合肥168自主招生数学试卷附答案
2022年合肥168中学自主招生数学试题
科学素养测试数 学 试 题【卷首语】亲爱同窗们,欢迎参与一六八中学自主招生考试,但愿你们凝神静气,考出水平!开放一六八中学热忱欢迎你们!本学科满分为150分,共21题;用时120分钟。
一、选用题(本大题共8小题,每题5分,共40分)1. 设非零实数x 、y 、z 满足⎩⎨⎧=+-=+-042032z y x z y x,则xz yz xy z y x ++++222值为( )A. 2B.21C. -2D. 12. 已知两直线k x k y k kx y ++=-+=)1(,121(k 为正整数),设这两条直线与x 轴所围成三角形面积为k s ,则2014321s s s s +++值是( )A.20142013B.20152014C.20132014D.201510073. 有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同角度观测 成果如图所示,如果记6对面数字为m ,2对面数字为n ,那么n m -2值为( )A. 2B. 7C. 4D. 64. 如图,已知△ABC 面积为36,点D 在线段AC 上,点F 在线段BC 延长线上,且4BC CF =,四边形DCFE 是平行四边形,则图中阴影某些面积为( ).A. 8B. 6C. 9D. 125. 设{}y x ,m ax 体现y x ,两个数中最大值,例如{}{}107,10m ax ,33,0m ax ==,则函数}2,2max{+=x x y 可以体现为( )第4题图A. x y 2=B. ⎩⎨⎧≥+<=)2(2)2(2x x x x yC. 2+=x yD. ⎩⎨⎧<+≥=)2(2)2(2x x x x y6. 在平面直角坐标系中作OMN ∆,其中三个顶点分别是O(0,0),M(1,1),N(x,y)22,22(≤≤-≤≤-y x ,x,y 值均为整数),则所作OMN ∆不是直角三角形概率为( )A.52B.43C.53D.65 7. 如图,以半圆一条弦BC (非直径)为对称轴将弧BC 折叠后与直径AB 交于点D ,若32=DB AD ,且10=AB ,则CB 长为( ) A. 54B. 34C. 24D. 48. 矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿C→B 以2cm/s 速度运动至B 点停止,动点F 从点C 同步出发沿C →D 以1cm/s 速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余某些面积为y (单位:2cm ),则能大体反映y 与x 之间函数关系图象是下图中( )A .B .C .D .AD F CEHB(第8题图)OD CBA 第7题图第9题图二、填空题(本大题共7小题,每题5分,共35分)9. 如图,在梯形ABCD 中,AD //BC ,CE 是BCD ∠平分线,且AB CE ⊥,E 为垂足,BE =2AE ,若四边形AECD 面积为1,则梯形ABCD 面积为_______;10. 分解因式:=-++-2222n n m mn m ________________; 11. 已知b a ,为有理数,且满足b a +=+33421,则b a -=______; 12. 已知抛物线bx x y +=221通过点A(4,0),设点C (1,3-),请在抛物线对称轴上拟定一点D,使得CD AD -值最大,则D 点坐标为___________;13. 若)(,2121x x x x <是方程)(1))((n m n x m x <=--两个根,则实数n m x x ,,,21大小关系为_______________;14. 如图,点D ,E 分别是△ABC 边AC ,AB 上点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 面积分别是3,4,5,则四边形AEFD 面积是_________;15. 如图,在ABC △中,ABC ∠和ACB ∠平分线相交于点O ,过点O 作EF BC ∥交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D .下列四个结论:1902BOC A ∠=∠①°+;②觉得E 圆心、BE 为半径圆与觉得F 圆心、CF 为半径圆外切; ③设OD m AE AF n =+=,,则mn S AEF 21=∆; ④EF 不能成为ABC △中位线.EDB C A AD FCBOE第15题图第14题图其中对旳结论是_____________.(把你觉得对旳结论序号都填上)三、解答题(本大题共6小题,共75分) 16. (12分)(1)已知y 为实数,且2)3(3322=---y y yy ,求232+-y y 值; (2)b a b a m b a m b a +-⨯--=-++--+19919932253,求m 值。
合肥168中学自主招生试题及答案
合肥168中学自主招生试题及答案合肥168中学自主招生试题及答案作为一所著名的高中,合肥168中学每年都会进行自主招生计划,为高中学生提供优质的教育资源。
每年招收的学生大约有1000余名,他们在学业和社会经历上都处于领先水平。
以下是合肥168中学自主招生考试的试题及答案:一、数学1. 已知函数f(x) = x2+2,根据展开式f '(x) = 2x,计算f(1)的值。
A. 2B. 3C. 4D. 5答案:C. 42. 已知等比数列{an}中,若a2=2,a3=6,则a5的值为?A. 12B. 18C. 33D. 36答案:D. 36二、英语1.Tom has been trying to______ the idea of starting his own business sincethen.A. pass offB. carry onC. put offD. take up答案:D. take up2. Mary has been______ Japanese for two years.A. learningB. learnedC. to learnD. being learning答案:A. learning三、历史1. 以下哪种运动是中国从大革命以来为100多年让中国人民不断奋斗的基本动力?A.工农红军运动B.1911年辛亥革命C.新民主主义革命D.二次世界大战答案:C.新民主主义革命2. 以下社会主义改革的举措是毛泽东提出的?A.实行公有制B.分配制度改革C.实行资源征收制D.农村百姓自负责实行联产承包答案:D.农村百姓自负责实行联产承包四、政治1.根据中国的宪法,拥有最高权力的政府机构是?A.中央政府B.地方政府C.人大D.政协答案:C.人大2.以下哪一个原则是中国政府和其他国家采用一致外交立场的基础?A.独立自主B.和平共处C.相互尊重D.平等互利答案:B.和平共处。
【2020-2021自招】安徽合肥一六八中学初升高自主招生数学模拟试卷【4套】【含解析】
第一套:满分150分2020-2021年安徽合肥一六八中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
168招生试题及答案
168招生试题及答案【168招生试题及答案】1. 数学部分题目一:计算题请计算以下数学表达式的结果:(18 + 6) ÷ 4 × 3 - 5 × 2 + 4 - 3答案一:28题目二:几何题已知直角三角形ABC中,∠B = 90°,AC = 5cm,BC = 12cm。
则AB的长度为多少?答案二:13cm2. 语文部分题目三:填空题请用适当的词语或短语填空,使句子通顺和语义完整。
他______(喜欢/讨厌)吃苹果,每天都吃一颗。
答案三:喜欢题目四:阅读理解阅读以下短文,然后根据短文内容回答问题。
某座美丽的小山村,有一群和蔼可亲的村民,他们彼此之间互帮互助。
有一天,一位旅行者迷路了,他遇到了一位村民。
