数形结合解零点问题(已修改,含答案)

合集下载

函数的零点个数问题-含答案

函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

数学二轮微专题2数形结合思想在函数零点有关问题中的应用

数学二轮微专题2数形结合思想在函数零点有关问题中的应用

高考二轮专题复习
返回目录
解析 作出函数 f(x)=|xl+n x1|,,xx>≤0,0 的图象,如图所
示.
高考二轮专题复习
返回目录
方程f(x)-a2=0有三个不同的实数根,等价于函数y =f(x)的图象与直线y=a2有三个不同的交点,根据图象 可知,当0<a2≤1时,函数y=f(x)的图象与直线y=a2有 三个不同的交点,故a的取值范围是[-1,0)∪(0,1].
高考二轮专题复习
返回目录
如图所示,要使存在唯一的正整数 x0,使得 f(x0)<0,
g1≥h1, 只要g2<h2,
g3≥h3,
1-3+5≥2a, 即8-12+5<3a,
27-27+5≥4a,
解得13<a≤54.
故实数 a 的取值范围为13,54.
答案 13,54
高考二轮专题复习
返回目录
6.已知函数 f(x)=xe2x,若关于 x 的方程[f(x)]2+mf(x) +m-1=0 恰有 3 个不同的实数解,则实数 m 的取值范 围是________.
高考二轮专题复习
返回目录
5.设函数f(x)=x3-3x2-ax+5-a,若存在唯一的 正整数x0,使得f(x0)<0,则a的取值范围是________.
解析 设g(x)=x3-3x2+5,h(x)=a(x+1),因为 g′(x) = 3x2 - 6x = 3x(x - 2) , 令 g′(x)>0⇒x>2 或 x<0 , 令 g′(x)<0⇒0<x<2,所以g(x)在(-∞,0),(2,+∞)上单调 递增,在(0,2)上单调递减,又因为g(0)=5,g(2)=1,所 以在同一直角坐标系中画出两个函数图象,

《函数零点之数形结合》专题

《函数零点之数形结合》专题

《函数零点之数形结合》专题2017年( )月( )日 班级 姓名 不求难题都做,先求中低档题不错。

函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴 ⇔方程f (x )=0 . 高考数学中函数零点的题型主要①函数的零点的分布;②函数的零点的个数问题; ③结合图像的变动将两个函数的图像的交点问题转化成函数的零点的个数问题。

【题型一】求零点个数及所在区间1.方程||0a x x-=(0a >)的零点有 个. 2.求函数1()3f x x x =+-的零点有 个. 3.方程223x x -+=的实数解的个数为 .4.设函数2(0)()2(0)x bx c x f x x ⎧++≤=⎨>⎩,若(4)(0)f f -=,(2)2f -=-,则()()g x f x x =-的零点有 个.5.判断函数f (x )=ln x +x 2-3的零点的个数为 .7.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .48.函数f(x)=2x |log 0.5x|-1的零点个数为 ( )A.1B.2C.3D.49.下列函数:①y =lg x ;②y =2x ;③y =x 2;④y =|x |-1,其中有2个零点的函数是( )A .①②B .③④C .②③D .④【规律总结】判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数.(2)由f (x )=g(x )-h(x )=0,得g(x )=h(x ),在同一坐标系下作出y 1=g(x )和y 2=h(x )的图象,利用图象判定函数零点的个数.(3)解方程,解得方程根的个数即为函数零点的个数.8.函数f (x )=ln x -2x的零点所在的大致区间是( ) A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)9.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)11.在下列区间中,函数f(x)=e x +4x-3的零点所在的区间【题型二】求参数的取值范围1.若函数f(x)=a x-x-a (a >0且a 1)有两个零点,则实数a 的取值范围是 .2.函数f (x )=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________.3.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.4.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是________.2.已知二次函数f(x)=x2-2ax+4,求在下列条件下,实数a的取值范围.(1)零点均大于1.(2)一个零点大于1,一个零点小于1.(3)一个零点在(0,1)内,另一个零点在(6,8)内.。

2020届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》

2020届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》

微专题5 运用数形结合思想探究函数零点问题运用数形结合思想探究函数零点问题历来是高考的热点和难点,解决此类问题的难点是函数形式的有效选择,本专题主要研究运用数形结合思想探究函数零点问题,并在解决问题的过程中感悟数学思想方法的灵活运用.已知f (x )=⎩⎪⎨⎪⎧4x -x 2,x ≥0,3x, x <0,若函数g (x )=|f (x )|-3x +n 有三个零点,则实数n 的取值范围是_________.本题主要考查数形结合思想方法在解题中的应用,但要将函数等价变形为|f(x)|=3x -n ,即将函数进行“拆分”,拆分的目的是易于作图,然后在同一直角坐标平面画出函数y=|f(x)|的图象,再进行直线y=3x -n ,那么的范围就是直线y=3x -n 与函数y=|f(x)|的图象有三个交点时的取值范围.已知函数f (x )=⎩⎪⎨⎪⎧|x |, x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1, x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是________.(2019·苏州三模)如果函数y =f (x )在其定义域内总存在三个不同实数x 1,x 2,x 3,满足|x i -2|f (x i )=1(i =1,2,3),则称函数f (x )具有性质Ω.已知函数f (x )=a e x 具有性质Ω,则实数a 的取值范围为________.已知直线y =kx +1与曲线f (x )=⎪⎪⎪⎪x +1x -⎪⎪⎪⎪x -1x 恰好有四个不同的交点,则实数k 的取值范围为________.(2020·浙江模拟)已知a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x , x <0,13x 3-12(a +1)x 2+ax ,x ≥0,若函数y =f (x )-ax -b 恰有3个零点,则实数b 的范围为________.已知e 为自然对数的底数,若函数f (x )=e x -ax 2的图象与直线y =32ax 的图象没有交点,则实数a 的取值范围是________.(-2e -1,0]因为函数f (x )=e x -ax 2的图象与直线y =32ax 的图象没有交点,所以方程e x -ax 2=32ax 没有实根,即e x =32ax +ax 2没有实根,所以只须函数y =e x 和y =32ax +ax 2的图象没有交点.下面作出函数y =e x 和y =32ax +ax 2的图象,观察得:当a =0时,符合题意;当a >0时,不合题意;当a <0时,发现当x ≥0时没有交点,所以只要保证当x <0时也没有交点.即只要研究当a <0时,当x <0时,e x =32ax +ax 2无解.(大函数法)当a <0时,令F (x )=e x -ax 2-32ax (x <0) 则F ′(x )=e x -2ax -32a =e x-a (2x +32)由y =e x和y =a (2x +32)的图象可知:F ′(x )存在零点x 0,即e x 0=a (2x 0+32)(*)且x 0<-34,F (x )在(-∞,x 0)递减,在(x 0,0)递增.所以只须满足F (x 0)=e x 0-ax 20-32ax 0>0,代入(*)式,化简得:x 0<-1又由(*)得,1a =2x 0+32e x 0,令p (x )=2x +32ex (x <-1)因为p ′(x )=12-2x e x >0,所以p (x )递增,所以p (x )<-e 2,所以1a <-e 2即-2e<a <0综上:a ∈⎝ ⎛⎦⎥⎤-2e ,0.(小函数法)当a <0时,e x=32ax +ax 2(x <0)无解,所以e xx =a (32+x )(x <0)无解观察函数y =e xx (x <0)和y =a (32+x )(x <0)的图象,把握临界情况:当y =a (32+x )恰为y =e xx (x <0)的切线时,设切点为(x 0,e xx 0) ,则⎩⎪⎨⎪⎧e x 0(x 0-1)x 20=a ,e x 0x 0=a (x 0+32),解得⎩⎪⎨⎪⎧x 0=-1,a =-2e ,此时恰好不符合条件.由图可知:-2e <a <0综上:a ∈⎝ ⎛⎦⎥⎤-2e ,0. (分离参数法)当a <0时,e x =32ax +ax 2(x <0)无解,所以1a =x 2+32xex(x <0)无解令h (x )=x 2+32xex(x <0),则h ′(x )=-x 2+12x +32ex,可得:h (x )在(-∞,-1)递减,在(-1,0)递增,所以h (x )∈(-e2,+),所以1a <-e 2,即-2e<a <0综上:a ∈⎝ ⎛⎦⎥⎤-2e ,0.作业评价已知函数f (x )=⎩⎪⎨⎪⎧2x , x >1,9x (1-x )2,x ≤1.若函数g (x )=f (x )-k 仅有一个零点,则k 的取值范围是________.已知函数f (x )=x sin x -32,则函数f (x )在(0,π)内的零点个数是________.若函数y =f (x ),x ∈R ,满足f (x +2)=-f (x ),且x ∈[0,2]时,f (x )=2-x 2,则方程f (x )=sin|x |在[-10,10]内的根的个数为________.我们把形如y =b|x |-a(a >0,b >0)的函数因其图象类似于汉字中的“囧”字,故生动地称为“囧函数”,若当a =1,b =1时的“囧函数”与函数y =lg|x |的交点个数为n ,则n =________.(2020·南通模拟)已知f (x )是定义在R 上且周期为32的周期函数,当x ∈⎝⎛⎦⎤0,32时,f (x )=1-||2x -1.若函数y =f (x )-log a x (a >1)在()0,+∞上恰有4个互不相同的零点,则实数a 的值________.方程|e x -1|+ax +1=0有两个不同的解,则实数a 的取值范围是________.(2019·南京二模)已知函数f (x )=⎩⎪⎨⎪⎧-x 3+3x 2+t ,x <0,x , x ≥0,t ∈R .若函数g (x )=f (f (x )-1)恰有4个不同的零点,则t 的取值范围为________.已知函数f (x )=⎩⎪⎨⎪⎧k x -1,x ≤0,ln x , x >0,若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数k 的取值范围为________.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0),若方程g (x )-f (x )=0有两个相异实根,则确定m 的取值范围________.已知k 为常数,函数f (x )=⎩⎪⎨⎪⎧x +2x +1,x ≤0|ln x |,x >0,若关于x 的方程f (x )=kx +2有且只有四个不同的解,则实数k 的取值集合为________.(2020·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x e x , x ≤0,f (x -1),x >0,g (x )=k (x +1),若方程f (x )-g (x )=0有两个不同的实根,则实数k 的取值范围是________.已知b >0,且b ≠1,函数f (x )=e x +b x (其中e 为自然对数的底数),如果关于x 的方程f (x )=2有且只有一个解,则实数b 的取值范围是________.。

