定积分教案教学提纲
定积分的概念(教案)
1.5.3.定积分的概念一、复习回顾:1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:2.上述两个问题的共性是什么?二、新知探究1.定积分的概念注:说明:(1)定积分()ba f x dx ⎰是一个 ,即n S 无限趋近的常数S (n →+∞时)记为()ba f x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:(3)曲边图形面积:变速运动路程:变力做功:例1:利用定积分的定义,计算dx x ⎰102 、 dx x ⎰103 的值.2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1⎰b a dx x kf )(= ; 性质2 dx x g x f b a⎰±)]()([= 性质3 ⎰⎰=ca b a dx x f dx x f )()(+ 3.定积分的几何意义从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()ba f x dx ⎰表示由直线 和曲线 所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()b a f x dx ⎰的 几何意义。
思考:(1)在[,]a b 上0)(≥x f ,()b a f x dx ⎰= (2)在[,]a b 上0)(≤x f ,()ba f x dx ⎰=(3)在[,]a b 上)(x f 变号,()ba f x dx ⎰=⑤练习:1、利用定积分的几何意义,判断下列定积分值的正、负号。
(1)dx x ⎰20sin π(2)dx x ⎰-212 (3)dx x ⎰-1232、利用定积分的几何意义,说明下列各式成立(1)0sin 22=⎰-dx x ππ , 0sin 20=⎰dx x π (2)dx x dx x ⎰⎰=200sin 2sin ππ3、计算下列定积分(1)dx b a ⎰1 (2)11x dx -⎰. (3) 50(24)x dx -⎰(4)dx x ⎰-1021 (5)120(2)x x dx -⎰三、课堂小结:①定积分的概念及性质②用定义法求简单的定积分③定积分的几何意义。
高中数学定积分的概念教案新人教版选修
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的基本性质和计算方法。
2. 能够运用定积分解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生的数学素养。
二、教学内容1. 定积分的概念介绍定积分的定义、性质和计算方法,引导学生理解定积分的本质。
2. 定积分的计算讲解定积分的计算法则,包括牛顿-莱布尼茨公式、换元积分法、分部积分法等,让学生掌握定积分的计算技巧。
3. 定积分在实际问题中的应用通过实际问题,引导学生运用定积分解决面积、体积、弧长等问题,提高学生的数学应用能力。
三、教学重点与难点1. 定积分的概念与性质2. 定积分的计算方法3. 定积分在实际问题中的应用四、教学方法1. 采用讲授法,讲解定积分的概念、性质和计算方法。
2. 利用例题,引导学生掌握定积分的计算技巧。
3. 结合实际问题,培养学生运用定积分解决实际问题的能力。
4. 组织讨论,让学生在探讨中深化对定积分概念的理解。
五、教学过程1. 引入:通过复习初中数学中的积分概念,引导学生思考如何将积分概念推广到无限区间。
2. 讲解:讲解定积分的定义、性质和计算方法,让学生理解定积分的本质。
3. 练习:布置定积分的计算练习题,让学生巩固所学知识。
4. 应用:结合实际问题,讲解定积分在面积、体积、弧长等方面的应用,让学生体会定积分的实用价值。
6. 作业:布置课后作业,巩固所学知识。
六、定积分的性质与计算法则1. 性质:定积分具有线性性质,即$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} (f(x) + g(x)) \, dx$。
定积分与积分区间有关,即$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$。
定积分与积分函数的单调性有关,即若$f(x)$ 在$[a, b]$ 上单调递增,则$\int_{a}^{b} f(x) \, dx$ 可以表示为$F(b) F(a)$,其中$F(x)$ 是$f(x)$ 的一个原函数。
定积分概念教学设计
定积分概念教学设计第1篇:定积分的概念的教学设计《1.5.3定积分的概念》教学设计1.教材分析1.1课标要求分析从教材上的要求来看,要求学生认识定积分的知识背景,理解背景中两个典型问题的解决思想,并能概括它们的共同特征从而引入定积分概念,理解定积分的含义和其符号的含义,明白定积分的几何意义和基本性质。
我个人认为由两个实例引入定积分概念这步很重要,能让学生理解定积分这一抽象的概念,并理解定积分的用途。
1. 2教学内容分析 1.2.1内容背景分析本节内容是人教A版选修2—2的1.5.3的内容,前面两节学习了如何解决“求曲边梯形面积”和“求变速运动路程”两个经典问题,在这两个问题的知识背景下这节课很自然地引入了定积分的概念。
这样能让学生充分理解定积分的由来和用途。
1.2.2教学内容的分析人教版的这节课的内容比较简短,要求掌握的层次也比较低。
主要通过前面两个实例的解决思路进行概括引入定积分的概念,明白积分的概念,积分符号的含义,了解定积分的几何意义和几个基本性质。
通过例1让学生进一步熟悉定积分的定义,熟悉计算定积分的“四步曲”。
2.学情分析我上这堂课的班级是高二(3)班,这个班在高二四个班中属于中等水平,上课思维不大活跃,不分学生接受能力还可以,但后进生比较多,这些学生基础较为薄弱,而且定积分的概念较为抽象,在引入的过程中包含了数列求和,求极限等复杂的知识内容。
作为引入定积分概念的课,推导的计算过程简单带过就好,不宜把知识点挖得太深。
我把这节课的重点放在让学生了解定积分概念的由来,明白定积分符号的含义、定积分的集合意义和一些基本性质,让学生掌握用定义求定积分的步骤。
3.教学目标1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义. 4.教学重点和难点重点:理解定积分的概念、定积分的几何意义及基本性质,能用定义求简单的定积分.难点:定积分的概念、定积分的几何意义. 5.教学过程1.创设情景复习:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决思路,解决步骤:求曲边梯形面积: 分割→ 以直代曲→求和→取极限(逼近)求汽车路程:分割→以不变代变→求和→取极限(逼近)2.思考一下解决前面两个问题的共同特点: 2.新课讲授1.定积分的概念一般地,设函数f(x)在区间[a,b]上连续,用分点a=x0<x1<x2<<xi-1<xi<<xn=b将区间[a,b]等分成n个小区间,每个小区间长度为∆x (n∆x=nb-a[x,x]n),在每个小区间i-1ib-af(ξi)n 上取一点ξi(i=1,2,n),作和式:Sn=∑f(ξi)∆x=∑i=1i=1如果∆x无限接近于0(亦即n→+∞)时,上述和式为函数f(x)在区间[a,b]上的定积分。
定积分应用 教案
定积分应用教案教案标题:定积分应用教学目标:1. 了解定积分的概念和基本性质。
2. 掌握定积分的应用方法,包括计算曲线下面积、计算物体体积等。
3. 培养学生运用定积分解决实际问题的能力。
教学准备:1. 教师准备:教师课件、教学实例、计算器等。
2. 学生准备:课本、笔记本、计算器等。
教学过程:Step 1:引入定积分的概念(10分钟)1. 教师通过课件或者黑板,简要介绍定积分的概念和基本性质,如曲线下面积的计算、物体体积的计算等。
2. 引导学生思考,定积分与不定积分的区别和联系。
Step 2:计算曲线下面积(20分钟)1. 教师通过示例,详细讲解如何利用定积分计算曲线下面积。
2. 引导学生理解定积分的几何意义,即曲线下面积的极限概念。
3. 给予学生练习的机会,让他们通过计算不同曲线下面积的例子,巩固所学知识。
Step 3:计算物体体积(20分钟)1. 教师通过实例,讲解如何利用定积分计算物体的体积。
2. 引导学生理解定积分的物理意义,即物体体积的极限概念。
3. 给予学生练习的机会,让他们通过计算不同物体体积的例子,巩固所学知识。
Step 4:应用实际问题(15分钟)1. 教师提供一些实际问题,如水池的蓄水量、材料的质量等,引导学生运用定积分解决问题。
