3.5 定态薛定谔方程
-薛定谔方程

§12-6 薛定谔方程德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告。
报告后, 德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来,它是否正确,只能由实验检验。
一、薛定谔方程 1 一维薛定谔方程1)一维自由运动粒子(无势场)设:一维自由运动粒子,无势场,不受力,动量不变。
一维自由运动粒子的波函数(前已讲)ψ(x , t ) = ψ0 e -i(2π/h ) (Et - px )由此有再利用 可得此即一维自由运动粒子(无势场)的含时薛定谔方程。
2)若粒子在势场U (x , t ) 中运动由 有此即一维自由运动粒子在势场中的含时薛定谔方程。
3)定态薛定谔方程若粒子在恒定势场U = U (x )中运动,微观粒子的势能仅是坐标的函数,与时间无关,可把上式中的波函数分成坐标函数与时间函数的乘积,即2222ip x hp x hψψψψ∂=∂∂=-∂22p E m=222282h h i m x tψψππ∂∂-=∂∂22p p E E m =+222282p h h E i m x tψψψππ∂∂-+=∂∂2(,)()()()iEt hx t x f t x eπψϕϕ-==式中 ψ =ψ (x , t )是粒子在势场U = U (x , t )中运动的波函数。
将ψ =ψ (x , t ) = ψ(x )T (t )代入得一维定态薛定谔方程式中ψ =ψ (x )是定态波函数,它所描写的粒子的状态称作定态,是能量取确值的状态。
定态的概率密度ψ(x ,t ) ψ*(x ,t ) = ψ (x ) ψ *(x ) 定态下的概率密度和时间无关。
在量子力学中用薛定谔方程式加上波函数的物理条件,求解微观粒子在一定的势场中的运动问题(求波函数,状态能量,概率密度等)。
薛定谔方程

薛定谔方程(英语:Schrodinger equation)是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
[编辑]含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(2)假若,系统内有个粒子,则波函数是定义于-位形空间,所有可能的粒子位置空间。
用方程表达,。
其中,波函数的第个参数是第个粒子的位置。
所以,第个粒子的位置是。
[编辑]不含时薛定谔方程不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。
顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。
应用分离变量法,猜想的函数形式为;其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量.代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程:。
薛定谔方程

v v v v ψ(r ,t) =c1 1(r ,t) +c2ψ2(r ,t) +⋅⋅⋅ = ∑ iψi (r ,t) ψ c
也是这个系统的一个可能的量子态。 也是这个系统的一个可能的量子态。
i
薛定谔方程是复数方程,因此它的解, ② 薛定谔方程是复数方程,因此它的解,即波函数 一般是复数。 一般是复数。
一、含时薛定谔方程 1. 自由粒子的含时薛定谔方程 自由粒子的波动性对应于平面波,因此, 自由粒子的波动性对应于平面波,因此,描述自由 粒子量子态的波函数可以采用平面波函数的形式。 粒子量子态的波函数可以采用平面波函数的形式。 量子力学中,自由粒子对应的平面波函数: 量子力学中,自由粒子对应的平面波函数:
2 2 2
∂ψ ih = Eψ ∂t
v −ih∇ = pψ ψ
−h ∇ ⇔p
2 2 2
∂ v ih ⇔E −ih∇⇔ p ∂t
箭头左边的符号作用于波函数等于箭头右边的物理 量乘以波函数。 量乘以波函数。 不考虑相对论效应, 动能与动量的关系: 不考虑相对论效应,则动能与动量的关系: 与动量的关系
p E= 2µ 2 p Eψ = ψ 2µ
v 波矢, 波矢 大小等于角波数,沿着波传播方向。 k——波矢,大小等于角波数,沿着波传播方向。
角频率。 角频率 ω ——角频率。
v v v ψ(r ,t) = Aex i(k ⋅ r −ω ) p t
{
}
v v v ψ(r ,t) = Aex i(k ⋅ r −ω ) p t
{
}
ω
2π 2π E 1 = hν = E = = 2πν = T h h h v v v v v k 2π k 2π h k 1 k k = k k = λ k = h λ k = h p k
高级中学奥赛-薛定谔方程及其求解方法