(完整版)数形结合法在函数零点问题中的应用

(完整版)数形结合法在函数零点问题中的应用

数形结合法在函数零点问题中的应用高三数学组 2017年3月15日【教学目标】函数的零点一直是近年来全国各地高考卷上的热点,因其综合性强,让很多同学感到困难。

本文通过对高考试卷中有关零点问题的研究,来说明如何将数形结合思想运用于函数零点的问题中,使零点问题变得直观形象,从而有效地将问题解决。

【教学思想、方法】数形结合分类讨论转化与化归函数与方程【考向洞察】1、针对题型(1) 确定零点的大致范围,多出现在选择题中;(2) 确定零点的个数问题,多出现在选择题中;(3) 利用已知零点的个数求参数的范围,多出现在选择题、填空题、解答题中均有可能出现。

2、解决方案(1) 直接画出函数图像,观察图像得出结论。

(2) 不能直接画出函数图像的,可以等价地转化为两个函数图像的交点,通过判断交点的个数得出函数零点的个数或要求的参数范围。

【例题讲解】例1、设函数1()ln3f x x x=-,则函数()y f x=( D )A. 在区间1(,1)e,(1,)e内均有零点B. 在区间1(,1)e,(1,)e内均无零点C. 在区间1(,1)e内有零点,(1,)e内无零点D. 在区间1(,1)e内无零点,(1,)e内有零点解1:113'()33x f x x x -=-=,()f x 在1(,)e e 单调递减,11()103f e e=+>,1(1)03f =>,()103e f e =-<,由零点存在定理知,区间1(,1)e内无零点,(1,)e 内有零点。

解2:令()0f x =,得1ln 3x x =,作出函数13y x =和ln y x =的图象,如右图,显然在区间1(,1)e内无零点,(1,)e 内有零点。

例2、设1()2,0()222,0x x f x x x ⎧-≤⎪=⎨⎪->⎩,则()y f x x =-的零点个数是__2____。

解:作出函数()y f x =和y x =的图象,如右图,由图可知直线y x =与函数()f x 的图象有两个交点,所以()y f x x =-有2个零点。

数形结合解零点问题(已修改,含答案)

数形结合解零点问题(已修改,含答案)

x 4 和 y 4 x的
x
x 4 x 4的 零 点 个 数 为1.
y y= x+4
O
1 y=4-x
x
(图1)
例 2 : 定 义 函 数 f ( x ) m in { x , x } , 其 中 { x / x 0}
2
2
满 足 函 数 G ( x ) f ( x ) k 有 四 个 零 点 , 求 k的 范 围 ( 即 图 象 f ( x )与 y k 有 四 个 交 点 )
0k 1
(二 ) 零 点 所 在 区 间 问 题 例 3 : 函 数 f ( x ) lg x x 3的 零 点 所 在 区 间 为 ( A.(0,1) B.(1,2) C.(2,3) D . ( 3 , + )
C
y

y=lgx O 1 3 y=-x+3
(图4)
x
若 题 目 改 为 零 点 所 在 区 间 ( n , n 1), n N , 则 n=?
评 注 : 数 形 结 合 , 要 在 结 合 方 面 下 功 夫 ,本 题 不 仅 要 通过图象直观估计,而且还要计算两个函数 值,通过比较其大小进行判断.
(三)零点值问题 例 4 : 若 函 数 f ( x ) e x 3的 零 点 x1, g ( x ) ln x x 3的 零 点 x 2 ,
2
(1 ) 函 数 f ( x ) 有 四 个 零 点 ( 2 ) 函 数 f ( x )有 三 个 零 点 (3 ) 函 数 f ( x )有 两 个 零 点
0a 1 a 1
a 0或a 1
(一 ) 零 点 个 数 问 题 例1 : 求 函 数 f

专题训练:嵌套函数的零点问题(含解析)

专题训练:嵌套函数的零点问题(含解析)

嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.642.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.13.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axe x -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x1e x 121-x 2e x21-x 3e x3的值为()A.1B.-1C.aD.-a5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.16.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.97.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2xe x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.98.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81 B.-81 C.9 D.-99.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x 1e x122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.3610.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.1611.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,113.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.64【答案】C【解析】令t (x )=x e x ,则t (x )=1-xe x.所以当x <1时,t (x )>0,函数t (x )=x e x 单调递增;当x >1时,t(x )<0,函数t (x )=x e x单调递减.所以t (x )max =t (1)=1e.由题意g t =t 2+at -2a 必有两个根t 1<0,且0<t 2<1e.由根与系数的关系有:t 1+t 2=-a ,t 1t 2=-2a .由图可知,t 1=x e x 有一解x 1<0,即t 1=x 1e x 1.t 2=xex 有两解x 2,x 3且0<x 2<1<x 3,即t 2=x 2e x 2=x3ex 3.所以2-x 1e x 122-x 2e x 22-x3e x 3=2-t 1 22-t 2 2-t 2 =2-t 1 2-t 2 2=4-2t 1+t 2 +t 1t 2 2=4+2a -2a 2=16.故选:C2.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.1【答案】D 【解析】令y =ln x x ,则y ′=1-ln xx 2,故当x ∈(0,e )时,y ′>0,y =ln x x 是增函数,当x ∈(e ,+∞)时,y ′>0,y =ln x x是减函数;且limx →0ln xx =-∞,ln e e =1e ,lim x →+∞ln xx =0;令ln x x =t ,则可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故△=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与t 1≤1e 且t 2≤1e相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合y =ln xx 的性质可得,ln x 1x 1=t 1,ln x 2x 2=t 2,ln x 3x 3=t 2,故1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=(1-t 1)2(1-t 2)(1-t 2)=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=1;故选D .3.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a【答案】A【解析】令t =xe x ,则t ′=(x +1)e x ,故当x ∈(-1,+∞)时,t ′>0,t =xe x 是增函数,当x ∈(-∞,-1)时,t ′<0,t =xe x 是减函数,可得x =-1处t =xe x 取得最小值-1e ,x →-∞,t →0,画出t =xe x 的图象,由f (x )=0可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故Δ=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与-2e<t 1+t 2<0相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合t =xe x 的性质可得,x 1e x 1=t 1,x 2e x 2=t 1,x 3e x 3=t 2,故(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-t 1)(1-t 1)(1-t 2)2=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-1+a +1-a )2=1.故选:A .4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x 1e x 121-x 2e x 21-x3ex 3的值为A.1B.-1C.aD.-a【答案】A 【解析】令x e x =t ,构造g (x )=x e x ,求导得g (x )=1-xex ,当x <1时,g (x )>0;当x >1时,g (x )<0,故g (x )在-∞,1上单调递增,在1,+∞ 上单调递减,且x <0时,g (x )<0,x >0时,g (x )>0,g (x )max =g (1)=1e,可画出函数g (x )的图象(见下图),要使函数f (x )=x e x2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则方程t 2+at -a =0需要有两个不同的根t 1,t 2(其中t 1<t 2),则Δ=a 2+4a >0,解得a >0或a <-4,且t 1+t 2=-at 1⋅t 2=-a ,若a >0,即t 1+t 2=-a <0t 1⋅t 2=-a <0 ,则t 1<0<t 2<1e,则x 1<0<x 2<1<x 3,且g x 2 =g x 3 =t 2,故1-x 1e x121-x 2e x21-x 3ex 3=1-t 1 21-t 2 2=1-t 1+t 2 +t 1t 2 2=1+a -a 2=1,若a <-4,即t 1+t 2=-a >4t 1⋅t 2=-a >4 ,由于g (x )max =g (1)=1e ,故t 1+t 2<2e<4,故a <-4不符合题意,舍去.故选A .5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.1【答案】D【解析】令f (x )=0,分离参数得a =x x -ln x -ln x x 令h (x )=x x -ln x -ln xx由h ′(x )=ln x 1-ln x 2x -ln xx 2x -ln x 2=0 得x =1或x =e .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,e )时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.∴0<x 1<1<x 2<e <x 3,a =x x -ln x -ln x x 令μ=ln xx则a =11-μ-μ即μ2+(a -1)μ+1-a =0,μ1+μ2=1-a <0,μ1μ2=1-a <0,对于μ=ln x x ,μ =1-ln xx 2则当0<x <e 时,μ′>0;当x >e 时,μ′<0.而当x >e 时,μ恒大于0.不妨设μ1<μ2,则μ1=ln x 1x 1,μ2=ln x 2x 2,μ3=ln x 3x 3, 1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 =(1-μ1)2(1-μ2)(1-μ3)=[(1-μ1)(1-μ2)]2=[1-(1-a )+(1-a )]2=1.故选D .6.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.9【答案】A【解析】f x =9ln x 2+a -3 x ln x +33-a x 2=0∴a -3 x ln x -3x 2 =-9ln x 2∴a -3=9ln x 23x 2-x ln x =9ln x x 23-ln xx令t =3-ln x x ,t ∈0,+∞ ,则ln xx =3-t ,∴t =-1-ln x x 2=ln x -1x 2令t =0,解得x =e∴t ∈0,e 时,t <0,t 单调递减;t ∈e ,+∞ 时,t >0,t 单调递增;∴t min =3-1e ,t ∈3-1e,+∞ ,∴a -3=9(3-t )2t =9t 2-54t +81t ∴9t 2-51+a t +81=0.设关于t 的一元二次方程有两实根t 1,t 2,∴Δ=51+a 2-4×9×81>0,可得a >3或a <-105.∵a -3=93-t 2t >0,故a >3∴a <-105舍去∴t 1+t 2=51+a 9>51+39=6,t 1t 2=9.又∵t 1+t 2=t 1+9t 1≥29=6,当且仅当t 1=t 2=3时等号成立,由于t 1+t 2≠6,∴t 1>3,t 2=9t 1<3(不妨设t 1>t 2).∵x 1<1<x 2<x 3,可得3-ln x 1x 1>3,3-ln x 2x 2<3,3-ln x 3x 3<3.则可知3-ln x 1x 1=t 1,3-ln x 2x 2=3-ln x 3x 3=t 2.∴3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3=t 1t 2 2=81.故选:A .7.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2x e x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.9【答案】D【解析】由f x =0得a =x e x -3e xe x -x,即a =x e x -31-x e x =-1-x e x -31-x e x+1,记t =1-x e x ,且设g x =1-xex ,一方面由a =-t -3t +1得t 2+a -1 t +3=0(*),当Δ>0时方程(*)有两个不相等的实数根t 1,t 2,且t 1+t 2=1-a ,t 1t 2=3;另一方面,由g x =x -1e x知g x 在-∞,1 上单调递减,在1,+∞ 上单调递增,g 1=1-1e,g 0 =1,当x →-∞时,g x →+∞,当x →+∞时,g x →1-,如图:t1≥1>t 2>1-1e,且1-x 1e x 1=t 1,1-x 2e x 2=1-x3ex 3=t 2,因此1-x 1e x 121-x 2e x 21-x 3e x 3=t 21⋅t 2⋅t 2=t 1t 2 2=9.故选:D8.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81B.-81C.9D.-9【答案】A【解析】由f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点知:9x 2+(a -3)xe x +3(3-a )e 2x =0有三个不同的实根,即a -3=9x 23e 2x -xe x =9x ex 23-x ex有三个不同实根,若t =3-xe x ,则a -3=9(3-t )2t ,整理得9t 2-(a +51)t +81=0,若方程的两根为t 1,t 2,∴t 1t 2=9,而t=xe x -e x e 2x=x -1e x,∴当x <1时,t <0即t 在(-∞,1)上单调递减;当x >1时,t >0即t 在(1,+∞)上单调递增;即当x =1时t 有极小值为3-1e ,又x 1<0<x 2<x 3,x =0有t =3,即t 1>3>t 2>3-1e.∵方程最多只有两个不同根,∴x 1<0<x 2<1<x 3,即t 1=3-x 1e x 1,t 2=3-x 2e x 2=3-x 3e x3,∴3-x1e x 123-x 2e x23-x 3ex 3=t 12t 22=81.故选:A9.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x1e x 122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.36【答案】D【解析】因为f (x )=2(a +2)e 2x -(a +1)xe x +x 2,所以f (x )=e 2x 2(a +2)-(a +1)x e x +x e x 2,因为e 2x>0,所以2(a +2)-(a +1)x e x +x e x 2=0有三个不同的零点x 1,x 2,x 3,令g x =x e x ,则g x =1-x e x,所以当x <1时g x >0,当x >1时g x <0,即g x 在-∞,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =1e ,当x >0时x e x >0,令t =x ex ∈-∞,1e ,则2(a +2)-(a +1)t +t 2=0必有两个根t 1、t 2,不妨令t 1<0、0<t 2<1e ,且t 1+t 2=a +1,t 1t 2=2a +2 ,即t 1=x e x 必有一解x 1<0,t 2=xe x 有两解x 2、x 3,且0<x 2<1<x 3,故2-x 1e x122-x 2e x22-x 3ex 3=2-t 1 22-t 2 2=4-2t 1+t 2 +t 1t 2 2=4-2a +1 +2a +2 2=36故选:D10.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.16【答案】C【解析】f (x )=(a +3)e 2x -(a +1)xe x +x 2=e 2x x e x 2-a +1 ⋅x ex +a +3 ,e 2x >0,x e x2-a +1 ⋅xex +a +3 =0有三个不同的零点x 1,x 2,x 3.令g x =x e x ,g x =1-xe x,g x 在-∞,1 递增,在1,+∞ 上递减,g x max =g 1 =1e .x >0时,xex >0.令t =x ex ∈-∞,1e,t 2-a +1 ⋅t +a +3 =0必有两个根t 1,t 2,t 1<0,0<t 2<1e,且t 1+t 2=a +1,t 1⋅t 2=a +3,t 1=x e x 有一解x 1<0,t 2=x ex 有两解x 2,x 3,且0<x 2<1<x 3,故1-x 1e x 121-x 2e x 21-x3e x 31-t 1 21-t 22=1-t 1+t 2 +t 1⋅t 2 2=1-a +1 +a +3 2=9.故选:C11.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m【答案】B【解析】令t =ln xx-1,则t =1-ln xx 2,当x >e 时,t <0,当0<x <e 时,t >0,所以t 在e ,+∞ 上递减,在0,e 上递增,所以当x =e 时,函数取得最大值1e-1,函数t =ln xx-1的图象如图所示:则ln x 1x 1-1=t 1,ln x 2x 2-1=t 2,ln x 3x 3-1=t 3,由图象知:t 2=t 3,因为关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,所以方程t +1t+m +1 =0有两个不等的实数解t 1,t 2,由韦达定理得:t 1⋅t 2=1,所以ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 12⋅t 2⋅t 3=t 12⋅t 22=1,故选:B12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,1【答案】A 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+m +1 t +m +1=0.令函数g x =e ln x x ,则g x =e ⋅1-ln xx 2,由g x >0,解得0<x <e ,g x <0,解得x >e所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,且g e =1作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+m +1 t +m +1=0一定有两个实根t 1,t 2,且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-m +1 ,t 1t 2=m +1.所以Δ=m +1 2-4m +1 >0,解得m >3或m <-1若t 1=1,则1+m +1 ×1+m +1=0,解得m =-32,则t 2=-12此时e ln x 2x 2=t 2=-12只有1个实数根,此时原方程没有3个不等实数根,故不满足题意.若t 1=0,则m =-1,可得t 2=0,显然此时原方程没有3个不等实数根,故不满足题意.要使原方程有3个不等实数根,则t 1<0<t 2<1所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.所以e ln x 1x 1=t 1,e ln x 2x 2=e ln x 3x 3=t 2故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e t 1+t 2 =-2m +1 e ∈0,1e.故选:A13.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m【答案】B 【解析】设f x =ln x x ,则f x =1-ln xx 2,故函数在0,e 上单调递增,在e ,+∞ 上单调递减,f e =1e,画出函数图像,如图所示:设ln x x =t ,ln x x +x ln x -x +m =0,则ln x x +1ln x x -1+m =0,即t +1t -1+m =0,化简整理得到:t 2+m -1 t +1-m =0,故t 1+t 2=1-m ,t 1t 2=1-m ,且t 1<0,0<t 2<1e,ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1=t 1-1 2t 2-1 2=t 1t 2-t 1+t 2 +1 2=1.故选:B .14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e【答案】BC 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln xx 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,故选:BC15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.【答案】0,1e 2-e【解析】由f x =0,两边同时除以e xx -e x变形为x e x +e xx -e x+m =0,有x ex +1x e x-1+m =0设x ex =t 即t +1t -1+m =0,所以t 2+(m -1)t +1-m =0令g (x )=x e x ,则g (x )=1-xe x,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且g 0 =0,g 1 =1e,当x >0时,g (x )>0其大致图像如下.要使关于x 的方程x e x +e xx -e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3.结合图像可得关于t 的方程g (t )=t 2+(m -1)t +1-m =0一定有两个不等的实数根t 1,t 2且t 1<0<t 2<1e ,从而1<m <1+1e 2-e.t 1+t 2=1-m ,t 1⋅t 2=1-m ,则x 1e x 1=t 1,x 2e x 2=x3ex 3=t 2.所以x 1e x 1-1 2x 2e x 2-1 x3e x 3-1 =t 1-1 2t 2-1 2=t 1-1 t 2-1 2=t 1t 2-t 1+t 2 +1 2=[1-m -(1-m )+1]2=1m -x 1e x1-12x 2e x 2-1 x 3e x 3-1 =m -1∈0,1e 2-e .故答案为:0,1e 2-e。

高考复习专题:数形结合法解函数的零点问题

高考复习专题:数形结合法解函数的零点问题

高考复习专题:数形结合法解函数的零点问题类型一:数形结合法解与一元二次方程有关的相嵌函数的零点问题1.设函数lg|2|2()12x xf xx-≠⎧=⎨=⎩,若关于x的方程2[()]()0f x bf x c++=恰有3个不同的实数解123,,x x x则123()f x x x++的值等于____________.lg42.设定义域为R的函数11|1|()11xxf xx⎧≠⎪-=⎨⎪=⎩,若关于x的方程2[()]()0f x bf x c++=恰有3个不同的实数解123,,x x x,则222123x x x++的值等于_________.53.已知函数()y f x=是定义域为R的偶函数,当0x≥时,21024()13()224xx xf xx⎧-≤≤⎪⎪=⎨⎪-->⎪⎩,若关于x的方程27[()]()0,16af x af x a R++=∈有且仅有8个不同实数根,则实数a的取值范围是_____________.4.已知函数()y f x=是定义域为R的偶函数,当0x≥时,250216()1()122xx xf xx⎧≤≤⎪⎪=⎨⎪+>⎪⎩,若关于x的方程2[()]()0,,f x af x b a b R++=∈有且仅有6个不同实数根,则实数a的取值范围是______.5.已知函数11()||||f x x x x x=+--,关于x 的方程2[()]|()|0,(,)f x a f x b a b R ++=∈恰有6个不同实根解,则a 的取值范围是_______________.6.函数|1|,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是____________.解析:关于x 的方程22()(23)()30f x a f x a -++=的根为3(),()2f x a f x ==,画出3(),,2y f x y a y ===的图像,数形结合知选B7.若函数32()f x x ax bx c =+++有极值点12,x x ,且11()f x x =,则关于x 的方程23[()]2()0f x af x b ++=的不同实根个数是_______________.8.已知,,,a b c d 均为实数,函数32()(0)32a b f x x x cx d a =+++<有两个极值点12,x x ,(12x x <),满足21()f x x =,则方程2[()]()0a f x bf x c ++=的实根个数是________.类型二:数形结合法解分段函数的零点问题9.已知函数()f x 满足:①定义域为R ;②x R ∀∈,有(2)2()f x f x +=;③当[0,2]x ∈时,()222f x x =--.记()()x f x x ϕ=([8,8])x ∈-.根据以上信息,可以得到函数()x ϕ的零点个数为____________.10.设函数()f x 的定义域为R ,1()1,10()3,01xx f x x x ⎧--<<⎪=⎨⎪≤≤⎩,且对任意的x R ∈都有(1)(1)f x f x +=-,若在区间[1,5]-上函数()()g x f x mx m =--恰有6个不同点,则实数m 的取值范围是____________.11.已知()f x 是定义在R 上的奇函数,当01x ≤≤时,2()f x x =,当0x >时,(1)()(1)f x f x f +=+ ,且 若直线y kx =与函数()y f x =的图象恰有5个不同的公共点,则实数k 的值为 .[解析] 因为0x >时,()(1)1f x f x =-+,所以()f x 就是将(1)f x -先向右平移一个单位,然后再向上平移一个单位,所以当[1,2]x ∈时,2()(1)1f x x =-+,当[2,3]x ∈时,2()(2)2f x x =-+,根据()f x 为奇函数可以得到()f x 如图所示的草图,当直线y kx =与2()(1)1f x x =-+相切时,2(2)20x k x -++=,2(2)80,222k k ∆=+-==-,所以要使y kx =与函数()y f x =的图象恰有5个不同的公共点,则222k =-.12.如果关于x 的方程24xkx x =+有4个不同的实数解,则实数k 的取值范围是( D ) A .10,4⎛⎫ ⎪⎝⎭B .1,14⎛⎫⎪⎝⎭ C .()1,+∞ D .1,4⎛⎫+∞ ⎪⎝⎭13.已知以4T =为周期的函数21,(1,1]()12,(1,3]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。