2. 学生分组讨论,解决给定的实际问题,并展示解决过程和结果。
Step 5:总结和拓展(10分钟)1. 教师对本节课的内容进行总结,强调定积分的应用方法和意义。
2. 鼓励学生拓展思考,提出更多与定积分相关的实际问题,并探索解决方法。
教学要点:1. 定积分的概念和基本性质。
2. 计算曲线下面积的方法和几何意义。
3. 计算物体体积的方法和物理意义。
4. 运用定积分解决实际问题的能力。
教学扩展:1. 鼓励学生自主学习,深入了解定积分的更多应用领域,如概率统计、经济学等。
2. 提供更多实际问题,让学生运用定积分解决,培养他们的应用能力。
3. 引导学生进行小研究,探索定积分的相关定理和性质,拓展他们的数学思维。
教学设计4:1.5.3定积分的概念
1.5.3 定积分的概念教学目标1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质. 教学引导知识点一 定积分的概念思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答案 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.梳理 一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1n f (ξi )Δx =∑i =1nb -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑i =1n b -an f (ξi ),这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.知识点二 定积分的几何意义思考1 根据定积分的定义求得ʃ21(x +1)d x 的值是多少? 答案 ʃ21(x +1)d x =52. 思考2 ʃ21(x +1)d x 的值与直线x =1,x =2,y =0,f (x )=x +1围成的梯形面积有何关系? 答案 相等.梳理 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么定积分ʃb a f (x )d x 表示由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积.这就是定积分ʃb a f (x )d x 的几何意义.注意:f (x )<0(图象在x 轴的下方)时,ʃb a f (x )d x <0,-ʃb a f (x )d x 等于曲边梯形的面积.知识点三 定积分的性质思考 你能根据定积分的几何意义解释ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b )吗?答案 直线x =c 把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边梯形的面积S 是两个小曲边梯形的面积S 1,S 2之和,即S =S 1+S 2.梳理 (1)ʃb a kf (x )d x =k ʃb a f (x )d x (k 为常数).(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±ʃba f 2(x )d x . (3)ʃb a f (x )d x =ʃc a f (x )d x +ʃb c f (x )d x (其中a <c <b ).教学案例类型一 利用定积分的定义求定积分例1 利用定积分的定义,计算ʃ21(3x +2)d x 的值. 解 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎡⎦⎤n +i -1n ,n +i n (i=1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n .(2)近似代替、求和取ξi =n +i -1n (i =1,2,…,n ),则S n =∑i =1nf ⎝⎛⎭⎫n +i -1n ·Δx=3n 2[0+1+2+…+(n -1)]+5 =32×n 2-n n 2+5=132-32n . (3)取极限ʃ21(3x +2)d x =lim n →∞ S n=lim n →∞ ⎝⎛⎭⎫132-32n =132. 反思与感悟 利用定义求定积分的步骤跟踪训练1 利用定积分的定义计算ʃ32(x +2)d x . 解 令f (x )=x +2.将区间[2,3]平均分为n 个小区间,每个小区间的长度为Δx i =1n ,[x i -1,x i ]=⎣⎡⎦⎤2+i -1n ,2+in ,i =1,2,…,n .取ξi =x i =2+i n ,则f (ξi )=2+i n +2=4+in.则∑ni =1f (ξi )Δx i =∑ni =1 ⎝⎛⎭⎫4+i n ·1n=∑ni =1 ⎝⎛⎭⎫4n +i n 2=n ·4n +1+2+…+n n 2=4+n +12n.∴ʃ32(x +2)d x =lim n →∞ ⎝⎛⎭⎫4+n +12n =92. 类型二 利用定积分的性质求定积分例2 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563,求下列各式的值. (1)ʃ20(3x 3)d x ; (2)ʃ41(6x 2)d x ; (3)ʃ21(3x 2-2x 3)d x . 解 (1)ʃ20(3x 3)d x =3ʃ20x 3d x =3()ʃ10x 3d x +ʃ21x 3d x =3×⎝⎛⎭⎫14+154=12.(2)ʃ41(6x 2)d x =6ʃ41x 2d x =6()ʃ21x 2d x +ʃ42x 2d x =6×⎝⎛⎭⎫73+563=126.(3)ʃ21(3x 2-2x 3)d x =ʃ21(3x 2)d x -ʃ21(2x 3)d x=3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=-12. 反思与感悟 若函数f (x )的奇偶性已经明确,且f (x )在[-a ,a ]上连续,则 (1)若函数f (x )为奇函数,则ʃa -a f (x )d x =0.(2)若函数f (x )为偶函数,则ʃa -a f (x )d x =2ʃa0f (x )d x .跟踪训练2 若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1,且ʃ0-1(2x -1)d x =-2,ʃ10e -x d x =1-e -1,求ʃ1-1f (x )d x . 解 ʃ1-1f (x )d x =ʃ0-1f (x )d x +ʃ10f (x )d x =ʃ0-1(2x -1)d x +ʃ10e-x d x =-2+1-e -1=-(e -1+1).类型三 利用定积分的几何意义求定积分 例3 用定积分的几何意义求下列各式的值. (1)ʃ1-14-x 2d x ;(2)π2π-2sin d x x ⎰.解 (1)由y =4-x 2得x 2+y 2=4(y ≥0),其图象如图所示.ʃ1-14-x 2d x 等于圆心角为60°的弓形CED 的面积与矩形ABCD 的面积之和,S 弓形CED =12×π3×22-12×2×3=2π3-3,S 矩形ABCD =AB ·BC =23,∴ʃ1-14-x 2d x =23+2π3-3=2π3+ 3. (2)∵函数y =sin x 在x ∈⎣⎡⎦⎤-π2,π2上是奇函数, ∴π2π-2sin d x x ⎰=0.跟踪训练3 求定积分:ʃ20(4-(x -2)2-x )d x .解 ʃ204-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14, 即ʃ204-(x -2)2d x =14×π×22=π. ʃ20x d x 表示底和高都为2的直角三角形的面积, 即ʃ20x d x =12×22=2. ∴原式=ʃ204-(x -2)2d x -ʃ20x d x=π-2. 当堂检测1.下列结论中成立的个数是( )①ʃ10x 3d x =∑i =1n i 3n 3·1n ;②ʃ10x 3d x =lim n →∞∑i =1n (i -1)3n 3·1n ; ③ʃ10x 3d x =lim n →∞∑i =1ni 3n 3·1n . A .0 B .1 C .2 D .3 【答案】C【解析】②③成立.2.关于定积分a =ʃ2-1(-2)d x 的叙述正确的是( ) A .被积函数为y =2,a =6 B .被积函数为y =-2,a =6C .被积函数为y =-2,a =-6D .被积函数为y =2,a =-6 【答案】C【解析】由定积分的概念可知, ʃ2-1(-2)d x 中的被积函数为y =-2,由定积分的几何意义知,ʃ2-1(-2)d x 等于由直线x =-1,x =2,y =0,y =-2所围成的图形的面积的相反数, ∴ʃ2-1(-2)d x =-2×3=-6.3.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( )A .0B .16C .12D .8【答案】B【解析】ʃ6-6f (x )d x =2ʃ60f (x )d x =16.4.由函数y =-x 的图象,直线x =1,x =0,y =0所围成的图形的面积可表示为( ) A .ʃ10(-x )d x B .ʃ10|-x |d x C .ʃ0-1x d x D .-ʃ10x d x【答案】B【解析】由定积分的几何意义可知,所求图形的面积为S =ʃ10|-x |d x . 5.计算ʃ3-3(9-x 2-x 3)d x .解 如图所示,由定积分的几何意义得ʃ3-39-x 2d x =π×322=9π2, ʃ3-3x 3d x =0,由定积分性质得ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2.。