狄拉克(Paul Adrien Maurice Dirac,1902-1984)
英国理论物理学家。1925年,他作为一名 研究生便提出了非对易代数理论,而成为 量子力学的创立者之一。第二年提出全同 粒子的费米-狄拉克统计方法。1928年提出 了电子的相对论性运动方程,奠定了相对 论性量子力学的基础,并由此预言了正负 电子偶的湮没与产生,导致承认反物质的 存在,使人们对物质世界的认识更加深入。 他还有许多创见(如磁单极子等)都是当 代物理学中的基本问题。由于他对量子力 学所作的贡献,他与薛定谔共同获得1933 年诺贝尔物理学奖金。
[
2
2
U (r )] (r )
E (r )
2
E为一常数
i df (t) Ef (t) dt
df (t) f (t)
i
Edt
解出:
f
(t
)
Ce
i
Et
(r ,
t
)
(r )e
i
Et
――定态波函数
1.定态中E不随时间变化,粒子有确定的能量
2.定态中粒子的几率密度不随时间变化
(r ,
t
)
*
(r ,
爱因斯坦觉察到德布罗意物质波思 想的重大意义,誉之为“揭开一幅大幕 的一角”。
德布罗意假设
一个质量为m的实物粒子以速率v 运动时,即具有以能量E
和动量P所描述的粒子性,也具有以频率n和波长l所描述的
波动性。 德布罗意波,也叫物质波。
E hn
P= h
l
(p
h
n
k )
l
德布罗意 公式
l= h
例1. 计算下列运动物质的德布罗意波长
(1) 质量100g, v = 10m·s1运动的小球。
薛定谔方程

经典力学与量子力学的比较 经典力学
量子力学
研究对象
宏观物体,在一 具有波粒二象性 定条件下可看成 的微观粒子 质点
运动状态描写 坐标(x,y,z) 动量(p)
波函数ψ(x,y,z,t) |ψ(x,y,z,t)|2代表 时刻t在空间某 处的几率。
运动方程即状态 随时间变化规律
牛顿方程
薛定谔方程
三、一维无限深势阱
图3.2.1 无限深势阱
(3.2.3)
(3.2.4)
式中,A,δ为待定常数,为确定A与δ之值,利用ψ的边界条 件及归一化条件。从物理上考虑,粒子不能透过势阱,要求在 阱壁及阱外波函数为零,即
即
上式舍去了n=0和n为负值的情况
(3.2.5)
这个结果表明,粒子在无限高势垒中的能量是量子化的。 又由归一化条件
二、定态薛定谔方程
在势能V不显含时间的问题中,薛定谔方程可以用一种 分离变数的方法求其特解,令特解表为
代入下式,并把坐标函数和时间函数分列于等号两边:
令这常数为E,有
(10)
于是波函数ψ(r,t)可 以写成
与自由粒子的波函数比较,可知上式中的常数E就是能量, 具有这种形式的波函数所描述的状态称为定态.在定态中几 率密度|ψ(r,t)|2=|ψ(r)|2与时间无关。另一方面, (10) 式右边也等于E,故有
把(1)对t取一阶偏微商 如果自由粒子的速度较光速 小得多,它的能量公式是 p2/2m=E,两边乘以ψ,即得
(2) (3)
(4) (5)
把(3)和(4)代入(5)
得到一个自由粒子的薛定谔方程。 对于一个处在力场中的非 自由粒子,它的总能量等于 动能加势能
两边乘以ψ
自由粒子的薛定 谔方程可以按此式 推广成
高中奥赛---薛定谔方程及其求解方法

E t / 2
不确定关系的数学表示与物理意义
1927年,海森堡首先推导出不确定关系: : x表示粒子在x方向上的位置的不确 x px / 2 定范围,px表示在x方向上动量的不 确定范围,其乘积不得小于一个常数。
t E 2
h 2
若一个粒子的能量状态是完全确定的, 即E=0 ,则粒子停留在该态的时间 为无限长, t= 。
y( x, t ) A cos2 nt l
y( x, t ) Ae
x i 2 nt l
2、自由粒子的波函数
一个自由粒子有动能E和动量p。对应的德布罗意波具有频率 和波长:
n E/h
波函数可以写成
l h/ p
i 2 nt x / l
为归一化常数11精品文档第n激发态的概率密度有n1个极大值波函数和概率密度如图315和图316精品文档精品文档精品文档精品文档331力学量的平均值33量子力学中的力学量当测量粒子的位置的时候每次所得结果可能是不同的但其概率密度分布是正确的也就是位置的平均值是确定的如粒子的位置坐标改成以下由归一化后的我们可求出在空间处发现粒子的平均值为的概率密度为dx361势能函数是粒子位置坐标的函数势能的平均值362精品文档下面来求动量的分量的平均值但是在量子力学中根据不确定关系动量不可能是坐标的函数
h 6.625 1034 l 2.0 1010 m mv 1.67 10 27 2.0 103
(3) 动能为 1.6 107 J 的电子 1 P2 E K mv 2 2 2m
P 2mEK
h l3 P h 2mE K 1.2 1010 m
狄拉克(Paul Adrien Maurice Dirac,1902-1984)
七个薛定谔方程

