材料力学_强度理论41页PPT
材料力学课件 强度理论讲诉
[s ]
可见:a) 与s2、s3无关; b) 应力su可用单向拉伸试样发生脆性断裂的
试验来确定。
实验验证:铸铁:单拉、纯剪应力状态下的破坏与 该理论相符;平面应力状态下的破坏和该理论基本 相符。
存在问题:没有考虑s2、s3对脆断的影响,无法解
释石料单压时的纵向开裂现象。
2)最大伸长线应变理论(第二强度理论)
1
2
s1
s 2 2
s 2
s 3 2
s1
s 3 2
ss
n
[s ]
实验验证: a) 较第三强度理论更接近实际值;
b) 材料拉压性能相同时成立。
强度理论的统一形式: s r [s ]
sr称为相当应力,分别为:
• 最大拉应力(第一强度)理论:
s r1 s1
• 最大伸长线应变(第二强度)理论:
可见:材料破坏的形式不仅与材料有关,还与 应力状态有关。
5)强度理论
根据一些实验资料,针对上述两种破坏形式, 分别针对它们发生破坏的原因提出假说,并认为不 论材料处于何种应力状态,某种类型的破坏都是由 同一因素引起,此即为强度理论。
常用的破坏判据有:
脆性断裂: s l max 塑性断裂: max
研究复杂应力状态下材料破坏的原因,根据一 定的假设来确定破坏条件,从而建立强度条件,这 就是强度理论的研究内容。
4)材料破坏的形式 常温、静载时材料的破坏形式大致可分为:
• 脆性断裂型: 例如: 铸铁:拉伸、扭转等; 低碳钢:三向拉应力状态。
• 塑性屈服型: 例如: 低碳钢:拉伸、扭转等; 铸铁:三向压缩应力状态。
s r2 s1 s 2 s 3
• 最大切应力(第三强度)理论: s r3 s1 s 3
材料力学第九章强度理论
本章重点
1. 强度理论的概念 2. 四种主要强度理论及其应用 3. 杆件强度的合理设计
§9-1 强度理论
一、强度理论的概念
轴向拉压、弯曲正应力 扭转、弯曲剪应力
m ax [ ]
m ax [ ]
材料破坏的形式主要有两类:
1、脆性断裂(断裂破坏) 2、塑性屈服(剪切破坏)
论没有考虑中间主应力σ2的影响,其带来的最大误 差不超过15%,而在大多数情况下远比此为小。 对三向均匀受拉时,塑性材料也会发生脆性断裂 破坏的事实无法解释。
2、形状改变能密度理论(第四强度理论) (畸变能密度) 假定:复杂应力状态下材料的形状改变能 密度达到单向拉伸时使材料屈服的形状改变 能密度时,材料即会发生屈服。 屈服破坏条件是:
相应地,强度理论也可分为两类: 一类是关于脆性断裂的强度理论; 一类是关于塑性屈服的强度理论。
(一)、关于脆断的强度理论
1、最大拉应力理论(第一强度理论)
假定:无论材料内各点的应力状态如何, 只要有一点的主应力σ1 达到单向拉伸断裂时的 极限应力σu,材料即破坏。 在单向拉伸时,极应变片贴于与母线成45°角的外表面上
1 ,
1
1 E 1
2
0,
3
1 ( 2 3 )
1 E m
m ax
m in
E
d
16
3
0
3
m
d E0
1 6 (1 )
杆件强度设计
关键:如何确定危险截面、危险点的位置 以及危险点的应力状态
材料失效的原因是应力、应变和变形能 等诸因素中的某一因素引起的。 无论是简单或复杂应力状态,引起失效 的因素是相同的。且应具有相同的失效基 准。 利用强度理论可由简单的应力状态的实 验结果,建立复杂应力状态的强度条件。
材料力学强度理论
9强度理论1、脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。
塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。