定积分的应用 教案
定积分的应用教案教案标题:定积分的应用教案目标:1. 理解定积分的概念和性质。
2. 掌握定积分的计算方法。
3. 学会运用定积分解决实际问题。
教学重点:1. 定积分的定义和性质。
2. 定积分的计算方法。
3. 定积分在实际问题中的应用。
教学难点:1. 将实际问题转化为定积分的形式。
2. 运用定积分解决实际问题。
教学准备:1. 教学课件。
2. 教材《高等数学》相关章节。
3. 计算器和白板。
教学过程:一、导入(5分钟)1. 引入定积分的概念,通过提问和讨论激发学生对定积分的兴趣和思考。
2. 回顾不定积分的概念和性质,为学生理解定积分做铺垫。
二、概念讲解(15分钟)1. 讲解定积分的定义和性质,包括积分上限、下限的含义、可加性、线性性等。
2. 通过示例演示定积分的计算方法,如基本初等函数的定积分、换元积分法等。
三、定积分的计算(20分钟)1. 给出一些简单的定积分计算题目,引导学生运用所学的计算方法进行解答。
2. 对于较复杂的题目,引导学生分步骤进行计算,并注意化简和变形的技巧。
四、定积分的应用(25分钟)1. 介绍定积分在实际问题中的应用,如面积计算、物理问题中的质量、速度、功率等计算。
2. 给出一些实际问题,引导学生将问题转化为定积分的形式,并进行求解。
3. 强调解决实际问题时需注意问题的分析和建立数学模型的能力。
五、拓展与巩固(10分钟)1. 给学生一些拓展题目,要求他们运用所学的知识解决更复杂的问题。
2. 总结定积分的应用领域和方法,并鼓励学生在实际生活中运用所学知识。
六、作业布置(5分钟)1. 布置一些练习题,要求学生独立完成,并在下节课前交作业。
2. 鼓励学生积极思考、互相讨论,提高问题解决能力。
教学反思:本节课通过引导学生理解定积分的概念和性质,掌握定积分的计算方法,并运用定积分解决实际问题,旨在培养学生的数学思维和应用能力。
教学过程中,通过示例演示和实际问题的引导,帮助学生理解和掌握定积分的应用。
定积分的应用教案
定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分是求曲线下的面积的方法强调定积分是极限的概念1.2 定积分的几何意义利用图形解释定积分表示曲线下的面积探讨定积分与区间的关系1.3 定积分的性质介绍定积分的四则运算讲解定积分的奇偶性第二章:定积分的计算方法2.1 定积分的标准公式介绍定积分的标准公式强调积分常数的存在2.2 定积分的换元法讲解定积分的换元法步骤举例说明换元法的应用2.3 定积分的分部积分法介绍定积分的分部积分法探讨分部积分法的应用第三章:定积分在几何中的应用3.1 求曲线的弧长利用定积分求曲线的弧长强调弧长公式的应用3.2 求曲面的面积引入曲面的面积概念利用定积分求曲面的面积3.3 求旋转体的体积介绍旋转体的体积公式利用定积分求旋转体的体积第四章:定积分在物理中的应用4.1 定积分在力学中的应用利用定积分求物体的质心利用定积分求物体的转动惯量4.2 定积分在电磁学中的应用利用定积分求电场强度利用定积分求磁场强度第五章:定积分在经济学中的应用5.1 定积分在优化问题中的应用利用定积分求最大值和最小值问题强调优化问题的实际意义5.2 定积分在概率论中的应用利用定积分求概率密度函数的积分5.3 定积分在评价问题中的应用利用定积分求函数的最大值和最小值问题强调定积分在评价问题中的作用第六章:定积分在生物学中的应用6.1 定积分在生长模型中的应用引入生长模型,如细胞的分裂利用定积分描述生物体的生长过程6.2 定积分在药物动力学中的应用介绍药物在体内的浓度变化利用定积分求药物的动力学参数第七章:定积分在工程学中的应用7.1 定积分在力学工程中的应用利用定积分计算结构的受力情况探讨定积分在材料力学中的应用7.2 定积分在热力学中的应用利用定积分求解热传导方程强调定积分在热力学中的重要性第八章:定积分在计算机科学中的应用8.1 定积分在图像处理中的应用介绍图像处理中的边缘检测利用定积分计算图像的边缘利用定积分计算曲线的长度强调定积分在图形学中的作用第九章:定积分的数值计算9.1 梯形法则介绍梯形法则及其原理利用梯形法则进行定积分的数值计算9.2 辛普森法则介绍辛普森法则及其适用条件利用辛普森法则进行定积分的数值计算9.3 数值计算方法的比较比较梯形法则和辛普森法则的优缺点强调选择合适的数值计算方法的重要性第十章:定积分在实际问题中的应用10.1 定积分在资源管理中的应用利用定积分计算资源的总量探讨定积分在资源管理中的分配问题10.2 定积分在环境保护中的应用利用定积分计算污染物的浓度强调定积分在环境保护中的作用10.3 定积分在其他领域的应用探讨定积分在人口学、社会学等领域的应用强调定积分在解决实际问题中的重要性重点和难点解析重点一:定积分的概念与几何意义定积分是微积分中的一个重要概念,它表示的是曲线下的面积。
定积分教案
定积分概念与性质一、教学目标分析1.理解定积分的概念。
2.掌握定积分的性质及定积分中值定理。
3.理解变上限定积分定义的函数。
二、学情/学习者特征分析本节主要给学生介绍有关定积分的概念与性质,因为之前学生对定积分有一定的涉及,故积极调动学生的探索与思维能力,使其充分掌握定积分的概念与性质,做到在以后的应运中轻松自如。
三、学习内容分析1.本节的作用和地位定积分的应用是在学生学习了定积分的概念、定积分的计算、定积分的几何意义之后,对定积分知识的总结和升华,通过用定积分解决一些简单的面积问题,初步感受定积分在解决数学问题与实际问题中的作用,体会导数与定积分之间的内在联系。
2.本节主要内容1.定积分的概念。
2.定积分的性质及定积分中值定理。
3.重点难点分析教学重点:定积分的性质及定积分中值定理教学难点:1.定积分的概念2.积分中值定理4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的有关知识,通过本节对学生的教学使学生进一步了解定积分的概念与性质。
五、教学策略在课堂中尽量避免死板的教学方法,使课堂气氛活跃化,通过实际问题的引人让学生了解定积分的概念,并通过举例讲解使其性质浮现再加以引导理解。
六、教学环境网络环境下的多媒体教室与课堂互动。