七个薛定谔方程薛定谔方程是量子力学中描述粒子行为的基本方程。
一般情况下,薛定谔方程可以写成如下的形式:1. 定态薛定谔方程(Stationary Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,ħ是约化普朗克常数,Ψ是波函数,t是时间,H是哈密顿算符。
2. 非定态薛定谔方程(Time-dependent Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,Ψ是波函数,t是时间,H是哈密顿算符。
3. 薛定谔方程的波函数形式(Schrödinger Equation in Wave Function Form):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,∇²是拉普拉斯算符,V是势能函数。
4. 薛定谔方程的路径积分形式(Path Integral Form of Schrödinger Equation):Ψ(x,t) = ∫ Dx exp(iS[x]/ħ)Ψ(x₀,0)其中,Ψ(x,t)是波函数,S[x]是作用量,x₀是初始位置,Dx是路径积分测度。
5. 一维薛定谔方程(One-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∂²Ψ/∂x² + V(x)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,x是位置,V(x)是势能函数。
6. 三维薛定谔方程(Three-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + V(r)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,r是位置矢量,∇²是拉普拉斯算符,V(r)是势能函数。
薛定谔方程及的应用

1 f (t ) 1 2 2 i [ (r ) V (r ) (r )] f (t ) t (r ) 2m
很明显,上式右边只是 矢径 的函数,而左边只 是时间t的函数,为了使上式成立,必须两边恒等于 某一个常数,设以E表示,则有: 11
r
f (t ) i Ef (t ) ( 1) t 2 2 (r ) V (r ) (r ) E (r ) (2) 2m
p E V ( x, t ) 2m
将上式作用于波函数上,此时的薛定谔方程为:
2
( x, t ) ( x, t ) i V ( x, t ) ( x, t ) 2 t 2m x
2 2
⑤
8
由此可知,粒子能量E和动量P与下列作用在波 函数上的算符相当:
E i , t
方程(1)的解为: f 将 f (t ) ce 入 并把常数包含在 程的特解为:
( x, t ) i E0e t
上式两边都乘以
i ( Et px )
i E ( x, t ) ①
( x, t ) i E ( x, t ) t
对 x 求二阶偏导
i
得:
( x, t ) i i p0e p ( x, t ) x i 2 2 ( Et px ) ( x, t ) ip 2 p ( ) e 2 ( x, t ) 0 2 x 2
i ( Et px )
②
6
上式两边都乘以
2m
得:
2 2 ( x, t ) p 2 ( x, t ) 2 2m x 2m
把对t 求导的式子写在下面
薛定谔方程

Asinkx
而在I、 III 两区, ( x) 0 ,所以有
Asin( ka ) 0,
2
A
ka sin(
)
0,
2
可得
ka 2
l1
π,
ka 2
l2
π
ka 2
l1
π,
ka 2
l2
π
式中 l1 , l2 是整数。 记作
上两式相加得 2 (l1 l2 ) π l π
式中 l 也是整数。 所以有 l π
因为
k2
2m 2
E
En
n2
π2 2 2ma 2
,
( E 称为能量本征值, n 称为量子数)
n 所以有 o Asin a x,
n e Acos a x,
n 2,4,6, n 1,3,5,
2.1 薛定谔方程
2.1 薛定谔方程
一. 薛定谔方程
i (r, t) [ 2 2 U(r, t)] (r, t)
Hale Waihona Puke t2m式中 m……粒子的质量 U……粒子在外力场中 的势能函数(所处条件) 2……拉普拉斯算符
2
2 x2
2 y2
2 z2
奥地利物理学家 薛定谔 (Schrodinger 1887-1961)
U→∞
U=0
a
金属
化
x
U=0
Ⅰ a Ⅱ a Ⅲ x
2
2
无限深方势阱
它的势能函数为 0, x a / 2
U( x) , x a / 2
U(x) U→∞
U→∞
这种势场表示粒子可以在
U=0
势阱中运动,但不能越出势阱, Ⅰ a Ⅱ a Ⅲ x
薛定谔方程