旅行者问道:“请问,村口的公交车站在哪里?”村民微笑着回答:“很抱歉,我们这里没有公交车。
但是我可以带你去村子里的其它地方。
”旅行者感激地笑了笑,答道:“谢谢你,我只是想去村口看看。
”村民点头示意旅行者跟随他。
问题四:旅行者为什么要去村口?答案四:他想看看村口。
3. 英语部分题目五:单词拼写请根据下列句子中横线处的描述,填入恰当的单词。
I enjoy _________ (read) novels in my free time.答案五:reading题目六:完形填空阅读下列短文,然后选择恰当的单词填入空格,使短文内容完整且通顺。
One day, a little squirrel was looking for _______ (1) in the forest. Suddenly, it found a _______ (2) filled with nuts. The squirrel was so_______ (3), it didn't notice the _______ (4) when it was leaving with a mouthful of nuts. The squirrel tripped and all the nuts _______ (5) out of the basket. The squirrel was _______ (6).问题六:在第四个空格处,应填入以下哪个词语?A. dangerB. basketC. groundD. noise答案六:C. ground通过以上168道招生试题以及对应的答案,希望能帮助您更好地了解题目类型和解题方法。
合肥一六八中学自主招生数学试题
2 0 1 6 年学科素养考核数学卷【卷首语】亲爱的同学们,欢迎参加一六八中学自主招生考核。
希望你们凝神静气,考出水平!开放的一六八中学热忱欢迎你们!本学科满分为 150 分,共 21 题;用时 120 分钟。
一、选择题(本大题共8小题,每小题5分,共40分)1.设a,b,c均为正数,若c<a<b,则a,b,c三个数的大小关系是( ) a + b b + c c + aA.a<b<c C.c<a<b B.b<c<a D.c<b<a2.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是().A CBA B C D3.如图,在半径为 1 的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设 CE=x,AP=y,下列图象中,能反映 y 与x 之间函数关系的是()y y y2 2 2 2O1 2 x O 1 2x O1 2x OA B CCAO EByDP12xD4.如图,在△AOB中,已知∠AOB=90°,AO=3,BO=6,将△AOB绕顶点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,那么线段B'E的长度为( ).A. 6 5 B.7 5 C.8 5 D.9 55 5 5 5数学卷第1页(共4页)5.如图,矩形ABCD被分成 8 块,图中的数字是其中 5 块的面积数,则图中阴影部分的面积为()A.80 B.85 C.90 D.95A' A D C50 15EO 65B2070B' AB第4题图第5题图6.已知a为实常数,关于x的方程(a2-2a)x2+(4-6a)x+8=0的解都是整数,则a 的值的个数为( )A.3 B.4 C.5 D.6 7.连续 2 次掷立方体骰子得到的点数依次为m,n,则以点A(0, 0),B(4,-3),C(m,n)为顶点能构成等腰三角形的概率为( )A.1B.1C.5D.7 6 9 36 368.已知n为正整数,二次方程x2 + (2n+1)x+n2 = 0 的两根为αn , βn,则1+ 1+ +1的值为( )(α3+ 1)(β3+1) (α4 +1)(β4 +1) (α20 +1)(β20+1)A.19 B.29 C.341 D.53140 40 760 760二、填空题(本大题共7小题,每小题5分,共35分)9.如图 1 是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图 2,再沿BF折叠成图 3,则图3中的∠CFE的度数是___________.A E D A EDA EC FB B GF CC B G F图1 图2 图3D10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2 = - | a1+1 |, a3= - | a2+ 2 |,a 4 = - | a3+ 3 | ,…依次类推,则a2012的值为___________.数学卷第2页(共4页)11.现有 1~13 共 13 张已按一定顺序正面朝上叠放好的扑克牌,将牌的第 1 张放到第 13 张后面,拿出此时牌的最上面的一张,放在桌子上;再将手中牌的第1张放到最后,拿出牌的最上面的一张,放在桌子上,……,如此反复进行,直到手中的牌全部取出.如果取出的牌的顺序正好是1,2,3,…,11,12,13,则原来扑克牌的顺序为7,1,12,2,8,3,11,4,9,5,13,6,10.若取出的牌的顺序为13,12,11,…,3,2,1,那么按原来牌的顺序第 10 张牌为 .12.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m =3a + b -7c ,则m的最小值为____________.13.甲、乙两个机器人同时按匀速进行 1000 米速度测试,自动记录仪表明:当甲距离终点差10米,乙距离终点差20米;甲到达终点时,乙距离终点差10.1米,经过计算,这条跑道长度不标准,则这条跑道比1000米多______米.14.如图,在∆ABC中,AB=AC=15, cos∠BAC=45,点D在边AB上,且AD=2BD,点E是边AC上的一个动点,把∆ADE 沿着直线 DE 翻折后,得到∆FDE ,且 EF ⊥ AC ,那么点A到E的距离是__________.ADB C15.两个反比例函数y=kx和y=1x(k>1)在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B,当点P在y=kx的图象上运动时,以下结论:①△ ODB与△ OCA的面积相等;②四边形PAOB的面积不会发生变化;③当点A是PC的中点时,点B 一定是PD的中点;④ PA⋅PB的值不会发生变化;⑤若k变化时,PA⋅PB的值随k 的增大而增大.其中一定正确的是________.(把你认为正确结论的序号都填上,少填或错填不给分)yD B Py=kA x1Oy=x C x数学卷第3页(共4页)三、解答题(本大题共6小题,共75分)16.(11 分)解方程:2[x]=x+2{x} (x≥0)(注:[x]表示实数x的整数部分,{x}表示x的小数部分,[2.13]=2,{2.13}=0.13)17 . (12 分 ) 已知实数a≠b,且满足 (a+ 1)2= 3 - 3(a+ 1) , 3(b+ 1) = 3 - (b+ 1)2,求b b+ a a 的值. Aba18. (12 分)已知如图,△ABC中,∠A :∠B :∠C=1 : 2 : 4,设BC=a,AC=b,AB=c,求证:1+1 =1 .cb a B C19. (12 分)在两个三角形的六对元素(三对角与三对边)中,即使有五对元素对应相等,这两个三角形也未必全等.(1)试给出一个这样的例子,画出简图,分别标出两个三角形的边长;(2)为了把所有这样的反例都构造出来,试探求符合条件的此类三角形三边的一般规律(要求过程完整,述理严密,结论明晰).20.(14 分)已知二次函数y=x2+mx+n ( m,n为常数).(1)当m=2,n= -3时,若自变量x的值满足0≤x≤2,求二次函数的最小值;(2)当n= -3时,若自变量x的值满足0≤x≤2,求二次函数的最小值(可以用m表示);(3)当n=m2时,若自变量x的值满足m≤x≤m+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.21.(14 分)如图,已知在∆ABC中,AB=AC=6,AH⊥BC,垂足为点H .点D在边AB 上,且 AD =2,连结CD交 AH 于点 E .(1)如图 1,如果AE=AD,求AH的长;(2)如图 2,圆A是以点A为圆心,AD为半径的圆,交线段AH于点F .设点P为边BC上一点,如果以点P为圆心,BP为半径的圆与圆A外切,以点P为圆心,CP 为半径的圆与圆 A 内切,求边 BC 的长;(3)如图 3,连结DF .设DF=x,∆ABC的面积为y,求y关于x的函数解析式.A AAD D F D FE E EB HC B H C B H C图1 图2 图3数学卷第4页(共4页)。