数形结合解决函数的零点问题

数形结合解决函数的零点问题
高三二轮专题复习
数形结合 解决函数的零点问题
复习旧知
结论:函数的零点就是方程f(x)=0的
实数根,也就是函数y=f(x)的图象与x 轴的交点的横坐标。
等价关系:
方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
判断函数零点个数的 3 种方法
一、 f (x) k 型函数的零点问题
的个3 数.
由图像可知有8个交点.
y
2
1 y=
x1
因为两函数图像都
x)
1
y = sin(2∙π∙x)
关于点 (1, 0) 对称,
所以交点的横坐标
2
o
2
1
4
x 6之和为8 8. 10
2
二、f (x) g(x) 型函数的零点问题
经验总结: 1.分离成两个函数求交点的问题. 2.注意分离的两个函数应尽可能的 是熟悉、常见的函数.
二、f (x) g(x)型函数的零点问题
例3 (2018年新课标Ⅰ)
已知函数 ex , x 0,
f (x)
, g(x) f (x) x a.
ln x, x 0.
若 g(x) 存在2个零点,则 a 的取值范围(
A.[-1,0)
B.[0,+∞)
C.[-1,+∞)
D.[1,+∞)
例 4 (2018·山西质量检测)
已知 f(x)=2|lxn+x1|, ,xx≤>00,,
则方程 f[f(x)]=3 的
根的个数是( C )
A.3 B.4 C.5 D.6
经验总结: 1.先分离出内外层函数,分别作出内外 层函数的图像,借助图像来求解. 2.注意:遵循“由外到内”的顺序,一层 层拆解直到求出x的值。

数形结合法破解含参函数的零点问题

数形结合法破解含参函数的零点问题
'(
1)
可初步做 出 判 断,严 格 的 证 明 需 借 助 于 二 阶
导数。
(
责任编辑
徐利杰)
+∞ 上
2
单调 递 增,当 x→ - ∞ 时,
图4
x)
→+∞ ,其 图 像 如 图
g(
4 所示。 依 题 意 知,直 线 y =a (
x -1)与
几何意 义 是 过 点 (
1,
0)的 动
函 数 y =2
l
nx 的 图 像 在
例 3
x)→0,当 x → + ∞ 时,
g(
1
该 方 程 在 0,
上 无 解,其
x)的 图
g(
像有唯一的公共
对数的底数,
若 f(
1)=0,函 数 f (
x)在 区 间
点。因 为 两 条 函 数
解析:
由 f(
1)=e-a-b-1=0,得 b=
好 相 反,所 以 由 数
(
内有零点,
求 a 的取值范围。
0,
1)
e-a -1。 当 x ∈ (
0,
1)时,
x )=e f(
x
ax - (
e-a-1)
解题篇 经典题突破方法
高二数学 2022 年 7-8 月
数形结合法破解含参函数的零点问题
■ 河南省郑州中原一中实验学校
含参函数的零点问题 是 高 中 数 学 的 重 要
题型,
在考 试 中 常 常 处 于 小 题 甚 至 是 大 题 的
压轴位置,
其 一 般 形 式 为:
已 知 函 数 y=f(
x,
在区间I 上有 ※ 个(

高中数学函数零点问题必考点梳理+真题精练(附答案)

高中数学函数零点问题必考点梳理+真题精练(附答案)

第 7 页 共 19 页
由图可知:当
0
m
1 2
时,两图象有两个不同的交点,
在区间 1,1 上方程 f x mx m 0 有两个不同的实根,故选:B
例 5.(2020·江苏宝应中学高三三模)已知函数 f x 2ln x2 3x 3 ,其中x 表示不大于 x 的
最大整数(如1.6 1,2.1 3),则函数 f x 的零点个数是( )
对函数
y
ln x
1, x
0 求导得
y
1 x 1

设切点为
x0, ln x0 1
,则
ln x0 1
x0 1
2 3
1 x0 1
m ,解得
x0
1
1
e3
,m
1
e3

数形结合可知,当
m
2 3
1
,e 3
时,直线
y
mx
m
2 3
与函数
f
x
的图象有四个交点,即函数
g
x
有四个零点.故选:B.
第 6 页 共 19 页
f |
(x) x|