2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:匚1=:;0(2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达到极限值导致的,即:-<∙0(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限值,即:⑷形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:U d r u d强度准则的统一形式厂〔「I其相当应力:J1-J匚乂1 - 7二2 二3)"-,r3 = :丁 [一:「3II 222 -=[2〔(G _ 6)'(匚2 - 匚3)■ (-3- G)3、摩尔强度理论的概念与应用;4、双剪强度理论概念与应用。
解题范例9.1图9.1所示的两个单元体,已知正应力单元体的第三、第四强度理论表达式。
[解](1)图9.1 ( a)所示单元体的为空间应力状态。
注意到外法线为y及一y的两个界面上没有切应力,因而y方向是一个主方向,二是主应力。
显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在XOZ坐标平面内可以按照平面应力状态问题对待。
外法线为X、Z轴两对平面上只有切应力,为纯剪切状态,可知其最大和最小正应力绝对值均为,则图9.1 (a)所示单元体的三个主应力为:第三强度理论的相当应力为(a)σeq3 =σ1 --165 11^ 275MPa第四强度理论的相当应力为:[(165—110 f +(2 "10 f +(T10 —165 f] = 252∙0匚=165MPa,切应力∙=110MPa试求两个MPa图9.1(a)eq4第三强度理论认为最大切应力max 是引起材料塑性屈服破坏的主要因素,其强度条件(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:第四强度理论的相当应力为:卩「(220.0 行(—55.0 丫+(—55.0 — 220.0 )2] = 252∙0 ■ 2 - MPa9.2 —岩石试件的抗压强度为 [匚]=14OMPa,E=55GPa, μ =0.25,承受三向压缩。
强度理论 山东建筑大学材料力学课件
危险点的应力
1 2 94.37MPa
12
5、校核强度
max (取绝对值) 94.37MPa
强度足够
例题4:传动轴如图所示。在A处作用一个外力偶矩 m=1KN.m, 皮带轮直径 D=300mm,轴AB直径d=50mm,皮带轮紧边拉力为 N1,松边拉力为N2,且N1=2 N2,L=200mm,轴的许用应力 []=160MPa。试用第三强度理论校核强度。
脆性材料在三向压应力作用下会发生塑性屈服。
深海海底的石块,尽管受到很大的静水 压力,但不破坏而仅发生塑性变形。
原因:石块处于三向压应力状态。
温度的影响:低温脆性
脆性材料
错误
塑性材料
脆性断裂 塑性屈服
正确 材料处于塑性状态或脆性状态。
应用
在力学、物理、材料科学、地球科学等学科中具有重要意义, 是各种工程结构强度计算和设计必须的基础理论。
h1/2
C
t
1、作内力图,确定危险截面 作梁的剪力图与弯矩图(右图) 中间截面的剪力与弯矩均达到 最大值。
F
A C
l/2
B D
l/2
F S max
F 2
375KN
M
max
F 4
l
788KN .m
因此中间截面为危险截面。
FS图 M图
375KN
+
-
375KN
+
788KN.m
b
t
d
h1/2
h1/2
C
危险截面
A
mc
C
B
作AB的扭矩图与弯矩图
P
AC段 T m 1KN.m CB段 T 0
T=1KN.mຫໍສະໝຸດ T图+Mmax
《强度理论教学》课件
02
最大拉应力理论
理论概述
最大拉应力理论,也称为第一 强度理论,认为材料在最大拉 应力作用下发生断裂破坏。
该理论忽略了其他应力分量对 材料强度的影响,只考虑了最 大拉应力。
该理论适用于脆性材料,如玻 璃、陶瓷等,这些材料的断裂 主要是由于拉应力引起的。
04
能量守恒理论
理论概述
能量守恒理论是物理学中的基本原理之 一,它指出在一个封闭系统中,能量不 能被创造或消灭,只能从一种形式转化
为另一种形式。
