单闭环直流调速系统的MATLAB计算与仿真
晶闸管单闭环直流调速主电路设计与MATLAB仿真的课程设计.doc
目录一.课程设计的目的 (3)二.课程设计的任务、指标内容及要求 (3)三.MATLAB软件开发系统功能简介及函数应用..........................................3~4 四.调速控制系统的性能指标 (4)五. 单闭环直流电动机系统………………………………………………………………4~5六.电路设计和仿真 (5)6.1 电路原理………………………………………………………………………5~66.2 参数设定及Matlab 的仿真…………………………………………………6~86.3 仿真结果………………………………………………………………………8~9七.总结 (10)八.参考文献 (10)一. 课程设计的目的在学习完《电力电子技术》相关课程之后进行的一个重要的实践性教学环节,是电气自动化专业学生在整个学习过程中一项综合性实践环节,是工程技术应用型人才培养目标的重要组成部分,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。
1、通过课题设计,可提高学生综合运用知识的能力,能巩固课程知识,加深对理论知识的理解,巩固和扩展学生的知识领域、训练学生综合运用所学的理论知识,培养学生严谨的科学态度和提高独立工作的能力,提升学生发现问题和解决问题的能力,从而能初步解决一些实际问题。
2、通过设计,能初步掌握电力电子系统设计方法,培养学生查阅资料,文献检索的能力,特别是如何利用Internet检索需要的文献资料。
独立获取新知识、新信息的能力,熟悉国家有关技术和经济方面的方针政策和安全规程,训练使用设计手册的技术资料的能力;3、提高学生课程设计报告撰写水平,为以后其它学科写课程设计实验报告积累经验。
4、培养学生设计和绘制电路图的能力。
二. 设计的任务、指标内容及要求。
本课题的设计任务是利用MATLAB 6.5软件设计晶闸管单环直流调速主电路,设计主电路控制参数和PID调节器参数。
单闭环直流调速系统的设计与Matlab仿真(一)
课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者:学号:专业:班级:指导教师:摘要在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以Matlab 为工具,以求简明直观而方便快捷的设计过程。
摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统目录摘要 (2)一、设计任务 (4)1、 ...................................................... 已知条件42、设计要求 (4)二、方案设计 (5)1、 ...................................................... 系统原理52、 ........................................................ 控制结构图 (6)三、参数计算 (7)四、P I调节器的设计 (9)五、系统稳定性分析 (11)六、小结 (12)七、参考文献 (13)1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M 系统)的结果如 图所示。
图中直流电机的参数:Pnom=2.2KW nnom=1500r/min ,Inom=12.5A , Unom=220V 电枢电阻Ra=1欧,V-M 系统主回路总电阻 R=2.9欧,V-M 系统电枢回路总电感L=40mH 拖动系统运动部分飞轮力矩GD2=1.5N.m2测速发动机为永磁式,ZYS231/110xi 型,整流触2、设计要求:(1) 生产机械要求调速围D=15 (2) 静差率s < 5%(3) 若 U*n=10V 时,n=nnom=1500r/min ,校正后相角稳定裕度丫 =45o ,剪切频率3 c >35.0rad/s ,超调量30% 调节时间ts < 0.1s倍号詮丨1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。
单闭环直流调速系统的MATLAB计算与仿真
1.1 直流调速系统概述
从生产机械要求控制的物理量来看,电力传动自动控制系统有调速系统、位置伺服 系统、力控制系统等其他多种类型,各种系统往往是通过控制转速来实现的,因此调速 系统是最基本的驱动控制系统。调速系统目前分为交流和直流调速控制系统,由于直流 调速系统的调速围广,静差率小、稳定性好并且具有良好的动态性能。因此在相当长的 时期,高性能的调速系统几乎都采用了直流调速系统。相比于交流调速系统,直流调速 系统在理论上和实践上更加成熟。
中的 SimuLink 实用工具来辅助设计,由于它可以构建被控系统的动态模型,直观迅速 观察各点波形,因此调速系统性能的完善可以通过反复修改其动态模型来完成,而不必 对实物模型进行反复拆装调试。本文运用 MATLAB 中的 SimuLink 实用工具对设计电路进 行了仿真。
1.3 国外现状
从 1971 年开始到目前的这个阶段,直线电机进入了独立的应用时代,在这个时代, 各类直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如 直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、拉伸机、各种电动门、 电动窗、电动纺织机等等。特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超 500km/h,接近了航空的飞行速度,且试验行程累计已达数十万千米。
MATLAB电机控制综合仿真实验
MATLAB电机控制综合仿真实验一、他励直流电机单闭环调速仿真实验要求:利用Simpowersystem里面自带的DC电机模块,完成他励直流电机单闭环调速仿真,速度调节用PI控制方法,要求封装PI模块,给定速度100rad/s,负载由空载到1s时跳变到20N。
调节不同的PI参数,观察仿真结果总结速度波形、转矩波形的变化规律(PI参数和超调量、稳定时间、稳态误差、振荡次数)。
另外要求将scope图中的4条曲线参数导出到工作空间,并用subplot和plot 函数画在同一个窗口中,每个子图加上对应的标题。
电机相关参数的设置图:仿真原理图:在仿真试验中需要按照实验要求对PI控制器子系统进行封装,然后更改Kp、Ki参数值的大小。
封装PI模块图如下:Plot绘图程序:>>subplot(411)>> plot(t,W,'r'),title('转速')>> subplot(412)>> plot(t,Ia,'b'),title('电枢电流')>> subplot(413)>> plot(t,Te,'g'),title('转矩')>> subplot(414)>> plot(t,If,'y'),title('励磁电流')速度调节用PI控制方法,给定速度100rad/s,负载由空载到1s 时跳变到20N,调节不同的PI参数,从PI模块封装中调节,修改不同的参数Ki 、Kp观察仿真结果。
Ki=100, Kp=5;050100w (r a d /s )00.51 1.52 2.53 3.54 4.55-2000200I a (A )-202I f (A )-1000100T e (N .m )Ki=2, Kp=1;w (r a d /s)I a (A)00.51 1.52 2.53 3.54 4.55I f (A)00.51 1.52 2.53 3.54 4.55T e (N .m )二、 他励直流电机闭环调速系统仿真实验要求:利用Simulink 基本模块搭建他励直流电机闭环调速系统直流电机子模块,根据以下电机数学模型搭建:电磁转矩公式:e M a T C I =Φ 动力学平衡方程:e L m d T T B J dtωω--=电机模块要求封装,参数20.05kg m J =⋅,0.02N m s m B =⋅⋅,165m C =,0.01Wb f Φ=,恒定负载T L =20N 点击封装模块时输入。