七、教学过程一、定积分问题举例1. 曲边梯形的面积曲边梯形: 设函数y =f (x )在区间[a , b ]上非负、连续. 由直线x =a 、x =b 、y =0及曲线y =f (x )所围成的图形称为曲边梯形, 其中曲线弧称为曲边.求曲边梯形的面积的近似值:将曲边梯形分割成一些小的曲边梯形, 每个小曲边梯形都用一个等宽的小矩形代替, 每个小曲边梯形的面积都近似地等于小矩形的面积, 则所有小矩形面积的和就是曲边梯形面积的近似值. 具体方法是: 在区间[a , b ]中任意插入若干个分点a =x 0< x 1< x 2< ⋅ ⋅ ⋅< x n -1< x n =b ,把[a , b ]分成n 个小区间[x 0, x 1], [x 1, x 2], [x 2, x 3], ⋅ ⋅ ⋅ , [x n -1, x n ],它们的长度依次为∆x 1= x 1-x 0 , ∆x 2= x 2-x 1 , ⋅ ⋅ ⋅ , ∆x n = x n -x n -1 .经过每一个分点作平行于y 轴的直线段, 把曲边梯形分成n 个窄曲边梯形. 在每个小区间[x i -1, x i ]上任取一点ξ i , 以[x i -1, x i ]为底、f (ξ i )为高的窄矩形近似替代第i 个窄曲边梯形(i =1, 2, ⋅ ⋅ ⋅ , n ) , 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值, 即A ≈f (ξ 1)∆x 1+ f (ξ 2)∆x 2+⋅ ⋅ ⋅+ f (ξ n )∆x n ∑=∆=ni i i x f 1)(ξ.求曲边梯形的面积的精确值:显然, 分点越多、每个小曲边梯形越窄, 所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值, 因此, 要求曲边梯形面积A 的精确值, 只需无限地增加分点, 使每个小曲边梯形的宽度趋于零. 记λ=max{∆x 1, ∆x 2,⋅ ⋅ ⋅, ∆x n }, 于是, 上述增加分点, 使每个小曲边梯形的宽度趋于零, 相当于令λ→0. 所以曲边梯形的面积为∑=→∆=ni i i x f A 10)(lim ξλ. 2. 变速直线运动的路程设物体作直线运动, 已知速度v =v (t )是时间间隔[T 1, T 2]上t 的连续函数, 且v (t )≥0, 计算在这段时间内物体所经过的路程S .求近似路程:我们把时间间隔[T 1, T 2]分成n 个小的时间间隔∆t i , 在每个小的时间间隔∆t i 内, 物体运动看成是均速的, 其速度近似为物体在时间间隔∆t i 内某点ξ i 的速度v (τ i ), 物体在时间间隔∆t i 内 运动的距离近似为∆S i = v (τ i ) ∆t i . 把物体在每一小的时间间隔∆t i 内 运动的距离加起来作为物体在时间间隔[T 1 , T 2]内所经过的路程S 的近似值. 具体做法是:在时间间隔[T 1 , T 2]内任意插入若干个分点T 1=t 0< t 1< t 2<⋅ ⋅ ⋅< t n -1< t n =T 2,把[T 1 , T 2]分成n 个小段[t 0, t 1], [t 1, t 2], ⋅ ⋅ ⋅, [t n -1, t n ] ,各小段时间的长依次为∆t 1=t 1-t 0, ∆t 2=t 2-t 1,⋅ ⋅ ⋅, ∆t n =t n -t n -1.相应地, 在各段时间内物体经过的路程依次为∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S n .在时间间隔[t i -1, t i ]上任取一个时刻τ i (t i -1<τ i < t i ), 以τ i 时刻的速度v (τ i )来代替[t i -1, t i ]上各个时刻的速度, 得到部分路程∆S i 的近似值, 即∆S i = v (τ i ) ∆t i (i =1, 2, ⋅ ⋅ ⋅ , n ).于是这n 段部分路程的近似值之和就是所求变速直线运动路程S 的近似值, 即∑=∆≈ni i i t v S 1)(τ;求精确值:记λ = max{∆t 1, ∆t 2,⋅ ⋅ ⋅, ∆t n }, 当λ→0时, 取上述和式的极限, 即得变速直线运动的路程∑=→∆=ni i i t v S 10)(lim τλ. 设函数y =f (x )在区间[a , b ]上非负、连续. 求直线x =a 、x =b 、y =0及曲线y =f (x )所围成的曲边梯形的面积.(1)用分点a =x 0<x 1<x 2< ⋅ ⋅ ⋅<x n -1<x n =b 把区间[a , b ]分成n 个小区间:[x 0, x 1], [x 1, x 2], [x 2, x 3], ⋅ ⋅ ⋅ , [x n -1, x n ], 记∆x i =x i -x i -1 (i =1, 2, ⋅ ⋅ ⋅ , n ).(2)任取ξ i ∈[x i -1, x i ], 以[x i -1, x i ]为底的小曲边梯形的面积可近似为i i x f ∆)(ξ (i =1, 2, ⋅ ⋅ ⋅ , n ); 所求曲边梯形面积A 的近似值为∑=∆≈n i ii x f A 1)(ξ. (3)记λ=max{∆x 1, ∆x 2,⋅ ⋅ ⋅, ∆x n }, 所以曲边梯形面积的精确值为∑=→∆=n i ii x f A 10)(lim ξλ. 设物体作直线运动, 已知速度v =v (t )是时间间隔[T 1, T 2]上t 的连续函数,且v (t )≥0, 计算在这段时间内物体所经过的路程S .(1)用分点T 1=t 0<t 1<t 2<⋅ ⋅ ⋅<t n -1<t n =T 2把时间间隔[T 1 , T 2]分成n 个小时间段: [t 0, t 1], [t 1, t 2], ⋅ ⋅ ⋅, [t n -1, t n ] , 记∆t i =t i -t i -1 (i =1, 2, ⋅ ⋅ ⋅ , n ).(2)任取τi ∈[t i -1, t i ], 在时间段[t i -1, t i ]内物体所经过的路程可近似为v (τi )∆t i(i =1, 2, ⋅ ⋅ ⋅ , n ); 所求路程S 的近似值为∑=∆≈n i ii t v S 1)(τ. (3)记λ=max{∆t 1, ∆t 2,⋅ ⋅ ⋅, ∆t n }, 所求路程的精确值为∑=→∆=n i ii t v S 10)(lim τλ.二、定积分定义抛开上述问题的具体意义, 抓住它们在数量关系上共同的本质与特性加以概括, 就抽象出下述定积分的定义.定义 设函数f (x )在[a , b ]上有界, 在[a , b ]中任意插入若干个分点a =x 0< x 1< x 2< ⋅ ⋅ ⋅< x n -1< x n =b ,把区间[a , b ]分成n 个小区间[x 0, x 1], [x 1, x 2], ⋅ ⋅ ⋅, [x n -1, x n ] ,各小段区间的长依次为∆x 1=x 1-x 0, ∆x 2=x 2-x 1,⋅ ⋅ ⋅, ∆x n =x n -x n -1.在每个小区间[x i -1, x i ]上任取一个点ξ i (x i -1< ξ i < x i ), 作函数值f (ξ i )与小区间长度∆x i 的乘积 f (ξ i ) ∆x i (i =1, 2,⋅ ⋅ ⋅, n ) , 并作出和∑=∆=ni i i x f S 1)(ξ.记λ = max{∆x 1, ∆x 2,⋅ ⋅ ⋅, ∆x n }, 如果不论对[a , b ]怎样分法, 也不论在小区间[x i -1, x i ]上点ξ i 怎样取法, 只要当λ→0时, 和S 总趋于确定的极限I , 这时我们称这个极限I 为函数f (x )在区间[a , b ]上的定积分, 记作⎰b a dx x f )(,即 ∑⎰=→∆=n i i i b a x f dx x f 10)(lim )(ξλ.其中f (x )叫做被积函数, f (x )dx 叫做被积表达式, x 叫做积分变量, a 叫做积分下限, b 叫做积分上限, [a , b ]叫做积分区间.定义 设函数f (x )在[a , b ]上有界, 用分点a =x 0<x 1<x 2< ⋅ ⋅ ⋅<x n -1<x n =b 把[a , b ]分成n 个小区间: [x 0, x 1], [x 1, x 2], ⋅ ⋅ ⋅, [x n -1, x n ] , 记∆x i =x i -x i -1(i =1, 2,⋅ ⋅ ⋅, n ).任ξ i ∈[x i -1, x i ] (i =1, 2,⋅ ⋅ ⋅, n ), 作和∑=∆=n i i ix f S 1)(ξ.记λ=max{∆x 1, ∆x 2,⋅ ⋅ ⋅, ∆x n }, 如果当λ→0时, 上述和式的极限存在, 且极限值与区间[a , b ]的分法和ξ i 的取法无关, 则称这个极限为函数f (x )在区间[a , b ]上的定积分, 记作⎰b a dx x f )(,即 ∑⎰=→∆=ni i i ba x f dx x f 10)(lim )(ξλ. 根据定积分的定义, 曲边梯形的面积为⎰=b a dx x f A )(.变速直线运动的路程为dt t v S TT )(21⎰=. 说明:(1)定积分的值只与被积函数及积分区间有关, 而与积分变量的记法无关, 即⎰⎰⎰==ba b a b a du u f dt t f dx x f )()()(.(2)和∑=∆ni i i x f 1)(ξ通常称为f (x )的积分和.(3)如果函数f (x )在[a , b ]上的定积分存在, 我们就说f (x )在区间[a , b ]上可积. 函数f (x )在[a , b ]上满足什么条件时, f (x )在[a , b ]上可积呢?定理1 设f (x )在区间[a , b ]上连续, 则f (x ) 在[a , b ]上可积.定理2 设f (x )在区间[a , b ]上有界, 且只有有限个间断点, 则f (x ) 在[a , b ]上可积. 