湖大《结构动力学》第1章
结构动力学
第2章 单自由度系统
§2.4 简谐荷载的强迫振动
2.4.1 无阻尼系统
1、运动方程
mx kx F0 sin t
2、解的形式
x x x
设:
x A sin t
(m 2 k ) A F0
第2章 单自由度系统
解得:
A
A
(m 2 k )
F0 k xst (1 2 2 ) (1 2 )
已知
结构
荷载
响应
荷载
已知或未知
结构
已知
第1章 绪论
§1.2 研究对象
1、结构——弹性恢复力 fk(x) 2、外力——时变特性 fp(t)
§1.3 研究内容
1、结构动力特性——固有频率、振型、阻尼 2、结构响应——位移、速度、加速度
第1章 绪论
§1.4 研究方法
1、时域法——解析法、逐步积分法 2、频域法——谱分析法
k m
①简支梁问题
m l
第2章 单自由度系统
1 k
l3 48 EI
k
48EI l3
48EI ml 3
第2章 单自由度系统
②悬臂梁问题 弯曲变形
x
l 3EI
3
m
k
3EI l3
k
剪切变形
l3 12EI
k
12EI l3
弯曲变形 剪切变形
第2章 单自由度系统
2 i i ,max m xi ki xi2,maxi
第2章 单自由度系统
m x
i 2 i i ,max
2 2 J max m2 xmax
1 2 2 m1l 2 max m2l 2 max 3 1 2 m1l 2 m2l 2 max 3
结构动力学基础理论
第四章
运动方程的建立
y (t)
单自由度 体系模型
c m k
F (t)
质量块m,用来表示结构的质量和惯性特性 自由度只有一个:水平位移y(t) 无重弹簧,刚度为 k,提供结构的弹性恢复力 无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结构的阻尼力 随时间变化的荷载F(t)
单自由度体系运动方程的建立(直由度数为单元节点可发生的 独立位移未知量的总个数。 综合了集中质量法和广义坐标法的某些特点,是最灵活有效的 离散化方法,它提供了既方便又可靠的理想化模型,并特别适 合于用电子计算机进行分析,是目前最为流行的方法。 已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分 析之用。包括静力、动力 和稳定分析。
代入:
单自由度无阻尼体系运动方程的解:
v(t )
0 v
sint v0 cost
(3-11)
第六章 简谐振动荷载反应
谐振荷载:
p (t )
k 1
则组合系数Ak(t)称为体系的广义坐标。
nπ x ( x ) bn sin l n 1
广义坐标 位移函数
广义坐标表示相应位移函数的幅值,是随时间变化的函数。 广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。 以广义坐标作为自由度,将无限自由度体系转化为有限个自由度。
1.3 动力荷载类型
概念:动荷载是时间的函数!
分类: 确定性荷载 动荷载 非确定性荷载
周期性荷载 非周期性荷载
确定性荷载:荷载的变化是时间的确定性函数。
FP
例如: 简谐荷载
t
FP
冲击荷载
t
结构动力学课件PPT
地震作用
200 0 -200
t(sec)
0 5 10 15 20 25 30 35 40 45 50
结构在确定性荷载作用下的响应分析通 常称为结构振动分析。 结构在随机荷载作用下的响应分析, 被称为结构的随机振动分析。 本课程主要学习确定性荷载作用下的结 构振动分析。
§1-3 动力问题的基本特性
§2-5 广义单自由度体系:刚体集合
刚体的集合(弹性变形局限于局部弹性
元件中) 分布弹性(弹性变形在整个结构或某些 元件上连续形成) 只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
A
x
x p( x,t ) = p a ( t )
1
令:
5l FE (t ) q(t ) 8
y FE (t )
FE(t) 定义为体系的等效动荷载或等效干扰力。其通用表达式
P FE (t )
含义:等效动荷载直接作用在质量自由度上产生的动位移与
实际动荷载产生的位移相等!