单闭环直流调速系统的MATLAB计算与仿真
1绪论直流电动机具有良好的起、制动性能,宜于在广泛围平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切割机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。
近年来直流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和实践上都比较成熟,而且从反馈闭环控制的角度來看,它乂是交流拖动控制系统的基础,所以首先应该很好的掌握直流系统。
我们可以首先从单闭环转速负反馈直流调速系统來研究。
由于系统需要观察较多的性能,计算参数较多,而MATLAB 中的Simulink实用工具可直接构建其动态模型,省去大量的计算,通过修改动态模型可完善系统性能。
1.1直流调速系统概述从生产机械要求控制的物理量來看,电力传动自动控制系统有调速系统、位置伺服系统、力控制系统等其他多种类型,各种系统往往是通过控制转速來实现的,因此调速系统是最基本的驱动控制系统。
调速系统目前分为交流和直流调速控制系统,由于直流调速系统的调速围广,静差率小、稳定性好并且具有良好的动态性能。
因此在相当长的时期,高性能的调速系统儿乎都采用了直流调速系统。
相比于交流调速系统,直流调速系统在理论上和实践上更加成熟。
直流调速是现代电力拖动自动控制系统中发展较早的自动控制系统。
在20世纪60 年代发展起来的电力电子技术,使电能可以转换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,建筑、办公、家庭自动化控制设备提供了现代化的高新技术,提高了生产效率和人们的生活质量,因此,人类社会的生产、生活发生了巨大变化。
随着新型电力电子器件的研究和开发,先进控制技术的发展, 电力电子和电力传动控制装置的性能也不断优化和提高,这一变化的影响将越來越大。
单闭环直流电机调速系统在现代日常生活中的应用越來越广泛,其良好的调速性能、低廉的价格越來越被大众接受。
单闭环直流调速系统由整流变压器、平波电抗器、晶闸管整流调速装置、电动机- 发电机、闭环控制系统组成。
基于MATLAB的调压调速控制系统的仿真研究
答辩人:
班级:
学号:
目录
一.毕业设计的任务 二.直流调速系统的组成与工作原理 三.单闭环调速系统的仿真与分析 四.双闭环系统中转速与电流调节器的设计 五.双闭环系统的仿真与分析
一.毕业设计的任务
1. 掌握直流调速系统的工作原理及构成。 2. 研究直流调速系统的静态特性和动态特性。 3.设计双闭环调速系统中转速与电流调节器, 进行方案论证,确定设计方案。 4. 根据设定方案利用MATLAB做出系统仿真图, 包括单闭环和双闭环系统,进行仿真研究。
二. 直流调速系统的组成与工作原理
1.开环调速系统
开环调速系统的原理图
电力电子变换器:U d 0 K sU c
直流电动机: n U d0 I dR Ce
开环调速系统的机械特性为:
n U d0 RId K sU c RId
Ce
Ce
Ce
2.单闭环直流调速系统
单闭环直流调速系统的原理图
开环系统与闭环系统的机械特性图
晶闸管装置的放大系数: Ks 50
滞后时间常数: Ts 0.002s
电枢回路总电阻: R 1.0 ,电枢回路电磁时间常数:Tl 0.022s
电力拖动系统机电时间常数: Tm 0.09s
转速反馈系数: 0.01V min /r
对应额定转速时的给定电压:
U
* n
10V
1.同时改变 1 与 Kp 的值
三.单闭环调速系统的仿真与分析
1.单闭环系统的动态数学模型
PI控制的直流调速系统的动态结构框图
2.单闭环调速系统仿真参数
系统各环节的参数如下:
直流电动机: 额定电压: U N 220V ,额定电流:I dN 55A 额定转速: nN 1500r/ min,电动机电势系数:Ce 0.228V min/ r
单闭环直流调速系统的MATLAB计算与仿真
DO I:10.19392/ki.1671-7341.201901079电子信息_________________________科技风2019年1月单闭环直流调速系统的m a t l a b计算与仿真左强王淼孟祥俊李瑞吉林农业科技学院机械与土木工程学院吉林吉林132101摘要:在生产、研发、科研、实践的各个领域中,大量的生产机器需要在不同的情况下以不同的运行速度来提高产品的生产 效率和保证产品的质量。
所以某一种机械就需要根据相关工件的工艺需求来对电动机的转速进行调节。
关键词:闭环;直流调速系统;反馈调节;仿真技术;稳定校正1绪论电动机的作用是将电能转化为机械能,现在市面上绝大多 数生产机械都使用电动机作为驱动元件。
[1]它是使某种生产机 械正常运转的动力设备,然而同一机械生产的不同元件对加工 的工艺要求也不尽相同,这时就需要根据产品的工艺要求来调 节电动机的转速,使加工工件的表面达到工艺要求的精度,这 时便需要调速系统来完成这项工作。
2单闭环直流调速系统晶闸管一电动机调速系统(V—M系统)是近年来普遍采 用的调速系统,所以本文釆用V-M系统进行分析。
2.1 V-M系统的控制原理本文选用转速为反馈量,采取变电压的调速方式。
采用转速负反馈的闭环调速系统图2.2 V-M系统的静特性由图1可知,输入端比较环节电压、测速反馈环节电压、闭 环控制系统放大器电压如下:输人端比较环节电压= t/n*- t/n(1)测速反馈环节电压:= an(2)闭环控制系统放大器电压:£/C = ¥〜(3)电力电子变换器理想空载输出电压:&£/c ;闭环控制系统的开环机械特性:n = Uj〇~UR(4)Le式中:a—转速反馈系数(V.min/r);K p—闭环控制系统的放大器电压放大系数;2.3 V-M系统的反馈控制规律在V-M控制系统中,开环放大系数K值对系统的稳定性有很大影响,K值越大,系统的静态特性越硬,稳态速度下降越小,稳态性能越好,所以在一定的静态差要求下速度调节的范围也就越宽。
基于Matlab的单闭环直流电机调速系统的设计
摘要运动控制系统中应用最广泛的是自动调速系统,在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。
晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机、测速反馈系统组成。
晶闸管调速系统以其良好的调速性能而广泛应用于生产生活中。
闭环控制对电动机的稳定性有很好的保障。
对于晶闸管直流电动机系统的研究要从两个方面进行,一是在带电动机负载时整流电路的工作情况;二是由整流电路供电时电动机的工作情况。
本文介绍了晶闸管直流电机调速系统,运用M a t l a b 进行了仿真,并对晶闸管直流调速系统参数和环节特性进行了分析和测定。
关键词:晶闸管,整流,直流调速,M a t l a b,闭环控制目录第一章概述 (3)第二章调速控制系统的性能指标 (4)2.1 直流电动机工作原理 (4)2.2 电动机调速指标 (4)2.3 直流电动机的调速 (5)2.4直流电机的机械特性 (6)第三章单闭环直流电动机系统 (7)3.1 三相桥式全控整流电路 (7)3.1.1带电阻负载时的工作情况 (7)3.1.2 三相桥式全控整流电路计算公式 (9)3.2 单闭环直流调速 (9)第四章电路设计和仿真 (10)4.1 电路原理 (10)4.2 参数设定及Matlab的仿真 (11)4.2.1 系统仿真图 (11)4.2.2 系统的建模和参数的设定 (11)4.3 仿真结果 (13)第五章总结 (15)参考文献 (16)第一章概述电动机是用来拖动某种生产机械的动力设备,所以需要根据工艺要求调节其转速。