定积分的几何意义:在区间[a , b ]上, 当f (x )≥0时, 积分⎰b a dx x f )(在几何上表示由曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形的面积; 当f (x )≤0时, 由曲线y =f (x )、两条直线x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方, 定义分在几何上表示上述曲边梯形面积的负值; ⎰∑∑⎰--=∆--=∆==→=→ba n i i i n i i ib a dx x f x f x f dx x f )]([)]([lim )(lim )(1010ξξλλ. 当f (x )既取得正值又取得负值时, 函数f (x )的图形某些部分在x 轴的上方, 而其它部分在x 轴的下方. 如果我们对面积赋以正负号, 在x 轴上方的图形面积赋以正号, 在x 轴下方的图形面积赋以负号, 则在一般情形下, 定积分⎰ba dx x f )(的几何意义为: 它是介于x 轴、函数f (x )的图形及两条直线x =a 、x =b 之间的各部分面积的代数和.用定积分的定义计算定积分:例1. 利用定义计算定积分dx x 210⎰.解 把区间[0, 1]分成n 等份, 分点为和小区间长度为n i x i =(i =1, 2,⋅ ⋅ ⋅, n -1), nx i 1=∆(i =1, 2,⋅ ⋅ ⋅, n ) . 取ni i =ξ(i =1, 2,⋅ ⋅ ⋅, n ), 作积分和 ∑∑∑===⋅=∆=∆n i i n i i i n i i n n i x x f 121211)()(ξξ )12)(1(61113123++⋅==∑=n n n n i n n i )12)(11(61n n ++=. 因为n1=λ, 当λ→0时, n →∞, 所以 31)12)(11(61lim )(lim 10210=++=∆=∞→=→∑⎰n n x f dx x n n i i i ξλ. 利定积分的几何意义求积分: 例2. 用定积分的几何意义求⎰-10)1(dx x .解: 函数y =1-x 在区间[0, 1]上的定积分是以y =1-x 为曲边, 以区间[0, 1]为底的曲边梯形的面积. 因为以y =1-x 为曲边, 以区间[0, 1]为底的曲边梯形是一直角三角形, 其底边长及高均为1, 所以211121)1(10=⨯⨯=-⎰dx x . 三、定积分的性质两点规定: (1)当a =b 时,0)(=⎰b a dx x f . (2)当a >b 时, ⎰⎰-=a b b a dx x f dx x f )()(.性质1 函数的和(差)的定积分等于它们的定积分的和(差) 即 ⎰⎰⎰±=±b a b a b a dx x g dx x f dx x g x f )()()]()([.证明:⎰±b a dx x g x f )]()([∑=→∆±=n i i i i x g f 10)]()([lim ξξλ ∑∑=→=→∆±∆=n i i i n i i i x g x f 1010)(lim )(lim ξξλλ ⎰⎰±=b a b a dx x g dx x f )()(.性质2 被积函数的常数因子可以提到积分号外面 即⎰⎰=b a b a dx x f k dx x kf )()(.这是因为∑⎰=→∆=n i i i b a x kf dx x kf 10)(lim )(ξλ⎰∑=∆==→b a n i i i dx x f k x f k )()(lim 10ξλ. 性质3 如果将积分区间分成两部分 则在整个区间上的定积分等于这两部分区间上定积分之和 即⎰⎰⎰+=b c c a b a dx x f dx x f dx x f )()()(.这个性质表明定积分对于积分区间具有可加性.值得注意的是不论a ,b ,c 的相对位置如何总有等式⎰⎰⎰+=b c c a b a dx x f dx x f dx x f )()()(成立. 例如, 当a <b <c 时, 由于 ⎰⎰⎰+=c b b a c a dx x f dx x f dx x f )()()(,于是有 ⎰⎰⎰-=c b c a b a dx x f dx x f dx x f )()()(⎰⎰+=b c c a dx x f dx x f )()(.性质4 如果在区间[a b ]上f (x )≡1 则 a b dx dx b a b a -==⎰⎰1.性质5 如果在区间[a , b ]上 f (x )≥0, 则 ⎰≥b a dx x f 0)((a <b ).推论1 如果在区间[a , b ]上 f (x )≤ g (x ) 则⎰⎰≤b a b a dx x g dx x f )()((a <b ).这是因为g (x )-f (x )≥0, 从而⎰⎰⎰≥-=-b a b a b a dx x f x g dx x f dx x g 0)]()([)()(, 所以⎰⎰≤b a b a dx x g dx x f )()(.推论2 ⎰⎰≤b a b a dx x f dx x f |)(||)(|(a <b ).这是因为-|f (x )| ≤ f (x ) ≤ |f (x )|, 所以⎰⎰⎰≤≤-b a b a b a dx x f dx x f dx x f |)(|)(|)(|,即 ⎰⎰≤b a b a dx x f dx x f |)(||)(|| .性质6 设M 及m 分别是函数f (x )在区间[a , b ]上的最大值及最小值, 则⎰-≤≤-b a a b M dx x f a b m )()()((a <b ).证明 因为 m ≤ f (x )≤ M , 所以⎰⎰⎰≤≤b a b a b a Mdx dx x f mdx )(,从而 ⎰-≤≤-b a a b M dx x f a b m )()()(.性质7 (定积分中值定理) 如果函数f (x )在闭区间[a , b ]上连续, 则在积分区间[a , b ]上至少存在一个点ξ , 使下式成立:⎰-=ba ab f dx x f ))(()(ξ. 这个公式叫做积分中值公式.证明 由性质6⎰-≤≤-ba ab M dx x f a b m )()()(,各项除以b -a 得⎰≤-≤b a M dx x f a b m )(1, 再由连续函数的介值定理, 在[a , b ]上至少存在一点ξ , 使⎰-=b a dx x f ab f )(1)(ξ, 于是两端乘以b -a 得中值公式⎰-=ba ab f dx x f ))(()(ξ. 积分中值公式的几何解释:应注意: 不论a <b 还是a >b , 积分中值公式都成立.。
定积分的应用教案
定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义:定积分是函数在区间上的积累效果,表示为∫ab f(x)dx。
强调定积分表示的是函数在区间上的面积或长度。
1.2 定积分的性质介绍定积分的性质:线性性质、保号性、可积函数的有界性等。
通过示例说明定积分的性质在实际问题中的应用。
第二章:定积分的计算方法2.1 牛顿-莱布尼茨公式介绍牛顿-莱布尼茨公式:如果F(x) 是函数f(x) 的一个原函数,∫ab f(x)dx = F(b) F(a)。
解释原函数的概念:原函数是导函数的不定积分。
2.2 定积分的换元法介绍换元法的步骤:选择适当的代换变量,求导数,计算新积分。
通过具体例子演示换元法的应用。
第三章:定积分在几何中的应用3.1 平面区域的面积解释平面区域面积的概念:平面区域内所有点的坐标的绝对值的平均值。
利用定积分计算平面区域的面积,示例包括矩形、三角形、圆形等。
3.2 曲线围成的面积介绍利用定积分计算曲线围成的面积的方法:选择适当的上下限,计算定积分。
通过具体例子演示计算曲线围成的面积。
第四章:定积分在物理中的应用4.1 定积分与力的累积解释力的累积概念:力在一段时间内的积累效果。
利用定积分计算力的累积,示例包括恒力作用下的位移、变力作用下的位移等。
4.2 定积分与功的计算介绍利用定积分计算功的方法:计算力与位移的乘积的定积分。
通过具体例子演示计算功的应用。
第五章:定积分在经济学中的应用5.1 定积分与总成本解释总成本的概念:企业在生产一定数量产品所需的成本。
利用定积分计算总成本,示例包括固定成本和变动成本的情况。
5.2 定积分与总收益介绍利用定积分计算总收益的方法:计算产品的售价与销售数量的乘积的定积分。
通过具体例子演示计算总收益的应用。
第六章:定积分在概率论中的应用6.1 定积分与概率密度解释概率密度的概念:随机变量在某个区间内的概率。