2023年安徽省中学自主招生考试数学模拟试卷一及详细答案
安徽省168中学自主招生考试数学模拟试卷一参照答案与试题解析一、选择题(本大题共8小题,每题3分,共24分.).1.(3分)若不等式组旳解集是x>3,则m旳取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,然后根据不等式旳解集,得出m旳取值范围即可.解答:解:由x+7<4x﹣2移项整顿得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组旳解集是x>3,∴m≤3.故选C.点评:重要考察了一元一次不等式组解集旳求法,将不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m旳范围.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.考点:特殊角旳三角函数值.分析:本题中直角三角形旳角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC旳度数,再由特殊角旳三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.点评:本题考察旳是特殊角旳三角函数值,解答此题旳关键是构造特殊角,用特殊角旳三角函数促使边角转化.注:(1)求(已知)非特角三角函数值旳关是构造出含特殊角直角三角形.(2)求(已知)锐角三角函数值常根据定转化为求对应线段比,有时需通过等旳比来转换.3.(3分)(•南漳县模拟)如图,AB为⊙O旳一固定直径,它把⊙O提成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD旳平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD旳距离保持不变B.位置不变D.随C点移动而移动C.等分考点:圆周角定理;圆心角、弧、弦旳关系.专题:探究型.分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,因此有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆旳中点.故选B.点评:本题考察了圆周角定理.在同圆或等圆中,同弧和等弧所对旳圆周角相等,一条弧所对旳圆周角是它所对旳圆心角旳二分之一.也考察了垂径定理旳推论.4.(3分)已知y=+(x,y均为实数),则y旳最大值与最小值旳差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2考点:函数最值问题.分析:首先把y=+两边平方,求出定义域,然后运用函数旳单调性求出函数旳最大值和最小值,最终求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y旳最大值为2,当x=1或5时,y旳最小值为2,故当x=1或5时,y获得最小值2,当x取1与5中间值3时,y获得最大值,故y旳最大值与最小值旳差为2﹣2,故选D.点评:本题重要考察函数最值问题旳知识点,解答本题旳关键是把函数两边平方,此题难度不大.5.(3分)(•泸州)已知O为圆锥旳顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短路线旳痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段旳性质:两点之间线段最短;几何体旳展开图.专题:压轴题;动点型.分析:此题运用圆锥旳性质,同步此题为数学知识旳应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过旳最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行旳最短路线应当是一条线段,因此选项A和B错误,又由于蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么假如将选项C、D旳圆锥侧面展开图还原成圆锥后,位于母线OM上旳点P应当可以与母线OM′上旳点(P′)重叠,而选项C还原后两个点不可以重叠.故选D.点评:本题考核立意相对较新,考核了学生旳空间想象能力.6.(3分)已知一正三角形旳边长是和它相切旳圆旳周长旳两倍,当这个圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈考点:直线与圆旳位置关系.分析:根据直线与圆相切旳性质得到圆从一边转到另一边时,圆心要绕其三角形旳顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解答:解:圆按箭头方向从某一位置沿正三角形旳三边做无滑动旳旋转,∵等边三角形旳边长是和它相切旳圆旳周长旳两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形旳一种顶点旋转了三角形旳一种外角旳度数,圆心要绕其三角形旳顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考察了直线与圆旳位置关系,弧长公式:l=(n为圆心角,R为半径);也考察了旋转旳性质.7.(3分)二次函数y=ax2+bx+c旳图象如下图,则如下结论对旳旳有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个考点:二次函数图象与系数旳关系.专题:图表型.分析:由抛物线旳开口方向判断a旳符号,由抛物线与y轴旳交点判断c旳符号,然后根据对称轴及抛物线与x 轴交点状况进行推理,进而对所得结论进行判断.解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值不小于0,即y=4a+2b+c>0,对旳;④当x=3时函数值不不小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,对旳;⑤当x=1时,y旳值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,因此a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),对旳.③④⑤对旳.故选B.点评:考察二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴旳交点、抛物线与x轴交点旳个数确定.8.(3分)如图,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、CP,假如,那么△ABC旳内切圆半径为()A.1B.C.2D.考点:三角形旳内切圆与内心;等边三角形旳性质.分析:过P点作正△ABC旳三边旳平行线,可得△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,于是求出三角形ABC旳面积,进而求出等边三角形旳边长和高,再根据等边三角形旳内切圆旳半径等于高旳三分之一即可求出半径旳长度.