MATLAB仿真技术
基于Matlab的光学实验仿真
基于Matlab的光学实验仿真一、本文概述随着科技的快速发展,计算机仿真技术已成为科学研究、教学实验以及工程应用等领域中不可或缺的一部分。
在光学实验中,仿真技术能够模拟出真实的光学现象,帮助研究者深入理解光学原理,优化实验设计,提高实验效率。
本文旨在探讨基于Matlab的光学实验仿真方法,分析Matlab在光学实验仿真中的优势和应用,并通过具体案例展示其在光学实验仿真中的实际应用效果。
通过本文的阐述,读者将能够了解Matlab在光学实验仿真中的重要作用,掌握基于Matlab的光学实验仿真方法,从而更好地应用仿真技术服务于光学研究和实验。
二、Matlab基础知识Matlab,全称为Matrix Laboratory,是一款由美国MathWorks公司出品的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。
Matlab以其强大的矩阵计算能力和丰富的函数库,在光学实验仿真领域具有广泛的应用。
Matlab中的变量无需预先声明,可以直接使用。
变量的命名规则相对简单,以字母开头,后面可以跟字母、数字或下划线。
Matlab支持多种数据类型,包括数值型(整数和浮点数)、字符型、逻辑型、结构体、单元数组和元胞数组等。
Matlab的核心是矩阵运算,它支持多维数组和矩阵的创建和操作。
用户可以使用方括号 [] 来创建数组或矩阵,通过索引访问和修改数组元素。
Matlab还提供了大量用于矩阵运算的函数,如矩阵乘法、矩阵转置、矩阵求逆等。
Matlab具有强大的数据可视化功能,可以绘制各种二维和三维图形。
在光学实验仿真中,常用的图形包括曲线图、散点图、柱状图、表面图和体积图等。
用户可以使用plot、scatter、bar、surf和volume 等函数来创建这些图形。
Matlab支持多种控制流结构,如条件语句(if-else)、循环语句(for、while)和开关语句(switch)。
这些控制流结构可以帮助用户编写复杂的算法和程序。
MATLAB仿真技术
MATLAB仿真技术作业合集页脚内容1页脚内容1第1章 习题5.利用直接输入法和矩阵编辑器创建矩阵A=⎥⎦⎤⎢⎣⎡642531。
解:⑴利用直接输入法输入程序A=[1 3 5;2 4 6]按Enter 键后,屏幕显示A = 1 3 52 4 6⑵用矩阵编辑器创建矩阵,如图1.1所示。
图1.1 MATLAB 编辑器7.用矩阵编辑器创建矩阵a,使a 具有如下矩阵形式。
页脚内容2a=⎥⎦⎤⎢⎣⎡642531⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡654321⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡098706540321⇒a=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000098706540321 解:用矩阵编辑器创建矩阵a 的过程如图1.2、1.3、1.4、1.5、1.6所示。
图1.2 图1.3图1.4 图1.5图1.6页脚内容39.已知矩阵B=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡922518113211912102201304161475231501017,试:①提取矩阵B 的第一行和第二行的第2、4、5个元素组成新矩阵1B ;②提取矩阵B 的第三行和第一行的全部元素组成新矩阵2B ;③使矩阵B 的第一行和第三行的第2;4个元素为0;④标出矩阵B 的第一行中小于5的元素。
解:①如上题,用矩阵编辑器生成矩阵B ,再输入程序B1=B([1,2],[2,4,5])按Enter 键后,屏幕显示B1 = 0 0 155 14 16②输入程序B2=B([1,3],:)按Enter 键后,屏幕显示B2 = 17 0 1 0 15 4 0 13 0 22③第一行和第三行的第2;4个元素原本就为0。
④输入程序如下C=B(1,:)<5; %将B矩阵第一行中小于5 的值标记为1D=B(1,C) %去B矩阵第一行中标为1的元素按Enter键后,屏幕显示D= 0 1 011.已知矩阵a为4阶魔方阵,令a+3赋值给b,a+b赋值给c,求b和c。
matlab电机仿真精华50例
matlab电机仿真精华50例Matlab是一种功能强大的仿真软件,它被广泛应用于电机仿真领域。
在这篇文章中,我们将介绍Matlab电机仿真的50个精华例子,帮助读者更好地了解和应用电机仿真技术。
1. 直流电机的仿真:通过Matlab可以模拟直流电机的性能,包括转速、扭矩和电流等。
2. 交流电机的仿真:使用Matlab可以模拟交流电机的工作原理,包括转子和定子的相互作用。
3. 同步电机的仿真:通过Matlab可以模拟同步电机的运行特性,包括电压和频率的控制。
4. 步进电机的仿真:利用Matlab可以模拟步进电机的运行过程,包括步进角度和步进速度等。
5. 无刷直流电机的仿真:通过Matlab可以模拟无刷直流电机的工作原理,包括转子和定子的相互作用。
6. 电机控制系统的仿真:利用Matlab可以模拟电机控制系统的运行过程,包括速度和位置的闭环控制。
7. 电机噪声的仿真:通过Matlab可以模拟电机噪声的产生和传播过程,帮助优化电机的设计。
8. 电机故障诊断的仿真:利用Matlab可以模拟电机故障的发生和诊断过程,提供故障检测和排除的方法。
9. 电机热仿真:通过Matlab可以模拟电机的热传导和散热过程,帮助优化电机的散热设计。
10. 电机振动的仿真:利用Matlab可以模拟电机的振动特性,帮助优化电机的结构设计。
11. 电机效率的仿真:通过Matlab可以模拟电机的能量转换过程,评估电机的效率和能耗。
12. 电机启动过程的仿真:利用Matlab可以模拟电机的启动过程,包括起动电流和启动时间等。
13. 电机负载仿真:通过Matlab可以模拟电机在不同负载条件下的工作特性,帮助优化电机的设计。
14. 电机饱和仿真:利用Matlab可以模拟电机在饱和状态下的工作特性,提供更准确的仿真结果。
15. 电机电磁干扰的仿真:通过Matlab可以模拟电机产生的电磁干扰对其他设备的影响,提供干扰抑制的方法。
16. 电机电磁场的仿真:利用Matlab可以模拟电机内部的电磁场分布,帮助优化电机的设计。