利用定积分计算概率密度,示例包括均匀分布、正态分布等。
人教版高中数学定积分教案
人教版高中数学定积分教案课题:定积分
教材:人教版高中数学必修2
教学目标:
1. 理解定积分的概念和性质;
2. 掌握定积分的计算方法和技巧;
3. 能够运用定积分求解实际问题。
教学重点:
1. 定积分的计算方法;
2. 定积分的性质。
教学难点:
1. 带有参数的定积分的计算;
2. 利用定积分求解实际问题。
教学准备:
1. 教材;
2. 黑板、彩色粉笔;
3. 计算器、练习题。
教学步骤:
第一步:导入
通过题目引出定积分的概念,并让学生讨论定积分的性质。
第二步:引入
介绍定积分的计算方法,包括反常积分、定积分的性质等。
第三步:讲解
讲解定积分的概念和性质,并进行例题演练。
第四步:练习
让学生通过练习题巩固所学知识。
第五步:拓展
引导学生思考定积分在实际问题中的应用,并进行实例讲解。
第六步:总结
对本节课所学内容进行总结,并布置下节课的作业。
教学反思:
在教学过程中,要注重引导学生理解定积分的概念和性质,培养他们的思维能力和解决问题的能力。
同时,要重点讲解定积分的计算方法和技巧,让学生掌握解题的方法。
在教学中要多使用实例演练,增强学生的实际操作能力。
高中数学定积分的概念教案新人教版选修
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的定义方法和性质。
2. 学会利用定积分解决实际问题,提高运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力、创新能力和合作能力。
二、教学内容1. 定积分的概念:定积分的定义、定积分的性质。
2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。
3. 定积分在实际问题中的应用。
三、教学重点与难点1. 重点:定积分的概念、性质,定积分的计算方法。
2. 难点:定积分的理解和运用,定积分的计算技巧。
四、教学方法1. 采用问题驱动法,引导学生主动探究定积分的概念和性质。
2. 利用案例分析法,让学生学会将实际问题转化为定积分问题。
3. 运用讨论法,培养学生的合作能力和创新思维。
五、教学过程1. 导入:通过生活中的实例,引导学生思考如何求解曲边图形的面积。
2. 探究定积分的概念:讲解定积分的定义,让学生理解定积分的基本思想。
3. 学习定积分的性质:引导学生通过举例,总结定积分的性质。
4. 定积分的计算:讲解牛顿-莱布尼茨公式,教授换元法和分部积分法。
5. 应用定积分解决实际问题:让学生分组讨论,选取实例进行分析。
6. 总结与反馈:对所学内容进行总结,收集学生反馈,及时调整教学方法。
六、教学评价1. 评价学生对定积分概念的理解程度,通过课堂提问、作业批改等方式进行。
2. 评价学生对定积分性质的掌握情况,通过课后练习、小测验等方式进行。
3. 评价学生运用定积分解决实际问题的能力,通过分组讨论、课堂展示等方式进行。
七、教学资源1. PPT课件:制作精美的PPT课件,展示定积分的概念、性质和计算方法。
2. 教学案例:收集与生活实际相关的案例,用于引导学生运用定积分解决实际问题。
3. 练习题库:编写一定数量的练习题,用于巩固学生对定积分的理解和运用。
八、教学进度安排1. 第1周:导入定积分的概念,讲解定积分的定义和性质。
定积分的概念教案
定积分的概念教学目标:知识目标:掌握定积分的含义,理解定积分的几何意义。
能力目标:1、理解定积分概念中归纳思维的运用;2、掌握例题求解过程中对比思维的运用。
素质目标:提升分析与解决问题的能力教学重点和难点:教学重点 :定积分的概念和思想教学难点:理解定积分的概念,领会定积分的思想教学方法:1、直观法:让抽象的数学与具体的生活结合。
2、归纳法:让严整的数学定义与休闲的娱乐生活结合。
3、类比法:让例题求解过程与社会事例结合。
4、总结法:数学学习中培养的能力贯穿生活、社会、科学等各方面。
教学过程:一、引入新课我们已经学过规则平面图形的面积:三角形 四边形 梯形 圆等,那么不规则平面图形的面积该怎么求呢? 二、讲解新课实例1曲边梯形的面积曲边梯形:若图形的三条边是直线段,其中有两条垂直 于第三条底边,而其第四条边是曲线,这样的图形称为曲边梯形,如左下图所示.曲边梯形面积的确定步骤:推 广 为 yO M P Q N B x CAA 曲边梯形面积的确定方法:把该曲边梯形沿着 y 轴方向切割成许多窄窄的长条,把每个长条近似看作一个矩形,用长乘宽求得小矩形面积,加起来就是曲边梯形面积的近似值,分割越细,误差越小,于是当所有的长条宽度趋于零时,这个阶梯形面积的极限就成为曲边梯形面积的精确值了.如下图所示: Oxy y = f (x )(1)分割 任取分点b x x x x x a n n =<<<<<=-1210 ,把底边[a ,b ]分成n 个小区间[]21,x x ,(),,2,1n i =.小区间长度记为 );,,2,1(1n i x x x i i i =-=∆-(2) 取近似 在每个小区间[i i x x ,1-]上任取一点i ξ竖起高线)(i f ξ,则得小长条面积i A ∆的近似值为i i i x f A ∆≈∆)(ξ (n i ,,2,1 =);(3) 求和 把n 个小矩形面积相加(即阶梯形面积)就得到曲边梯形面积A 的近似值i ni i n n x f x f x f x f ∆=∆++∆+∆∑=)()()()(12211ξξξξ ;(4) 取极限 令小区间长度的最大值{}i ni x ∆=≤≤1max λ 趋于零,则和式ini ix f ∆∑=)(1ξ的极限就是曲边梯形面积A 的精确值,即 ini ix f A ∆=∑=→1)(limξλ实例2 路程问题解决变速运动的路程的基本思路:把整段时间分割成若干小时间段,每小段上速度看作不变,求出各小段的路程的近似值,再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值. (1)分割 (2)近似 (3)求和 (4)取极限路程的精确值2、归纳总结曲边梯形的面积和变速运动的路程得出定积分的概念。
定积分教案
第八节 定积分【高考目标导航】一、定积分的概念与微积分基本定理 1、考纲点击(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义。
2、热点提示(1)定积分的运算及其在几何或物理方面的简单应用是高考命题的热点,多以选择题、填空题的形式出现;(2)利用定积分求曲边梯形的面积也是高考常考考点。
二、定积分的简单应用 1、考纲点击(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义。
2、热点提示(1)利用定积分求曲边梯形的面积;(2)利用定积分求变速直线运动的物体的路程; (3)利用定积求变力作的功。
【考纲知识梳理】一、定积分的概念与微积分基本定理 1、定积分的概念[来源:学,科,网] (1)定积分的定义和相关概念 ①如果函数f(x)在区间[a,b]上连续,用分点a=x 0<x 1<x 2<…<x i+1<x i <…<x n =b 将区间[a,b]等分成n 个小区间,在每个小区间[x i-1, x i ]上任意取一点ξi (i=1,2,…,n ),作和式11()(),nni i i i b af x f n ξξ==-∆=∑∑当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作()baf x dx ⎰,即()baf x dx ⎰=1lim ()ni n i b af nξ→∞=-∑。
②在()baf x dx ⎰中,a 与b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。
(2)定积分折几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分()baf x dx ⎰的几何意义是由直线x=a,x=b(a ≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分)。
大学数学分析定积分教案
教学目标:1. 理解定积分的概念及其几何意义。
2. 掌握定积分的性质和计算方法。
3. 能够运用定积分解决实际问题。
教学重点:1. 定积分的定义及其几何意义。
2. 定积分的性质和计算方法。
教学难点:1. 定积分的定义的理解。
2. 定积分的计算。
教学时间:2课时教学过程:一、导入1. 通过展示曲边梯形的面积计算实例,引导学生回顾不定积分的概念,并引出定积分的定义。