1936年他回到奥地利任格拉茨大学理论物理教授。不到两年,奥地利被纳粹并吞后,他又陷入了逆境。1939 年10月流亡到爱尔兰首府都柏林,就任都柏林高级研究所所长,从事理论物理研究。在此期间还进行了科学哲学、 生物物理研究,颇有建树。出版了《生命是什么》一书,试图用量子物理阐明遗传结构的稳定性。1956年薛定谔 回到了奥地利,被聘为维也纳大学理论物理教授,奥地利政府给予他极大的荣誉,设定了以薛定谔命名的国家奖 金,由奥地利科学院授予。
背景与发展
1900年,马克斯·普朗克在研究黑体辐射中作出将电磁辐射能量量子化的假设,因此发现将能量与频率关联 在一起的普朗克关系式。1905年,阿尔伯特·爱因斯坦从对于光电效为hν;其中,因子h是普朗克常数。这一点子成为后来波粒二象性概念的早期路标之一。 由于在狭义相对论里,能量与动量的关联方式类似频率与波数的关联方式,因此可以揣测,光子的动量与波长成 反比,与波数成正比,以方程来表示这关系式。
主量子数n和能量有关的量子数。原子具有分立能级,能量只能取一系列值,每一个波函数都对应相应的能量。 氢原子以及类氢原子的分立值为:
,n越大能量越高电子层离核越远。
希尔伯特空间与薛定谔方程
一般,物理上将物理状态与希尔伯特空间上的向量(vector),物理量与希尔伯特空间上的算符相对应。这 种形式下的薛定谔方程为
04_薛定谔方程

d T (t ) i Edt T (t )
1.方程
解为
i Et T (t ) A0e
—— 振动因子
式中E具有能量量纲,A0 可以是复数。
2.方程
ˆ (r ) E (r ) H
2 2 [ U ( r )] ( r ) E ( r ) —定态薛定谔方程 2m
ˆ i H — 非定态薛定谔方程 t
二、定态薛定谔方程
2 2 ˆ (r , t ) ˆ H U (r , t ) i (r , t ) H 2m t 若 U U (r ) 与t无关,则薛定谔方程可分离变量。
设 (r , t ) (r ) T (t ) ,
相邻能级间隔
2
2
h E 2n 2 8a
2
n 7.54 10 eV
15
当n>>1时,能量相对间隔
h 2n 2 En 8ma 2 h En 2 n 2 8ma
2
2 1 n n
当 n 时 En En 量子化不显著。
经典物理可看成是量子数
物理的特殊情况。
n 时量子
1991年恩格勒等用STM在镍单晶表面逐个移动氙 原子,拼成了字母IBM,每个字母长5纳米
1991年2月IBM的“原子书法” 小组又创造出“分子绘画”艺 术 — “CO 小人” 图中每个白团是单个CO分子 竖在铂片表面上的图象, 上端为氧原子 CO分子的间距:0.5 nm “分子人”身高:5 nm 堪称世界上最小的“小人图”
① x ,y ,z | | dxdydz应为有限值,可
2
以归一化;
薛定谔方程

薛定谔方程(Schrödinger equation)是一个由奥地利物理学家薛定谔在1926年描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
目录[隐藏]• 1 含时薛定谔方程• 2 不含时薛定谔方程• 3 历史背景与发展• 4 含时薛定谔方程导引o 4.1 启发式导引▪ 4.1.1 假设▪ 4.1.2 波函数以复值平面波来表达波函数o 4.2 薛定谔的导引• 5 特性o 5.1 线性方程▪ 5.1.1 证明o 5.2 实值的本征态o 5.3 幺正性▪ 5.3.1 证明o 5.4 完备基底• 6 相对论性薛定谔方程•7 解析方法•8 实例o8.1 自由粒子o8.2 一维谐振子o8.3 球对称位势▪8.3.1 角部分解答▪8.3.2 径向部分解答•9 参阅•10 参考文献•11 外部链接[编辑] 含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为;(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
12-6 薛定谔方程