MATLAB仿真
第2章 MATLAB仿真 与其它高级语言相比较,MATLAB具有独特的优势: (1) MATLAB是一种跨平台的数学语言。采用MATLAB 编写的程序可以在目前所有的操作系统上运行 ( 只要这些系 统上安装了MATLAB平台)。MATLAB程序不依赖于计算机 类型和操作系统类型。
(2) MATLAB是一种超高级语言。MATLAB平台本身是 用C语言写成的,其中汇集了当前最新的数学算法库,是许 多专业数学家和工程学者多年的劳动结晶。 MATLAB 意味着站在巨人的肩膀上观察和处理问题,所 以在编程效率,程序的可读性、可靠性和可移植性上远远超 过了常规的高级语言。这使得 MATLAB 成为了进行科学研 究和数值计算的首选语言。
第2章 MATLAB仿真 MATLAB中可以方便地进行复数运算,例如计算
5
a b
2
,其中,a=15+j3,b=5e j2。
>>a=15+j*3,b=5*exp(j*2),(a.^2+b).^(1/5)[回车] 6. MATLAB 提供了极为便利的数据可视化手段,可 以作出任意函数的图像。作为快速入门,在此以一个
二维作图为例,作出函数 y=e-x/10sinx 在 x∈[ -1,10 ]范
第2章 MATLAB仿真 (5) MATLAB具有强大的绘图功能。利用MATLAB的 绘图功能,可以轻易地获得高质量的(印刷级)曲线图。具 有多种形式来表达二维、三维图形,并具有强大的动画 功能,可以非常直观地表现抽象的数值结果。这也是 MATLAB广为流行的重要原因之一。 (6) MATLAB具有串口操作、声音输入输出等硬件操 控能力。随着版本的提高,这种能力还会不断加强,使 得人们利用计算机和实际硬件相连接的半实物仿真的梦 想得以轻易实现。 (7) MATLAB程序可以直接映射为DSP芯片可接受的 代码,大大提高了现代电子通信设备的研发效率。
Matlab中的电力系统仿真与稳态分析技术
Matlab中的电力系统仿真与稳态分析技术随着电力系统技术的不断发展,利用计算机软件进行电力系统仿真和稳态分析已经成为一个常见的工具。
Matlab作为一种强大的数学计算和仿真软件,在电力系统仿真和稳态分析中发挥了重要的作用。
本文将探讨Matlab在电力系统仿真和稳态分析中的应用,并对其相关技术进行介绍和分析。
第一部分:电力系统仿真技术的基本原理电力系统仿真是通过建立电力系统的数学模型,模拟实际电力系统运行过程的一种技术。
其基本原理是建立电力系统的节点电压和支路电流方程,使用数值计算方法求解这些方程,以得到电力系统的稳态解。
Matlab在电力系统仿真中常用的函数有powerflow和newton_raphson,它们分别用于求解电力系统的潮流计算和稳定计算。
潮流计算是电力系统仿真中最基本的环节,用于计算电网各节点的电压和支路的电流。
它的实质是求解电力系统的非线性方程组,对于大规模电力系统而言,这个方程组的求解是一个非常复杂的过程。
而Matlab提供了一套强大的数值计算工具箱,能够有效地处理这类问题。
利用Matlab编写的潮流计算程序,可以提供准确的电力系统状态信息。
第二部分:Matlab在电力系统仿真中的应用案例Matlab在电力系统仿真中提供了丰富的函数库和工具箱,可以用于建立电力系统的数学模型、求解电力系统方程组以及进行结果的可视化分析。
下面我们通过一个简单的案例,来展示Matlab在电力系统仿真中的应用。
假设一个3节点的电力系统,其中包括一个发电机节点、两个负荷节点以及电源节点。
我们可以通过Matlab的power_system函数建立电力系统的模型,并使用powerflow函数计算电力系统的潮流分布。
计算完成后,我们可以通过Matlab的plot函数绘制各节点的电压和支路的电流图像,对电力系统的稳态运行情况进行可视化分析。
第三部分:电力系统稳态分析技术的应用除了电力系统仿真,Matlab还可以用于电力系统稳态分析。
现代控制系统分析与设计——基于matlab的仿真与实现
现代控制系统分析与设计——基于matlab的仿真与实现随着现代科技的不断发展,越来越多的技术应用到现代控制系统中,而控制系统的分析与设计更是一项复杂的技术。
为了更好地实现现代控制系统的分析与设计,计算机技术尤其是基于Matlab的计算机仿真技术在现代控制系统分析与设计中已发挥着越来越重要的作用。
本文旨在介绍基于Matlab的仿真技术,总结它在现代控制系统分析与设计中的应用,为研究者们提供一个思考Matlab技术在现代控制系统分析与设计中的可能性的契机。
Matlab是当今流行的科学计算软件,它的设计特别适合进行矩阵运算和信号处理等工作,可以有效地处理大量复杂的数字信息,因此成为现代计算机技术应用于控制系统分析和设计的重要工具。
基于Matlab的仿真技术主要用于建立控制系统的动态模型,分析系统的特性,评估系统的性能,模拟系统的行为,确定系统的参数,优化系统的性能。
基于Matlab的仿真技术已被广泛应用于现代控制系统的设计中。
首先,基于Matlab的仿真技术可以有效地提高系统设计的效率。
通过实现对控制系统的动态模型建模,可以快速搭建出真实系统的模拟系统,并可以使用计算机来模拟系统行为,可以有效地缩短控制系统设计的周期。
其次,基于Matlab的仿真技术可以有效地改善系统设计质量。
通过分析模拟系统的行为,可以寻找更合理的解决方案,从而改善系统设计的质量。
第三,基于Matlab的仿真技术可以有效地确定系统参数。
通过在模拟系统中添加不同参数,并通过对系统模拟行为的分析,可以确定使系统更加有效的参数组合。
最后,基于Matlab的仿真技术可以有效地优化系统性能。
通过对系统行为的分析,可以识别出系统存在的问题,并设计相应的优化策略,从而实现系统性能的最佳化。
综上所述,基于Matlab的仿真技术在现代控制系统分析与设计中发挥着重要的作用,不仅可以提高系统设计的效率,而且可以改善系统设计的质量,确定系统参数,优化系统性能。
Matlab建模仿真
例:
求解Lorenz模型的状态方程,初值为 x1(0)=x2(0)=0,x3(0)=1e-10;
8/ 3, 10, 28
求解Lorenz模型的状态方程,
x 1(t ) x1(t ) x 2(t ) x3(t ) x 2(t ) x 2(t ) x3(t )
模块连接解释
0.5
Gain
×
Product 1
x´=∂x/∂t =bx-px²
-
+
-
S
Sum
Integrator
Scope
Gain1
LOGO