已经知道柔度和刚度k 之间的关系为: k 表达式成为:
简支梁: 比较: 刚架: 基本质量弹簧体系:
大型桥梁结构 的有限元模型
§1-5 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。 建立运动方程是求解结构振动问题的重要基础。 常用方法:直接平衡法、虚功法、变分法。
(2-3)
刚度法: 取每一运动质量为隔离体,通过分析所受 的全部外力,建立质量各自由度的瞬时力平衡方 程,得到体系的运动方程。
【结构动力学】第1章 运动方程 2020
承受动力荷载的任何线性结构体系的主要物理特性是体系的质量、弹 性特性(刚度或柔度)、能量耗散机理或阻尼、以及外部扰力或荷载
单自由度
c
体系模型
k
y (t )
F(t) m
▪ 质量块m,用来表示结构的质量和惯性特性 ▪ 自由度只有一个:水平位移 y(t) ▪ 无重弹簧,刚度为 k,提供结构的弹性恢复力 ▪ 无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结
y P (FI FD )
改写成:
FI
FD
1
y
P
28
位移方程:
FI
FD
1
y
P
其中:
p为动荷载 q(t) 引起的质量沿y方向的位移:
q (t)y(t )
P
5l 4 384 EI
q(t )
惯性力: FI my 阻尼力: FD cy
为自由度方向加单位力所引起的位移,即柔度: 由此得到体系的运动方程:
my cy ky F(t) (2-3)
y(t )
EI l 1
my
cy
12EI
l13
12EI l23
y
FP (t)
12EI 12EI
令: k FS1 FS 2 l13 l23
;k 为(等效)刚度系数。
由此得到体系的运动方程: my cy ky FP (t)
运动方程与(2-3)的形式是一样的!
my cy ky F(t)
(2-3)
14
直接平衡法(达朗贝尔原理)
直接平衡法,又称动静法,将动力学问题转化为任 一时刻的静力学问题:根据达朗贝尔原理,把惯性 力作为附加的虚拟力,并考虑阻尼力、弹性力和作 用在结构上的外荷载,使体系处于动力平衡条件, 按照静力学中建立平衡方程的思路,直接写出运动 方程。
结构动力学 (邹经湘 王本利 王世忠 著) 哈尔滨工业大学出版社 课后答案
∑ F ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
kh
2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤: (1) 对系统进行受力分析和动量距分析;
̇̇ = (2) 利用动量距定理 J θ
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。
w .c
所以:系统的固有频率为
om
kg P
ω0 =
kg P
x
T平动 = T转动 =
1 ̇2; Mx 2
图 1-35
而势能
课 后
答
̇⎞ ̇⎞ 1 ⎛x 1 ⎛ MR ⎞ ⎛ x I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
2
2
2
T=
1 1 3 ̇ 2 + Mx ̇ 2 = Mx ̇2 ; Mx 2 4 4 1 Kx 2 ; 2
系统的势能为:
U=
da
r 2 1 1 1 1⎛ K A ϕ A 2 + K Bϕ B 2 = K Aϕ A 2 + K Bϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
w .c
B
D
(
)
⎞ 2 ⎟ϕ A ; ⎟ ⎠
图 1-36
系统的机械能为
kh
T +U =
r 2 1 1⎛ ̇A2 + ⎜KA + KB A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
w
图 1-34 0
B
w
结构动力学(课用ppt)
11/14/2011
25
注意! 注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
11/14/2011
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
n πx = u ( x, t ) = bn sin L n =1