§12-6 薛定谔方程德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告。
报告后, 德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来,它是否正确,只能由实验检验。
一、薛定谔方程 1 一维薛定谔方程1)一维自由运动粒子(无势场)设:一维自由运动粒子,无势场,不受力,动量不变。
一维自由运动粒子的波函数(前已讲)ψ(x , t ) = ψ0 e -i(2π/h ) (Et - px )由此有再利用 可得此即一维自由运动粒子(无势场)的含时薛定谔方程。
2)若粒子在势场U (x , t ) 中运动由 有此即一维自由运动粒子在势场中的含时薛定谔方程。
3)定态薛定谔方程若粒子在恒定势场U = U (x )中运动,微观粒子的势能仅是坐标的函数,与时间无关,可把上式中的波函数分成坐标函数与时间函数的乘积,即2222ip x hp x hψψψψ∂=∂∂=-∂22p E m=222282h h i m x tψψππ∂∂-=∂∂22p p E E m =+222282p h h E i m x tψψψππ∂∂-+=∂∂2(,)()()()iEt hx t x f t x eπψϕϕ-==式中 ψ =ψ (x , t )是粒子在势场U = U (x , t )中运动的波函数。
将ψ =ψ (x , t ) = ψ(x )T (t )代入得一维定态薛定谔方程式中ψ =ψ (x )是定态波函数,它所描写的粒子的状态称作定态,是能量取确值的状态。
定态的概率密度ψ(x ,t ) ψ*(x ,t ) = ψ (x ) ψ *(x ) 定态下的概率密度和时间无关。
在量子力学中用薛定谔方程式加上波函数的物理条件,求解微观粒子在一定的势场中的运动问题(求波函数,状态能量,概率密度等)。
定态薛定谔方程

解: 由能量公式 可得
En
h2 2
2ma2
n2
h2 E En1 En (2n 1) 8ma 2
可见, E随量子数n的增加而增大, 且与m和a有
关.
a =1cm时 E (2n 1)3.771015eV
a =10-10 m时 E (2n 1) 37.7eV
可见, 宏观尺度时E非常小, 能量可近似看成是 连续的; 而原子尺度上的E却大的多, 其能量的 量子化特征非常明显.
第19章 定态薛定谔方程
现在, 有必要和有可能建立波函数满足的微分 方程−−薛定谔方程.
1926年, 薛定谔建立了波函数所满足的动力学 方程−−薛定谔方程.
与经典力学中的牛 顿运动方程类似, 用于描 述微观粒子运动状态的 薛定谔方程, 同样把粒子 间的相互作用与波函数 联系起来.
§19.1 定态薛定谔方程 §19.2 氢原子
2 1
k
2 2
)
sin
2
(k2a)
(k
2 1
k
2 2
)
sin
2
(k2a)
4k1k2
T
A3 2 A1 2
(k
2 1
4k1k2
k
2 2
)
sin
2
(k2
a)
4k1k2
上两式的物理意义在于: R与T不恒等于零说明 有一部分粒子透射到Ⅲ区, 另一部分粒子反射 回Ⅰ区(见下图).
§19.3 氢原子
1924年, 薛定谔对氢原子问题采用他所建立的方 程, 求得电子运动状态的精确解.
En
h2 2
2ma2
n2,
(n 1, 2,3...)
En n2E1,
解定态薛定谔方程的一般方法

an
e
i
nt
,
当只有一个an 0,其它an全为0时,
ane
i
nt n
,
设
是归一化的
n
,
则an
1.
此时在r
r
dr空间处粒子的概率为 *dV
* n
(r)n
(r)
d
r
3
北京邮电大学理学院 原子物理
§3.1 薛定谔方程
【举例】 一维无限深势阱
考虑一维空间中运动的粒子,它的势能在一定区域内(从x 0到x d )
第三章 量子力学基础
【内容】 1. 薛定谔方程 2. 势垒贯穿 3. 量子力学中的一些理论与方法 4. 氢原子
【重点】 薛定谔方程 态叠加原理
氢原子能量本征值与本征函数
北京邮电大学理学院 原子物理
§3.1 薛定谔方程
一、薛定谔方程的引入
我们希望找到一个类似于牛顿方程的方程来描述这种新的量子现象,而且这个 方程应当能完全描述各种系统的状态。我们可从自由粒子出发,假定一个质量
为零,而在此区域外,势能为无限大,即u(
x)
0, ,
0 xd (1)
x d,x 0
显然势函数不显含时间,因而在阱内,
满足定态薛定谔方程:
2 2m
d 2
dt 2
E
0
(2)
记
k2
2mE 2
V
(3)
V=0
则方程可以写为:
d 2
dx2
k 2
(4)
第3章薛定谔方程及应用简例1(薛定谔方程)