微分方程的Simulink求解 及Matlab数字电路仿真
微分方程的Simulink建模与求解
建立起微分方程的 Simulink 模型 可以用 sim( ) 函数对其模型直接求解 得出微分方程的数值解
3.计算机仿真
计算机仿真是在研究系统过程中根据相似原理, 利用计算机来逼真模拟研究对象。研究对象可以 是实际的系统,也可以是设想中的系统。在没有 计算机以前,仿真都是利用实物或者它的物理模 型来进行研究的,即物理仿真。物理仿真的优点 是直接、形象、可信,缺点是模型受限、易破坏 、难以重用。
计算机作为一种最重要的仿真工具,已经推出了 模拟机、模拟数字机、数字通用机、仿真专用机 等各种机型并应用在不同的仿真领域。除了计算 机这种主要的仿真工具外还有两类专用仿真器: 一类是专用物理仿真器,如在飞行仿真中得到广 泛应用的转台,各种风洞、水洞等;另一类是用 于培训目的的各种训练仿真器,如培训原子能电 站、大型自动化工厂操作人员和训练飞行员、宇 航员的培训仿真器、仿真工作台和仿真机舱等
当然我们可以直接观察Matlab工具箱原有的 Lorenz
MATLAB仿真技术
4. 系统建模 4.1 连续系统建模
线性系统建模举例
例3:复位积分器的功用示例。 在仿真启动时,积分器从零开始对 0.5 t 进行积分。当复位口 信号 t-5=0 瞬间,积分器被重置为零。此后,再对0.5 ( t-5 ) 进行积分。
例3_4_2:积分模块直接构造微分方程求解模型。
假设从实际自然界(力学、电学、生态等)或社会中,抽象 出有初始状态为0的二阶微分程 x 0.2x 0.4x 0.2u,(t) u(t)是单位阶跃函数。本例演示如何用积分器直接构搭求解该微 分方程的模型。
符号矩阵的基本运算:加、减、乘、除、微积分等。 符号代数方程的求解。 符号微分方程的求解。 符号积分变换。
目录 主页
MATLAB的可视化功能
(1)二维曲线图形和三维曲面图形
二维符号函数曲线。
二维曲线图形。
三维符号函数曲线。 三维曲面图形。
三维线性图形。
目录 主页
(2)句柄图形 句柄图形(Handle Graphics)是一种面向对象的绘图系统。 图形对象、对象句柄和句柄图形树。 • MATLAB把用于数据可视和界面制作的基本绘图要素称 为句柄图形对象。 • 构成MATLAB句柄图形体系有12个图形对象(见句柄图形 树) 。
例:直接利用传递函数模块求解方程。
对二阶微分程进行拉氏变换:s2 X (s) 0.2sX (s) 0.4X (s) 0.2U (s)
可以得到: G(s) X (s)
0.2
U (s) s 2 0.2s 0.4
目录 主页
4.1 连续系统建模(续)
非线性系统建模举例
例3:求非线性系统
目录 主页
MATLAB的数值计算功能
Matlab中的动态系统建模与仿真方法介绍
Matlab中的动态系统建模与仿真方法介绍引言:动态系统建模与仿真在各个科学领域扮演着重要的角色。
在众多的建模软件中,Matlab无疑是最为常用和受欢迎的。
本文将介绍Matlab中的动态系统建模与仿真方法,帮助读者理解和掌握这一重要技术。
一、动态系统建模的基础知识动态系统是指在时间上随着一系列因素的变化而产生演化的系统。
建模是指将真实世界的系统用数学方程来描述,并将其转化为计算机可处理的形式。
为了进行动态系统建模,我们需要了解以下几个基础概念:1. 状态变量:动态系统的状态变量描述系统在某一时刻的状态。
例如,对于物理系统来说,位置和速度可以作为系统的状态变量。
2. 输入和输出:输入是指影响系统状态变量的外部参数,而输出是指我们希望观测到的系统的行为或性能指标。
3. 动态方程:动态方程是描述系统状态变化随时间演化的数学方程。
一般来说,动态方程是一个微分方程或差分方程。
二、Matlab中的动态系统建模工具Matlab提供了许多用于动态系统建模和仿真的工具箱。
下面将介绍其中几个常用的工具箱:1. Simulink:Simulink是Matlab的一个可视化仿真环境,用于建模、仿真和分析各种动态系统。
它提供了丰富的模块库,可以轻松构建复杂的系统模型,并进行仿真分析。
2. Control System Toolbox:该工具箱提供了一套功能强大的工具,用于设计和分析控制系统。
它包含了许多常见的控制器设计方法,如比例、积分和微分控制器(PID),以及现代控制理论中的状态空间方法。
3. Signal Processing Toolbox:信号处理是动态系统建模中的一个重要环节。
这个工具箱提供了许多用于信号处理和分析的函数和工具,如傅里叶变换、滤波器设计等。
三、动态系统建模方法在Matlab中,我们可以使用不同的方法来进行动态系统建模,下面介绍几种常见的方法:1. 方程建模法:这是最常见的建模方法之一,通过分析系统的物理特性和因果关系,建立微分方程或差分方程来描述系统动态特性。
Matlab中的动力系统建模与仿真方法
Matlab中的动力系统建模与仿真方法Matlab是一种流行的科学计算软件,广泛应用于各个领域中的数据处理和建模仿真。
在动力系统领域,Matlab也提供了丰富的工具和函数,方便用户进行系统建模和仿真。
本文将介绍Matlab中常用的动力系统建模方法和仿真技术。
一、动力系统建模方法1.1 状态空间表示法在动力系统建模时,常使用状态空间表示法来描述系统的动态行为。
状态空间表示法将系统的状态变量和输入输出变量联系起来,通过矩阵形式表示系统的数学模型。
Matlab提供了函数来求解状态空间模型的时间响应、频率响应等重要特性。
1.2 传递函数表示法传递函数表示法是另一种常用的动力系统建模方法。
它将系统的输入输出关系表示为一个分子多项式除以分母多项式的形式。
Matlab中的Control System Toolbox提供了丰富的函数和工具箱来处理传递函数模型,如函数tf、bode、step 等。
1.3 符号计算方法符号计算是一种基于代数运算的方法,可以在符号层面上进行系统的数学推导和分析。
Matlab中的Symbolic Math Toolbox提供了强大的符号计算功能,包括求解方程组、求导、积分、线性化等。
通过符号计算,可以得到系统的解析解或近似解,进一步分析系统的特性。
1.4 神经网络建模方法除了传统的数学建模方法外,神经网络也被广泛应用于动力系统的建模和仿真。
Matlab中的Neural Network Toolbox提供了丰富的函数和工具来构建神经网络模型,并进行训练和仿真。
