七年级数学上期末试题(附答案)

2020年七年级数学上期末试题(附答案)一、选择题1.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 2.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( )A .16号B .18号C .20号D .22号3.下面的说法正确的是( )A .有理数的绝对值一定比0大B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等4.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°5.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( )A .0.8×(1+40%)x =15B .0.8×(1+40%)x ﹣x =15C .0.8×40%x =15D .0.8×40%x ﹣x =15 6.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式B .它是四次两项式C .它的最高次项是22a bc -D .它的常数项是1 7.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-4 8.两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A .2cmB .4cmC .2cm 或22cmD .4cm 或44cm 9.用一个平面去截一个正方体,截面不可能是( )A .梯形B .五边形C .六边形D .七边形 10.运用等式性质进行的变形,正确的是( )A .如果a =b ,那么a +2=b +3B .如果a =b ,那么a -2=b -3C .如果,那么a =bD .如果a 2=3a ,那么a =311.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°12.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.二、填空题13.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.14.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.15.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高 ________.16.-3的倒数是___________17.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.18.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值 是 .19.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).20.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=_____cm.三、解答题21.如图,线段AB上有一任意点C,点M是线段AC的中点,点N是线段BC的中点,当AB=6cm时,(1)求线段MN的长.(2)当C在AB延长线上时,其他条件不变,求线段MN的长.22.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.【点睛】本题考查一元一次方程的实际运用,理解题意,搞清优惠的计算方法,找出题目蕴含的数量关系解决问题.23.已知点O为直线AB上的一点,∠BOC=∠DOE=90°(1)如图1,当射线OC、射线OD在直线AB的两侧时,请回答结论并说明理由;①∠COD和∠BOE相等吗?②∠BOD和∠COE有什么关系?(2)如图2,当射线OC、射线OD在直线AB的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?24.如图所示,已知线段m,n,求作线段AB,使它等于m+2n.(用尺规作图,不写做法,保留作图痕迹.)25.出租车司机王师傅某天上午营运时是在东西走向的大街上进行的,如果规定:以王师傅家为出发点,向东为正,向西为负,他这天上午所接六位乘客的行车里程(km)如下:﹣2,+5,﹣4,+1,﹣6,﹣2.那么:(1)将最后一位乘客送到目的地时,王师傅在什么位置?(2)若汽车耗油量为0.2L/km,这天上午王师傅接送乘客,出租车共耗油多少升?(3)若出租车起步价为7元,起步里程为2.5km(包括2.5km),超过部分(不足1km按1km计算)每千米1.5元,王师傅这天上午共得车费多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.2.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.3.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.4.B解析:B【解析】【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.5.B解析:B【解析】【分析】首先设这种服装每件的成本价是x元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可.【详解】设这种服装每件的成本价是x元,由题意得:6.C解析:C【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc ,常数项为-1.故选C.7.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4,所以3x 2-9x =12,所以3x 2-9x +8=12+8=20.故选A .【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.8.C解析:C【解析】分两种情况:①如图所示,∵木条AB=20cm ,CD=24cm ,E 、F 分别是AB 、BD 的中点,∴BE=12AB=12×20=10cm ,CF=12CD=12×24=12cm , ∴EF=EB+CF=10+12=22cm .故两根木条中点间距离是22cm .②如图所示,∵木条AB=20cm ,CD=24cm ,E 、F 分别是AB 、BD 的中点,∴BE=12AB=12×20=10cm ,CF=12CD=12×24=12cm , ∴EF=CF-EB=12-10=2cm .故两根木条中点间距离是2cm .故选C. 点睛:根据题意画出图形,由于将木条的一端重合,顺次放在同一条直线上,有两种情况,根据线段中点的定义分别求出两根木条中点间距离.9.D解析:D【解析】【分析】正方体总共六个面,截面最多为六边形。