2
个不同交点,不满足题意;
当 k 0 时,如图 2,此时 y | kx 2 |与 h(x)
f |
(x) x|
恒有
3
个不同交点,满足题意;
当 k 0 时,如图 3,当 y kx 2 与 y = x2 相切时,联立方程得 x2 kx 2 0 ,
令 0 得 k2 8 0 ,解得 k 2 2 (负值舍去),所以 k 2 2 . 综上, k 的取值范围为 (,0) (2 2, ) ,故选 D.
图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<1<="" bdsfid="103" p="">9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( )A .1B .2C .3D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=?-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=?|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=?3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0,∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点.又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0,∴(6a +5)(2a +3)<0,解得-32<-5<="" bdsfid="173" p=""><-5<="" bdsfid="175" p="">6.<-5<="" bdsfid="177" p="">又∵a ∈Z ,∴a =-1.<-5<="" bdsfid="179" p="">不等式f (x )>1,即-x 2-x >0.解得-1<="" )=ln|x="" 3.函数f=""<-5<="" bdsfid="182" p=""><-5<="" bdsfid="184" p="">【答案】 A<-5<="" bdsfid="186" p="">【解析】因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排除B ,选A.<-5<="" bdsfid="188" p="">4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )<-5<="" bdsfid="190" p="">x <0的解集为( )<-5<="" bdsfid="192" p="">A .(-2,0)∩(2,+∞)<-5<="" bdsfid="194" p="">B .(-∞,-2)∪(0,2)<-5<="" bdsfid="196" p="">C .(-∞,-2)∪(2,+∞)<-5<="" bdsfid="198" p="">D .(-2,0)∪(0,2)<-5<="" bdsfid="200" p="">【答案】 D<-5<="" bdsfid="202" p="">【解析】由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )<-5<="" bdsfid="204" p="">x <0.若x >0,则需<-5<="" bdsfid="206" p="">有f (x )<0,结合图象可知00,结合图象可知<-5<="" bdsfid="209" p="">-2<0.综上可知,不等式的解集为(-2,0)∪(0,2).<="" bdsfid="210" p=""><-5<="" bdsfid="212" p="">5.实数x ,y 满足不等式组<-5<="" bdsfid="214" p="">?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )<-5<="" bdsfid="216" p="">A.215<-5<="" bdsfid="218" p="">5<-5<="" bdsfid="220" p="">B .21<-5<="" bdsfid="222" p="">C .20<-5<="" bdsfid="224" p="">D .25<-5<="" bdsfid="226" p="">【答案】 B<-5<="" bdsfid="228" p="">【解析】作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4| <-5<="" bdsfid="230" p="">5<-5<="" bdsfid="232" p="">·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.<-5<="" bdsfid="234" p="">由?<-5<="" bdsfid="236" p="">x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max<-5<="" bdsfid="238" p="">=21.<-5<="" bdsfid="240" p="">6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12)<-5<="" bdsfid="242" p="">B .(1<-5<="" bdsfid="244" p="">2,1)<-5<="" bdsfid="246" p="">C .(1,2)<-5<="" bdsfid="248" p="">D .(2,+∞)<-5<="" bdsfid="250" p="">【答案】 B<-5<="" bdsfid="252" p="">【解析】在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故1<-5<="" bdsfid="254" p="">2<-5<="" bdsfid="256" p=""><1.<="" bdsfid="257" p=""> <-5<="" bdsfid="259" p=""><-5<="" bdsfid="261" p="">7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y<-5<="" bdsfid="263" p="">x +y 的最小值为( )<-5<="" bdsfid="265" p="">A.53 B .2 C.35<-5<="" bdsfid="267" p="">D.12<-5<="" bdsfid="269" p="">【答案】 A<-5<="" bdsfid="271" p="">【解析】依题意,得实数x ,y 满足<-5<="" bdsfid="273" p="">?x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴<-5<="" bdsfid="275" p="">影部分所示,其中A (3,0),C (2,1),z =2+y<-5<="" bdsfid="277" p="">x 1+y x =1+11+y x ∈[5<-5<="" bdsfid="279" p="">3,2],故<-5<="" bdsfid="281" p="">选A.<-5<="" bdsfid="283" p="">8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<="" p="" 【答案】=""><-5<="" bdsfid="286" p="">【解析】本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于<-5<="" bdsfid="288" p="">(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<="" )在(0,1)内的一段图象是如图所示的一段曲线,若0<x="" 1x="" 1<x="" 2 <-5<="" bdsfid="291" p=""><-5<="" bdsfid="293" p="">A.f (x 1)x 1<f (x 2)x 2<-5<="" bdsfid="295" p="">B.f (x 1)x 1=f (x 2)<-5<="" bdsfid="297" p="">x 2<-5<="" bdsfid="299" p="">C.f (x 1)x 1>f (x 2)x 2<-5<="" bdsfid="301" p="">D .不能确定<-5<="" bdsfid="303" p="">【答案】 C<-5<="" bdsfid="305" p="">【解析】如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=<-5<="" bdsfid="307" p="">f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0<-5<="" bdsfid="309" p="">=f (x 2)<-5<="" bdsfid="311" p="">x 2,由于0<x 1<-5<="" bdsfid="313" p=""><x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)<-5<="" bdsfid="315" p="">x 2<-5<="" bdsfid="317" p="">,故选C. 10.设关于x ,y 的不等式组<-5<="" bdsfid="319" p="">?2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0 <-5<="" bdsfid="321" p="">=2,求m 的取值范围是( ) A .(-∞,4<-5<="" bdsfid="323" p="">3)<-5<="" bdsfid="325" p="">B .(-∞,1<-5<="" bdsfid="327" p="">3)<-5<="" bdsfid="329" p="">C .(-∞,-2<-5<="" bdsfid="331" p="">3)<-5<="" bdsfid="333" p="">D .(-∞,-5<-5<="" bdsfid="335" p="">3<-5<="" bdsfid="337" p="">)<-5<="" bdsfid="339" p="">【答案】 C<-5<="" bdsfid="341" p="">【解析】作出不等式组所表示的平面区域,根据题设条件分析求解.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.<-5<="" bdsfid="343" p="">要使可行域内包含y =1<-5<="" bdsfid="345" p="">2<-5<="" bdsfid="347" p="">x -1上的点,只需可行域边界点(-m ,m )在直线y =<-5<="" bdsfid="349" p="">12x -1的下方即可,即m <-12m -1,解得m <-23<-5<="" bdsfid="351" p="">. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259 D.269<-5<="" bdsfid="353" p="">【答案】 B<-5<="" bdsfid="355" p="">【解析】由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →<-5<="" bdsfid="357" p="">=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,4<-5<="" bdsfid="359" p="">3),所以AE →=(23,<-5<="" bdsfid="361" p="">23),AF →=(13,4<-5<="" bdsfid="363" p="">3),所以AE →·AF →=23×13+23×43=109<-5<="" bdsfid="365" p="">. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤4 <-5<="" bdsfid="367" p="">5成立,则实数a<-5<="" bdsfid="369" p="">的值为( ) A.15 B.2<-5<="" bdsfid="371" p="">5 C.12<-5<="" bdsfid="373" p="">D .1 【答案】 A<-5<="" bdsfid="375" p="">【解析】(x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方.而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.<-5<="" bdsfid="377" p="">因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2<-5<="" bdsfid="379" p="">x<-5<="" bdsfid="381" p="">=2,解得x =1.<-5<="" bdsfid="383" p="">从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为<-5<="" bdsfid="385" p="">222+(-1)2<-5<="" bdsfid="387" p="">=25<-5<="" bdsfid="389" p="">5,如图所示.<-5<="" bdsfid="391" p=""><-5<="" bdsfid="393" p="">故|PQ |的最小值为25<-5<="" bdsfid="395" p="">5<-5<="" bdsfid="397" p="">,<-5<="" bdsfid="399" p="">即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=4<-5<="" bdsfid="401" p="">5,当|PQ |最小时,P 点的坐标为(1,0),所以<-5<="" bdsfid="403" p="">2a -0a -1<-5<="" bdsfid="405" p="">×2=-1,解得a =1<-5<="" bdsfid="407" p="">5.<-5<="" bdsfid="409" p="">13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →<-5<="" bdsfid="411" p="">,则|QF |=( ) A.72 B.52 C .3 D .2<-5<="" bdsfid="413" p="">【答案】 C<-5<="" bdsfid="415" p="">【解析】利用FP →=4FQ →<-5<="" bdsfid="417" p="">转化长度关系,再利用抛物线定义求解.∵FP →=4FQ →,∴|FP →|=4|FQ →|. ∴<-5<="" bdsfid="419" p="">|PQ||PF|=3<-5<="" bdsfid="421" p="">4<-5<="" bdsfid="423" p="">.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴<-5<="" bdsfid="425" p="">|PQ||PF|=|QQ′||AF|=3<-5<="" bdsfid="427" p="">4<-5<="" bdsfid="429" p="">.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.<-5<="" bdsfid="431" p="">14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于3<-5<="" bdsfid="433" p="">4,抛物线E :y 2=<-5<="" bdsfid="435" p="">2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:<-5<="" bdsfid="437" p="">x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4<-5<="" bdsfid="439" p="">【答案】 B<-5<="" bdsfid="441" p="">【解析】 x 2<-5<="" bdsfid="443" p="">a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为<-5<="" bdsfid="445" p="">x -2ay =0.由点到直线的距离公式得d =<-5<="" bdsfid="447" p="">|a|12+4a 2=34<-5<="" bdsfid="449" p="">,解得a =<-5<="" bdsfid="451" p="">3<-5<="" bdsfid="453" p="">2或a =-32(舍去),故双曲线的方程为4x 2<-5<="" bdsfid="455" p="">3<-5<="" bdsfid="457" p="">-4y 2=1.因为c =<-5<="" bdsfid="459" p="">34+14<-5<="" bdsfid="461" p="">=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于<-5<="" bdsfid="463" p="">点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|<-5<="" bdsfid="465" p="">(-3)2+42=10<-5<="" bdsfid="467" p="">5=2,即距离之和的最小值为2,选B.<-5<="" bdsfid="469" p="">二、填空题<-5<="" bdsfid="471" p="">15.已知函数y =|x 2-1|<-5<="" bdsfid="473" p="">x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是<-5<="" bdsfid="475" p="">__________.<-5<="" bdsfid="477" p="">【答案】 (0,1)∪(1,4) 【解析】根据绝对值的意义,<-5<="" bdsfid="479" p="">y =|x 2-1|x -1=<-5<="" bdsfid="481" p="">x +1,x>1或x<-1,-x -1,-1≤x<1.<-5<="" bdsfid="483" p=""><-5<="" bdsfid="485" p="">在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<1或1<4时有两个交点.<="" bdsfid="486" p=""><-5<="" bdsfid="488" p=""><-5<="" bdsfid="490" p="">16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.【答案】 (-7,3)<-5<="" bdsfid="492" p="">【解析】当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).<-5<="" bdsfid="494" p="">17.已知变量x ,y 满足约束条件<-5<="" bdsfid="496" p="">?x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值<-5<="" bdsfid="498" p="">为________.【答案】-2<-5<="" bdsfid="500" p="">【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1<-5<="" bdsfid="502" p="">x +1<-5<="" bdsfid="504" p="">=<-5<="" bdsfid="506" p="">y -(-1)<-5<="" bdsfid="508" p="">x -(-1)<-5<="" bdsfid="510" p="">,则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.<-5<="" bdsfid="512" p=""><-5<="" bdsfid="514" p="">18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.【答案】 14<-5<="" bdsfid="516" p="">【解析】如图所示,圆的方程可化为(x -2)2+y 2=1,抛物线的焦点F (2,0),准线x =-2.<-5<="" bdsfid="518" p=""><-5<="" bdsfid="520" p="">由y =x -2,y 2=8x ,<-5<="" bdsfid="522" p="">得x 2-12x +4=0,设直线与抛物线交于A (x A ,y A ),D (x D ,y D ),则x A +x D =12. |AB |+|CD |=(|AF |-|BF |)+(|DF |-|CF |)=(|AF |-1)+(|DF |-1)=|AF |+|DF |-2,由抛物线的定义得|AF |=x A +2,|DF |=x D +2,故|AB |+|CD |=(|AF |+|DF |)-2=x A +x D +2=14.<-5<="" bdsfid="524" p="">19.已知函数f (x )=?<-5<="" bdsfid="526" p="">-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.<-5<="" bdsfid="528" p="">【答案】 [-2,0]<-5<="" bdsfid="530" p="">【解析】画出函数|f (x )|的图象,数形结合求解.<-5<="" bdsfid="532" p=""><-5<="" bdsfid="534" p="">作出函数y =|f (x )|的图象,如图,当|f (x )|≥ax 时,必有k ≤a ≤0,<-5<="" bdsfid="536" p="">其中k 是y =x 2-2x (x ≤0)在原点处的切线斜率,显然,k =-2. ∴a 的取值范围是[-2,0].<-5<="" bdsfid="538" p="">20.已知函数f (x )=?<-5<="" bdsfid="540" p="">|x|,x≤m ,<-5<="" bdsfid="542" p="">x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b<-5<="" bdsfid="544" p="">有三个不同的根,则m 的取值范围是________.【答案】 (3,+∞)<-5<="" bdsfid="546" p="">【解析】 f (x )=?<-5<="" bdsfid="548" p="">|x|,x≤m ,<-5<="" bdsfid="550" p="">x 2-2mx +4m ,x>m ,当x >m 时,f (x )=x 2-2mx +4m =(x -m )2+4m -m 2,<-5<="" bdsfid="552" p="">其顶点为(m ,4m -m 2);当x ≤m 时,函数f (x )的图象与直线x<-5<="" bdsfid="554" p="">=m 的交点为Q (m ,m ).①当m>0,<-5<="" bdsfid="556" p="">4m -m 2≥m ,<-5<="" bdsfid="558" p="">即0<="" bdsfid="559" p="" ≤3时,函数f=""><-5<="" bdsfid="561" p="">直线y =b 与函数f (x ) 的图象有一个或两个不同的交点,不符合题意;②当?<-5<="" bdsfid="563" p="">4m -m 2<=""><-5<="" bdsfid="566" p="">m>0,即<-5<="" bdsfid="568" p="">m >3时,函数f (x )的图象如图2所示,则存在实数b 满足4m -m 2<-5<="" bdsfid="571" p=""><-5<="" bdsfid="573" p="">。