神经网络可以通过学习系统的输入输出数据来建立模型,具有一定的非线性拟合能力。
二、动力系统仿真技术2.1 数值解法动力系统的仿真一般采用数值解法来求解微分方程。
Matlab提供了丰富的数值求解函数,如ode45、ode23、ode15s等,可以根据系统的特点选择合适的数值求解方法。
数值解法通过离散化时间和空间,将连续的微分方程转化为差分方程,以逼近真实系统的连续演化过程。
《MATLAB仿真技术》实验指导书2016附问题详解
实验项目及学时安排实验一 MATLAB环境的熟悉与基本运算 2学时实验二 MATLAB数值计算实验 2学时实验三 MATLAB数组应用实验 2学时实验四 MATLAB符号计算实验 2学时实验五 MATLAB的图形绘制实验 2学时实验六 MATLAB的程序设计实验 2学时实验七 MATLAB工具箱Simulink的应用实验 2学时实验八 MATLAB图形用户接口GUI的应用实验 2学时实验一 MATLAB环境的熟悉与基本运算一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数三、实验容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、 exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
如何使用Matlab进行随机过程建模与仿真
如何使用Matlab进行随机过程建模与仿真使用Matlab进行随机过程建模与仿真随机过程是概率论的重要分支,它用于描述随机事件在时间或空间维度上的演变规律。
在工程与科学领域中,随机过程建模与仿真是十分重要的工具,它可以帮助我们预测未来的状态、优化系统设计以及进行风险评估等。
Matlab作为一种功能强大的数值计算和科学数据可视化工具,提供了丰富的函数和工具箱,使得随机过程的建模与仿真变得更加简便高效。
本文将介绍如何使用Matlab进行随机过程建模与仿真,并结合实际案例进行说明。
一、随机过程的基本概念在开始使用Matlab进行随机过程建模与仿真之前,我们首先需要了解随机过程的基本概念。
随机过程可以看作是一组随机变量的集合,它的演变具有一定的随机性。
常见的随机过程包括马尔可夫过程、泊松过程、布朗运动等。
在建模随机过程时,我们通常需要确定其状态集合、状态转移概率和初始状态等。
这些概念的理解对于后续的建模与仿真工作非常重要。
二、随机过程建模在使用Matlab建模随机过程时,我们需要选择合适的模型以及提取合适的参数。
Matlab提供了多种用于随机过程建模的函数和工具箱,例如Stochastic Process Toolbox和Statistics and Machine Learning Toolbox等。
我们可以利用这些工具来创建各种类型的随机过程模型,也可以自定义模型。
这些模型可以用来描述各种实际问题,比如金融市场的波动、传感器数据的变化等。
以布朗运动为例,我们可以使用Matlab创建一个布朗运动模型并进行仿真。
布朗运动是一种连续时间、连续状态的随机过程,其在单位时间内的状态增量是服从正态分布的。
在Matlab中,我们可以使用"brownian"函数来生成布朗运动的仿真数据。
首先,我们需要确定布朗运动的参数,例如时间步长、仿真时长、起始状态等。
然后,通过调用"brownian"函数,可以获得仿真数据,并进行可视化分析。
在Matlab中进行模拟系统建模与仿真
在Matlab中进行模拟系统建模与仿真简介MATLAB(Matrix laboratory)是一种高级计算环境和编程语言,广泛用于工程、科学和数学领域的数据分析、可视化和算法开发。
在MATLAB中,我们可以使用各种工具箱和功能来进行系统建模和仿真。
本文将介绍一些MATLAB中进行模拟系统建模与仿真的方法和技巧,以帮助读者更好地理解和应用这个强大的工具。
一、系统建模1. 确定系统的输入和输出在进行系统建模之前,首先要明确系统的输入和输出。
系统的输入是指进入系统的外部信号或变量,而系统的输出是指系统产生的响应或结果。
了解系统的输入和输出有助于我们理解系统的工作原理并进行模型构建。
2. 建立传递函数模型传递函数模型是系统建模中常用的一种数学模型。
它通过输入和输出之间的关系来描述系统的动态行为。
在MATLAB中,我们可以使用tf函数来建立传递函数模型。
例如,假设有一个二阶系统,可以通过以下代码建立其传递函数模型:```matlabnum = [1];den = [1, 1, 1];sys = tf(num, den);```3. 建立状态空间模型状态空间模型是描述系统动态行为的另一种常用模型。
它通过系统的状态变量和输入之间的关系来表示系统的行为。
在MATLAB中,我们可以使用ss函数来建立状态空间模型。
例如,假设有一个二阶系统,可以通过以下代码建立其状态空间模型:```matlabA = [0, 1; -1, -1];B = [0; 1];C = [1, 0];D = 0;sys = ss(A, B, C, D);```二、系统仿真1. 时域仿真时域仿真是通过对系统输入信号进行时间积分来模拟系统的行为。
在MATLAB中,我们可以使用sim函数来进行时域仿真。
例如,假设有一个输入信号u和一个系统sys,可以通过以下代码进行时域仿真:```matlabt = 0:0.01:10; % 时间范围u = sin(t); % 输入信号[y, t] = sim(sys, t, u); % 仿真结果```2. 频域仿真频域仿真是通过对系统输入信号进行傅里叶变换,并与系统的传递函数进行频域计算来模拟系统的行为。
matlab仿真课程设计报告
matlab仿真课程设计报告一、教学目标本课程的教学目标旨在通过MATLAB仿真技术的学习,使学生掌握MATLAB基本操作、仿真环境搭建、脚本编写及图形用户界面设计等技能,培养学生运用MATLAB解决实际问题的能力。
具体目标如下:1.知识目标:–理解MATLAB的系统结构及基本功能;–掌握MATLAB基本语法、数据类型、矩阵运算;–熟悉MATLAB仿真环境及相关工具箱;–了解MATLAB在工程领域的应用。
2.技能目标:–能够独立搭建简单的仿真环境;–能够运用MATLAB进行数据分析、算法实现;–具备编写MATLAB脚本及图形用户界面的能力;–能够运用MATLAB解决实际工程问题。
3.情感态度价值观目标:–培养学生的创新意识、团队协作精神及自主学习能力;–使学生认识到MATLAB在工程领域的重要性,提高学习兴趣;–培养学生运用所学知识解决实际问题的责任感。