11/14/2011
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
11/14/2011
19
1.5 结构动力分析中的自由度
一. 自由度的定义 结构动力学和静力学的一个本质区别:考虑惯性力的影响 结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。 独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
11/14/2011 29
11/14/2011
30
11/14/2011
5
结构动力问题的基本特征: 1、动力问题随时间而变化,必须建立反应时程中感兴趣的全部时间点 上的一系列解。 2、与静力问题相比,由于动力反应中结构的位移随时间迅速变化,从 而产生惯性力,惯性力对结构的反应又产生重要影响。
11/14/2011
6
动力反应的特点: 在动荷载作用下,结构的动力反应(动内力、动位移等) 都随时间变化,它的除与动荷载的变化规律有关外,还与结 构的固有特性(自振频率、振型和阻尼)有关。 不同的结构,如果它们具有相同的阻尼、频率和振型,则 在相同的荷载下具有相同的反应。可见,结构的固有特性能 确定动荷载下的反应,故称之为结构的动力特性。
结构动力学1~15
《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。
因此命名为振型叠加法。
8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。
第1章 结构动力学概述
F (t ) A sin t F (t ) A cos t F (t ) A sin( t )
可以是机器转动引起的不平衡力等。
p (t)
t
建筑 物上 的旋 转机 械
(a) 简 谐 荷 载
2.非随机荷载的类型
高等结构动力学
非简谐周期荷载
定义:荷载随时间作周期性变化,是时间 t 的周期函数,但 不能简单地用简谐函数来表示。 例如:平稳情况下波浪对堤坝的动水压力;轮船螺旋桨产生
动力自由度:
动力分析中为确定体系在振动过程中任一时刻全部质量 的几何位置所需要的独立参数的数目。 独立参数也称为体系的广义坐标,可以是位移、转角或 其它广义量。 在振动的任一时刻,为了表示全部有意义的惯性力的作 用,所必须考虑的独立位移分量的个数,称为体系的动 力自由度
4.
离散化方法 W=2
高等结构动力学
结构动力分析的目的:
确定动力荷载作用下结构的内力和变形; 通过动力分析确定结构的动力特性。
结构力学:
研究结构体系的动力特性及其在动力荷载作用下的动力 反应分析原理和方法的一门理论和技术学科。
该学科的目的在于为改善工程结构体系在动力 环境中的安全性和可靠性提供理论基础。
1.结构动力分析的主要目的
高等结构动力学
W=1
W=2
W=2
记轴变时 W=3 不计轴变时 W=2
W=2
W=3
W=2
4.
离散化方法
高等结构动力学
离散化方法(二)—体系的简化方法 实际结构都是具有无限自由度的
离散化是把无限自由度问题转化为有限自由度的过程 三种常用的离散化方法: 1、集中质量法 2、广义坐标法 3、有限元法
武汉大学结构动力学
式中, A
u02
(v0
/ )2,
arctan
v0 u0
;
2021/4/22
15
弹性体系的自由振动为周期性振动,每秒振动的次数为自振
频率:
f 1 1 r11 1 1 T 2 2 m 2 m11
2 f ,故可将看为2秒内的振动次数。
注意:1)自振频率与初始条件无关。 2)振幅与初始条件及自振频率有关。 3)刚度大,频率大;质量大频率小。
11
11
11
T 2 m 2 m( l3 1 l2 )
11
3EI ku k
弹性体系并联时,r11
r(i), 11
r(i) 11 m
(i) 2
弹性体系串联时,11
(11i),T 2
m 2 11
m(
(11i))
T 2
2021/4/22
19
习题:
1)求自振频率(扭转向)
2)求自振频率
1.西奥多森—加里克理论
此理论认为,阻尼应力与弹性应力成正比,与变形速度
同相。若用复数表示应变的简谐振动:
e
d
E
i
E e 2
0eit 、
(1 i )E
i 0eit;
为阻尼参数
因为
i
i
e
2,故