海南省洋浦中学2022七年级数学上学期期末考试试题

海南省洋浦中学2022七年级数学上学期期末考试试题

23-1-2-310D CB A海南省洋浦中学2022-2022学年七年级数学上学期期末考试试题第Ⅰ卷一、选择题(每小题3分,共42分)1 下列各数中,既是分数,又是正数的是( ) A .5 B .-514 C .0 D .83102 下列四个数中,在-2到 0之间的数是( )A .-1 B. 1 C. -3 D. 3 3 如图1所示,表示互为相反数的点是( )A .点A 和点DB .点B 和点C;C .点A 和点CD .点B 和点D4 数据260000用科学记数法表示为×10n,则n 的值是( ) A . 2 B . 3 C . 4 D . 5 5 近似数的有效数字的个数是( )A 3个 个 C 5个 D 6个6 今年市场上荔枝的价格比去年便宜了5%,去年的价格是每千克m 元,则今年的价格是每千克( ) 元A .5%mB m -5%C m %)51(+D ()15%m - 7.当2=x 时,代数式12+ax 的值是17,则a 等于( ) A .1 .2 C D 4 8 下列各式中,与y x 2是同类项的是A .2xyB xy 2C y x 2-D 223y x 9 下列去括号错误的共有( )①()a b c ab ac ++=+;②()a b c d a b c d -+-=--+; ③2()2a b c a b c +-=+-;④222222()x y z x y z -++=-++ A.1个B.2个C.3个D.4个10 如图2所示,圆柱的俯视图是( )11 船的航向从正北按顺时针方向转到东南方向,它转了( )A 225°B 180°C 135° ° 12 如图3,在所标识的角中,同位角是( )D .A .B .C . 图212 3 4 图3图1A .和B .和C .和D .和13 下列图形中,由AB CD ∥,能得到12∠=∠的是( )14 我区某校初一学生共有500人,其中有55%的人骑车上学,有55人坐公共汽车上学,其余的人走路上学.那么走路上学的学生人数是( )A .B .34C .170D .270 二、填空题(每小题3分,共12分)15 如图4所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为16 在括号内填上适当的项:-=-+-22222a c bc b a .17 图5是一个正方体的展开图,将它折叠成正方体后, “建”字的对面是___________18 如图6,一块边长为a ㎝(a >4)正方形的铁皮,如果截去两个矩形(即长方形)后,相关数据如图所示,则剩余部分(即图中的阴影部分)的面积是 cm 2海南省洋浦中学2022~2022学年第一学期期末考试七年级数学答题卷(满分:110分;时限:100分钟)A CB D1 2 A CBD12 A .B .12 ACDC . B C AD .12 图5构 建和 谐社 会图4图6命题人:黄发长 审题人:鲍春梅第Ⅱ卷15 16 17 18三解答题共56分19 每小题4分,共16分 计算:① (-5)(9)(-5)(3) ② 16--8÷-2+4×-3 ③ 48)1214361(⨯-+-④ 218)52()5(6232-÷--⨯---20每小题4分,共16分 化简:① ab ba ab 46++- ② )35()7(2b a b a a ---+③ )3(2)2(322y xy xy x +--- ④ ]2)34(7[322x x x x -+--21 (本题5分)先化简,再求值:)23(4)145(22a a a a +--+-,其中a =31-.22 (本题9分)如图,已知AC ⊥AE ,BD ⊥BF ,∠1=35°,∠2=35°。