比如:在加工毛坯工件时,为了防止工件表面对生产刀具的磨损,因此加工时要求电机低速运行;而在对工件进行精加工时,为了缩短加工时间,提高产品的成本效益,因此加工时要求电机高速运行。
所以,我们就将调节电动机转速,以适应生产要求的过程就称之为调速;而用于完成这一功能的自动控制系统就被称为是调速系统。
转速反馈单闭环直流调速系统Matlab仿真
计算机仿真技术作业一——转速反馈单闭环直流调速系统仿真*名:***班级:电气1102学号: ********日期: 2014年5月4日指导老师:***北京交通大学计算机仿真技术作业一题目:转速反馈单闭环直流调速系统仿真直流电机模型框图如下图所示,仿真参数为R=0.6Ω,T l=0.00833,T m=0.045,Ce=0.2。
本次仿真采用算法为ode45,仿真时间5s。
图1 直流电机模型1、开环仿真:用simulink实现上述直流电机模型,直流电压U d0取220V,time n 转速times静差率仿真算法为ode230.511.522.533.544.55time n 转速times静差率选择仿真算法ode23时,在2.5s 之后转速发生小幅度震荡,后来趋于稳定,运算时间和精度相差不大 2、闭环仿真:在上述仿真基础上,添加转速闭环控制器,转速指令为1130rpm ,0~2.5s ,电机空载,即I d =0;比例环节:Kp=4 2.5s~5s ,电机满载,即I d =55A 。
比例环节:Kp=4(1)控制器为比例环节:试取不同k p 值,画出转速波形,求稳态时n 和s 并进行比较。
在Simulink 中建立系统模型如下图所示time times静差率Kp=1Kp=2时转速n 稳态值为5784rpm ,静差率s 稳态值为-4.0609time ntimes静差率Kp=2Kp=4时转速n 稳态值为5827rpm ,静差率s 稳态值为-4.0982time n转速Kp=4times静差率Kp=4Kp=5时转速n 稳态值为5835rpm ,静差率s 稳态值为-4.1054time ntimes静差率Kp=5记录数据如下表所示结论:由图像可得,Kp 越大,转速n 超调量越大(2)控制器为比例积分环节,设计恰当的k p 和k I 值,并与其它不同的k p 和k I 值比较,画出不同控制参数下的转速波形,比较静差率、超调量、响应时间和抗扰性。
单闭环直流调速系统的设计与Matlab仿真(一)资料
课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者: 学号: 专业: 班级: 指导教师:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。
摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统摘要 (2)一、 ..................................................... 设计任务 41、 ...................................................... 已知条件42、设计要求 (4)二、 ..................................................... 方案设计 51、 ...................................................... 系统原理 52、 ........................................................ 控制结构图 6三、 ..................................................... 参数计算7四、 ....................................................... PI调节器的设计.. (9)五、 ................................................ 系统稳定性分析11六、 ......................................................... 小结12七、 ..................................................... 参考文献13一、设计任务1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。
直流调速系统的matlab仿真
一,转速反馈控制直流调速系统的matlab仿真1,基本原理:根据自动控制原理,将系统的被调节量作为反馈量引入系统,与给定量进行比较,用比较后的偏差值对系统进行控制,可以有效地抑制甚至消除扰动的影响,而维持被调节量很少变化或不变,这就是反馈控制的基本作用。
在负反馈基础上的“检查误差,用以纠正误差”这一原理组成的系统,其输出量反馈的传递途径构成一个闭环回路,因此被称作闭环控制系统。
在直流系统中,被调节量是转速,所构成的是转速反馈控制的直流调速系统。
2,下图是转速负反馈闭环调速系统动态结构框图各个环节的参数如下:直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电机电动势常数C e=0.192V·min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数Ks=44,滞后时间常数Ts=0.00167。
电枢回路总电阻R=1Ω,电枢回路电磁时间常数Tl=0.00167s,电力拖动系统机电时间常数Tm=0.075s。
转速反馈系数α=0.01 V·min/r。
对应的额定电压U n*=10V。
在matlab的simulink里面的仿真框图如下其中PI调节器的值暂定为Kp=0.56,1/τ=11.43。
3,仿真模型的建立:进入matlab,单击命令窗口工具栏的simulink图标,打开simulink模块浏览器窗口,如下图所示:打开模型编辑器窗口,双击所需子模块库的图标,则可以打开它,用鼠标左键选中所需的子模块,拖入模型编辑窗口。
要改变模块的参数双击模块图案即可(各模块的参数图案)。
加法器模块对话框Gain模块对话框把各个模块连接起来并按照上面给定的电机参数修改各个模块相应的参数,可以得到如下的比例积分的无静差直流调速系统的仿真框图:4,仿真后的结果及其分析:其中输出scope1中可以看出超调和上升时间等。
改变PI调节器的参数,并在仿真的曲线中得到最大的超调级调整时间,相互间进行比较,如下表所示:参照以上表格中的数据分析可知,改变PI调节器的参数,可以得到快速响应的超调量不一样,调节时间不一样的响应曲线。
单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》
单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》1引言调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。
电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。
1.1直流调速系统的概述由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
就目前来看,直流调速系统仍然是自动调速系统的主要形式。
在我国许多工业部门,如海洋钻探、纺织、轧钢、矿山、采掘、金属加工、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
随着GTO晶闸管、GTR、P-MOSFET、IGBT和MCT等全控型功率器件的问世,这些有自断能力的器件逐步取代了原来普通晶闸管系统所必须的换向电路,简化了电路的结构,提高了效率和工作频率,降低了噪声,缩小了电力电子装置的体积和重量。