,较 i(t )
0e 2
相 位超前
/。2
2021/4/22
23
相应的单自由度阻尼振动方程为:
静力荷载是动力荷载的一种特殊形式,它是缓慢加到结构上的荷载, 它的大小、方向、作用点是随时间不变或缓慢变化。
2021/4/22
2
在静力荷载的作用下,结构各质点没有加速度或加速度很小,加 速度产生的惯性力与静力荷载本身相比可略去不计。
结构动力学-1
二.动荷载的分类
简谐荷载 周期 非简谐荷载 确定 冲击荷载 非周期 突加荷载 动荷载 其他确定规律的动荷载 风荷载 地震荷载 不确定 其他无法确定变化规律的荷载
三.振动及其分类 (1)按荷载类型分: 确定性振动:简谐振动、 周期振动、非周期振动。 非确定性振动:随机振动 (2)按有无荷载分:自由振动、强迫振动
结构动力学是研究结构、动荷载、结构反应三者关 系的学科。
当前结构动力学的研究内容为:
第一类问题:反应分析(结构动力计算)
输入 (动力荷载) 结构 (系统) 输出 (动力反应)
第二类问题:参数(或称系统)识别 输入 (动力荷载) 结构 (系统) 输出 (动力反应)
第三类问题:控制问题。
输入 (动力荷载) 结构 (系统) 输出 (动力反应)
(3)按动力学方程中参数分:线性振动、非线性振动 (4)按振动自由度分: 离散系统的振动:动力学方程是离散的。单自由度、 多自由度 连续系统的振动:动力学方程是连续的。
振动系统的基本参数:质量、阻尼、刚度。
§1.3 结构动力分析中的自由度
一. 自由度的定义
确定体系中所有质量位置所需的独立坐标数,称作体 系的动力自由度数。
单自由度体系、有限自由度体系、无限自由度体系 二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有: 集中质量法 广义坐标法 有限单元法
1) 集中质量法 将实际结构的质量看成(按一定规则)集中在某些 几何点上,除这些点之外物体是无质量的。这样就将无 限自由度系统变成一有限自由度系统。
例题
m(t ) y y(t )
结构动力学第一章概述
第1章概述研究结构在动荷载作用下的相应规律的学科称为结构动力学结构动力学着重研究结构关于动荷载的响应(如,位移、内力、速度、加速度等的时刻历程)以便确信结构的承载能力和动力学特性,或为改善结构的性能提供依据,结构动力学是抗震设计的基础,也是减震、隔震方法的理论依据。
§结构动力学研究对象与研究目的在动力作用下,结构产生振动,即结构在静平稳位置周围来回地运动(振动)。
振动的缘故,有的是结构本身固有的缘故引发的,如转动机械转子的偏心引发的振动;有的是外界干扰所引发的,如地震作用、风荷载作用,爆炸荷载的作用,和车辆行驶中由于路面不平顺引发的车辆及车辆引发的路面振动等。
因此结构动力学的研究对象正是工程结构的各类振动问题。
而结构动力学的研究目的确实是熟悉和了解工程结构的振动规律,并据此指导工程结构的设计实践及其他有关工作,有效地减轻以幸免有害的振动给工程结构造成破坏,从而为人类社会带来更多的福利,这确实是结构动力学研究的目的和意义。
1.1.1动荷载的概念作用在结构上的荷载是由三个因素确信的,即大小、方向和作用点。
若是这些因素不随时刻转变或随时刻缓慢转变,那么在求解结构的响应时可把其作为静荷载处置加以简化计算,如框架结构的衡宇在自身重力荷载作用下的内力和变形,水塔装满水后的内力和变形等都是结构静力学的范围。
若是作用在结构上的荷载的大小、方向和作用点随时刻转变,使得质量运动加速度所引发的惯性力与荷载相较大到不可轻忽时,那么把这种荷载称为动荷载。
如衡宇结构在风荷载作用下的内力和变形,桥梁结构在汽车荷载作用下的内力和变形,和轮船在海浪的冲击下的内力和变形等都是结构动力学的范围。
应当说明,静与动和加载慢与快是相对的,它与结构自振周期有紧密关系,假设荷载从零增至最大值的加载时刻远大于结构自振周期,例如前者为10s后者为1s,那么加载进程能够为是缓慢的,可作为静荷载对待。
可是假设荷载从零增至最大值的加载时刻接近或小于自振周期,那么加载进程应以为是快速的,这种荷载应作为动荷载来处置。
结构动力学(课用ppt)
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
结构动力学(1)
§14-5多自由度结构的自由振动
列质点的动力平衡方程,以某一运动方向质点 mi 为例,有