海口市2020年七年级上学期数学期末考试试卷B卷

海口市2020年七年级上学期数学期末考试试卷B卷

海口市2020年七年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)﹣|﹣(﹣3)|3的结果是()A . ﹣27B . ﹣9C . 27D . 92. (2分) (2020七上·溧水期末) 若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是()A . +B . -C . ×D . ÷3. (2分) (2018七上·鞍山期末) 1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A . 0.135×106B . 1.35×105C . 13.5×104D . 135×1034. (2分) (2016七上·宁德期末) 下列运算,结果正确的是()A . 2ab﹣2ba=0B . 2a2+3a2=6a2C . 3xy﹣4xy=﹣1D . 2x3+3x3=5x65. (2分) (2019七上·栾川期末) 下列物体中,主视图是圆的是()A .B .C .D .6. (2分)(2017·玉田模拟) 某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()A . a=20B . b=4C . 若工人甲一天获得薪金180元,则他共生产50件D . 若工人乙一天生产m(件),则他获得薪金4m元7. (2分) (2019七下·漳州期中) 下列说法正确是()A . 相等的两个角是对顶角;B . 过一点有且只有一条直线与已知直线平行;C . 直线外一点与直线上各点连接的所有线中,垂线最短;D . 平面内,过一点有且只有一条直线与已知直线垂直8. (2分) (2018七上·孝感月考) 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次降价20%,现售价为b元,则原售价为()A . (a+ b)元B . (a+ b)元C . (b+ a)元D . (b+ a)元二、填空题 (共10题;共15分)9. (3分)(2018·南宁模拟) |+12|=________;|0|=________;|﹣2.1|=________.10. (1分)在有理数、﹣5、3.14中,属于分数的个数共有________ 个.11. (1分)(2019·昌图模拟) 已知,那么 =________.12. (1分) (2017七上·官渡期末) 将如图所示的平面展开图折叠成正方体,则a对面的数字是________.13. (3分)在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=________,b=________,c=________.14. (1分) (2017七下·成安期中) 若∠α=70°,则∠α的补角为________°.15. (1分) (2017七上·东莞期中) 若x2+3x=2,那么多项式2x2+6x﹣8=________.16. (2分) (2018七上·太原期末) 已知线段 AB=16,AM= BM,点 P、 Q 分别是 AM、 AB 的中点.请从(A)、(B)两题中任选一题作答.(A)如图,当点 M 在线段 AB 上时,则 PQ 的长为________.(B)当点 M 在直线 AB 上时,则 PQ 的长为________.17. (1分) (2015七下·启东期中) 某校运动员分组训练,若每组7人,余5人;若每组8人,则缺3人,则该校运动员共有________人.18. (1分) (2018七上·慈溪期中) 小明从每月的零花钱中拿出a元捐给希望工程,一年下来小明共捐款________元.三、解答题 (共9题;共98分)19. (5分)计算和化简⑴⑵⑶⑷⑸⑹20. (5分) (2016七上·莘县期末) 先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.21. (10分) (2017七上·姜堰期末) 解方程:(1) 2(x﹣1)+1=0;(2) x﹣1= .22. (1分) (2017八下·鄞州期中) 如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为________.23. (15分) (2017七上·温江期末) 如图所示为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.24. (17分)如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=________;若∠ACB=130°,则∠DCE=________;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD与∠BOC 的大小有何关系,请说明理由.25. (10分)(2018·广州) 如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

三亚市2020年七年级上学期数学期末考试试卷B卷

三亚市2020年七年级上学期数学期末考试试卷B卷

三亚市2020年七年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列各组数中,结果相等的是()A . ﹣22与(﹣2)2B . 与() 3C . ﹣(﹣2)与﹣|﹣2|D . ﹣12017与(﹣1)20172. (2分) (2019七上·浦北期中) 比较有理数的大小,正确的是()A .B .C .D .3. (2分)(2013·台州) 三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为()A . 125×104B . 12.5×105C . 1.25×106D . 0.125×1074. (2分)下列运算正确的是()A . a2•a3=a6B . a2+2ab﹣b2=(a﹣b)2C . (a3)2=a6D . ab2+a2b=a3b25. (2分)(2019·平房模拟) 将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A .B .C .D .6. (2分)已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()A . Q=40﹣B . Q=40+C . Q=40﹣D . Q=40+7. (2分) (2018·邯郸模拟) 如图,若∠1=50°,则∠2的度数为()A . 30°B . 40°C . 50°D . 90°8. (2分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A . 100元B . 105元C . 108元D . 118元二、填空题 (共10题;共15分)9. (1分)绝对值大于2.6而小于5.3的所有负整数之和为________ .10. (4分)把下列各数填在相应的大括号里:1,﹣, 8.9,﹣7,,﹣3.2,+1 008,﹣0.06,28,﹣9.正整数集合:{________ …};负整数集合:{________ …};正分数集合:{________ …};负分数集合:{ ________ …}11. (1分) (2018九上·鼎城期中) 在△ABC中,若,则∠C的度数是________.12. (1分) (2019七上·咸阳月考) 如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=________.13. (1分) (2020七上·郯城期末) 如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“迎”相对应的面上的汉字是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省洋浦中学
2020-2020学年第一学期期末考试初一数学试题
时间:100 分钟 分数:110分 一.选择题(每小题2分,共20分) 1. -1-3等于( )
A. 2
B.-2
C.4
D.-4 2.如果a 与-2互为相反数,那么a 等于( ) A.- 2 B.2 C.2
1
- D.21
3.-3的倒数是( )
A.31-
B.3
1
C.-3
D.3
4.下列计算中正确的是( ) A.
8
)2(4-=- B.
8
)2(3-=-- C.
1)2
1
(22=-⨯
D.1)22
1
(2=⨯-
5.下列各题中计算正确的是( ) A.
2
x x x =+ B.
x
x x =-222 C.0)()(=+--x x
D.x x x 523=+
6.某游戏软件的租金是前两天每天6元,以后每天3元,则n(n >2)天的租金为( )
A. 12+3n
B.12+(3n-2)
C.12+3(n-2)
D.6+3(n-2)
7.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。