谐波成分大、功率因素差的相控变流器逐步被斩波器或脉冲宽度调制器所代替,明显的扩大了电动机控制的调速范围,提高了调速精度,改善了快速性、效率和功率因素。
PWM电源终将取代晶闸管相控式可控功率电源,成为电源的主流。
随着信息、控制与系统学科以及电力电子的发展,电力拖动系统获得了迅猛发展,从旋转交流机组到水银整流器静止交流装置、晶闸管整流装置,再到众多集成电力模块。
目前完全数字化的控制装置已成功应用于生产,以微机作为控制系统的核心部件,并具有控制、检测、监视、故障诊断及故障处理等多功能电气传动系统正处在形成和不断完善之中。
1.2本章小结本章介绍了直流调速系统的研究前景及其优点。
直流调速系统的MATLAB仿真(报告)
直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅ T e 60600.132 1.262π2πK K ==⨯≈T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
基于MATLAB的单闭环直流调速系统的设计与仿真
1)主要调速方法选择
直流电动机的调速的方法有:调节电枢供电电压U、减弱励磁磁通、改变电枢回路电阻R。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。因此,自动控制的直流调速系统往往以调压调速为主。
2011年11月20日
二、本题的基本内容:
课题任务、重点研究内容、实现途径、方法及进度计划
1、课题任务
设计出一个较完整的直流调速系统,了解单闭环直流调速的原理和方法,比较各种调速方法的特点与不足。对直流电动机的调速指标进行深入研究并整定出调节器的参数,同时要求对所设计的系统进行仿真(MATLAB& Simulink),掌握系统仿真技术在控制领域的应用。
2)电路的组成与调速原理
单闭环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机、闭环控制系统和电流截止负反馈装置组成。该系统的控制对象是直流电动机M,被控量是电动机的转速n,晶闸管触发及整流电路为功率放大和执行环节,和晶闸管同步脉冲触发电路,用来调节晶闸管的控制角。测速模块把测得的转速反馈到输入中。
4月11日到5月1日
完成论文的修改并定稿。
四、推荐使用的主要参考文献:
1.《自动控制理论》邹伯敏编第2版机械工业出版社出版
2.《过程控制及仪表》邵裕生主编上海出版社出版
3.《MATLAB及其在理工课程中的应用指南》陈怀琛编西电出版社出版
4.《过程控制与自动化仪表》潘永湘主编机械工业出版社出版
5.《模拟电子技术基础》第三版童诗白华成英主编高等教育出版社
4)系统参数的设定与校正
第4章 matlab简介与直流调速系统仿真
一、单闭环(内容)1 开环直流调速系统的仿真2 单闭环有静差转速负反馈调速系统的建模与仿真3 单闭环无静差转速负反馈调速系统的建模与仿真4 单闭环电流截止转速负反馈调速系统的建模与仿真5 单闭环电压负反馈调速系统的建模与仿真6 单闭环电压负反馈和带电流正反馈调速系统的建模与仿真7 单闭环转速负反馈调速系统定量仿真8 双闭环直流调速系统定量仿真9 三闭环直流调速系统仿真10 α=β配合控制调速系统仿真11 逻辑无环流可逆直流调速系统仿真12 pwm直流调速系统仿真3 Simulink环境中的系统模型、仿真结果及分析3.1Matlab和Simulink简介3.2 Matlab建模与仿真3.3电流环的MATLAB计算及仿真3.3.1电流环校正前后给定阶跃响的MATLAB 计算及仿真3.3.2绘制单位阶跃扰动响应曲线并计算其性能指标3.3.3单位冲激信号扰动的响应曲线3.3.4电流环频域分析的MATLAB计算及仿真3.4转速环的MATLAB计算及仿真3.4.1转速环校正前后给定阶跃响应的MATLAB计算及仿真3.4.2绘制单位阶跃信号扰动响应曲线并计算其性能指标3.4.3单位冲激信号扰动的响应曲线3.4.4转速环频域分析的MATLAB计算及仿真目录摘要I1双闭环直流调速系统的工作原理1.1双闭环直流调速系统的介绍1.2双闭环直流调速系统的组成1.3双闭环直流调速系统的稳态结构图和静特性1.4双闭环直流调速系统的数学模型2系统设计方法及步骤2.1系统设计的一般原则2.2电流环设计2.2.1确定时间常数2.2.2选择电流调节器结构2.2.3选择电流调节器参数2.2.4校验近似条件2.3转速环设计2.3.1确定时间常数2.3.2选择转速调节器结构2.3.3选择转速调节器参数2.3.4校验近似条件3 Simulink环境中的系统模型、仿真结果及分析3.1Matlab和Simulink简介3.2 Matlab建模与仿真3.3电流环的MATLAB计算及仿真3.3.1电流环校正前后给定阶跃响的MATLAB 计算及仿真3.3.2绘制单位阶跃扰动响应曲线并计算其性能指标3.3.3单位冲激信号扰动的响应曲线3.3.4电流环频域分析的MATLAB计算及仿真3.4转速环的MATLAB计算及仿真3.4.1转速环校正前后给定阶跃响应的MATLAB计算及仿真3.4.2绘制单位阶跃信号扰动响应曲线并计算其性能指标3.4.3单位冲激信号扰动的响应曲线3.4.4转速环频域分析的MATLAB计算及仿真4V-M双闭环直流不可逆调速系统的电气原理总图5总结参考文献电机参数为:调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ= 1.5;电枢回路总电阻:R= 0.5Ω,电枢回路总电感:L= 15mH,电动机轴上的总飞轮力矩:GD2= 22.5N·m2,晶闸管装置:放大系数Ks=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常数:Toi=0.002s ,Ton=0.01s设计要求:(1)稳态指标:转速无静差;(2)动态指标:电流超调量σi≤5%,空载起动到额定转速的转速超调量σn≤10%。
单闭环直流调速系统的MATLAB计算与仿真
单闭环直流调速系统的MATLAB计算与仿真单闭环直流调速系统是工程控制中的一种常见系统,它由电机、转速传感器、控制电路和执行机构组成。
MATLAB是一种功能强大的数学软件,可以进行数值计算、数据分析和可视化等工作。
在本文中,我们将介绍如何使用MATLAB来进行单闭环直流调速系统的计算与仿真。
首先,我们需要用到MATLAB中的控制系统工具箱。
这个工具箱包含了一些用于分析和设计控制系统的函数和命令。
可以通过在MATLAB命令窗口中输入"controlSystemDesigner"来打开控制系统设计器。
在这个界面中,我们可以通过拖动和连接不同的图标来构建控制系统。
在单闭环直流调速系统中,我们需要将电机模型与控制电路连接起来。
电机模型可以用传输函数表示,其转速输入和电压输出之间的关系可以由下面的传输函数描述:$G(s) = \frac{k}{s(Ts+1)}$其中,k表示电机的增益,T表示系统的时间常数。
可以根据电机的参数进行实际的估计或测量。
控制电路通常包括PID控制器。
PID控制器以比例、积分和微分三个部分的加权和作为输出,与期望转速进行比较,然后通过调节输入电压来控制电机。
PID控制器的传输函数可以表示为:$C(s) = K_p + \frac{K_i}{s} + K_d s$其中,Kp、Ki和Kd表示比例、积分和微分增益。
有了电机模型和PID控制器的传输函数,我们可以将它们连接起来,并通过控制系统设计器进行仿真。
在设计器中,可以将电机模型作为输入,PID控制器作为输出。
然后,我们可以通过调整PID控制器的增益来改变系统的动态响应。
还可以通过添加阻尼器或滤波器来进一步优化系统的性能。
完成连接后,可以点击设计器界面中的“模拟”按钮来进行系统的仿真。
仿真结果将显示在设计器的右侧窗口中,包括系统的阶跃响应、频率响应和鲁棒性等指标。
通过观察这些指标,可以评估系统的性能并进行参数优化。
除了使用控制系统设计工具箱之外,MATLAB还提供了许多其他功能来进行系统的计算和仿真。