这一理论在许多领域都有广泛的应用, 如热力学、电磁学、光学和力学等。
能量守恒理论是自然科学和工程学科的 重要基础,为人类认识自然界和解决实
际问题提供了有力支持。
04
流动法则描述了材料在受力过 程中应变的发展规律。
流动法则是基于实验观察和理 论分析得到的,描述了材料在 受力过程中应变的分布和演化
。
流动法则对于预测材料的变形 行为和稳定性具有重要的意义
。
流动法则可以通过实验和数值 模拟进行验证和应用。
屈服准则与流动法则的关系
屈服准则和流动法则是描述材料力学 行为的两个重要方面,它们之间存在 密切的联系。
为的强度准则。
该理论认为,当材料所受剪应力 达到某一极限值时,材料发生屈
服或断裂。
该极限值即为材料的剪切强度极 限。
应用场景
最大剪应力理论主要应用于分析材料在复杂应力状态下的强 度和稳定性问题,如机械零件的强度分析、结构的稳定性分 析等。
在工程实践中,该理论常用于设计、优化和校核各种机械零 件和结构的承载能力。
源技术等方面。
材料力学之应力分析与强度理论课件
材料在动载下的行为
冲击韧性
材料在动载下能够吸收能量的能 力称为冲击韧性。冲击韧性是衡 量材料抵抗冲击载荷能力的指标
。
疲劳强度
材料在交变载荷下发生疲劳断裂的 应力称为疲劳强度。疲劳强度是衡 量材料抵抗疲劳载荷能力的指标。
蠕变
材料在恒定载荷下发生的缓慢形变 称为蠕变。蠕变是衡量材料在高温 下抵抗形变的能力。
该理论适用于某些金属材料,这些材 料在拉应力作用下可能发生屈服或塑 性变形。
最大剪切力理论(第三强度理论)
最大剪切力理论认为,材料在 复杂应力状态下失效的主要原 因是最大剪切力达到材料的极 限抗剪强度。
该理论适用于某些复合材料和 橡胶等材料,这些材料在剪切 应力作用下容易发生断裂或屈 服。
该理论考虑了剪切应力和拉应 力的共同作用,因此在实际应 用中比第一和第二强度理论更 为全面。
材料力学的基本假设与单位
基本假设
连续性假设、均匀性假设、各向 同性假设、线性弹性假设。
单位
国际单位制中的基本单位有千克 、米、秒等,但在材料力学中, 常用的单位有牛顿、帕斯卡等。
材料力学的研究内容与任务
研究内容
研究材料的力学性能,包括弹性、塑性、强度、韧性等;研究材料的应力和应 变行为;研究材料的失效和破坏机理。
应力张量
描述三维空间中一点的应力状态,包括剪应力和正应力。
应力莫尔圆与应力图解法
应力莫尔圆
表示在同一切削平面内,不同方向上 的切线应力和其作用面的法线方向间 的关系的圆图。
应力图解法
通过图形方式表示应力的方向、大小 和作用面,常用于解决平面问题。
03
强度理论
强度理论概述
强度理论是材料力学中用于预测 材料在复杂应力状态下失效的准
材料力学第9章强度理论幻灯片PPT
页 退出
材料力学
出版社 理工分社
9.3.2形状改变能密度理论〔第四强度理论〕 弹性体在外力作用下发生弹性变形,载荷在相应位移上可做功。如果所加外 力是静载荷,那么外力所作的功全部转化为弹性体的变形能。处在外力作用 下的微小体,其形状和体积都会发生改变,故变形能又可分为形状改变能和 体积改变能〔畸变能〕。单位体积内的形状改变能称为形状改变能密度〔畸 变能密度〕。在复杂应力状态下,形状改变能密度的一般表达式为
页 退出
材料力学
出版社 理工分社
法国科学家马里奥(E.Mariotte)在1682年提出最大线应变理论,后经修正为 最大伸长线应变理论,也称为第二强度理论。这一理论考虑了3个主应力对 脆性断裂的影响,能较好地解释石料或混凝土等脆性材料受轴向压应力而沿 纵向截面开裂的现象。铸铁受拉—压二向应力且压应力较大时,试验结果也 与这一理论接近。但是,按照这一理论,脆性材料在二向和三向受拉时比单 向拉伸承载能力会更高,而试验结果并不能证实这一点。 最大拉应力强度理论和最大伸长线应变理论均是针对脆性断裂的强度理论。 一般认为,前者适用于脆性材料以拉应力为主的工况,而后者适用于脆性材 料以压应力为主的工况。在工程实际应用中,以上两种强度理论均有应用。