mi yi FRi 0
(a)
由叠加原理可得
FRi ki1 y1 ki2 y2 kii yi kij y j kin yn
不同自由度方向的位移会引起同一方向的弹性力。 这种现象称为,弹性耦合。 将式(b)代入(a)有
2nmn
yn
0
nnmn yn 0
(14-34)
y1 11 12
y2
21
22
yn
n1
n2
1n m1
2n
m2
nn
0
0 y1 0
y2
0
(14-35)
mn
yn
0
或简写为
Y + δMY = 0
(14-36)
3.按柔度法求解 设不同自由度方向的质点以同频率,同相位振动。
12m2
(14-42)
第二主振型
2
A(2) 2
A(2) 1
1
22
11m1
12m2
(14-43)
例14-3 试求图14-21a所示等截面简支梁的自振频率并确定其主 振型。
解:结构有两个自由度,由图乘(图14-21b、c)可得
11
22
4l 3 243EI
12
21
7l 3 486EI
代入式(14-40)且 m1 m2 m ,有
例如,两个自由度体系一般情形下的自由振动为:
y1 ( t ) A(1 1) sin( 1t 1 ) A(1 2) sin( 2t 2 )
y2 ( t ) A(2 1) sin( 1t 1 ) A(2 2) sin( 2t 2 )
结构动力学-1-print共30页
析时仍视作静荷载。静荷只与作用位置有关,而动荷是坐
标和时间的函数。
二.动荷载的分类
确定 动荷载
简谐荷载 周期 非简谐荷载
冲击荷载 非周期 突加荷载
其他确定规律的动荷载 风荷载
不确定
地震荷载 其他无法确定变化规律的荷载
§1.3 振动系统的力学模型及其分类
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
控制系统 (装置、能量)
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
集中质量法 广义坐标法 有限单元法
1) 集中质量法 将实际结构的质量看成(按一定规则)集中在某些
几何点上,除这些点之外物体是无质量的。这样就将无 限自由度系统变成一有限自由度系统。
m
2) 广义坐标法
y(x) aii(x) i1 n
m y (t)P(t) 运动方程
m
P (t)[m y (t) ]0
P(t) m y(t)
形式上的平衡方程,实质上的运动方程
惯性力
一、柔度法
P(t) m m y(t) =1 11 y(t)
l EI
1[1P(t)m y (t)]
P(t) m y(t)
l
(完整版)结构动力学基础
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
x a
作用时间: 恒载 活载 作用位置: 固定荷载 移动荷载 对结构产生的动力效应: 静荷载 动荷载
静荷载: 动荷载:
大小、方向和作用点不随时间变 化或变化很缓慢的荷载。
大小、方向或作用点随时间变化 很快的荷载。
快慢标准: 是否会使结构产生显著的加速度
显著标准: 质量运动加速度所引起的惯性力 与荷载相比是否可以忽略
FP (t ) FI FD FS1 FS2 0
其中各力的大小:
惯性力: FI my 弹性力Fs=Fs1+Fs2: 位移法:柱子一端产生单位平移时的杆端剪力
1
12i
l2
柱端发生平移 y 时产生的梁-柱间剪力:
EI
12 EI FS1 l13 y
12EI
FS 2
l
3 2
y
l
等效粘滞阻尼力: FD cy
大型桥梁结构 的有限元模型
第二章 运动方程的建立
定义
在结构动力分析中,描述体系质量运动规律的数学 方程,称为体系的运动微分方程,简称运动方程。
▪ 运动方程的解揭示了体系在各自由度方向的位移 随时间变化的规律。
▪ 建立运动方程是求解结构振动问题的重要基础。 ▪ 常用方法:直接平衡法、虚功法、变分法。
8
比较:
c k
结构动力学
输出 (动力反应)
.
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
控制系统 (装置、能量)
本课程主要介绍结构的反应分析
任务 讨论结构在动力荷载作用下反应的分析的方法。寻找
结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
集中质量法 广义坐标法 有限单元法
.