二、教学内容本课程的教学内容主要包括MATLAB基础知识、MATLAB仿真环境及工具箱、脚本编写及图形用户界面设计等。
具体安排如下:1.MATLAB基础知识:–MATLAB概述及系统结构;–MATLAB基本语法、数据类型、矩阵运算。
2.MATLAB仿真环境及工具箱:–MATLAB仿真环境搭建;–MATLAB常用工具箱介绍,如控制系统、信号处理、图像处理等。
3.脚本编写及图形用户界面设计:–MATLAB脚本编写方法及技巧;–MATLAB图形用户界面设计原理及实例。
4.MATLAB在工程领域的应用:–利用MATLAB解决实际工程问题案例分析。
三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法相结合,以激发学生的学习兴趣和主动性。
具体方法如下:1.讲授法:通过讲解MATLAB的基本概念、语法及应用,使学生掌握课程基本知识。
2.案例分析法:分析实际工程案例,让学生了解MATLAB在工程领域的应用,提高学生解决实际问题的能力。
3.实验法:安排适量实验,让学生动手操作,培养学生的实际操作能力和创新能力。
MATLAB中的行为建模和仿真技巧
MATLAB中的行为建模和仿真技巧引言:MATLAB是一种功能强大的科学计算软件,被广泛应用于各个领域的工程问题求解和仿真。
本文将重点介绍如何利用MATLAB进行行为建模和仿真,为读者提供一些技巧和指导。
一、行为建模行为建模是以人工智能为基础的研究领域,它旨在对现实世界中的对象、系统或个体的行为进行建模和描述。
MATLAB提供了丰富的工具和函数,支持各种行为建模技术的实现。
1. 基于状态机的行为建模状态机模型是一种常用的行为建模工具,它描述了对象的行为随时间的变化。
在MATLAB中,我们可以使用状态机工具箱来创建和模拟状态机模型。
该工具箱提供了丰富的函数和图形界面,使得状态机模型的构建和仿真变得简单易用。
2. 基于规则的行为建模规则是描述系统行为的逻辑条件和控制规则。
在MATLAB中,可以使用模糊逻辑工具箱来实现基于规则的行为建模。
该工具箱提供了一套完整的模糊逻辑建模和仿真函数,可以帮助用户轻松构建和模拟模糊规则,并通过模糊推理来描述和控制系统的行为。
3. 基于神经网络的行为建模神经网络是一种模拟人类大脑神经元网络的数学模型,它可以学习和模拟复杂的非线性行为。
在MATLAB中,我们可以借助神经网络工具箱来构建和训练神经网络模型,并用于行为建模和仿真。
该工具箱提供了多种类型的神经网络模型和训练算法,可满足不同应用场景的需求。
二、仿真技巧仿真是通过计算机模拟实验来研究系统的行为和性能的一种方法。
MATLAB提供了许多强大的仿真工具和函数,使得仿真任务变得更加简单和高效。
1. 参数扫描和优化在进行系统仿真时,参数的确定是至关重要的。
MATLAB提供了参数扫描和优化工具箱,可以帮助用户通过对参数空间的扫描和优化算法的应用,确定最佳的系统参数配置。
2. 多体系统仿真多体系统是由多个相互作用的刚体组成的系统,常用于机械和物理仿真。
MATLAB提供了多体系统仿真工具箱,可用于建立和模拟多体系统的动力学行为。
该工具箱提供了多种建模和仿真函数,可用于模拟刚体的运动、碰撞和相互作用等。
matlab通信仿真实例
matlab通信仿真实例Matlab通信仿真实例:频移键控(FSK)调制与解调引言:通信系统在现代社会的发展中起着关键作用,其性能的评估和优化是一个重要的研究方向。
Matlab作为通信仿真的强大工具,具有广泛的应用。
本文将以频移键控(FSK)调制与解调为例,介绍如何使用Matlab进行通信仿真实例。
我们将从FSK调制与解调的基本原理开始,逐步介绍Matlab编程实现。
第一节:FSK调制原理频移键控(FSK)是一种基于频率调制的数字调制技术。
在FSK调制中,数字数据被映射到不同的频率,即0和1分别对应不同的载波频率。
调制信号可以表示为:s(t) = Acos(2πf1t) ,当输入为0s(t) = Acos(2πf2t) ,当输入为1其中s(t)为调制信号,A为幅度,f1和f2分别为两个载波频率。
FSK信号的频谱包含这两个载波频率。
下面我们将使用Matlab实现FSK调制。
第二节:Matlab编程实现FSK调制在Matlab中,我们可以使用频率生成器函数freqgen来生成不同频率的信号。
首先,我们需要在Matlab中定义载波频率f1和f2,和待调制的数字数据序列x。
f1 = 1000; 第一个载波频率f2 = 2000; 第二个载波频率x = [0 1 0 1 0]; 待调制的数字数据序列接下来,我们可以根据以上公式,使用正弦函数生成相应的调制信号。
t = 0:0.0001:0.001; 时间间隔s = zeros(size(t)); 初始化调制信号为0for i = 1:length(x)if x(i) == 0s = s + cos(2*pi*f1*t);elses = s + cos(2*pi*f2*t);endend在上述代码中,我们使用for循环遍历输入数据序列的每个元素,根据输入数据的值选择不同的载波频率,并将调制信号叠加在一起。
最后,我们得到了FSK调制信号s。
接下来,我们将介绍FSK解调的原理和Matlab 的实现。
如何利用Matlab技术进行模拟实验
如何利用Matlab技术进行模拟实验引言:模拟实验是一种基于计算机仿真的方法,通过对系统的数学建模及仿真模拟,来了解和研究实际问题。
MATLAB作为一种功能强大的数学软件,提供了丰富的工具和函数,可以用于各种领域的模拟实验。
本文将介绍如何利用MATLAB技术进行模拟实验,并分析其优势和应用案例。
一、使用MATLAB进行数学建模数学建模是模拟实验的基础,通过数学模型的建立,可以将实际问题转化为数学表达式,进而进行仿真模拟分析。
在MATLAB中,有一些常用的数学建模工具和函数可以帮助我们完成这个过程。
1.符号计算工具包(Symbolic Math Toolbox):该工具包提供了符号化数学计算的功能,可以进行符号运算、求解方程、求导、积分等操作。
通过符号计算,可以将数学问题抽象为符号表达式,方便后续的建模和仿真。
2.方程求解器(Solver):MATLAB中内置了多种求解方程的算法和函数,可以快速准确地求解各种数学模型中的方程。
例如,可以使用fsolve函数来求解非线性方程组,使用ode45函数来求解常微分方程等。