基于Matlab仿真的直流闭环调速系统
0 引言在现代化的工业生产中,对作为生产设备主要动力的电动机有较高的要求。
根据不同的生产要求,常常需要对生产设备进行平滑调速,而调速要通过调节电动机来实现。
同时,大多数设备要求动力系统运行稳定、具有良好的动态性能,这往往也直接取决于电动机的性能。
直流电动机因为具有较多明显的优点,常常被用于工业生产中。
直流电动机闭环调速系统具有较多优点,如可以在较大范围内进行无级调速且结构简单,启动、制动性能良好等,在具有较高要求的工业生产领域得到了广泛应用。
因此本文在Matlab 平台上搭建了直流电动机闭环调速系统的仿真模型[1],并进行了仿真分析。
1 直流闭环调速系统原理带转速负反馈的有静差直流闭环调速系统的电气原理图如图1所示。
系统由转速给定环节*nU 、放大器P K 、移相触发器CF、晶闸管整流器、直流电动机M、测速发电机G 等组成。
其中,n U :转速反馈;n U ∆:转速偏差,*n n n U U U ∆=−;C U :放大器输出;d U :整流器输出电压;d I :电枢电流。
在该系统中,当电动机负载增加时,转速反馈n U 将随着转速的下降而减小,而转速的偏差n U ∆将增大,同时放大器输出C U 增加,并经移相触发器使整流输出电压d U 增加,电枢电流d I 增加,从而使电动机电磁转矩增加,转速也随之提高,补偿了由于负载增加所引起的转速降落[2]。
带转速反馈的直流调速系统的稳态特性方程为:frequent stepless rapid start, braking and reversal, with excellent motion performance and control characteristics. And dc speed regulation is mature in theory and practice, and it is the basis of AC speed regulation. Therefore, the study of DC speed regulation system for the development of AC speed regulation, improve the speed regulation system has an important role.Keywords: automatic speed regulation;dc motor;Matlab simulation;control feature基金项目:本文系河南省智能制造技术与装备工程技术研究中心、焦作市物料传输设备关键件制造工艺与装备工程技术研究中心项目(3118210370)的研究成果。
运动控制MATLABsimulink实验报告
运动控制MATLAB----SIMULINK仿真实验实验报告姓名:罗才宝学号:0953505008班级:09自动化时间:2014年4月25日1.单闭环直流调速系统仿真:1.1实验说明:本次试验采用PI调节的单个转速闭环直流调速系统,在保证系统稳定的前提下实现转速无静差调速。
1.2系统参数设计:系统用三相桥式全空整流电路供电的单闭环直流调速系统仿真,则Ts=0.0017s。
其中:u N=220v,I N=13.6A,n N=1480r/min,Ce=0.131v/(r/min),电流允许过载倍数 1.5λ=,Ks=76,电枢回路总电阻: 6.58R=Ω,时间常数:Tl=0.018s,Tm=0.25s,u Nm *=5v。
计算反馈转速系数:α= u Nm */ n N=5v/(1480r/min)=0.00337v/(r/min)。
1.3单闭环直流调速系统仿真过程、结果及分析:1.3.1无负载扰动时的单闭环直流调速系统仿真图:1.3.1.1系统施加阶跃信号后的输出转速结果波形图:1.3.1.2系统施加阶跃信号后的转速调节器输出结果波形图:1.3.1.3结果分析:从上述实验输出波形可以得知:该转速单闭环直流调速系统显然按典型II型系统进行设计的,转速调节器ASR采用PI调节器(传递函数/τn s),系统用PI调节器进行串联校正,牺为:W ASR(s)=K P(τn s+1)牲了系统快速性,可抗扰性能、稳态精度变好。
1.3.2加负载扰动时的单闭环直流调速系统仿真图:1.3.2.1系统施加阶跃信号后的转速调节器输出结果波形图:1.3.2.2系统施加阶跃信号后的转速调节器输出结果波形图:1.3.2.3结果分析:从上述实验输出波形可以得知:与1.3.1实验对比不难发现,在系统稳定运行时加负载扰动后,系统输出转速先出现一定程度的下降然后通过系统自行调节后恢复到给定转速,转速调节器的输出明显上升,说明外加负载扰动后,转速调节器能自行跟随同步相应,最终达到调速的目的。
基于Matlab的单闭环直流调速系统仿真实验设计
基于Matlab的单闭环直流调速系统仿真实验设计尚丽;陈杰【摘要】分析Matlab/Simulink仿真技术在转速单闭环直流调速系统中的应用.考虑了转速有静差和无静差两种情况,采用面向电气原理结构图的仿真方法建立仿真模型;给出主电路和控制电路的参数设置方法,同时改变转速调节器的参数设置,对单闭环直流调速系统的调速性能进行仿真实验分析,并给出直流电动机的转速和电枢电流仿真波形.实验结果表明,单闭环直流调速系统的调速性能仿真结果与理论推导的调速性能一致,对实验教学有一定的指导意义.%This paper mainly analyzes the application of simulation technique of Matlab/Simulink to rotating speed single closed loop DC speed control system.utilizing the simulation method of facing electric principle construction diagram based on the possible cases of static error and no static error,the paper proposes the parameter setting methods of main circuit and control circuit.At the same time,the simulation experimental analysis of the speed performance of the single-losed loop DC motor control system is made with changes of the parameter setting of speed regulator.The simulation waves of speed and current of DC motor are also given out.The experimental results show that the simulation results of speed performance of single closed loop DC motor are consistent with those obtained from theory,and this system offers guidance for experimental teaching.【期刊名称】《苏州市职业大学学报》【年(卷),期】2011(022)004【总页数】5页(P1-5)【关键词】Matlab/Simulink仿真;转速;单闭环直流调速系统;静差;仿真模型【作者】尚丽;陈杰【作者单位】苏州市职业大学电子信息工程系,江苏苏州215104;苏州市职业大学电子信息工程系,江苏苏州215104【正文语种】中文【中图分类】TP391调速系统的转速降落是由负载引起的转速偏差,引入转速闭环将使调速系统大大减少转速降落,从而大大降低系统的静差率,提高直流电动机调速控制系统的稳定性[1-3].