页 退出
材料力学
出版社 理工分社
解〔1〕螺旋桨轴外外表A点的应力状态 如图9.1〔b〕所示,该点处于平面应力状态。根据公式〔8.5〕可得
那么3个主应力为
根据公式〔9.16〕得轴外外表A点的第三和第四强度理论的强度条件分别为
页 退出
材料力学
出版社 理工分社
〔2〕分析螺旋桨轴的内力 易得各横截面上的轴力及扭矩均一样。由根本变形的知识,在图示外载荷作 用下,横截面各点正应力相等,轴外外表各点的切应力到达最大值。由此可 知,轴外外表上的点即为危险点,且应力值分别为
材料力学-第七章-强度理论
r1 = max= 1 [] 其次确定主应力
ma xx 2y 1 2 xy2 4x 2y 2.2 9 M 8 P
m inx 2y 1 2 xy2 4x 2y 3 .7M 2 P
1=29.28MPa,2=3.72MPa, 3=0
r113M 0 Pa
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹 性失效准则;
考虑安全系数后,其强度条件
根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失 效准则;
考虑安全系数后,强度条件
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设;
像铸铁一类脆性材料均具有 bc bt 的性能,
可选择莫尔强度理论。
思考题:把经过冷却的钢质实心球体,放入沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
答:经过冷却的钢质实心球体,放入沸腾的热油锅中, 钢 球的外部因骤热而迅速膨胀,其内芯受拉且处于三向均 匀拉伸的应力状态因而发生脆性爆裂。
思考题: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可知,水 管与冰块所受的压力相等,试问为什么冰不破裂,而水管 发生爆裂。
局限性:
1、未考虑 2 的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象, 此准则也称特雷斯卡(Tresca)屈服准则
4. 畸变能密度理论(第四强度理论) 材料发生塑性屈服的主要因素是 畸变能密度;
无论处于什么应力状态,只要危险点处畸变能密度达到 与材料性质有关的某一极限值,材料就发生屈服。
具有屈服极限 s
铸铁拉伸破坏
材料力学--应力状态(强度理论)
1 B 76.9MPa 2 0 3 B 76.9MPa
r3 1 3 2 B 153.8MPa [ ]
B max
F S S max
* z max
dI z
75.08MPa
r3 150.16MPa [ ]
性 材 料
1 2 0纵向开裂 第二强度理论
3 0
斜截面开裂 直接实验 [ ]
三向受压: 1<0 , 3
1
,
max
1
2
3
>
s
第三强度理论
塑
性 一般应力状态下 第三、第四强度理论
材 三向等拉状态 r3 r4 0 第一强度理论
料 三向等压状态,无论脆性材料还是塑性
材料均不发生破坏。
1 b
1
b
n
铸铁拉伸
2020/4/13
铸铁扭转
7
2. 最大伸长拉应变理论(第二强度理论) 无论材料处于什么应力状态,, 最大拉伸
线变形 1 0 发生脆性断裂
1-构件危险点的最大伸长线应变
1 [ 1 ( 2 3 )]/ E
0 -极限伸长线应E
3、校核A点强度:
A
| M |max Iz
yA
17.5 103 1073 108
75 103
122.3MPa
1 122.3MPa 2 3 0
r3 A 122.3MPa [ ]
4、校核B点强度:
B
B
max
| FS |max A腹板
50 103 130 5 106
76.9MPa
2020/4/13
2
max max
满足
max [ ] max [ ]
是否强度就没有问题了?