1) 集中质量法 将实际结构的质量看成(按一定规则)集中在某些
几何点上,除这些点之外物体是无质量的。这样就将无 限自由度系统变成一有限自由度系统。
m
2) 广义坐标法
y(x) aii(x) i1 n
y(x) aii(x) i1
a i ---广义坐标
m y(x)
EI
m
l/2
l/2
W
m y(t)
1
11
st y(t)
Y(t)y(t)st
加速度为
Y(t) y(t)
y (t) s t 1[P 1 (t) W m y (t)]
st W11
结构动力学是研究结构、动荷载、结构反应三者关 系的学科。
.
当前结构动力学的研究内容为:
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
其他确定规律的动荷载 风荷载
不确定
地震荷载 其他. 无法确定变化规律的荷载
高等结构动力学 目录+第一章
结构动力学目录第一章:绪论第二章:运动方程的建立方法2.1、直接动力平衡法2.2、虚功原理2.3、Hamilton原理2.4、Lagrauge方程第三章:单自由度(SDOF)体系的振动理论(Single Degree of Freedom)3.1、自由振动:即固有振动3.2、谐振荷载响应3.3、对周期性荷载的响应3.4、对冲击荷载的响应3.5、对一般动荷载的响应3.6、非线性结构的响应3.7、状态空间法在动力学中的应用简介第四章:多自由度体系的振动理论(MDOF)4.1、自由振动4.2、动力响应的分析4.3、实用振动分析4.4、非线性结构的分析4.5、多支座扰动问题简介4.6、复模态理论简介第五章:连续弹性体系的振动理论5.1、梁、板的无阻尼自由震动5.2、梁、板的动力响应的分析5.3、波传播的分析第六章:结构随机振动理论6.1、随机过程简介6.2、谱分析理论基础6.3、地震动模型6.4、经典结构随机振动理论简介6.5、虚拟激励法第一章绪论第一节:结构动力学的研究内容和目的研究范畴:研究结构、动荷载、结构反应三者之间关系的学科,即研究动荷载作用下结构或构件内力和变形规律。
主要目的:介绍任何给定模型的结构在承受任意动荷载时所产生的应力和挠度的分析方法。
1、动力作用与静力作用动力作用:a不能忽略。
静力作用:a=0或者a 很小,可以忽略不计。
动荷载定义:大小、方向和作用点随时间而变化的任何荷载;在其作用下。
结构上的惯性力与外荷比不可忽略的荷载。
自重、缓慢变化的荷载,其惯性力与外荷比很小,分析时仍可视作静荷载。
静荷载只与作用位置有关,而动荷载是坐标和实践的函数。
2、 动荷载的类型:↗确定性→数定分析 deterministic动荷载↘非确定性→非数定分析 non deterministic↗简谐性周期性↗ ↘非简谐性确定性荷载↘ ↗冲击荷载非周期性→突加荷载↘其他确定规律的动荷载↗风荷载非确定性荷载→地震荷载↘其他无法确定变化规律的动荷载借助于傅立叶分析,任何周期荷载引用一系列简谐分量的和来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动问题
其他振动问题
退出
美国塔科马桥风振(1940年)
伏尔加河大桥风振(2010.5.22) /a/20100522/000569.ht m 风振问题
退出
退出
汶川大地震(2008年 5月12日)
地震问题
2
2014-04-19
退出
海上平台
海浪问题
退出
2001年的美国911恐怖袭击事件
y(x,t)
k ( x) —— 是根据边界约束条件选取的
函数,称为形状函数。
a1, a2,…….. an
k 1
1 ( x),2 ( x),.........n ( x)
ak(t) ——称广义座标,为一组待定参数,
其个数即为自由度数,用此法可将无限自由 度体系简化为有限自由度体系。
x