据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约05.0毫升。

小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴了( )毫升水.(用科学记数法表示)
(A )1440 (B )3104.1⨯ (C )41014.0⨯ (D )21014⨯ 8.下列各式一定成立的是( )
A. -a+b=-(a-b)
B. 30-x=5(6-x)
C. -a+b=-(b+a)
D. 2-3x=-(3x+2)
9.下列四个几何体中,已知某个几何体的主视图、正视图、俯视图,分别为长方形、长方形、圆,则该几何体是( )
A .球体 B. 长方体 C. 圆锥体 D. 圆柱体
10.如图,OA 是表示北偏东30°方向的一条射线,其中正确的是 ( ) 二.填空题(每空2分,共24分)
11.计算:-3×2=_____,=-a a 25_____
12.10
32y x -的系数_____,次数是_____
13.m y x 22与y x n 3-是同类项,则m=_____n=_____
14.多项式323235x xy y y x --+按x 的降幂排列是_______________
15.如果︒=∠40α,那么α∠的补角等于_____
16.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是____
北 A
A
O B 东


B
A
O 30° 东
北 C A
O
30° 东

D
A O
30°
17.如图,1l ∥2l ,则=∠1_____度.
18.如图,用代数式表示图中阴影部分的面积S=_____; 当3=x 时,S=_____(∏取3.14)
x
三.解答题
19.计算(1~5小题每题5分,第6小题7分,共32分)
(1) )4()24(18-÷-- (2))2
1
(237)2(2-⨯-+---
(3) []
)25.01(113⨯-+--- (4) -3xy-(2xy-5xy)
(5). 3(5a+4)-(3a-10) (6)先化简,再求值:
)
21
3(2)46(222b ab a ab a -+-+,其中
1,2==b a
20.(8分)著名数学教育家G.波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛。

请先观察,下列算式,再填空.
18132⨯=- 283522⨯=-
(1)⨯=-85722_____ (2)⨯=-87922_____
(3)( )25892⨯=- (4)-213( )=8×_____ ………
(5).通过观察归纳,用含字母n 的式子表示这一规律为_______________
21. 为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:
A) 1.5小时以上 B) 1~1.5小时 C) 0.5—1小时 D) 0.5小时以下
图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,
图1 图2
解答以下问题:(共9分)
(1)本次一共调查了 名学生; (3分) (2)在图1中将选项B 的部分补充完整;(3分)
(3)若该校有3000名学生,你估计全校可能有 名学生平均每 天参加体育活动的时间在0.5小时以下.(3分)
22.(8分)如图,AB ∥CD ,︒=∠551,BD 平分ADC ∠,求A ∠.
请在横线上将下面的解答过程填写完成,并在后面的括号内填写推理依据. 解:因为BD 平分ADC ∠( )
所以ADC ∠= 21∠=︒____________( ) 又因为AB ∥CD ( )
所以︒=+∠180__________A ( ) 所以︒=-︒=∠___________________________180A
23.
23.(9分)如图,AD⊥BC于D,EF⊥BC于E,∠1=∠2,AB与DG平行吗?为什么?
A
F 3
1 G
2
B C E D
初一期末数学试题参考答案
一、选择题
二、填空题:
(11)-6、3a (12)-3\10 、3 (13)1、2 (14)-x3+5x2y-3xy2+y3(15)140
(16)自(17)20 (18)0.57x2、2.28
三19、(1) 12 (2) 4 (3) 3 (4) 0 (5) 12a+2 (6)化简得2ab+b2值为8
20、(1) 3 (2) 4 (3)11 (4) 11、6 (5)(2n+1)2-(2n-1)2=8n
21、 (1)200 (3) 150
22、已知 110 已知∠ADC 两直线平行,同旁内角互补∠ADC 70
23.AB∥DG(2分)
因为AD⊥BC于D,EF⊥BC于E
所以∠ADC=∠FED=900(4分)
所以AD∥FE(5分)
所以∠1=∠3(6分)
又因为∠1=∠2
所以∠2=∠3(8分)
所以AB∥DG(9分)。

相关文档
最新文档