材料力学课件 第八章应力状态与强度理论
单向应力状态(Unidirectional State of Stress): 一个主应力不为零的应力状态。
x B x
zx
xz
x
x
A
§8–2 平面应力状态下的应力分析
y
y
y
xy x
等价 y
x
xy
x z
Ox
一、解析法
30
x
y
2
sin 2
x cos2
80 (40) sin(2 30 ) 60 cos(2 30 ) 2
21.96MPa
确定主平面方位,将单元体已知应力代入 8.3,得
20 45
tan 20
2 x x y
2 (60) 80 (40)
1
0 22.5
0 即为最大主应力1 与 x 轴的夹角。主应力为
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
解:由于主应力1 ,2 ,3 与主应变1 ,2 ,3 一一对应,故由已知数据可知,
已知点处于平面应力状态且 2 0 。由广义胡克定律
1
1 E
(1
3 )
3
1 E
( 3
1)
联立上式
材料力学 第06章 强度理论
可见:由第三强度理论,图b所示应力状态比 图a所示的安全;而由第四强度理论,两者的危险 程度一样。 注意:图a所示应力状态实际上为拉扭和弯扭组 合加载对应的应力状态,其相当应力如下:
s r 3 s 2 4 2
s r 4 s 2 3 2
例 工字钢梁如图a所示。已知材料(Q235钢)的许 用应力为[s]=170MPa和[]= 100MPa。试按强度条 件选择工字钢号码。 (a) 200 kN 解:确定危险截面。 200 kN
1 2s s2 6E
因此:
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s s 2
由此可得强度条件为:
ss 1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 [s ] 2 n
s r4
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 2
§7-7 强度理论的应用
应用范围: a) 仅适用于常温、静载条件下的均匀、连续、各 向同性的材料; b) 不论塑性或脆性材料,在三向拉应力状态都 发生脆性断裂,宜采用第一强度理论; c) 对于脆性材料,在二向拉应力状态下宜采用第 一强度理论; d) 对塑性材料,除三向拉应力状态外都会发生 屈服,宜采用第三或第四强度理论; e) 不论塑性或脆性材料,在三向压应力状态都发 生屈服失效,宜采用第四强度理论。
假设形状改变能密度vd是引起材料塑性屈服的 因素,即:
vd vd u
vd u
所以:
可通过单拉试验来确定。
因为材料单拉屈服时有: s 1 s s s 2 s 3 0
材料力学课件——应力状态理论和强度理论
Me B
Me
B Me/Wn
P Me
C Me
C
第二节 二向应力状态下斜截面上的应力
目的 — 用一点某个微元上的应力表示其它
无限多微元上的应力 伴随结果
•应力极值 — 主应力状态 •从一个斜截面的应力构造一个单元体的应力
• 分析方法:1 解析法
•
2 图解法
二向应力状态下斜截面上的应力(续)
正应力符号规定
τα M τβ
σβ (c)
cos2
1
2
sin 2
cos2
1 sin 2
2
应力状态理论(续)
P
B
A
max A
max
M W
y
y
B
B
My
I
QS
Ib
应力状态理论(续)
P
P
A
A P/A
a) 一对横截面,两对纵截面
b)横截面,周向面,直径面 各一对
c) 同b),但从上表面截取
应力
要指明
哪一点?
•那个面在
• 在哪一个面上?
哪个方位?
• 一点的应力状态:过一点不同方向面上应力的集合
•
称之为这一点的应力状态
•
State of the Stresses of a Given
Point
应力状态理论(续)
三向(空间)应力状态
Three-Dimensional State of Stresses
第七章 应力状态理论和强度理论
Theory of Stress State and Intensity
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节