3.优化工具箱(Optimization Toolbox):该工具箱提供了多种优化算法和函数,可以用于求解最优化问题。
例如,使用fmincon函数可以进行约束最优化,使用linprog函数可以进行线性规划等。
二、MATLAB的仿真建模功能MATLAB不仅可以进行数学建模,还提供了强大的仿真建模功能,可以根据建立的数学模型进行仿真实验,并得到模拟结果。
1.图形化建模界面(Simulink):MATLAB中的Simulink是一个图形化建模和仿真环境,可以用于构建动态系统的模型。
用户可以通过将各种功能块组合在一起,建立整个系统的模型。
Simulink支持各种类型的信号和系统,包括连续时间、离散时间、混合时间等。
通过Simulink可以直观地展示系统的动态行为,并进行仿真和分析。
2.系统动态仿真:MATLAB提供了一系列用于系统动态仿真的函数和工具箱。
基于MATLABSimulink的机械系统仿真技术
基于MATLABSimulink的机械系统仿真技术基于 MATLAB/Simulink 的机械系统仿真技术在当今科技飞速发展的时代,机械系统的设计和优化变得日益复杂。
为了更高效、准确地预测和分析机械系统的性能,基于MATLAB/Simulink 的机械系统仿真技术应运而生。
这项技术为机械工程师和研究人员提供了强大的工具,帮助他们在实际制造之前,就能对机械系统的行为有深入的了解和准确的预测。
机械系统仿真技术的核心在于通过建立数学模型来模拟真实世界中机械系统的运行。
而 MATLAB/Simulink 作为一款功能强大的数学计算和建模软件,为实现这一目标提供了丰富的资源和便捷的操作环境。
首先,让我们来了解一下 MATLAB/Simulink 的一些基本特点。
MATLAB 具有强大的数值计算和数据分析能力,能够处理复杂的数学公式和算法。
Simulink 则是一个基于图形化的建模环境,用户可以通过拖拽和连接各种模块来构建系统模型,这种直观的操作方式大大降低了建模的难度,提高了工作效率。
在机械系统仿真中,常见的模型类型包括刚体动力学模型、柔性体模型、传动系统模型等。
以刚体动力学模型为例,我们可以使用牛顿定律和欧拉方程来描述物体的运动。
通过在 Simulink 中定义质量、惯性矩、力和力矩等参数,以及它们之间的关系,就能模拟出刚体的运动轨迹和受力情况。
对于复杂的机械系统,如汽车的悬挂系统,不仅需要考虑刚体的运动,还需要考虑弹性元件和阻尼器的特性。
这时,就可以引入柔性体模型。
通过有限元分析等方法,可以将柔性体的模态信息导入到Simulink 中,与刚体模型相结合,从而更真实地反映系统的动态特性。
传动系统也是机械系统中的重要组成部分。
例如,齿轮传动系统的建模需要考虑齿轮的齿数、模数、压力角等参数,以及齿面接触和摩擦等因素。
在 MATLAB/Simulink 中,可以使用专门的模块来构建齿轮传动模型,并与其他部件的模型进行集成,以分析整个传动系统的性能。
基于MATLAB的电力系统仿真技术研究
基于MATLAB的电力系统仿真技术研究引言:随着电力系统规模的不断扩大和电力负荷的不断增加,电力系统的安全和稳定运行变得尤为重要。
仿真技术是评估电力系统运行状况、优化电力系统配置以及解决系统故障的重要手段之一。
而基于MATLAB的电力系统仿真技术,由于其高度灵活、强大的数值计算能力和丰富的应用工具箱,成为了电力系统仿真领域中最为常用和受欢迎的工具之一。
一、MATLAB在电力系统仿真中的应用1. 电力系统模型的建立电力系统仿真的第一步是建立电力系统的数学模型,以描述电力系统中各个元件之间的关系和相互作用。
MATLAB提供了丰富的数据处理和数学建模工具,可以方便地将电力系统的各个元件(如发电机、变压器、线路等)抽象为数学模型,并通过线性方程组或非线性方程组来描述系统的运行规律。
2. 稳态和暂态分析基于MATLAB的电力系统仿真技术可以进行稳态和暂态分析,以验证电力系统在不同工作情况下的运行状态和稳定性。
稳态分析主要包括功率流计算、电压稳定限制计算等,而暂态分析则着重于电力系统的瞬态响应和稳定性评估。
MATLAB提供了强大的数值计算和解算器工具,可以帮助工程师高效准确地进行稳态和暂态仿真分析。
3. 阻尼器和控制器设计电力系统中的振荡和不稳定性是影响电力系统安全和稳定运行的重要因素。
基于MATLAB的电力系统仿真技术可以帮助工程师设计和优化阻尼器和控制器,以提高电力系统阻尼和稳定性。
MATLAB提供了丰富的控制系统设计和分析工具箱,例如控制系统工具箱、优化工具箱等,可用于系统建模、控制器设计和参数优化等。
二、基于MATLAB的电力系统仿真技术的优势和挑战1. 优势:(1)灵活性:MATLAB提供了丰富的建模、分析和可视化工具,使得电力系统仿真可以灵活地应对不同的问题和需求。
工程师可以根据具体情况定制电力系统的仿真模型和仿真方案。
(2)高效性:MATLAB具有强大的数值计算和算法解算能力,能够高效地处理大规模的电力系统仿真问题。
利用matlab进行仿真的案例
利用matlab进行仿真的案例利用Matlab进行仿真可以涉及多个领域的案例,下面列举10个案例:1. 汽车碰撞仿真:利用Matlab中的物理仿真库,可以模拟汽车碰撞的过程,分析碰撞时车辆的变形、撞击力等参数。
可以根据不同的碰撞角度和速度,评估不同碰撞条件下的安全性能。
2. 电力系统仿真:利用Matlab中的电力系统仿真工具,可以模拟电力系统的运行情况,包括电压、电流、功率等参数的变化。
可以用于分析电力系统的稳定性、短路故障等问题,并进行相应的优化设计。
3. 通信系统仿真:利用Matlab中的通信系统仿真工具箱,可以模拟无线通信系统的传输过程,包括信号的发送、接收、调制解调等环节。
可以用于评估不同调制方式、编码方式等对通信系统性能的影响。
4. 智能控制仿真:利用Matlab中的控制系统仿真工具,可以模拟各种控制系统的运行情况,包括PID控制、模糊控制、神经网络控制等。
可以用于设计、优化和评估各种控制算法的性能。
5. 雷达系统仿真:利用Matlab中的雷达仿真工具,可以模拟雷达系统的工作原理和性能,包括发射、接收、信号处理等过程。
可以用于评估雷达系统的探测能力、跟踪精度等指标,并进行系统参数的优化设计。
6. 气候变化模拟:利用Matlab中的气候模型,可以模拟气候系统的变化过程,包括温度、降水、风速等参数的变化。
可以用于研究气候变化对生态环境、农业生产等方面的影响,以及制定相应的应对策略。