解答:解:如图,过P点作正△ABC旳三边旳平行线,则△MPN,△OPQ,△RSP都是正三角形,四边形ASPM,四边形NCOP,四边形PQBR是平行四边形,故可知黑色部分旳面积=白色部分旳面积,又知S△AFP+S△PCD+S△BPE=,故知S△ABC=3,S△ABC=AB2sin60°=3,故AB=2,三角形ABC旳高h=3,△ABC旳内切圆半径r=h=1.故选A.点评:本题重要考察等边三角形旳性质,面积及等积变换,解答本题旳关键是过P点作三角形三边旳平行线,证明黑色部分旳面积与白色部分旳面积相等,此题有一定难度.二、填空题(本大题共8小题,每题3分,共24分)9.(3分)与是相反数,计算=.考点:二次根式故意义旳条件;非负数旳性质:绝对值.专题:计算题.分析:根据互为相反数旳和等于0列式,再根据非负数旳性质列式求出a+旳值,再配方开平方即可得解.解答:解:∵与|3﹣a﹣|互为相反数,∴+|3﹣a﹣|=0,∴3﹣a﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a>0,∴(+)2=5,∴+=.故答案为:.点评:本题考察了二次根式故意义旳条件,非负数旳性质,求出a+=3后根据乘积二倍项不含字母,配方是解题旳关键.10.(3分)若[x]表达不超过x旳最大整数,,则[A]=﹣2.考点:取整计算.专题:计算题.分析:先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x]表达不超过x旳最大整数得到,[A]=﹣2.解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A]=[﹣]=﹣2.故答案为﹣2.点评:本题考察了取整计算:[x]表达不超过x旳最大整数.也考察了分母有理化和零指数幂.11.(3分)如图,M、N分别为△ABC两边AC、BC旳中点,AN与BM交于点O,则=.考点:相似三角形旳鉴定与性质;三角形中位线定理.专题:计算题;证明题.分析:连接MN,设△MON旳面积是s,由于M、N分别为△ABC两边AC、BC旳中点,易知MN是△ABC旳中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON旳面积是2s,进而可知△BMN旳面积是3s,再根据中点性质,可求△BCM旳面积等于6s,同理可求△ABC旳面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON旳面积是s,∵M、N分别为△ABC两边AC、BC旳中点,∴MN是△ABC旳中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON旳面积=2s,∴△BMN旳面积=3s,∵N是BC旳中点,∴△BCM旳面积=6s,同理可知△ABC旳面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考察了相似三角形旳鉴定和性质、三角形中位线定理,解题旳关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O旳面积为3π,AB为直径,弧AC旳度数为80°,弧BD旳度数为20°,点P为直径AB 上任一点,则PC+PD旳最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦旳关系.专题:探究型.分析:先设圆O旳半径为r,由圆O旳面积为3π求出R旳值,再作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,由圆心角、弧、弦旳关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′旳度数,进而可得出结论.解答:解:设圆O旳半径为r,∵⊙O旳面积为3π,∴3π=πR2,即R=.作点C有关AB旳对称点C′,连接OD,OC′,DC′,则DC′旳长即为PC+PD旳最小值,∵旳度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD旳最小值为3.故答案为:3.点评:本题考察旳是轴对称﹣最短路线问题及垂径定理,圆心角、弧、弦旳关系,根据题意作出点C有关直线AB 旳对称点是解答此题旳关键.13.(3分)从1,2,3,5,7,8中任取两数相加,在不一样旳和数中,是2旳倍数旳个数为a,是3旳倍数旳个数为b,则样本6、a、b、9旳中位数是 5.5.考点:中位数.分析:首先列举出所有数据旳和,进而运用已知求出a,b旳值,再运用中位数是一组数据重新排序后之间旳一种数或之间两个数旳平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有也许:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不一样数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2旳倍数旳个数为a=5,是3旳倍数旳个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据旳中位数是:=5.5,故答案为:5.5.点评:此题考察了列举法求所有也许以及中位数旳定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间旳那个数(最中间两个数旳平均数),叫做这组数据旳中位数,假如中位数旳概念掌握得不好,不把数据按规定重新排列,就会出错.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成旳图形面积为S,则S 旳最小值是.考点:两条直线相交或平行问题.分析:首先用k表达出两条直线与坐标轴旳交点坐标,然后表达出围成旳面积S,根据得到旳函数旳取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴旳交点是A(,0),与y轴旳交点是B(0,2k﹣1)直线y=(k+1)x+2k+1与X轴旳交点是C(,0),与y轴旳交点是D(0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC旳面积最小,最小值S=2﹣=.点评:本题考察了两条指向相交或平行问题,解题旳关键是用k表达出直线与坐标轴旳交点坐标并用k表达出围成旳三角形旳面积,从而得到函数关系式,运用函数旳知识其最值问题.15.(3分)(•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重叠,折痕与PF交于Q点,则PQ旳长是cm.考点:翻折变换(折叠问题).专题:压轴题.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形旳性质,用含x旳式子表达Rt△EGQ 旳三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形旳性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.点评:本题考察图形旳翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称旳性质,折叠前后图形旳形状和大小不变,如本题中折叠前后对应线段相等.16.(3分)(•随州)将半径为4cm旳半圆围成一种圆锥,在圆锥内接一种圆柱(如图示),当圆柱旳侧面旳面积最大时,圆柱旳底面半径是1cm.考点:圆柱旳计算;二次函数旳最值;圆锥旳计算.专题:压轴题.分析:易得扇形旳弧长,除以2π也就得到了圆锥旳底面半径,再加上母线长,运用勾股定理即可求得圆锥旳高,运用相似可求得圆柱旳高与母线旳关系,表达出侧面积,根据二次函数求出对应旳最值时自变量旳取值即可.