另外,在转速单闭环调速系统中,当转速调节器(automatic speed regulator,ASR)采用比例(proportion,P)调节器时,该调速系统是有静差的;为了消除系统的静差,可用积分(integration,I)调节器或者比例积分(proportion integration,PI)调节器代替P调节器构成无静差转速单闭环直流调速系统.本文讨论的无静差转速单闭环直流调速系统采用PI调节器作为转速调节器.近年来,随着计算机技术的发展,仿真技术逐步发展,现已形成完整的学科,渗透到各个领域,为应用系统的研究提供了强大的工具.目前,使用Matlab对控制系统进行计算机仿真的主要方法是以控制系统的传递函数为基础,使用Matlab的Simulink工具箱对其进行计算机仿真研究,而本文应用的是一种面向控制系统的电气原理结构图,使用电力系统工具箱(sim power systems)进行转速单闭环直流调速系统仿真的新方法.使用电力系统工具箱,用户不需要自己编程且不需推导系统的动态数学模型,只要从工具箱的元件库中复制所需的电气元件,按电气系统的结构进行连接即可[4-6].系统的建模过程接近实际系统的搭建过程,而且元件库中的电气元件能较全面地反映相应实际元件的电气特性,仿真结果的可信度较高.1 单闭环调速系统的组成及其工作原理1.1 系统组成带转速负反馈的单闭环直流调速系统的原理图如图1所示[1,7-8].在图1中,A是调节器,当其选用P调节器时,图1就是一个有静差的单闭环调速系统;当其选用PI调节器时,图1就是一个无静差的单闭环调速系统;GT是触发器装置;UPE是由电力电子器件组成的变换器,其输入接三相(或单相)交流电,输出为可控的直流电压Ud;TG是测速发电机,它与电动机同轴安装.给定电位器Rp1,通常由一个稳压电源供电,以保证转速给定信号的精度.Rp2是为获得调速负反馈系数而设置的一个电位器.已知测速发电机输出电压Utg与电动机M的转速n成正比,即有Utg=Cnn,式中Cn为直流永磁式发电机的电动势常数.假设电位器Rp2的分压系数为Kf,则反馈电压Un=KfUtg=KfCnn=n,式中=KfCn称为转速负反馈系数.注意,反馈信号Un与给定信号极性相反.图1 转速负反馈单闭环直流调速系统原理图1.2 系统工作原理在图1中,给定电压与负反馈电压Un相减后,得到转速偏差电压ΔUn=-Un,经过放大器A,产生UPE所需要的控制电压Uc,UPE的输出则为可控的直流电压Ud,该电压即是直流电动机等效电路的主回路电压,用以控制直流电动机的转速n,从而构成转速负反馈控制的闭环直流调速系统.根据闭环控制规律,如果负载RL增加时,转速n则降低,反馈电压Un的值将减小,偏差ΔUn=-Un将增大,控制电压Uc增大,UPE输出直流电压Ud增大,则电动机的转速将上升,最终又回到原来运行的转速上,维持转速稳定.为了便于理解,上述负载RL增加时转速调节的过程可以简单表示如下[1]:2 有静差转速单闭环直流调速系统的建模与仿真2.1 系统的仿真建模由图1可知,单闭环转速负反馈系统主要由转速给定环节、速度调节器ASR、同步脉冲触发器GT、晶闸管整流器、平波电抗器、直流电动机M、测速发电机TG(速度反馈环节)等组成.如果ASR采用比例调节器,根据图1的连接方式构建的有静差转速负反馈单闭环直流调速系统的仿真模型如图2所示[1].图2中所用到的各模块在Matlab6.5/Simulink下所提取的路径及其建模方法见文献[1]与[3].下面详细介绍各部分参数设置过程.2.2 主电路仿真参数设置由图2的仿真模型可知,主电路主要由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等仿真模块组成[4-6].由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模.1) 三相对称交流电压源.A相交流电源参数设置为交流峰值相电压取125 2 V、初相位设置成0°、频率为50 Hz,其他为默认值.B、C相交流电源参数设置方法与A 相基本相同,除了将初相位设置成互差120°外,其他参数与A相相同,由此可得到三相对称交流电源.图2 有静差转速单闭环直流调速系统仿真模型2) 晶闸管整流桥.使用该模块时,A、B、C均选择为输入端,DC端为输出端;“g(pulses)”端接受来自外部模块的触发信号,缓冲电阻Rs=10e5,缓冲电容Cs、内电阻Ron、内电感Lon等参数采用默认设置即可.3) 同步脉冲触发器参数设置.同步脉冲触发器包括同步电源和6脉冲触发器.6脉冲触发器模块有5个输入端,如图3(a)所示.同步电源与6脉冲触发器及封装后的子系统符号如图3(b)所示.封装后的子系统符号,Uct为触发器控制信号,In2为触发器的开关输入信号,Out1端口输出脉冲信号,该端口与晶闸管整流桥的“g(pulses)”端相连,为晶闸管提供触发控制信号.同步6脉冲触发器参数设置的同步电压频率为60 Hz,脉冲宽度为10°,如再勾选了“Double pulsing”,触发器就能给出间隔60°的双脉冲信号.4) 平波电抗器.平波电抗器的电感值是通过仿真实验比较后得到的优化参数.在此电感值设为5 mH.图3 同步脉冲触发器和封装后的子系统符号5) 直流电动机.直流电动机的输出参数选择为转速n、电枢电流Ia、励磁电流If、电磁转矩Te4个信号.如果不指定直流电动机额定参数,可以采用默认设置.本设计选用的直流电动机额定参数为UN=220 V,IN=16 A,nN=1 500 r/min,电枢电阻Ra=1.5 Ω,飞轮惯量为GD2=22.5 N·m2,励磁电压Uf=220 V,励磁电流If=1.5 A.采用三相桥式全控整流电路,整流器内阻Rrec=0.6 Ω,平波电抗器Lp=200 mH,计算得到的电枢电感La=0.016 H、励磁电阻Rf=146.7 Ω、电枢绕组合励磁绕组互感Lof=0.76 H、电动机转动惯量J=0.57 kg·m3,额定负载转矩TL=18 N·m.2.3 控制电路的建模与仿真参数设置单闭环有静差转速负反馈调速系统的控制电路由给定信号、速度调节器、速度反馈等环节组成.仿真模型中根据需要另增加了限幅器和自定义的函数模块Fcn.限幅器的上下限根据需要设定,本模型中设为[-50,50];自定义的函数模块Fcn的函数关系式为90-6u,其中u是自定义函数模块的自变量符号.给定环节设置为10rad/s;ASR采用P调节器,对该模块设置不同的参数即是改变ASR的放大倍数Kp,最终通过仿真优化得到比较合适的放大倍数选择范围;转速负反馈系数设为0.006 8,该系数由给定电压值和额定转速确定.2.4 仿真结果分析仿真中所选择的算法为ode23s,仿真开始时间为0 s,停止时间设为1.5 s,其他仿真参数设置为默认.当建模和仿真参数设置完成后,即可开始进行仿真.在额定转速信号=10,转速反馈系数=0.068,放大倍数Kp=5,10,20时的转速响应曲线如图4(a)所示、电流响应曲线如图4(b)所示(采用Matlab命令绘图).可以看到,随着放大器放大倍数Kp的增加,系统的稳态转速提高,稳态转速降落减小.从图4(b)中可以看出,由于没有电流的限制措施,在起动过程中电流仍很大可达970 A,这样大的起动电流很容易烧毁电动机,而且对过载能力低的晶闸管整流装置来说,更是不允许的.由于晶闸管整流器控制的非线性,其输出电压只能在0~Udmax范围内变化.实验中当放大倍数取为200时,转速还没有出现严重的不稳定现象.如果再继续增大放大倍数Kp,如选择Kp=400时,控制系统则处于不稳定状态,转速就会出现严重的不稳定现象,如图4(c)所示.图4 不同放大倍数的有静差单闭环直流调速系统仿真结果(α=0.006 8,U*n=10) 3 无静差转速单闭环直流调速系统的建模与仿真在有静差单闭环直流调速系统的电气原理结构图(图1)中,将ASR调节器换成PI 调节器,就构成无静差转速单闭环直流调速系统.