2
∂ ˆ 薛定谔方程为 iℏ Ψ (r , t ) = H Ψ (r, t) ∂t
9
四、定态薛定谔方程 有势场中粒子的薛定谔方程是
∂ ˆ iℏ Ψ (r ,t ) = H Ψ (r,t) ∂t ℏ2 2 ˆ H = − ∇ +U (r ,t ) 哈密顿量 2m
物理上通过解方程得到波函数 下面需要回答的问题是: 下面需要回答的问题是 怎么解薛定谔方程 物理上波函数一般形式 怎么解薛定谔方程?物理上波函数一般形式 薛定谔方程 物理上波函数一般形式?
2
7
2.三维有势场中粒子的薛定谔方程 三维有势场中粒子的薛定谔方程
∂Ψ ℏ2 ∂2Ψ ∂2Ψ ∂2Ψ = − ( 2 + 2 + 2 ) + U (r , t )Ψ iℏ ∂t 2m ∂x ∂y ∂z
利用
∂2 ∂2 ∂2 2 ∇ = + 2 + 2 2 ∂x ∂y ∂z
2 ∂ 2 写为 iℏ Ψ (r,t) =[− ℏ ∇ +U(r,t)]Ψ (r,t) ∂t 2m
i − Et (r ) e ℏ
18
一维定态薛定谔方程: 一维定态薛定谔方程:
ℏ d + U ( x)Φ ( x) = EΦ ( x) − 2 2m dx
2 2
例:求描述自由粒子的波函数 解:因为 U = 0 所以薛2 2 m dx
19
得解为 Φ ( x) = B e 0
注意到
∂ iℏ ↔ E ∂t
∂Ψ ( x,t ) i = PxΨ ( x, t ) ∂x ℏ
∂ −iℏ ↔P x ∂x
∂2 −ℏ2 2 ↔P2 x ∂x 替换关系
∂ 2Ψ ( x,t ) Px2 = − 2 Ψ ( x, t ) 2 ∂x ℏ
薛定谔方程

n
ˆ (r ˆ, t ) H ˆ, t ) (r 因为它满足含时薛定谔方程:i t
则,t>0的态是不同定态迭加的态: i En t (r , t ) cn n (r )e
这是因为薛定谔方程是线性偏微分方程。 3 薛定谔方程是关于时间的一阶偏微分方程;
知道初始时刻波函数,就可以确定以后任何时刻 的波函数.
2 i r , t U r , t r , t t 2m
2
4
4
4 薛定谔方程中含有虚数 i 所以它的解 (r , t )必然是复数, 只有 (r , t ) 的模方才有直接的物理意义。 5
其定态薛定谔方程:
2 d 2 ( x) V ( x) ( x) E ( x) 2 2m dx
o
a
x
特点:
粒子在势阱内受力为零 势能为零
V→∞
V→∞
V(x)
在阱内自由运动 在阱外势能为无穷大 在阱壁上受极大的斥力 不能到阱外
E
0
V=0 a
x
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
讨论二:n不取负数
( x) A sin kx A sin kx
2 E
此时波函数与 n取正数时代表相同的概率分布,即无 法给出新的波函数,故舍去。
k
ka n , n 1,2,3,......
因为
2mE k 2
2
结论:
En
ka n n 1,2,3, 2 2 2
定态薛定谔方程