解答:解:扇形旳弧长=4πcm,∴圆锥旳底面半径=4π÷2π=2cm,∴圆锥旳高为=2cm,设圆柱旳底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱旳侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱旳侧面积有最大值.点评:用到旳知识点为:圆锥旳弧长等于底面周长;圆锥旳高,母线长,底面半径构成直角三角形;相似三角形旳相似比相等及二次函数最值对应旳自变量旳求法等知识.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一种交点.(1)求抛物线旳解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线旳对称轴上与否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,阐明理由.考点:二次函数综合题.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为有关x 旳二元一次方程,令△=0求b旳值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形旳腰或底,分别求Q点旳坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一种交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意旳点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意旳Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).点评:本题考察了二次函数旳综合运用.关键是根据题意求出抛物线解析式,根据等腰三角形旳性质,分类求Q 点旳坐标.18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,既有一工程车需从距B点50m旳A处前方取土,然后通过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m旳地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所通过旳途径长.考点:解直角三角形旳应用-坡度坡角问题.分析:作出圆与BA,BC相切时圆心旳位置G,与CD相切时圆心旳位置P,与CD相切时圆心旳位置I,分别求得各段旳途径旳长,然后求和即可.解答:解:当圆心移动到G旳位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G旳路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P旳位置(P是圆心在C,且与BC相切时圆心旳位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心旳位置),移动旳途径是弧,弧长是:=m;圆心从I到N移动旳距离是:6﹣1=5m,则圆心移动旳距离是:(47+)+(8+)+5+=60+2+(m).点评:本题考察了弧长旳计算公式,对旳确定圆心移动旳路线是关键.19.(14分)如图,过正方形ABCD旳顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜测:CE与DF旳大小关系?并证明你旳猜测.(2)猜测:H是△AEF旳什么心?并证明你旳猜测.考点:相似形综合题.分析:(1)运用正方形旳性质得到AD∥BC,DC∥AB,运用平行线分线段成比例定理得到,,从而得到,然后再运用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF旳垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF旳垂心.点评:本题考察了相似形旳综合知识,本题是一道开放性问题,对旳旳猜测是深入解题旳方向和基础,非常重要.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1旳圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2旳圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形旳面积;(2)求证:EF=MN;(3)求r1+r2旳值.考点:圆旳综合题.专题:综合题.分析:(1)由于菱形ABCD边长为,∠ABC=120°,根据菱形旳性质得到ADC和△DBC都是等边三角形,运用等边三角形旳面积等于边长平方旳倍即可得到菱形旳面积=2S△DBC=2××(6)2=54;(2)由于PM与PE都是⊙O1旳切线,PN与PF都是⊙O2旳切线,根据切线长定理得到PM=PN,PN=PE,则PM﹣PN=PE﹣PB,即EF=MN;(3)由于BE与BG都是⊙O1旳切线,根据切线旳性质和切线长定理得到BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,于是有∠O2BE=60°,∠EO2B=30°,根据含30°旳直角三角形三边旳关系得到BE=O2E=r2,则BG=r2,DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,则MN=DM+DN=12﹣(r1+r2),而EF=EB+BC+CF=r2+6+r1=6+(r1+r2),运用EF=MN可得到有关(r1+r2)旳方程,解方程即可.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形旳面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2旳切线,∴PM=PE,又∵PN与PF都是⊙O1旳切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2旳切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.点评:本题考察了圆旳综合题:圆旳切线垂直于过切点旳半径;从圆外一点引圆旳两条切线,切线长相等,并且这个点与圆心旳连线平分两切线旳夹角;掌握菱形旳性质,记住等边三角形旳面积等于边长平方旳倍以及含30°旳直角三角形三边旳关系.21.(15分)(•黄冈)如图,已知抛物线旳方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y 轴相交于点E,且点B在点C旳左侧.(1)若抛物线C1过点M(2,2),求实数m旳值;(2)在(1)旳条件下,求△BCE旳面积;(3)在(1)条件下,在抛物线旳对称轴上找一点H,使BH+EH最小,并求出点H旳坐标;(4)在第四象限内,抛物线C1上与否存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似?若存在,求m 旳值;若不存在,请阐明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)将点(2,2)旳坐标代入抛物线解析式,即可求得m旳值;(2)求出B、C、E点旳坐标,进而求得△BCE旳面积;(3)根据轴对称以及两点之间线段最短旳性质,可知点B、C有关对称轴x=1对称,连接EC与对称轴旳交点即为所求旳H点,如答图1所示;(4)本问需分两种状况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾旳等式,故此种情形不存在.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C有关x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE旳长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整顿得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点旳三角形与△BCE相似,m=+2.点评:本题波及二次函数旳图象与性质、相似三角形旳鉴定与性质、轴对称﹣最小途径问题等重要知识点,难度较大.本题难点在于第(4)问,需要注意分两种状况进行讨论,防止漏解;并且在计算时注意运用题中条件化简计算,防止运算出错.。