7. 人体生理仿真:利用Matlab中的生理仿真工具箱,可以模拟人体的生理过程,包括心血管系统、呼吸系统、神经系统等。
可以用于研究不同疾病、药物对人体的影响,以及评估各种治疗方案的效果。
8. 金融市场仿真:利用Matlab中的金融工具箱,可以模拟金融市场的价格变化过程,包括股票、期货、汇率等。
可以用于研究不同投资策略、风险管理方法等对投资收益的影响,并进行相应的决策分析。
9. 电子器件仿真:利用Matlab中的电子器件仿真工具,可以模拟各种电子器件的工作原理和性能,包括二极管、晶体管、集成电路等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB仿真技术作业合集第1章 习题5.利用直接输入法和矩阵编辑器创建矩阵A=⎥⎦⎤⎢⎣⎡642531。
解:⑴利用直接输入法输入程序A=[1 3 5;2 4 6]按Enter 键后,屏幕显示A = 1 3 52 4 6⑵用矩阵编辑器创建矩阵,如图1.1所示。
图1.1 MATLAB 编辑器7.用矩阵编辑器创建矩阵a,使a 具有如下矩阵形式。
a=⎥⎦⎤⎢⎣⎡642531⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡654321⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321⇒a=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡098706540321⇒a=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000098706540321解:用矩阵编辑器创建矩阵a 的过程如图1.2、1.3、1.4、1.5、1.6所示。
图1.2 图1.3图1.4 图1.5图1.69.已知矩阵B=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡922518113211912102201304161475231501017,试:①提取矩阵B 的第一行和第二行的第2、4、5个元素组成新矩阵1B ;②提取矩阵B 的第三行和第一行的全部元素组成新矩阵2B ;③使矩阵B 的第一行和第三行的第2;4个元素为0;④标出矩阵B 的第一行中小于5的元素。
解:①如上题,用矩阵编辑器生成矩阵B ,再输入程序B1=B([1,2],[2,4,5])按Enter 键后,屏幕显示B1 = 0 0 155 14 16②输入程序B2=B([1,3],:)按Enter 键后,屏幕显示B2 = 17 0 1 0 15 4 0 13 0 22③第一行和第三行的第2;4个元素原本就为0。
④输入程序如下C=B(1,:)<5; %将B 矩阵第一行中小于5 的值标记为1D=B(1,C) %去B 矩阵第一行中标为1的元素按Enter 键后,屏幕显示D= 0 1 011.已知矩阵a 为4阶魔方阵,令a+3赋值给b ,a+b 赋值给c ,求b 和c 。
解:程序如下。
>> a=magic(4) %建立4阶魔方矩阵a = 16 2 3 135 11 10 89 7 6 124 14 15 1>> b=a+3 %将a 中各元素加3b = 19 5 6 168 14 13 1112 10 9 157 17 18 4>> c=a+b %将a,b 中对应元素相加c = 35 7 9 2913 25 23 1921 17 15 2711 31 33 513.已知A 为3×3的均匀分布随机矩阵,B 为3×2的均匀分布随机矩阵,C 为2×3的均匀分布随机矩阵,求Q=C *A^2*B 。
解:程序如下。
>> A=rand(3,3) %A 为3×3的均匀分布随机矩阵A = 664/815 717/785 408/14651298/1433 1493/2361 1324/2421751/5914 694/7115 338/353>> B=rand(3,2) %B 为3×2的均匀分布随机矩阵B = 687/712 581/607589/3737 614/12656271/6461 1142/1427>> C=rand(2,3) %C 为2×3的均匀分布随机矩阵C = 689/4856 1065/1163 1966/2049407/965 61/77 3581/5461>> Q1=C*A^2*BQ1 = 1444/357 6485/15441263/311 699/16315.指出下列矩阵函数所实现的具体运算。
⑴A=rand(5);⑵B=rank(A);⑶C=eig(A);⑷D=sqrtm(A);⑸E=det(A)解:⑴A=rand(5)建立5x5的均匀分布随机矩阵;⑵B=rank(A)求A 矩阵的秩;⑶C=eig(A)是求的A 矩阵的全部特征值;⑷D=sqrtm(A)是按矩阵乘法的方式对A 矩阵开平方根;⑸E=det(A)是求矩阵A 的行列式。
17.利用MATLAB 的roots 函数求ƒ(x)=5x +44x +103x +162x +17x +12=0的根。
解:程序运行如下>> p=[1,4,10,16,17,12]p = 1 4 10 16 17 12>> x=roots(p)x = -1.6506-1.0000 + 1.4142i-1.0000 - 1.4142i-0.1747 + 1.5469i-0.1747 - 1.5469i19.画出一个幅度为2、频率为4Hz 、相位为3π的正弦信号。
解:程序如下>> A=2;>> phi=pi/3;>> omega=2*pi/12;>> n=-10:10;>> x=A*sin(omega*n+phi);>> stem(n,x,'fill');>> grid on;运行结果如图1.7所示。
图1.7 离散正弦信号图第2章习题1.系统的微分方程为'x(t)=-4x(t)+2u(t),其中u(t)是幅度为1、角频率为1rad/s 的方波输入信号,试建立系统的Simulink模型并进行仿真。
解:利用模块库中的模块建立系统模型,如图2.1所示。
图2.1 求解微分方程的模型在Scope窗口中看到仿真曲线如图2.2所示。
图2.2 仿真结果3.某单位反馈控制系统如图2.3(a)所示,引人反馈如图2.3(b)所示。
F⊗Y F(a)控制系统结构图 (b)图2.3(1)在Simulink环境下构建原始系统的结构图,输入阶跃信号,进行仿真,并对结果进行分析。