【专题研究】零点个数问题的数形结合思想

【专题研究】零点个数问题的数形结合思想

【专题研究】零点个数问题的数形结合思想“零点个数”是我们在高中数学非常常见的一类的题目,通常的做法,是画出图像,找出交点个数。

但实际上,我们会画的函数图像是非常有限的,我们能够直接画出图像的函数只有八类,分别是:一次、二次、反比例,指数、对数、幂函数,双勾函数和三角函数。

而除了这八类函数以外,很多函数的图像,我们是没有办法直接画出来的。

这个时候就要用到导数的知识了。

我们以几个例题,来展示如何通过“数形结合”来解决“零点个数”的问题。

刚才的例题1,就是数形结合,画图像找交点的经典范例。

整体看来是没办法画图像的,所以我们把它拆成两个可以画图像的函数,找出它们的交点个数,其实就是原函数的零点个数。

那么,对于即使分离,也没有办法直接画图像的函数,要怎么解决呢?这个时候,我们就需要利用导数的知识,列表之后,就可以描点画图了。

我们再来看例题2。

例题2其实和例题1并没有什么本质的区别,零点个数,就是画图像找交点。

只不过,对于不是基本函数的式子,我们可以通过求导列表的方式,画出它的图像。

我们只需要求出列表,求出区间端点和极值点,用平滑的曲线连接,就可以得到函数的图像了。

得到函数图像之后,就是比较直接的观察零点个数了。

还想要补充的是,并不是所有的零点个数的题目,都需要分离参数,将想求出的未知数,单独的放在等号的一侧。

有时这样强行分离,理论上可行,但是右侧函数很难求导,或很难求解,尤其是要做除法的时候。

具体是分离参数,还是整体求导,或是进行一些变形,需要结合题目的实际情况来操作。

再来讲一个广州曾经的模拟考真题,也是个经典的例题。

以三个例题,讲解了“零点个数”这个专题的内容。

零点个数,画图像,找交点。

这个道理并不是很难理解,但是能够熟练运用,还需要同学们多多练习。

一方面要非常熟悉前面提到的八类常见函数的图像和特征,另一方面对于分离参数或者式子的恒等变换,要具有一定的想象力。

需要在平时的作业及练习题中,不断的积累。

专题03 函数与方程和零点问题与嵌套函数(解析版)

专题03 函数与方程和零点问题与嵌套函数(解析版)

专题03 函数与方程和零点问题与嵌套函数一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结【题型】一、零点存在定理法判断函数零点所在区间例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( )A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=,因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t -取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e am a a =-,则()21e a m a a '=+, ∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( )A .101x <<B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ∴()f x 的图象关于直线1x =对称 ∴()f x 在区间(2,)+∞单调递减 ∴()f x 的极大值为0 ∴()f x 有3个零点 其中所有正确结论的编号为( ) A .∴∴ B .∴∴ C .∴∴∴ D .∴∴∴【答案】D【分析】根据给定函数,计算(2)-f x 判断∴;探讨()f x 在(2,)+∞上单调性判断∴;探讨()f x 在(0,1)和(1,2)上单调性判断∴;求出()f x 的零点判断∴作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于∴,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,∴正确;对于∴,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,∴不正确; 对于∴,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,∴正确;对于∴,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,∴正确, 所以所有正确结论的编号为∴∴∴. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点, 所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e 22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根,此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∴[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根,综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∴[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上的公切线之间, 故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],∴[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个. 故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果. 例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( )A .函数()f x 是R 上的单调递增函数B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可 【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.∴当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ∴当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=,因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点, 所以()()166mf +<且()()11010mf +>,即7e 11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞. 故选:C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩ 设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6e B.(2e +C.(2e +D .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可. 【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t的取值范围为()2e,⎡+∞⎣; 6e与(2e均在区间()2e,⎡+∞⎣内,(2e +与2e均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞( C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论. 【详解】由2210x x λ-+<可得,221x x λ>+,因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可,设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增,所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。

数形结合解决函数的零点问题

数形结合解决函数的零点问题
三、复合函数的零点问题
课后作业: 与名师对话 P35-37
x 1

2, 4
上有
_8__个零5 点,这些零点的横坐标之和为__8_
解:函数4 转化成 y x 11与 y sin 2 x 交点
的个3 数.
由图像可知有8个交点.
y
2
1 y=
x1
因为两函数图像都
x)
1
y = sin(2∙π∙x)
关于点 (1, 0) 对称,
所以交点的横坐标
2
o
2
函数y=f(x)有零点
判断函数零点个数的 3 种方法
一、 f (x) k 型函数32的函实数f数(x)根 的lxo2g个121x,,x数x1为1,,. _则_3_关__于.
x
的方
[解析] 画出函数 y=f(x)和 y= 2 的图象, 3
, g(x) f (x) x a.
ln x, x 0.
若 g(x) 存在2个零点,则 a 的取值范围(
A.[-1,0)
B.[0,+∞)
C.[-1,+∞)
D.[1,+∞)
C)
[解析] 由 g(x)=0 得 f(x)=-x-a.作出函数 y=f(x)和
y=-x-a 的图象如图所示.当直线 y=-x-a 的
1
4
x 6之和为8 8. 10
2
二、f (x) g(x) 型函数的零点问题
经验总结: 1.分离成两个函数求交点的问题. 2.注意分离的两个函数应尽可能的 是熟悉、常见的函数.
二、f (x) g(x)型函数的零点问题
例3 (2018年新课标Ⅰ)
已知函数 ex , x 0,
f (x)

微难点2 数形结合法解决零点问题

微难点2 数形结合法解决零点问题

第7页
栏目导航
(例 2)
高考总复习 一轮复习导学案 ·数学理科
微难点2 数形结合法解决零点问题
若定义在 R 上的偶函数 f (x)满足 f (x+2)=f (x),且当 x∈[0,1]时,f (x) =x,则函数 y=f (x)-log3|x|的零点个数为___4_____.
【解析】由题意知,f (x)是周期为 2 的偶函数.在同一平面直角坐标系内作出函 数 y=f (x)及 y=log3|x|的图象如图所示.观察图象可以发现它们有 4 个交点,即原函 数有 4 个零点.
微难点2 数形结合法解决零点问题
4x-x2,x≥0,
10. (2018·苏锡常镇模拟)已知函数 f (x)=3x,x<0,
若函数 g(x)=|f (x)|-
3x+b 有三个零点,则实数 b 的取值范围为_(_-__∞__,__-__6_)∪___-__14_,__0_ __.
【解析】令 g(x)=|f (x)|-3x+b=0,则 b=3x-|f (x)|.
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
微难点2 数形结合法解决零点问题
【精要点评】判断函数零点个数的 3 种方法 (1) 方程法:令 f (x)=0,如果能求出解,则有几个解就有几个零点. (2) 零点存在性定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲 线,且 f (a)·f (b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对 称性)才能确定函数有多少个零点或零点值所具有的性质. (3) 数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图 象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.

数形结合巧解函数零点问题

数形结合巧解函数零点问题

数形结合巧解函数零点问题在历年的数学高考题中,无论是客观题,还是主观题,不少题都蕴涵着数形结合的思想;加强对中学数学知识所蕴含的数学思想方法的考查,具体要求体现在通性通法的运用上,更充分说明作为中学数学的四种重要数学思想方法之一的数形结合思想在高考中有着举足轻重的地位.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解决选择、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高学生的解题速度和解题能力.下面我从四个方面谈谈数形结合的简单应用.一、构建函数模型并结合图象,研究方程根的范围、不等式的解集、参数范围直线y=x+b与曲线y=1-x2有两个交点,求b的取值范围.分析:本题的常规思路是:联立直线和曲线方程,在x∈[-1,1]内,方程Δ>0,思路是十分清晰的,但由于解题过程比较复杂,一般不宜采用.图1解析:根据题意作出图形,如图1所示.(注意:y=1-x2x2+y2=1;x∈[-1,1];y∈[0,1].同时,y=x+b可以看作由y=x平移而来.)由图形可以比较直观地得到b的两种临界情况:Ⅰ:直线过点(1,0)时,b1=-1.Ⅱ:直线和曲线(半圆)相切于c点,利用点到直线的距离公式得:b2=2.答案:b∈(-1,2).点评:在求取b的取值范围时要注意临界点不能取到.二、构造函数模型研究量与量之间的大小关系,函数的单调性图2 已知函数f(x)=log2(x+1),若0 解析:作出f(x)的图象,f(a)a,f(b)b,f(c)c可看作函数图象上的点(a,f(a))、(b,f(b))、(c,f(c))与原点连线的斜率,易知f(c)c 点评:要学会抓住所比较式子的几何意义,充分利用图象的直观性解决问题.三、构建立体几何模型,研究代数问题,研究图形的形状、位置关系、性质等若三棱锥A-BCD侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与△ABC组成的图形可能是().图3分析:此题将立体几何与解析几何巧妙结合,是对过去分离考核的创新.可先考虑特殊图形,当AC⊥平面BCD时,如图4,将问题转化为P到AB的距离和BC距离相等的点的轨迹,显然P点轨迹是∠ABC的平分线.图4 图5当AC不垂直平面BCD时,如图5所示,P到平面DBC 和边BC的距离分别为h,dBC,设A-BC-D的大小为θ,dABdBC=hdBC=sinθ≤1,故选D.点评:解决此类问题的关键是要善于利用空间几何性质,将问题转化到平面几何中,再利用平面几何的相关性质就比较容易解决.四、构建解析几何中的斜率、截距、距离等模型研究最值问题图6 求函数y=3-sinx2-cosx的值域.解析:联想到直线中已知两点求直线的斜率的公式k=y2-y1x2-x1,将原函数视为定点P(2,3)到动点(cosx,sinx)的斜率,又知动点(cosx,sinx)满足单位圆的方程,从而问题就转化为求点P(2,3)到单位圆连线的斜率问题,作出图形观察易得:最值在直线和圆上点的连线和圆相切时取得,从而得解:y∈[6-233,6+233].点评:①如果存在分母为零的情况在解题时应加以注意.②临界点可以取到.本题从函数本身的形式入手,引入直线的斜率,结合图形,从而使问题得到巧解.(责任编辑黄春香)。