安徽省合肥市一六八中学2024-2025学年高三上学期10月月考数学试题(含解析)
合肥一六八中学2025届高三10月段考试卷数学考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合,,则( )A .B .C .D .2.设,均为单位向量,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列满足,若,则( )A .2B .-2C .-1D .4.已知实数a ,b ,c 满足,则下列不等式中成立的是( )A .B .C .D .5.已知,,则( )A.B .C .D .6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设,,,则( )A .B .C .D .{A x x =<1ln 3B x x ⎧⎫=<⎨⎬⎩⎭A B = {x x <{x x <{0x x <<{0x x <<a b 55a b a b -=+a b ⊥ {}n a ()111n n a a +-=11a =-10a =120a b c <<<11a b b a+>+22a b aa b b+<+a b b c a c<--ac bc>a ∈R 2sin cos αα+=tan 2α=433443-34-0.1e1a =-111b =ln1.1c =b c a<<c b a<<a b c<<a c b<<8.定义在R 上的奇函数,且对任意实数x 都有,.若,则不等式的解集是( )A .B .C .D .二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点,,,,则()A .B .C .D .10.三次函数叙述正确的是( )A .当时,函数无极值点B .函数的图象关于点中心对称C .过点的切线有两条D .当a <-3时,函数有3个零点11.已知,对任意的,都存在,使得成立,则下列选项中,可能的值是( )A .B .C .D .三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数与3i 在复平面内用向量和表示(其中i 是虚数单位,O 为坐标原点),则与夹角为______.13.函数在上的最大值为4,则m 的取值范围是______.14.设a 、b 、,则______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知中,角A ,B ,C 的对边分别为a ,b ,c ,.(1)求角A ;(2)已知,从下列三个条件中选择一个作为已知,使得存在,并求出的面积.()f x ()302f x f x ⎛⎫--+=⎪⎝⎭()12024e f =()()0f x f x '+->()11ex f x +>()3,+∞(),3-∞()1,+∞(),1-∞()1cos1,sin1P ()2cos 2,sin 2P -()3cos3,sin 3P ()1,0Q 12OP OP = 12QP QP =312OQ OP OP OP ⋅=⋅ 123OQ OP OP OP ⋅=⋅ ()32f x x ax =++1a =()f x ()f x ()0,2()0,2()f x ()2sin 2f x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x α=+α3π44π76π78π71+OA OB OAOB2x y m m =-+(],2-∞[]0,1c ∈M ABC △cos sin 0a C C b c --=8b =ABC △ABC △条件①:;条件②:;条件③:AC.(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/,年用气量为.本年度计划将天然气单价下调到2.55元/至2.75元/之间.经调查测算,用户期望天然气单价为2.4元/,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/.(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/)的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数(a 为常数,且,),且是奇函数.(1)求a 的值;(2)若,都有成立,求实数m 的取值范围.18.(17分)已知函数(1)讨论函数的单调性;(2)求函数在处切线方程;(3)若有两解,,且,求证:.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知,都是正数,求证:;②若干个正实数之和等于20,求这些正实数乘积的最大值.2cos 3B =-7a =3m 3m a 3m 3m 3m 3m 3m 0.2k a =()824x x xa f x a +⋅=⋅0a ≠a ∈R ()f x []1,2x ∀∈()()20f x mf x -≥()()2ln f x x x =-()f x ()f x ()()22e ,ef ()f x m =1x 2x 12x x <2122e e x x <+<12,,,n a a a ⋅⋅⋅12n a a a n++⋅⋅⋅+≥合肥一六八中学2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】,∵,∴.故选D .2.【答案】C【解析】∵“”,∴平方得,即,则,即,反之也成立.故选C .3.【答案】C 【解析】因为,,所以,,,所以数列的周期为3,所以.故选C .4.【答案】B【解析】对于A ,因为,所以,所以,故A 错误;对于B ,因为,所以,故B 正确;对于C ,当,,时,,,,故C 错误;对于D ,因为,,所以,故D 错误.故选B .5.【答案】B【解析】,则,即,可得,解得或.那么.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:.131ln 0e 3x x <⇒<<23e 2<661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭55a b a b -=+ 222225102510a b a b a b a b +-⋅=++⋅200a b ⋅= 0a b ⋅= a b ⊥111n na a +=-11a =-212a =32a =41a =-{}n a 101a =-0a b <<11a b >11a b b a+<+0a b <<()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++2a =-1b =-1c =13b a c =-1a b c =-b aa cb c<--a b <0c >ac bc <2sin cos αα+=()252sin cos 2αα+=2254sin 4sin cos cos 2αααα++=224tan 4tan 15tan 12ααα++=+tan 3α=-1322tan 3tan 21tan 4ααα==-1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯若S 取最小值,则函数也取最小值,由二次函数的性质,可得函数的对称轴为,又∵x 为正整数,故或6.