(2)在原系统中引人比例反馈,在Simulink环境下构建引人比例反馈后的系统结构图,进行仿真,并对结果进行分析。
解:(1)在Simulink环境下构建原始系统的结构图如图2.4所示,仿真结果如图2.5所示。
图2.4 仿真模型图2.5 仿真结果(2)在Simulink环境下构建引人比例反馈后的系统结构图如图2.6所示,仿真结果如图2.7所示。
图2.6 仿真模型图2.7 仿真结果5.使用Simulink 仿真求下列系统的单位脉冲响应(Simulink 中没有单位冲激信号模块,所以要利用阶跃信号模块经微分来产生)。
(1)H (s )=)5)(2()1(5+++s s s s (2)H (s )=115232++++s s s s 解:(1)建立的系统仿真模型如图2.8所示,仿真结果如图2.9所示。
图2.8 系统仿真模型图2.9 仿真结果(2)建立的系统仿真模型如图2.10所示,仿真结果如图2.11所示。
图2.10 系统仿真模型图2.11 仿真结果第3章习题2.利用信号处理模块库中的模块,构造并仿真信号:ƒ(n)=δ(n)+2u(n-1)-δ(n-3)解:图3.1 仿真框图选择模块搭建好的模型如图3.1所示。
接着设置各个模块的参数,Discrete Impulse模块参数如图3.2所示,Discrete Impulse1模块参数如图3.3所示,Buffer中Output Buffer Size设置为20,Gain模块Gain参数设为-1,Constant模块中Constant Value设为2,Delay模块中Delay参数设为1。
仿真结果如图3.4所示。
图3.2 Discrete Impulse模块参数图3.3 Discrete Impulse1模块参数图3.4 仿真结果5.设计一个巴特沃斯数字低通滤波器,使其满足:通带截止频率为0.4π,通带波纹小于0.5dB;阻带截止频率为06π,阻带最小衰减为50dB,试用FDAtool设计该数字滤波器,并生成脉冲响应曲线和频率响应曲线。
解:按3.5图设计滤波器参数。
图13.5滤波器设计界面点击Impulse选项得到冲激响应曲线如图3.6所示。
图3.6 冲激响应频率响应曲线如图3.7所示。
图3.7 幅频特性和相频特性12.自行录入一段语言信号,并对其做4倍抽取运算,观测抽取前与抽取后的频谱变化。
解:选择模块构造仿真框图如图3.8所示。
图3.8 仿真模型框图在matlab工作空间输入命令[x,fs]=wavread('E:\yinyue\xuyong.wav');设置各个模块参数。
Buffer模块参数如图3.9所示。
Signal from work space参数如图3.10所示。
图3.9 Buffer参数设置图3.10 Signal from work space参数设置仿真结果如下:图3.11 仿真前图3.12 仿真后第4章习题2.对四进制差分相移键控(DPSK)通信系统进行建模和蒙特卡罗仿真。
解:程序如下:clear all;SNRindB1=0:2:12;SNRindB2=0:0.1:12;for i=1:length(SNRindB1)simu_err_prb(i)=snr2ps(SNRindB1(i)); %仿真误码率endfor i=1:length(SNRindB2)SNR=exp(SNRindB2(i)*log(10)/10);theo_err_prb(i)=2*qfunc(sqrt(SNR));endsemilogy(SNRindB1,simu_err_prb,'*');hold on;semilogy(SNRindB2,theo_err_prb);xlabel('Eb/N0(dB)');ylabel('误码率');legend('仿真符号误码率','理论符号误码率');function [p]=snr2ps(snr_in_dB)N=10000;Es=1;snr=10^(snr_in_dB/10);sigma=sqrt(Es/(4*snr));for i=1:2*Ntemp=rand;if (temp<0.5)dsource(i)=0;elsedsource(i)=1;endendmapping=[0 1 3 2];M=4;[diff_enc_output]=cm_dpske(Es,M,mapping,dsource);for i=1:N[n(1) n(2)]=gausamp(sigma);r(i,:)=diff_enc_output(i,:)+n;endnumoferr=0;prev_theta=0;for i=1:Ntheta=angle(r(i,1)+j*r(i,2));delta_theta=mod(theta-prev_theta,2*pi);if ((delta_theta<pi/4)|(delta_theta>7*pi/4))decis=[0 0];elseif (delta_theta<3*pi/4)decis=[0 1];elseif (delta_theta<5*pi/4)decis=[1 1];elsedecis=[1 0];endprev_theta=theta;if ((decis(1)~=dsource(2*i-1))|(decis(2)~=dsource(2*i))) numoferr=numoferr+1;endendp=numoferr/N;endfunction [enc_comp]=cm_dpske(E,M,mapping,sequence)k=log2(M);N=length(sequence);remainder=rem(N,k);if(remainder~=0)for i=N+1:N+k-remaindersequence(i)=0;endN=N+k-remainder;endtheta=0;for i=1:k:Nindex=0;for j=i:i+k-1index=2*index+sequence(j);endindex=index+1;theta=mod(2*pi*mapping(index)/M+theta,2*pi);enc_comp((i+k-1)/k,1)=sqrt(E)*cos(theta);enc_comp((i+k-1)/k,2)=sqrt(E)*sin(theta);endfunction [y1 y2]=gausamp(sigma)y1=sigma*randn(1);y2=sigma*randn(1);end运行结果如图4.1所示。