2. 强调定积分在解决实际问题中的应用。
二、新课讲解1. 定积分的定义- 讲解定积分的定义,强调分割、近似求和、取极限的过程。
- 通过实例展示定积分的定义在几何意义中的应用。
2. 定积分的性质- 讲解定积分的性质,包括线性性质、保号性、中值定理等。
- 通过实例演示定积分的性质在解决实际问题中的应用。
3. 定积分的计算- 讲解定积分的计算方法,包括直接计算、换元法、分部积分法等。
- 通过实例演示定积分的计算方法,强调计算过程中的注意事项。
三、课堂练习1. 针对定积分的定义和性质,设计一些选择题和填空题,帮助学生巩固所学知识。
2. 针对定积分的计算,设计一些计算题,让学生独立完成,教师进行点评和讲解。
四、课堂小结1. 总结本节课的主要内容,强调定积分的定义、性质和计算方法。
2. 鼓励学生在课后复习,加深对定积分的理解和应用。
五、课后作业1. 完成本节课的课堂练习题。
2. 额外练习题:- 利用定积分计算曲边梯形的面积。
- 利用定积分计算变力所作的功。
教学反思:本节课通过实例引入定积分的概念,帮助学生理解定积分的定义和几何意义。
在讲解定积分的性质和计算方法时,注重理论与实践相结合,通过课堂练习和课后作业,提高学生的实际应用能力。
在教学过程中,要注意引导学生思考,培养学生的逻辑思维能力。
教学评价:1. 学生对定积分的定义和性质的理解程度。
2. 学生运用定积分解决实际问题的能力。
3. 学生对定积分计算方法的掌握程度。
定积分教案
《数学分析》之九第九章定积分(14+4学时)教学大纲教学要求:1.理解Riemann定积分的定义及其几何意义2.了解上和与下和及其有关性质3.理解函数可积的充要条件,了解Riemann可积函数类4.熟练掌握定积分的主要运算性质以及相关的不等式5.了解积分第一中值定理6.掌握变上限积分及其性质7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法教学内容:问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。
第页此表2学时填写一份,“教学过程”不足时可续页第页第页εξ<-∆∑=n i i iJ x f 1)(。
则称函数)(x f 在[b a .]上可积或黎曼可积。
数J 称为函数)(x f 在[b a .]上的定积分或黎曼积分,记作:⎰=b a dx x f J )(其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dx x f )(称为被积式,b a ,分别称为积分的下限和上限。
定积分的几何意义;连续函数定积分存在(见定理)三、举例:例 1 已知函数在区间上可积 .用定义求积分.解 取 等分区间作为分法 n b x T i =∆, 取.=.由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 .例2 已知函数211)(xx f +=在区间]1,0[上可积 ,用定义求积分 .解 分法与介点集选法如例1 , 有.上式最后的极限求不出来 , 但却表明该极限值就是积分.四、小结:指出本讲要点此表2学时填写一份,“教学过程”不足时可续页时间---------月---------日星期-----------------课题§ 2 Newton — Leibniz 公式(2学时)教学目的深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分.教学重点能够熟练地应用牛顿-莱布尼兹公式计算定积分教学难点应用定积分计算形式的极限课型理论课教学媒体教法选择讲练结合第 页( 证明思路 函数函数)(x f y =在【a ,b 】上连续,则一致连续)(根据定积分定义与极限定义证明) 证明:(略) 例1求; ;例2利用( N — L 公式 ) 求下列定积分 1)N n dx x ba n ∈⎰,,2),⎰b a x dxe3),12⎰b a dxx4),sin⎰b a xdx5),42⎰-badxxx例3 求.小结:1.利用N-L公式求定积分的步骤。
1.5定积分的概念教案
从几何上看,如果在区间 上函数 连续且恒有,那么定积分 表示由所围成的曲边梯形的面积.这就是定积分的几何意义.
【即时训练1】定积分 的值是.
阅读教材 完成右框内容
三、定积分的性质
(1) .(2) .
(3) .
【即时训练2】已知 , , , ,求下列各式的值.
课堂小结
三、巩固诊断
1.已知 为偶函数且 ,则 等于( )
A.0B.4C.8D.16
2.若 是奇函数,则 ( )
A.0B. C. D.1
3.如图,阴影部分面积分别为 ,则定积分 _____.
4.说明下列定积分所表示的几何意义,并根据其几何意义求出定积分的值.
闯关题:求定积分:
.
1.5定积分的概念
一、学习目标:1.理解定积分的概念.
2.理解定积分的几何意义.
3.掌握定积分的基本性质
学习重点:理解定积分的概念及其几何意义,定积分的性质
学习难点:对定积分概念形成过程的理检测及课堂展示
阅读教材 完成右框内容
一、定积分的概念
一般地,如果函数 在区间 上连续,用分点 将区间 等分成 小区间,在每个小区间 上任取一点 ,作和式 .当 时,上述和式无限接近某个,这个叫做函数在区间上的定积分,记作 ,即 ,这里, 分别叫做与,区间 叫做,函数 叫做, 叫做, 叫做.
第2章定积分 教学要求、重点、难点、内容结构
2、分部积分法定积分的分部积分法 公式:
b
a
uv dx uv | u / vdx
/ a a
b
b
说明:分部积分法与不定积分的分部积分法除了有上下限外,形式上是一样的
例题1 例题2 例题3
x f x dx f x 3、变上限定积分的计算 a /
跟我练习
第2章定积分
教学要求:
教学要求、重点、难点、内容结构
1、理解定积分的概念及其性质 2、了解变上限定积分的概念,会求变上限定积分的导数 3、掌握定积分的换元积分法,熟练掌握定积分的分步积分法 4、会求较简单的无穷限广义积分 重点:定积分的概念与计算
难点:定积分的概念
内容结构
牛顿-莱布尼兹公式
1、N-L公式:若F(x)是f(x)的一个原函数,即有不定积分 成立,则
2)定积分与积分变量选取的字母无关
b a
x a
a b b aຫໍສະໝຸດ baf x dx F x | G x |
b a
b a
b
a x
a
f t dt
F x F a
定积分的计算
1、第一换元积分法(凑微分法)
说明:积分法与不定积分的凑微分法类似。不同之处在于定积分的计算结果是一个具体的数值,与 上下限有关,所以关于定积分的第一换元积分法要遵循 “换元变限,不换元不变限” 的原则。 例题1 例题2 跟我练习
4、广义积分:形如
若f(x)为奇函数,则
5、奇偶函数在对称区间上的积分:
a
a
f x dx
练习
0
e
3 x
1 3 x 1 dx e | 0 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》之九第九章定积分(14+4学时)教学大纲教学要求:1.理解Riemann定积分的定义及其几何意义2.了解上和与下和及其有关性质3.理解函数可积的充要条件,了解Riemann可积函数类4.熟练掌握定积分的主要运算性质以及相关的不等式5.了解积分第一中值定理6.掌握变上限积分及其性质7.熟练掌握Newton-Leibniz公式,定积分换元法,分部积分法教学内容:问题的引入(曲边梯形的面积及变速直线运动的路程),定积分定义,几何意义,可积的必要条件,上和、下和及其性质,可积的充分条件,可积函数类,定积分的性质,积分中值定理,微积分学基本定理,牛顿一莱布尼兹公式,定积分的换元法及分部法。
第页此表2学时填写一份,“教学过程”不足时可续页第页=i 1。
则称函数)(x f 在[b a .]上可积或黎曼可积。
数J 称为函数)(x f 在[b a .]上的定积分或黎曼积分,记作:⎰=badxx f J )(其中)(x f 称为被积函数,x 称为积分变量,[b a .]称为积分区间,dxx f )(称为被积式,b a ,分别称为积分的下限和上限。
定积分的几何意义;连续函数定积分存在(见定理9.3) 三、举例: 例1 已知函数在区间上可积 .用定义求积分.解 取 等分区间作为分法 nb x T i =∆, 取.=.由函数)(x f 在区间],0[b 上可积 ,每个特殊积分和之极限均为该积分值 .例2 已知函数211)(x x f +=在区间]1,0[上可积 ,用定义求积分 .解 分法与介点集选法如例1 , 有.上式最后的极限求不出来 , 但却表明该极限值就是积分.四、小结:指出本讲要点定积分的概念(几何意义);定积分的问题背景;若定积分存在,按定义计算定积分的值时,分割与介点的选取,可取特殊点,解题步骤(回顾例1)。