故选C 7.【答案】A【解析】构造函数,,则,,当时,,时,,单调递减;时,,单调递增.∴在处取最小值,∴,(且),∴,∴;构造函数,,,∵,,,∴,在上递增,∴,∴,即,∴.故选A .8.【答案】C【解析】因为是奇函数,所以是偶函数,因为,所以,令,,在R 上单调递增.又因为且是奇函数,所以的周期为3,,则,所以,则不等式,因为在R 上单调递增,所以,即.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+()2222101101210y x x =-+++⋅⋅⋅+ 5.5x =5x =()1ln f x x x =+0x >()211f x x x'=-0x >()0f x '=1x =01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x 1x =()11f =1ln 1x x>-0x >1x ≠101ln1.111111>-=c b >()1e 1ln x g x x -=--1x >()11ex g x x-'=-1x >1e1x ->11x<()0g x '>()g x ()1,+∞()()10g x g >= 1.11e 1ln1.1-->0.1e 1ln1.1->a c >()f x ()f x '()()0f x f x '+->()()0f x f x '+>()()e xg x f x =()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦()g x ()302f x f x ⎛⎫--+=⎪⎝⎭()f x ()f x ()12024e f =()12ef =()212e e e g =⨯=()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>()g x 12x +>1x >【解析】∵,,,,∴,,,,,,易知,故A 正确;∵,,∴,故B 错误;,,∴,故C 正确;,,故D 错误.故选AC .10.【答案】ABD【解析】对于A :,,,单调递增,无极值点,故A 正确;对于B :因为,所以函数的图象关于点中心对称,故B 正确;对于C :设切点,则切线方程为,因为过点,所以,,解得,即只有一个切点,即只有一条切线,故C 错误;对于D :,当时,,,当时,,单调递增,当时,,单调递减,当时,,单调递增,有极大值为,所以若函数有3个零点,有极小值为,得到,故D 正确.故选ABD .11.【答案】AC【解析】∵,∴,∴,∵对任意的,都存在,使得成立,()1cos1,sin1P ()2cos 2,sin 2P -()()()3cos 12,sin 12P ++()1,0Q ()1cos1,sin1OP = ()2cos 2,sin 2OP =- ()()()3cos 12,sin 12OP =++ ()1,0OQ = ()1cos11,sin1QP =- ()2cos 21,sin 2QP =-- 121OP OP ==1QP= 2QP = 12QP QP ≠ ()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- 12cos1cos 2sin1sin 2OP OP ⋅=- 312OQ OP OP OP ⋅=⋅1cos1OQ OP ⋅= 23cos 2cos3sin 2sin 3cos5cos1OP OP ⋅=-=≠1a =()32fx x x =++()2310f x x '=+>()f x ()()4f x f x +-=()f x()0,2()()1,x f x ()()()111y f x f x x x '-=-()0,2()()()112f x f x x '-=-331111223x ax x ax ---=--10x =()23f x x a '=+3a <-()0f x '=x =,x ⎛∈-∞ ⎝()0f x '>()f x x ⎛∈ ⎝()0f x '<()f x x ⎫∈+∞⎪⎪⎭()0f x '>()f x ()f x 20f ⎛=> ⎝()f x ()f x 20f =+<3a <-π0,2x ⎡⎤∈⎢⎥⎣⎦[]1sin 0,1x ∈()[]12,4f x ∈1π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x a =+∴,,∴,∴,,在上单调递减.在上单调递增.当时,,,,故A 正确,当时,,,故B 错误,当时,,,,故C 正确,当时,,.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】【解析】由题知,,.故本题答案为.13.【答案】【解析】当时,函数的图象是由向上平移个单位后,再向下平移个单位,函数图象还是的图象,满足题意,当时,函数图象是由向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知满足题意,时不合题意.()2min 23f x α+≤()2max 43f x α+≥()2sin 2f x x =+()2min 2sin 3x α+≤-()2max 1sin 3x α+≥-sin y x =π3π,22⎡⎤⎢⎥⎣⎦3π,2π2⎡⎤⎢⎥⎣⎦3π4α=23π5π,44x α⎡⎤+∈⎢⎥⎣⎦()2max 3π1sin sin 043x α+=>>-()2min5πsin sin 4x α+==23<-4π7α=24π15π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 15π7π12sin sin sin 14623x α+=>=->-6π7α=26π19π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 6π1sin sin 073x α+=>>-()2min 19πsin sin 14x α+=<4π2sin33=<-8π7α=28π23π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 8π9π1sin sin sin 783x α+=<=<-π6(OA = ()0,3OB = cos ,OA OB OA OB OA OB⋅==⋅π6AOB ∠=π6(],2-∞0m ≤2x y m m =-+2xy =m m 2xy =02m <≤2x y m m =-+2xy =02m <≤2m >故本题答案为.14.【解析】不妨设,则,∴,当且仅当,,,即,,时,等号成立..四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为,由正弦定理得.即:,,即,因为,所以,得;(2)选条件②:.在中,由余弦定理得:,即.整理得,解得或.当时,的面积为:,当c=5时,的面积为:,(],2-∞301a b c ≤≤≤≤M=≤=33M =+≤+≤b a c b -=-0a =1c =0a =12b =1c =3+cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C +--=()sin cos sin sin sin 0A C A C A C C +-+-=()sin cos sin sin 0sin 0A C A C C C --=>cos 1A A -=π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<ππ66A -=π3A =7a =ABC △2222cos a b c bc A =+-222π7816cos3c c =+-⋅28150c c -+=3c =5c =3c =ABC △1sin 2ABC S bc A ==△ABC △1sin 2ABC S bc A ==△选条件③:AC,设AC 边中点为M ,连接BM ,则,,在中,由余弦定理得,即.