y ( x, t ) ak k ( x )
偏微分方程
m +αm梁
I
2I
退出
退出
pn(t)
yn(t)
m1
m2
2个自由度
m3
p2(t) p1(t) y2(t) y1(t)
4个自由度
剪切型框架
振型1
v(t) θ(t)
u(t) 运动方程
CY KY P(t ) MY
m1 M m2 m n-1 mn
1
2014-04-19
第一节
1 、工程中的振动问题
引言
风振问题
地震问题
工程中的振 动问题
海浪问题
爆炸问题
结构的动力性态 作 者:【英】G.B.沃伯顿 著 金咸定译 出 版 社:地震出版社 出版时间:1983
结构动力学 作 者: Roy R.Craig (克雷格) 著常岭译 出 版 社:人民交通出版社 出版时间:1996
水平振动时的计算体系
退出
构架式基础顶板简化成刚性块
多自由度体系
退出
8
2014-04-19
x
(b)、广义座标法
m ( x), EI ( x), l
结构的构件或单元的变形曲线可用下式来表示
y
n
x
y ( x, t )
kx k ( x) sin l
1 ( x),2 ( x),.........n ( x)
差分法
数值积分法
加权余量法
变分法与瑞莱· 李兹法
伽辽金法
退出
配点法
子域法
最小二乘法
各种解法示意图
退出
12
y
n
a1, a2,…….. an
(2k 1) x k ( x) 1 cos 2l
y
x
y ( x, t ) ak k ( x )
k 1
n
悬臂梁变形曲线
退出
退出
( c) 有限元概念
用有限数目的离散位移坐标表示给定结构位移的第三种方法,综 合了堆聚质量法及广义坐标法两者中的某些特点,已成为目前流行的 方法。这个方法是分析连续结构的有限元法的基础,它提供了既方便 又可靠的体系理想化模型,而且对用电子计算机分析来说特别有效。
爆炸问题
高速列车的振动问题
退出
机械振动问题
退出
其他振动问题
3
2014-04-19
2 、工程中的动荷载
周期荷载
简谐荷载 (1) 简谐荷载 非简谐荷载 冲击荷载 非周期性荷载 突加荷载 其它动荷载
确定性荷载
按正弦函数或余弦函数变化的周期荷载,称为简谐荷载。
P(t )
确定性动荷载
t
动荷载
风荷载 地震荷载 非确定性动荷载 爆炸荷载 海浪荷载
风速时程记录
320 240 160 80 0 -80 0 -160 -240 -320
加速度(gal)
时间(S) 2 4 6 8 10
地震波记录
退出 退出
3 、结构动力学的任务和目的
结构动力计算的目的在于确定结构在荷载作用下产生的最大内力与最大位移, 为设计提供可靠的依据。此外还需求出结构在动力荷载作用下产生的最大速度 和加速度,用以判别所设计的结构是否超过规范中的允许值,因为过大的速度
(2) 一般周期荷载 它是指除简谐荷载以外的其它型式的周期荷载。
P(t )
t
退出
其它非确定性动荷载
退出
非确定性荷载
(3)冲击荷载 这类荷载的特点是在很短的时间内,荷载值急剧增大或急别减小。例 如,锻锤对基础的撞击作用以及爆炸型荷载都属于这类荷载。因为在冲击 荷载作用下.结构很快就达到它的最大反应值,由阻尼所吸收的能量较小, 所以阻尼对这类荷载的动力反应的影响是比较小的。
结构动力学
的研究内容
结构动力学 的反问题 荷载识别
结构的振动控制 结构振动控 制问题
退出
退出
结构的动力计算将分为两大类,即自由振动和强迫振动。
自由振动
强迫振动
自由振动是由初位移和初速度引起的结构振动,此时无外部干扰力作用。 强迫振动是结构受到外部激励后引起的振动。 自由振动与强迫振动均可造成结构破坏。
z
y x
CY KY P(t ) MY
m1 M m2 m n-1 mn
y x
退出
退出
9
2014-04-19
第三节 结构的连续模型
1.运动方程的建立