同样的,在有静差单闭环直流调速系统的仿真模型(见图3)中,将增益模块“Gain”改成PI仿真模块,就构成无静差单闭环直流调速系统的仿真模型.两者相比,仅是控制电路中转速调节器ASR 采用的控制器类型不同,其余环节都是相同的.因此,无静差单闭环直流调速系统主电路的建模和参数设置方法都是跟有静差系统相同的,只是具体参数的设置值有所不同,这里不再一一赘述,仅重点介绍PI调节器的仿真建模、参数设置以及仿真分析结果.3.1 PI控制器的仿真建模和参数设置控制电路中PI调节器的仿真模型采用P调节器和I调节器相加得到.PI调节器的输入信号为转速给定和转速反馈信号之间的偏差ΔUn=-Un;其输出信号为触发器控制信号Uct .PI调节器的仿真模型及其封装后的子系统符号如图5(a)和5(b)所示. 图5 PI调节器及其封装后的子系统符号设系统的给定转速信号(实际上是电压信号)为150 rad/s,PI调节器的积分时间=30 s,其放大倍数Kp在保证系统稳定的前提下选择.系统无静差时,给定转速信号和转速反馈信号Un近似相等,即=Un=n.因此,转速反馈系数可以采用公式估算.这样,给定信号经过PI调节器,再通过限幅器和自定义函数90-6u后作为同步触发器的移相控制信号Uct.限幅器的范围仍设为[-50,50].3.2 仿真结果分析系统仿真中所选择的算法为ode23s,仿真开始时间为0 s,停止时间设为3 s,其他仿真参数设置为默认.取额定转速信号=150 V,放大倍数Kp=15,积分时间常数=30 s,转速负反馈系数=0.135时的转速响应曲线和电流响应曲线如图6所示. 图6 PI控制转速无静差转速单闭环直流调速系统仿真结果从图6中可以看到,在给定转速=150 rad/s,放大倍数Kp=15,积分时间常数=30 s,转速反馈系数=0.135时,大约在1 s以后,转速n基本上达到稳定,稳定值约为1 108 rad/s;转速反馈Un值约为149.6 rad/s,系统基本上满足稳态关系Un=n,可以认为实现了转速无静差.另外,如果假设调速系统为单位负反馈系统,即=1,则在给定转速=150 rad/s的条件下,当放大倍数Kp=15,积分时间常数=30 s时,实验中也可以基本上做到转速无静差,仿真分析结果和理论分析结果基本一致.另外,从图6中可以看到,电流开始有一个突变,不过随着转速的增加,电流在逐渐减小,然后再经过PI调节器进行调节,电流基本上稳定,最后能够实现转速无静差.4 结论在有静差转速负反馈单闭环直流调速系统中,由于采用P调节器,稳态时转速只能接近给定转速值,而不可能完全等于给定的转速值.提高开环增益只能减小转速降落而不能完全消除转速降落.为了完全消除转速降落,实现转速无静差调节,采用PI调节器代替P调节器,就构成无静差转速负反馈直流调速系统.而本文用Matlab/Simulink仿真技术实现了上述有静差和无静差转速单闭环直流调速系统的仿真建模,并给出了转速调节器参数改变时调速系统的仿真分析结果.实验结果表明,单闭环直流调速系统的调速性能仿真结果和理论上推导的调速性能相一致.另外,由于仿真模型是图形化的、面向对象的,非常适合教学实践环节和教学研究. 参考文献:【相关文献】[1] 尚丽,马青,戴桂平,等. 运动控制系统[M]. 西安:西安电子科技大学出版社,2009.[2] 方清城,罗中良,官峰,等. Matlab在运动控制系统实验教学中的应用[J]. 实验技术与管理,2007,24(1):73-75.[3] 尚丽,淮文军. 基于Matlab/Simulink和GUI的运动控制系统虚拟实验平台设计[J]. 实验室研究与探索,2010,29(6):66-71.[4] 张兴华. Simulink/PSB在“运动控制系统”实验教学中的应用[J]. 实验室研究与探索,2006,25(9):1077-1080.[5] 寸巧萍. 自动控制系统实验教学中的仿真技术应用[J]. 实验科学与技术,2007,5(2):51-54.[6] 石磊. MATLAB仿真在自动化专业教学中的应用[J]. 职业时空,2008,4(11):62.[7] 张品秀,黄操军,梁春英,等. Matlab在电气工程专业实验教学中的应用[J]. 大庆师范学院学报,2010,30(3):44-47.[8] 雷建军,金海燕,谭健苗,等. 计算机仿真实验在机能学实验教学中的应用[J]. 西北医学教育,2008,16(1):95-96.[9] 汪建平,宋晓华. 大力发展仿真实验,改革机械设计基础实验教学[J]. 实验技术与管理,2006,23(8):85-87.[10]张冰. 计算机仿真实验的教学应用及发展前景[J]. 华中科技大学学报,2005,24(3):116-118.[11] 沈艳霞,赵芝璞,纪志成,等. Matlab/Simulink在运动控制系统教学中的应用[J]. 贵州大学学报:自然科学版,2005,22(4):435-438..[12] 王印松,岑炜,李涛永,等. 基于Matlab/Simulink电力系统仿真工具箱的拓展[J]. 电力系统保护与控制,2009,37(2):84-88.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论直流电动机具有良好的起、制动性能,宜于在广泛范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切割机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。
近年来直流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以首先应该很好的掌握直流系统。
我们可以首先从单闭环转速负反馈直流调速系统来研究。
由于系统需要观察较多的性能,计算参数较多,而MATLAB中的Simulink实用工具可直接构建其动态模型,省去大量的计算,通过修改动态模型可完善系统性能。
直流调速系统概述从生产机械要求控制的物理量来看,电力传动自动控制系统有调速系统、位置伺服系统、张力控制系统等其他多种类型,各种系统往往是通过控制转速来实现的,因此调速系统是最基本的驱动控制系统。
调速系统目前分为交流和直流调速控制系统,由于直流调速系统的调速范围广,静差率小、稳定性好并且具有良好的动态性能。
因此在相当长的时期内,高性能的调速系统几乎都采用了直流调速系统。
相比于交流调速系统,直流调速系统在理论上和实践上更加成熟。
直流调速是现代电力拖动自动控制系统中发展较早的自动控制系统。
在20世纪60年代发展起来的电力电子技术,使电能可以转换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,建筑、办公、家庭自动化控制设备提供了现代化的高新技术,提高了生产效率和人们的生活质量,因此,人类社会的生产、生活发生了巨大变化。
随着新型电力电子器件的研究和开发,先进控制技术的发展,电力电子和电力传动控制装置的性能也不断优化和提高,这一变化的影响将越来越大。
单闭环直流电机调速系统在现代日常生活中的应用越来越广泛,其良好的调速性能、低廉的价格越来越被大众接受。
单闭环直流调速系统由整流变压器、平波电抗器、晶闸管整流调速装置、电动机-发电机、闭环控制系统组成。
我们可以通过调节晶闸管的控制角来调节转速,非常方便,高效。
MATLAB简介在1980年前后,美国的克利夫博士在新墨西哥大学讲授线性代数课程时,发现应用其它高级语言编程非常不方便,他们构思和开发了Matlab(MATrix LABoratory,即矩阵实验室),它是集命令翻译,科学计算于一身的一套交互式软件系统,经过在该大学进行了几年的试用之后,于1984年推出了该软件的正式版本,它使的矩阵的运算变得异常容易。
MATLABSGI是由美国MathWorks公司开发的大型软件。
在MATLAB软件中,包括了两个主要部分:数学计算和工程仿真。
其数学计算部分提供了强大的矩阵处理和绘图功能。
1998年,MATLAB增加了电力系统模块库,该模块库以Simulink为运行环境,是建立在Simulink标准模块和M语言基础上的一个附加模型库,它提供为电力系统仿真分析专用的各种线性与非线性元件和模块。