2022年高考数学必刷压轴题专题21用数形结合法求解零点问题含解析

2022年高考数学必刷压轴题专题21用数形结合法求解零点问题含解析

专题21 用数形结合法求解零点问题【方法点拨】1.函数的零点的实质就是函数图象与x 轴交点的横坐标,解决实际问题时,往往需分离函数,将零点个数问题转化为两个函数图象交点个数问题,将零点所在区间问题,转化为交点的横坐标所在区间问题.2.分离函数的基本策略是:一静一动,一直一曲,动直线、静曲线,要把构造“好函数”作为第一要务.3.作图时要注意运用导数等相关知识分析函数的单调性、奇偶性、以及关键点线(如渐进线),以保证图像的准确.【典型题示例】例1 已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2g x f x kx x =-- (k R ∈)恰有4个零点,则k 的取值范围是( ) A. 1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B. 1,(0,22)2⎛⎫-∞- ⎪⎝⎭C. (,0)(0,22)-∞D. (,0)(22,)-∞+∞【答案】D【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.点评:本题是一道由函数零点个数求参数的取值范围的问题,其基本思路是运用图象,将零点个数问题转化为两函数图象交点个数,考查函数与方程的应用、数形结合思想、转化与化归思想、导数知识、一元二次方程、极值不等式、特值等进行分析求参数的范围.例2 已知函数()2e 143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩,,若函数()()2g x f x k x =-+有三个零点,则实数k的取值范围是__________.【答案】151e 0,,15e 3⎛⎫⎛⎤ ⎪ ⎥ ⎪⎝⎦⎝⎭ 【解析】作()2e ,143,13xx f x x x x ⎧≤⎪=⎨-+-<<⎪⎩与2y k x =+图象,由243(2),0,2x x k x k x -+-=+>>-得2222(1)(44)430k x k x k ++-++=由2222(44)4(1)(43)0k k k ∆=--++=得21015k k k =>∴=; 由(2),0,2y k x k x =+>>-过点(1,)e 得3ek =,对应图中分界线②; 当(2),0,2y k x k x =+>>-与x y e =相切于00(,)xx e 时,因为e x y '=,所以0001(2)01,x k e k x k x k e==+>∴=-=,对应图中分界线③; 因为函数()()2g x f x k x =-+有三个零点,所以实数k的取值范围是1e ,e 3⎛⎛⎤ ⎥ ⎝⎦⎝⎭ 故答案为:1e ,e 3⎛⎛⎤⎥ ⎝⎦⎝⎭ 例3 已知函数与的零点分别为 和.若,则实数的取值范围是 .【答案】(),1-∞-【分析】将问题转化为函数y m =与函数1()1h x x x =--和1()ln 2e x x x =-交点的大小问题,作出函数图像,观察图像可得结果.【解析】由2()(1)10f x x m x =-+-=,得11m x x=--, 对于函数1()1h x x x=--,在()0,∞+上单调递增,在(),0-∞上单调递减, 由()ln 220g x x x m =--=,得1ln 2m x x =-,对于1()ln 2e x x x =-,'112122x y x x -=-=得1ln 2y x x =-在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,最大值为111ln 222-,其图像如图, 2()(1)1f x x m x =-+-()ln 22g x x x m =--12x x ,34x x ,1324x x x x <<<m令111ln 2x x x x --=-得(1,1)A -, 要1324x x x x <<<,则直线y m =要在A 点下方,1m ∴<-,∴实数的取值范围是(,1)-∞-.例4 已知函数22(1), 0()2, 0k x f x xx k x ⎧-<⎪=⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且仅有四个不同的零点,则实数k 的取值范围是 .【答案】(27,+∞)【分析】由()()()g x f x f x =-+知,()()()g x f x f x =-+是偶函数,研究“一半”,问题转化为22(), 0k g x x k x x =+->有且仅有两个不同的零点,分离函数得()21210x x k x=-+>,两边均为基本初等函数,当曲线在一点相切时,两曲线只有一个交点,利用导数知识求出切点坐标,当抛物线开口变大,即函数值小于切点的纵坐标即可. 【解析】易知()()()g x f x f x =-+是偶函数,问题可转化为22(), 0kg x x k x x=+->有且仅有两个不同的零点. 分离函数得()21210x x k x=-+>,由图形易知k >0, 问题进一步转化为()21210y x y x k x==-+>、有两个交点问题.m所以当21133k ⨯<时,即k >27时,上述两个函数图象有两个交点 综上所述,实数k 的取值范围是(27,+∞). 点评:1.本题解法较多,但利用“形”最简单,只要函数分离的恰当,这种题实现“分分钟”解决也是可及的.2.有关函数零点的问题解法灵活,综合考察函数的图象与性质、导数的几何意义、分离函数的意识、分离参数的意识等,综合性强,较难把握.3.利用“数学结合法”求解零点问题的要点有二.一是分离函数,基本策略是“一静一动、一直一曲,动直线、定曲线”,函数最好是基本初等函数;二是求解过程中的“临界状态”的确定,若是一直一曲,一般相切是“临界状态”,若是两曲,一般公切是“临界状态”(曲线的凸凹性相反,即曲线在公切线的两侧)例5 已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 .【答案】2(,)4e -∞-【解析】2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,是偶函数,问题转化为2=0x e mx +,即2=x e mx -(0x >)有两个零点易知0m <,两边均为曲线,较难求解.两边取自然对数,()=ln 2ln x m x -+,即()ln 2ln x m x --= 问题即为:()()ln g x x m =--与()2ln h x x =有两个交点先考察直线y x b =+与()2ln h x x =相切,即只有一点交点的“临界状态” 设切点为00(,2ln )x x ,则002()1h x x '==,解得02x =,此时切点为(2,2ln 2)代入2ln 22b =-,再求()()ln g x x m =--与()2ln h x x =有两个交点时,m 的取值范围 由图象知,当()()ln g x x m =--在直线y x b =+下方时,满足题意故()ln 2ln 22m b --<=-,解之得24e m <-,此时也符合0m <所以实数m 的取值范围是2(,)4e -∞-.点评:取对数的目的在于“化双曲为一直一曲”,简化了运算、难度,取对数不影响零点的个数. 例6 若函数3||()2x f x kx x =-+有三个不同的零点,则实数k 的取值范围为 . 【答案】 27(,)32-∞-⋃+∞(0,) 【分析】本题的难点是“分离函数”,函数分离的是否恰当、易于进一步解题,是分离时应综合考虑的重要因素,也是学生数学素养、能力的综合体现.本例中,可将已知变形为下列多种形式:3||2x kx x =+2||(2)x kx x x =+、3||(2)x k x x =+,31(2)x x k x +=,···,但利用31(2)x x k x +=较简单.【解析】易知0是函数3||()2x f x kx x =-+一个的零点, 当x ≠0时,3||()02x f x kx x =-=+可化为31(2)x x k x +=,考虑1y k =与3(2)()x x g x x +=有且只有两个非零零点. 如下图,的取值范围是 .【答案】()4ln 2,ln(e 1)2+-【分析】从结构上看,首先考虑“对化指”,方程24242ln(e1)2e1e0x x x a x a --+-+=+-⇔+-=,属于复合函数的零点问题,内函数是指数型,外函数是二次函数.设242()e 1ex x a h x -+-=+-,x R ∈,则()h x 为偶函数,研究 “一半”, 令2ex t -=,x >0,则关于t 的方程2e 10at t -+=在(2e -,+∞)内有两个不相等的实根,分离参数,利用“形”立得. 【解析】方程24242()()ln(e 1)2e1e0x x x a f x g x x a --+-=⇔+=+-⇔+-=令242()e1ex x a h x -+-=+-,x R ∈,则显然()h x 为偶函数,所以方程()()f x g x =有四个实根⇔函数242()e 1e x x a h x -+-=+-,x >0有两个零点,令2ex t -=,x >0,则关于t 的方程2e 10at t -+=,即1e at t=+在(2e -,+∞)内有两个不相等的实根,结合函数1y t t=+,2e t ->的图像,得222e e e a -<<+,即4ln 2ln(e 1)2a <<+-,则实数a 的取值范围是()4ln 2,ln(e 1)2+-.【巩固训练】1.已知函数22()(21)(31)(2)(2)x x f x a a e a x e x =---+++有四个零点,则实数a 的取值范围是__________.A. 1,12⎛⎫⎪⎝⎭ B. 11,2e +⎛⎫ ⎪⎝⎭ C. 11,22e +⎛⎫⎪⎝⎭ D. 11,11,22e +⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数21,0()1,02x xx x x f x e e x x ⎧++≥⎪=⎨+<⎪⎩,()xg x me =(其中m 是非零实数),若函数()y f x =与函数()y g x =的图象有且仅有两个交点,则m 的取值范围为 .3.已知函数32ln ,0(),0e x x f x x x x >⎧=⎨+≤⎩,若函数2()()g x f x ax =-有三个不同的零点,则实数a 的取值范围是_____.4.已知e 为自然对数的底数,若方程|xlnx —ex +e |=mx 在区间[e1,e 2]上有三个不同实数根,则实数m 的取值范围是________. 5.已知关于x 的方程2x kx x =-有三个不同的实数解,则实数k 的取值范围是______6.已知关于x 的方程33kx x x =+有三个不同的实数解,则实数k 的取值范围是 .7. 若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为____________.8. 若函数有两个零点,则实数的取值范围是 .9.已知函数()2xf x e x a =-+有零点,则实数a 的取值范围是____________. 10. 已知函数()f x ax =,ln ()xg x x =,其中a 为实数.若关于x 的方程()()f x g x =在1,e e ⎡⎤⎢⎥⎣⎦上有两个实数解,则实数a 的取值范围为 .11. 已知函数32, 0(), 0ax x x f x x x ⎧++<⎪=⎨>⎪⎩,若函数()(1)(1)g x f x f x =-+-有且仅有四个不同的零点,则()(0a 1)xf x a x a a =--≠>),且a实数a 的取值范围是 . 12.已知函数3()f x x a a x=--+,,若关于的方程()2f x =有且仅有三个不同的实根,且它们成等差数列,则实数取值的集合为 .a R ∈x a【答案与提示】1.【答案】 D【提示】()(2)(21)(2)x xf x ae x a e x ⎡⎤⎡⎤=-+--+⎣⎦⎣⎦,根据对称性,只需考察1(2)x e x a=+有两个零点,得0a e <<,故有002121a e a e a a <<⎧⎪<-<⎨⎪≠-*⎩,前两者是保证两方程各自有两解,这里(*)易漏,它是保证两方程解不相同的.2.【答案】⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫ ⎝⎛e 3,121,0【提示】转化为函数21,0()11,02xx x x e F x x x ⎧++≥⎪⎪=⎨⎪+<⎪⎩与函数()G x m =的图象有且仅有两个交点最简.3.【答案】(0,1){2}-【提示】易知0是其中一个零点,问题转化为y a =与函数22ln ,0()1,0e xx x k x x x x ⎧>⎪⎪=⎨⎪+<⎪⎩有两个不同的零点.4.【答案】12,2ee e)【解析】方程两边同时除以x ,令()ln ef x x e x,问题转化为()y f x 与y m 的图象在区间[e1,e 2]上有三个交点. ∵221()e x ef x x x x ,∴当1(,)x e e时,()0f x ,()f x 减;当2(,)x e e 时,()0f x ,()f x 增.故当xe 时,()f x 取得极小值,且()20f e e.又(1)0f ,21()10f e e e,21()20f e e e作出()y f x 的图象,由图象知实数m 的取值范围是:12,2ee e).2,0xR x-⎪=⎪⎪⎩6.【答案】0>k或41-<k.【提示】参见例6.即320, 0t at t t -+-=>有两个零点 思路一:(全分)2221, 0221, 2t t t a t t t ⎧+-<<⎪⎪=⎨⎪-+≥⎪⎩思路二:(半分)32, 0t at t t -=-->12.【答案】95⎧⎪-⎨⎪⎪⎩⎭【提示】变形为3=+3x a a x -+转化为y x a a =-+与3=+3y x 有且仅有三个不同的交点,而函数y x a a =-+的图象是定点在直线y x =上、开口向上的V 形折线.。