根据达朗贝尔原理,在体系上主动力、约束力和惯性力构成一个平衡力 系,不论体系在运动中处于何种位置,这种瞬时平衡的关系总是成立的。
提供任意给定结构在任意给定动荷载 作用下进行响应分析的方法
和加速度对人体健康、工艺过程和建筑物不利。
结构动力学 的任务
确定结构固有动力特性及结构固有 动力特性、动荷载和结构响应 三者间的相互关系
m r
r
为结构动力可靠性设计和健康诊治 提供依据
退出
退出
5
2014-04-19
4 、结构动力学的研究内容
连续系统
11
2014-04-19
解的方法
学习注意点: 解析解或封闭解 数值解 根据经验的经验近似解 ①只有先深刻理解结构的动力学基本概念,才可能从事其他问题的研究。 ②正问题研究的是解析模型,它与实际结构总有区别。 控制微分方程的解 边界积分方程法 有限元法 ,边界元法 ③注重动手能力,包括建模,分析,以及动力试验。
第二节 结构的数学模型
1 、结构数学模型的主要内容
结构数学模型包含三个主要内容:
静压加载系统 MTS液压加载系统
(1)通过一系列简化和假定将真实系统演变到所设想的模型。
(2)用计算图式来描绘模型。
(3)规定模型的参数(几何及物理力学参数) 。
模型要简单且能反映真实系统的主要特征和性能
模拟地震振动台
退出
结构动力学 的正问题
结构在动力荷载作用下的计算,要涉及内外两个方面的因素,即结构本身的 动力特性和干扰力的变化规律。所谓结构的动力特性是指结构的自振频率、振型 结构的响应分析 和阻尼,其中阻尼的大小取决于结构的物理性质,它是由试验测定的,而结构的 自振频率和振型的计算就构成结构动力计算中一个很重要的组成部分。 至于干扰 力的变化规律可事先设定或由统计得到。 结构的参数识别
2014-04-19
结构动力学
第一章 结构动力学简述
第一节 引言
结构动力学简述
第二节 结构的数学模型 第三节 结构的连续模型
汪梦甫
第四节 运动方程的建立及其求解方法
退出
推荐教材及参考书
结构动力学(第 2版 )(修订版) R.克拉夫 (作者), J.彭津 (作者) , 王光远 (译者)
结构动力学:理论及其在地震工程中的应用 ( 第 2版 ) 乔普拉 (作者), 谢礼立 (译者)
FP(t )
FP t0
FP(t ) FP t t0 t
Δ=5公里的爆破波
Δ=20公里的爆破波
爆破波
退出 退出
4
2014-04-19
它们不仅随时间作复杂变化,而且在基本条件不变的情况下,由于偶 然因素的影响,两次荷载不会重现同一波形,因而不可能将荷载与时间 的函数关系作出精确的数学描述。如地震荷载、风荷载、海浪作用等。
达朗贝尔原理
( 3)单位长度上的外阻尼力
f D
f S f D f) 2 2 y ( x, t ) y ( x, t ) 2 y ( x, t ) [ EI ] m m x 2 x 2 t t 2 t 2
退出
结构的振动控制
6
2014-04-19
5 、 动力计算的研究方法
结构的质量 是连续分布 理论分析 数学模型
无限自由 度体系 不同性质荷载下混凝土应变率的变化
结构的质量 离散化
多自由度 体系
联机实验
材料性能的测定 结构动力相似模型
实验研究 结构固有振动测定 振动环境试验
退出 退出
混凝土抗压强度随应变率的变化规律
退出
退出
2. 线性振动和非线性振动
320 240 160 80 0 -80 -160 0 -240 -320
线性振动
加速度(gal)
fs
fD
2
4
6
8
时间(S) 10
y (t )
(t ) y
非线性振动
fs
fD
y (t )
退出 退出
(t ) y
10
2014-04-19
3.结构的振动特性 图示的烟囱有无限多个自振频率。例如在常截面的情况下,如 果假定它的底脚当作完全固定,那么它的无阻尼自振圆频率为
a1, a2,…….. an