作业:课后1. 2.(1)(2)第 页时间 ---------月---------日 星期----------------- 课 题§ 2 Newton — Leibniz 公式(2学时)教学目的 深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点 能够熟练地应用牛顿-莱布尼兹公式计算定积分 教学难点应用定积分计算形式的极限课 型 理论课 教学媒体教法选择 讲 练 结 合教 学 过 程教法运用及板书要点一、复习定积分的定义,分割;积分和(黎曼和);极限存在(可积); 定积分的几何意义; 注:定积分⎰b adxx f )(的值只与被积函数)(x f 及积分区间[b a .]有关,而与积分变量所用的符号无关。
二、定积分的计算 (1),按定义计算 (2)应用下列定理Th9.1 ( N — L 公式 )若函数)(x f y =在【a ,b 】上连续,且存在原函数)(x F ,即),()(x f x F ='],[b a x ∈,则)(x f y = 在【a ,b 】上可积,且b a bax F a F b F dx x f |)()()()(=-=⎰这个公式称作( N — L 公式 )( 证明思路 函数函数)(x f y =在【a ,b 】上连续,则一致连续) (根据定积分定义与极限定义证明)证明:(略) 例1求;;例2利用( N — L 公式 ) 求下列定积分 1)N n dx x ban ∈⎰,,2),⎰b a x dxe3),12⎰b a dxx4),sin⎰b a xdx5),42⎰-badxxx例3 求.小结:1.利用N-L公式求定积分的步骤。
2.利用定积分定义计算形如的极限时,找被积函数的方法;利用定积分来为极限的关键是把扫求极限转化成某函数的积分和的形式。
练习p.207 第二题作业p206,1.2第页时间---------月---------日星期-----------------课题§3可积条件(2学时)(一)教学目的理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件,熟悉证明可积性的问题的思路和方法.教学重点掌握可积的充要条件教学难点函数可积性问题的证明;课型理论课教学媒体教法选择讲授教学过程教法运用及板书要点一、必要条件:定理9.2 若函数f(x) [a,b],f(x)在区间[a,b]上有界.证明方法:反证法回顾f(x)在区间[a,b]上无界的定义,回顾定积分定义中的两个“任意”(插入点任意,介点选取任意)给出证明:例1 讨论Dirichlet函数D(x)在区间[0,1]上的可积性.强调可积与函数有界之间的关系二、充要条件:1.思路与方案:思路: 鉴于积分和与分法和介点有关, 先简化积分和. 用相应于分法的“最大”和“最小”的两个“积分和”去双逼一般的积分和, 即用极限的双逼原理考查积分和有极限, 且与分法及介点无关的条件.复习极限的双逼原理方案: 定义上和S(T)和下和s(T). 研究它们的性质和当时有相同极限的充要条件 ..设T={ix ∆n i ,,2,1Λ=}为对[a ,b]的任一分割。
由 f(x) 在[a ,b]上有界知,它在每个i x ∆上存在上、下确界:ix x i x f M ∆∈=)(sup ,ix x i x f m ∆∈=)(inf ,n i ,,2,1Λ=.作和∑=∆=ni ii x M T S 1)(,∑=∆=ni ii x m T s 1)(,分别称为 f(x)关于分割T 的上和与下和(或称达布上和与达布下和,统称达布和)任给i i x ∆∈ξ,n i ,2,1Λ=,显然有)()()(T S x f T s i i ≤∆≤∑ξ.说明:与积分和相比,达布和只与分割T 有关,而与点i ξ的取法无关。
2. Darboux 和:以下总设函数f(x)在区间[a,b]上有界. 并设,其中和分别是函数f(x)在区间[a,b]上的下确界和上确界Darboux 和定义:指出Darboux 和未必是积分和 . 但Darboux 和由分法 唯一确定.分别用S(T)、s(T)和 记相应于分法T 的上(大)和、下(小)和与积分和.积分和 是数集(多值) . 但总有 s(T)S(T)因此有.和的几何意义 .*3. Darboux 和的性质:分点增加,上和不增,下和不减.定理9.3(可积准则)函数f 在],[b a 上可积的充要条件是:对任意的0>ε,总存在相应的分割T ,使得ε<-)()(T s T S(本定理的证明,参见§6) 定理9.3的几何意义设i i i m M -=ω,并称为)(x f 在i x ∆上的振幅,有必要时记为fi ω。
则有ini i x T s T S ∆=-∑=1)()(ω。
定理9.3' 函数)(x f 在],[b a 上可积⇔对0>∀ε,T ∃,使得εω<∆∑=ini i x1。
不等式ε<-)()(T s T S 或εω<∆∑=ini i x1的几何意义:若函数f(x)在 [a,b]上可积,则p.209图9-7中包围曲线)(x f y =的一系列小矩形面积之和可以达到任意小,只要分割充分的细;反之亦然。
三、小结:可积的必要条件与可积准则可积函数的充分条件(证明函数可积的思路和方法)当函数f(x)在区间[a,b]上含某些点的小区间上振幅作不到任意小时, 可试用f(x)在区间 [a,b]上的振幅 作的估计 , 有. 此时, 倘能用总长小于,否则f(x)为常值函数的有限个小区间复盖这些点,以这有限个小区间的端点作为分法 的一部分分点,在区间 [a,b]的其余部分作分割,使在每个小区间上有<,对如此构造的分法, 有<.作业:p212 1 和2第页此表2学时填写一份,“教学过程”不足时可续页推论2设函数)(xf在区间],[ba上有界且其间断点仅有有限个聚点, 则函数)(xf在区间],[ba上可积.例判断题: 闭区间上仅有一个间断点的函数必可积. ( ) 闭区间上有无穷多个间断点的函数必不可积. ( )3. 闭区间上的单调函数必可积:定理9.6 若函数)(xfy=是],[ba上的单调函数,则函数)(xfy=在],[ba上可积。
证明思路:(证明过程)例2 用两种方法证明在[0,1]上可积.例3 证明黎曼函数1,(,)1,()00,1(0,1)qx p q q pq pf xx⎧==>⎪=⎨⎪=⎩和内的无理点在区间【0,1】内可积,且1()0f x dx=⎰小结:常见的可积函数类(三类)证明可积函数的方法作业: p212 3此表2学时填写一份,“教学过程”不足时可续页此表2学时填写一份,“教学过程”不足时可续页第页说明:当1)(≡xg时,即为积分第一中值定理。
注:事实上,积分第一中值定理和推广的积分第一中值定理中的点ξ必能),(ba∈ξ。
二. 举例: 例1 设. 试证明:⎰∑=∆=→baiiniiTfgdxxgf)()(lim1||||ηξ.其中和是内的任二点, { }, .例2 比较积分的大小.设但. 证明>0.证明不等式.证明分析所证不等式为只要证明在上成立不等式,且等号不恒成立, 则由性质4和上例得所证不等式.例4.小结:积分的性质定理 和 积分中值定理 课后习题处理:P .219 1. 5. 作业:p 。
219 2. 3。
注记:1、积分的性质较多,分类记忆方法比较好.2、P 217注意2中的2,10,()1,0 1.xx x x F x e x -⎧--≤<=⎨-+≤≥⎩这里 )(x F 取1xe--+是因为P 207题3要求()F x 连续.第 页第 页时间 ---------月---------日 星期----------------- 课 题 §5 微积分基本定理.定积分计算(续)(2学时)(一)教学目的掌握变上限的定积分和它的分析性质. 了解积分第二中值定理及其推论.能熟练的用换元积分法和分部积分法计算定积分.教学重点 变上限的定积分和它的分析性质, 用换元积分法和分部积分法计算定积分 教学难点 变上限的定积分和它的分析性质的应用. 课 型 理论+实践 教学媒体教法选择 讲授+练习教 学 过 程教法运用及板书要点一. 变限积分与原函数的存在性 引入:由定积分计算引出 .1.变限积分:设)(x f 在],[b a 上可积,则对],[b a x ∈∀,)(x f 在],[x a 上也可积,于是,由⎰=Φxa dtt f x )()(, ],[b a x ∈定义了一个以积分上限x 为自变量的函数,称为变上限的定积分。
类似地,可定义变下限的定积分:⎰=ψbxdtt f x )()(,],[b a x ∈)(x Φ和)(x ψ统称为变限积分。