尤其是在之后的版本中,SimPowerSystems的元件库进行了扩种,用户可以在库中找到例如IGBT、MOSFET、GTO等几乎所有常用的新型电力电子器件模型,给使用带来极大的方便。
可视化图形仿真功能实在SIMULINK环境下进行的。
进入MATLAB系统后打开浏览窗口到模块库,用鼠标左键双击其中的SimPowerSystems即可弹出电力系统工具箱模块库。
它主要包含以下几类:电源库、元件库、机组模型、电力电子元件库、测量元件、连接元件、其他元件、电力图形用户界面、演示系统等,基本涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统的仿真模型,其元件和模块是由电力工业领域的专家提供并得到实际证明的,符合电力专业分析软件的要求。
这些模块库包含了大多数常用电力系统元件的模块。
利用这些模块及其他库模块,用户可方便、直观地建立各种系统模型并进行分析。
直流电动机具有调速性能好,起动转矩大,易于在大范围内平滑调速等优点,其调速控制系统历来在工业控制中占有及其重要的地位。
随着电力技术的发展,特别是在大功率电力电子器件问世以后,直流电动机拖动将有逐步被交流电动机拖动所取代的趋势,但在中、小功率的场合,常采用永磁直流电动机,只需对电枢回路进行控制,相对比较简单。
特别是在高精度位置伺服控制系统、在调速性能要求高或要求大转矩的场所,直流电动机仍然被广泛采用,直流调速控制系统中最典型一种调速系统就是速度、电流双闭调速系统。
直流调速系统的设计要完成开环调速、单闭环调速、双闭环调速等过程,需要观察比较多的性能,再加上计算参数较多,往往难以如意。
如在设计过程中使用Matlab中的SimuLink实用工具来辅助设计,由于它可以构建被控系统的动态模型,直观迅速观察各点波形,因此调速系统性能的完善可以通过反复修改其动态模型来完成,而不必对实物模型进行反复拆装调试。
本文运用MATLAB中的SimuLink实用工具对设计电路进行了仿真。
国内外现状从1971年开始到目前的这个阶段,直线电机进入了独立的应用时代,在这个时代,各类直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置和产品,例如直线电机驱动的钢管输送机、运煤机、起重机、空压机、冲压机、拉伸机、各种电动门、电动窗、电动纺织机等等。
特别可喜的是利用直线电机驱动的磁悬浮列车,其速度已超500km/h,接近了航空的飞行速度,且试验行程累计已达数十万千米。
在这个时期,直线电机领域的研究人员通过对直流电机在历史发展中多次起落的分析,终于选择了一条适合直流电机自身发展的独特思路,它不再与旋转电机直接对抗,不以单机的形式与旋转电机竞争,而以直线电机系统与旋转电机系统相比,从而找到适合于自己的系统与旋转电机展开竞争,在旋转电机无能为力的地方寻找自己的位置。
例如,直线电机应用于磁悬浮列车,液态金属的输送和搅拌,电子缝纫机和磁头定位装置,直线电机冲压机等等。
直线电机走自己的道路,在满足人类需求的过程中求得自身的发展。
在世界上一些发达国家,许多人和不少着名电气企业均在研究和开发直线电机产品,例如美国的西屋(Westinghouse)公司、德国的西门子(SIEMENS)公司、英国、法国、瑞典,特别是日本,其人员之多和范围之广是世界首屈的。
我国直线电机的研究和应用发展是从20世纪70年代初开始的。
主要成果有工厂行车、电磁锤、冲压机、摩擦压力机、磁分选机、玻璃搅拌、拉伸机、送料机、粒子加速器、邮政分拣机、矿山运输系统、计算机磁盘定位系统、自动绘图仪、直线电机驱动遥控(电动)窗帘机、直线电机驱动门、炒茶机等,我国直线电机研究虽然也取得了一些成绩,但与国外相比,其推广应用方面尚存在很大差距。
在70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库.EISPACK是特征值求解的FOETRAN程序库,LINPACK是解线性方程的程序库。
在当时,这两个程序库代表矩阵运算的最高水平。
到70年代后期,身为美国New Mexico大学计算机系系主任的Cleve Moler,在给学生讲授线性代数课程时,想教学生使用EISPACK和LINPACK程序库,但他发现学生用FORTRAN编写接口程序很费时间,于是他开始自己动手,利用业余时间为学生编写EISPACK和LINPACK的接口程序。
Cleve Moler给这个接口程序取名为MATLAB,该名为矩阵(matrix)和实验室(labotatory)两个英文单词的前三个字母的组合.在以后的数年里,MATLAB在多所大学里作为教学辅助软件使用,并作为面向大众的免费软件广为流传。
1984年,Cleve Moler和John Little成立了Math Works公司,正式把MATLAB推向市场,并继续进行MATLAB的研究和开发。
在当今30多个数学类科技应用软件中,就软件数学处理的原始内核而言,可分为两大类。
一类是数值计算型软件,如MATLAB,Xmath,Gauss等,这类软件长于数值计算,对处理大批数据效率高;另一类是数学分析型软件,Mathematica,Maple等。
这类软件以符号计算见长,能给出解析解和任意精确解,其缺点是处理大量数据时效率较低。
MathWorks公司顺应多功能需求之潮流,在其卓越数值计算和图示能力的基础上,又率先在专业水平上开拓了其符号计算、文字处理、可视化建模和实时控制能力,开发了适合多学科、多部门要求的新一代科技应用软件MATLAB。
经过多年的国际竞争,MATLAB 以经占据了数值软件市场的主导地位。
在MATLAB进入市场前,国际上的许多软件包都是直接以FORTRANC语言等编程语言开发的。
这种软件的缺点是使用面窄,接口简陋,程序结构不开放以及没有标准的基库,很难适应各学科的最新发展,因而很难推广。
MATLAB的出现,为各国科学家开发学科软件提供了新的基础。
在MATLAB问世不久的80年代中期,原先控制领域里的一些软件包纷纷被淘汰或在MATLAB上重建。
MathWorks公司1993年推出了MATLAB 4。
0版,1995年推出4。
2C版(for win3。
X)1997年推出5。
0版。
1999年推出5。
3版。
MATLAB 5。
X较MATLAB 4。
X无论是界面还是内容都有长足的进展,其帮助信息采用超文本格式和PDF格式,在Netscape 3。
0或IE 4。
0及以上版本,Acrobat Reader中可以方便地浏览。
时至今日,经过MathWorks公司的不断完善,MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。
在国外,MATLAB已经经受了多年考验。
在欧美等高校,MATLAB已经成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具;成为攻读学位的大学生,硕士生,博士生必须掌握的基本技能。
在设计研究单位和工业部门,MATLAB被广泛用于科学研究和解决各种具体问题。
在国内,特别是工程界,MATLAB一定会盛行起来。
可以说,无论你从事工程方面的哪个学科,都能在MATLAB里找到合适的功能。
2 调速控制系统的性能指标直流电动机工作原理直流电动机构成(1)定子:主磁极、换向磁极、端盖、机座、电刷装置;(2)转子:电枢绕组、电枢铁心、换向装置、转轴、风扇;(3)气隙。
直流电机励磁方式励磁绕组的供电方式称为励磁方式。
按照励磁方式,直流电机分成他励和自励两大类,其中自励式又分为并励、串励和复励三种。
图给出了这四种励磁方式的电路图。
直流电动机工作原理如果将直流电压直接加到线圈上,导体中就有直流电流通过。
设导体中的电流为i ,载流导体在磁场中将受到电磁力f ,f=bil ,作用于线圈上的电磁转矩T 则等于2倍的电磁力乘上力臂,即22D T f bilD == () 式()中,D 为电枢外径。