高考数学二轮复习微专题35运用数形结合思想探究函数零点问题

高考数学二轮复习微专题35运用数形结合思想探究函数零点问题

微专题35 运用数形结合思想探究函数零点问题运用数形结合思想探究函数零点问题历来是高考的热点与难点,解决此类问题的难例题:已知f(x)=⎩⎪⎨⎪⎧4x -x2,x≥0,3x , x <0,若函数g(x)=|f(x)|-3x +n 有三个零点,求实数n 的取值范围.变式1已知函数f(x)=⎩⎨⎧|x|,x≤m ,x2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f(x)=b 有三个不同的根,则m 的取值范围是________________.变式2已知函数f(x)=⎩⎨⎧x2+(4a -3)x +3a ,x <0,loga (x +1)+1,x≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是________________.串讲1(2018·苏州三模)如果函数y =f(x)在其定义域内总存在三个不同实数x 1,x 2,x 3,满足|x i -2|f(x i )=1(i =1,2,3),则称函数f(x)具有性质Ω.已知函数f(x)=a e x 具有性质Ω,则实数a 的取值范围为________________.串讲2已知直线y =kx +1与曲线f(x)=⎪⎪⎪⎪x +1x -⎪⎪⎪⎪x -1x 恰好有四个不同的交点,则实数k 的取值范围为________________.(2018·镇江期末)已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1, x≤0,|lnx|,x >0,若关于x 的方程f(x)=kx +2有且只有四个不同的解,则实数k 的取值集合为________________.(2018·镇江期末)已知b >0,且b ≠1,函数f(x)=e x +b x ,其中e 为自然对数的底数;(1)如果函数f(x)为偶函数,求实数b 的值,并求此时函数的最小值;(2)对满足b >0,且b ≠1的任意实数b ,证明函数y =f(x)的图象经过唯一定点; (3)如果关于x 的方程f(x)=2有且只有一个解,求实数b 的取值范围. 答案:(1)b =1e ,f(x)的最小值为2;(2)(0,2);(3)b >1或b =1e.解析:(1)由f(1)=f(-1)得e +b =1e +1b ,解得b =-e (舍去),或b =1e ,1分经检验f(x)=e x +1ex 为偶函数,所以b =1e .2分因为f(x)=e x +1ex≥2,当且仅当x =0时取等号,3分所以f(x)的最小值为2.4分(2)假设y =f(x)过定点(x 0,y 0),则y 0=e x 0+bx 0对任意满足b >0,且b ≠1恒成立.5分 令b =2得y 1=e x 0+2x 0;令b =3得y 0=e x 0+3x 0,6分所以2x 0=3x 0,即⎝⎛⎭⎫32x0=1,解得唯一解x 0=0,所以y 0=2,7分经检验当x =0时,f(0)=2,所以函数y =f(x)的图象经过唯一定点(0,2).8分(3)令g(x)=f(x)-2=e x +b x -2为R 上的连续函数,且g (0)=0, 则方程g (x )=0存在一个解.9分(ⅰ)当b >0时,g (x )为增函数,此时g (x )=0只有一解.10分(ⅱ)当0<b <1时,令g ′(x )=e x +b x ln b =e x ⎣⎢⎡⎦⎥⎤1+⎝⎛⎭⎫b e x lnb=0, 解得x 0=log ⎝⎛⎭⎫e b (-ln b ).11分因为e x>0,0<b e<1,ln b <0,令h (x )=1+⎝⎛⎭⎫b e x ln b ,h (x )为单调增函数,所以当x ∈(-∞,x e )时,h (x )<0,所以g ′(x )<0,g (x )为单调减函数;当 x ∈(x 0,+∞)时,h (x )>0,所以g ′(x )>0,g (x )为单调增函数,所以g (x )极小=g (x 0).因为g (x )定义域为R ,所以g (x )min =g (x 0).13分 ①若x 0>0,g (x )在(-∞,x 0)上为单调减函数,g (x 0)<g (0)=0,而g (ln2)=2+b ln2-2=b ln2>0,所以当x ∈(x 0,ln2)时,g (x )至少存在另外一个零点,矛盾.14分 ②若x 0<0,g (x )在(x 0,+∞)上为单调增函数,g (x 0)<g (0)=0,而g (log b 2)= elog b 2+2-2=elog b 2>0,所以g (x )在(log b 2,x 0)上存在另外一个解,矛盾.③当x 0=log ⎝⎛⎭⎫e b (-ln b )=0,则-ln b =1,解得b =1e, 此时方程为g (x )=e x +1ex -2=0,由(1)得,只有唯一解x 0=0,满足条件.综上所述,当b >1或b =1e时,方程f (x )=2有且只有一个解.16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
求 x1 x 2 .
3
挑战自我: 求 不 等 式 x 1 lo g 6 ( x 3)的 所 有 整 数 解 .
-2,-1,0,1
数形结合千般好,隔离分家万事休。
记住: 某些时候千万别得意而“忘形”呦。
作业:
1.复习今日所学内容。 2.学会将题目进行归类,整合。找找报纸 或考一本上哪些题目用数形结合解决比 较快,并解决它们。 3. 预习 4.完成下列题目。

ห้องสมุดไป่ตู้
2
解 析 : 在 同 一 平 面 直 角 坐 标 系 中 , 画 出 函 数 y lg x 与 y x 3的 图 象 ( 如 图 4 ) . 它 们 的 交 点 横 坐 标 x 0 显 然 在 区 间 (1,3)内 , 由 此 排 除 A, D. 至 于 选 B还 是 选 C, 单 凭 直 观 比 较 困 难 了 , 这 时 要 比 较 x 0 与 2 的 大 小 . 当 x 2时 , x lg 2, x 1,由 于 lg 2 1, lg 3 因 此 x 0 2, 从 而 判 定 x 0 ( 2, 3), 故 本 题 应 选 C .
链接高考: 已 知 函 数 f ( x ) lo g a x x b ( a 0, 且 a 1) 当 2 < a< 3 < b < 4 时 , 函 数 f ( x )的 零 点 x 0 ( n , n 1), n N , 则 n=?

2
学生练习: 已 知 函 数 f ( x ) x 1 a 分 别 满 足 下 列 条 件 . 求 a的 范 围
0k 1
变 式 : 若 题 目 改 为 f ( x ) m ax{ x , x }呢 ?
2 2
k 1
链接高考: 1 . 若 0 < a< 1 , 则 方 程 a A.2 B.3 C.4
x
lo g a x 的 实 根 个 数 (
B)
D.5
2 , ( x 2) 2.f ( x) x ( x 1) 3 , ( x 2 ) 若 关 于 x的 方 程 f ( x ) k 有 两 个 不 同 实 根 , 求 k 范 围
数形结合解零点问题
“数缺形时少直觉,形少数时难入微”(华罗庚 语).
数形结合指的是在解决数学问题时,使数的问 题,借助形更直观,而形的问题,借助数更理性.
函数的零点就是函数图象与x轴的交点的横坐标, 数形结合能给零点问题的解决带来极大的方便.
(一 ) 零 点 个 数 问 题 例1 : 求 函 数 f
x
x 4 x 4零 点 个 数
y y= x+4
O
(图1)
1 y=4-x
x
解析:f
x
x 4 x 4的 零 点 就 是 方 程
x 4 4 x的
解,在同一平面直角坐标系中画出y 图 象 ( 如 图1 ) 可 见 函 数 f
x 4 和 y 4 x的
x
x 4 x 4的 零 点 个 数 为1.
y y= x+4
O
1 y=4-x
x
(图1)
例 2 : 定 义 函 数 f ( x ) m in { x , x } , 其 中 { x / x 0}
2
2
满 足 函 数 G ( x ) f ( x ) k 有 四 个 零 点 , 求 k的 范 围 ( 即 图 象 f ( x )与 y k 有 四 个 交 点 )
0k 1
(二 ) 零 点 所 在 区 间 问 题 例 3 : 函 数 f ( x ) lg x x 3的 零 点 所 在 区 间 为 ( A.(0,1) B.(1,2) C.(2,3) D . ( 3 , + )
C
y

y=lgx O 1 3 y=-x+3
(图4)
x
若 题 目 改 为 零 点 所 在 区 间 ( n , n 1), n N , 则 n=?
评 注 : 数 形 结 合 , 要 在 结 合 方 面 下 功 夫 ,本 题 不 仅 要 通过图象直观估计,而且还要计算两个函数 值,通过比较其大小进行判断.
(三)零点值问题 例 4 : 若 函 数 f ( x ) e x 3的 零 点 x1, g ( x ) ln x x 3的 零 点 x 2 ,
2
(1 ) 函 数 f ( x ) 有 四 个 零 点 ( 2 ) 函 数 f ( x )有 三 个 零 点 (3 ) 函 数 f ( x )有 两 个 零 点
0a 1 a 1
a 0或a 1
相关文档
最新文档