2 d 2 [ U ( x)] ( x) E ( x) 2 2 dx
已知
U ( x) 0,
2
x a
2
方程变为 令
d ( x) E ( x) 2 2 dx
2E ( 2 )
1 2
方程变为
d ( x) 2 ( x) 0 2 dx
定态:如果体系处于(3)式所描述的状态时,
具有确定的能量,这种状态叫定态。(3)式叫 定态波函数。
二、定态的性质 1:体系处于定态,其几率分布不随时间变化。
2
(r , t ) (r , t )
* i Et i Et
( r )e ( r )e * (r ) (r )
2 2
1 Y ( y) Ey 2 2 Y ( y) y
2 2
2 1 2 Z ( z) Ez 2 2 Z ( z ) z
式中,E x , E y , Ez 是常数,且有
E Ex E y Ez
由作业题2.3,得一维无限深势阱方程及波函数
n x 2 X ( x) sin( x) a a n y 2 Y ( y) sin( y) b b nz 2 Z ( z) sin( z) c c
2 [ U (r )] (r ) E (r ) 2 解出 (r )
然后得出 (r , t ) (r )e
i Et
2
§2.6 一维无限深势阱
一、波函数 如图,粒子在势场
U
U ( x) 0, U ( x ) ,
中运动。
变化的,要使上式对任意的变量 t , r 都成立,
薛定谔方程

h 粒子的动量 pn n 2a n
2a n n
n 1, 2, 3, . . .
h
2 a
o
a
p h 2 能量 En n 2m 8ma2
2 n
2
1 2a
12
三. 求解定态薛定谔方程 选择坐标如图 Ⅱ区: U ( x ) 0
U→∞
2
U(x)
U→∞
d ˆ H 2 2m d x ˆ E H
d f (t ) 1 1 ˆ i H ( r ) dt f (t ) (r )
∵对任意函数 f (t) 和 (r ) 成立,
∴方程两端必为相同常量,设为E。
7
写作
d f (t ) 1 1 ˆ i H ( r ) E (常量) dt f (t ) (r ) d f 对应两个 i Ef ① dt 方程:
波动型解
ik1 x
1 ( x) A1e
Ⅱ 区方程
ik1 x
A2e
2
k1
2mE
d 2m( E U0 ) 2 2 d x
Ⅱ区解与 E 的相对大小有关 讨论 E < U0 情况,
k
2 2
k2 ——虚数
令
1 k2 2m( E U 0 ) ir
22
1 r 2m(U 0 E ) ——实数 方程的普遍解:
3. 薛定谔方程关于时间是一阶的。 (解方程只需一个初始条件)
6
三. 定态薛定谔方程 若 U U ( r ) 与 t 无关, 可将 (r , t )分离变量写成
空间波函数
(r , t ) (r ) f (t ) ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定态薛定谔方程
i)
2
2m
2
U
(r
,
t
)
(r
,
t
)
若 U r,t 不显含时间,即
U
U(r )
与
t无关,则薛定谔方程
可分离变量。
设 r,t r f t
代入薛定谔方程,得:
r i
t
f
t
f
t
2
2m
2
U
r
r
id
f t dt
f
t
1
r
2
2m
2
U
r
r
上式 左边是 t 的函数
波函数的条件(单值、有限、连续、归一)。
特定的E 值称为能量本征值。
这些特定的E 值所对应的波函数称为能量本征函数。 这一方程又称为能量本征值方程。
这一波函数所描述的量子态称为定态。
定态: 能量取确定值的状态
定态波函数
E
(r
,
t
)
C
E
(r
)
e
i
Et
一维定态薛定谔方程:
[
2
2m
d2 d x2
U( x)] ( x)
E ( x)
对自由粒子,U = 0,一维情况下,上式成为:
2
2m
d2
d x2
E
其解为
i 2mE x
(
x
)
B0e
B0e
i
p
x
其中 p 2mE
(x,t) (x)
f (t)
i
B0e
p x
i Et
Ce
i ( Et px )
0e
这正是自由粒子的波函数,E正是粒子的能量,p正是粒子的 动量。
谢谢
右边是
r
的函数
且两变量相互独立
两边必须等于同一 个常量时才成立
id
f t dt
f
t
1
r
2
2m
2
EP
r
r
E
左边:
i d f t Ef t
dt
f
t
iEt
Ce
── 振动因子
式中E具有能量量纲,C 可以是复数。
右边:
2
2m
2
U
r
r
E
r
它的解依赖于
U(r )
的形式
定态薛定谔方程
从数学上来讲: E 不论为何值,该方程都有解。 从物理上来讲: E 只有取一些特定值,该方程的解才能满足