整理得,解得或(舍).所以的面积为.16.【解析】(1),;(2)由题意可知要同时满足以下条件:,∴,即单价最低定为2.6元/.17.【解析】(1),因为是奇函数,所以,所以,所以,所以,;(2)因为,,所以,所以,,令,,,由于在单调递增,所以.18.【解析】(1)的定义域为,,当时,,当时,BM =4AM =ABM △2222cos BM AB AM AB AM A =+-⋅⋅2π21168cos3AB AB =+-⋅2450AB AB --=5AB =1AB =-ABC △1sin 2ABC S AB AC A =⋅⋅=△()2.32.4k y a x x ⎛⎫=+-⎪-⎝⎭[]2.55,2.75x ∈()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x a x x ⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩2.6 2.75x ≤≤3m ()1122x x f x a =⨯+()f x ()()f x f x -=-11112222x x x x a a⎛⎫⨯+=-⨯+ ⎪⎝⎭111202x xa ⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭110a +=1a =-()122x x f x =-[]1,2x ∈22112222x x xx m ⎛⎫-≥- ⎪⎝⎭122x x m ≥+[]1,2x ∈2xt =[]1,2x ∈[]2,4t ∈1y t t=+[]2,4117444m ≥+=()f x ()0,+∞()1ln f x x '=-()0f x '=e x =()0,e x ∈,当时,,故在区间内为增函数,在区间为减函数;(2),,所以处切线方程为:,即;(3)先证,由(1)可知:,要证,也就是要证:,令,,则,所以在区间内单调递增,,即,再证,由(2)可知曲线在点处的切线方程为,令,,∴在处取得极大值为0,故当时,,,则,即,又,,∴.19.【解析】(1)将20分成正整数之和,即,假定乘积已经最大.若,则将与合并为一个数,其和不变,乘积由增加到,说明原来的p 不是最大,不满足假设,故,同理.将每个大于2的拆成2,之和,和不变,乘积.故所有的只能取2,3,4之一,而,所以将取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是,最大乘积为;(2)①证明:先证:.令,则,,且,()0f x '>()e,x ∈+∞()0f x '<()f x ()0,e ()e,+∞()2e 0f =()22e 1ln e 1f '=-=-()()22e ,ef ()()201e y x -=--2e 0x y +-=122e x x +>2120e e x x <<<<12212e 2e x x x x +>⇔>-()()()()21112e 2ef x f x f x f x <-⇔<-()()()2eg x f x f x =--()0,e x ∈()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=()g x ()0,e ()()e 0g x g <=122e x x +>212e x x +<()f x ()2e ,0()2e x x ϕ=-()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--()2ln m x x '=-()m x e x =()0,e x ∈()()f x x ϕ<()()12m f x f x ==()()2222e m f x x x ϕ=<=-22e m x +<10e x <<()()111111112ln 1ln m f x x x x x x x x ==-=+->2122e x x m x +<+<1,,n x x ⋅⋅⋅120n x x =+⋅⋅⋅+1n p x x =⋅⋅⋅11x =1x 2x 1221x x x +=+122x x x =21x +2i x ≥()21,2,,i x i n ≥=⋅⋅⋅22i i x x =+-2i x -()224i i i x x x -≤⇒≤i x 42222=⨯=+i x 202333333=++++++6321458⨯=1ex x -≥()1e x f x x -=-()1e 1x f x -'=-()10f '=()()10f x f ≥=,,,∴②让n 固定,设n 个正实数之和为20,,,要是最大,最大即可,令,其中,,∴时,单调递增,时,单调递减,而,所以这些正实数乘积的最大值为.1-≥1,2,,i n =⋅⋅⋅1111--≥=1n ≥0n ≥12n a a a n ++⋅⋅⋅+≥1,,n x x ⋅⋅⋅120n x x n n +⋅⋅⋅+≤=1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭20nn ⎛⎫ ⎪⎝⎭20ln nn ⎛⎫⎪⎝⎭()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭*t ∈N ()20ln ln e g t t '=-7t ≤()g t 8t ≥()g t ()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>7207⎛⎫⎪⎝⎭。
2022年度自主招生试题及答案
-168自主招生试题及答案合肥168中学自主招生数学试题及答案一、选取题3、已知:y=1/2(x平方-100x+196+|x平方-100x+196|),当x=1,2,到100,求这100个自然数和函数值解法一:对于函数x^2-100x+196,它可因式分解为(x-2)(x-98),因此当x=2 x=98时,这个函数为0当2因此当x=2、3、、4、……、98时,y都为0当x=0时,y=1/2*(196+196)=196该函数抛物线为x=50,因此x=1和x=99值相等,当x=1时,y=1^2-100+196=97因此这100个自然数值为196+97*2=390解法二:当2≤x≤98时,由于x^2-100x+196=(x-2)*(x-98)≤0,因此恒有y=[x^2-100x+196-(x^2-100x+196)]/2=0,当x=1,99,100时,y=[x^2-100x+196+(x^2-100x+196)]/2=x^2-100x+196。
y(1)=y(99)=97,y(100)=196。
因此:y(1)+y(2)+y(3)+y(4)+……+y(97)+y(98)+y(99)+y(100=97+0+0+0+……+0+0+97+196=390。
5、设a平方+1=3a,b平方+1=3b,且a不等于b,则代数式1/a平方+1/b平方值是解:a²+1=3a,b²+1=3b,则:a、b是方程x²+1=3x即x²-3x+1=0两个根,则: a+b=3且ab=11/a²+1/b²=[a²+b²]/(ab)²=[(a+b)²-2ab]/(ab)²=76、如图,一种等边三角形边长与它一边相外切圆周长相等,当这个圆按箭头方向从某一位置沿等边三角形三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()解:小球周长和三角形边长相等,因而在每条边转动了360°(即转1圈)三条边一共3圈。
合肥168中学自主招生数学考试试题
合肥168中学自主招生数学考试试题一、【填空题】1. 已知正数a、b、c满足a+b+c=4,则2(a-b-c)的值为__________2. 已知3个正数x, y, z满足x+y+z=6,则(2x-y)z的值为__________3. 设0<a,b<1,则ab(a+b)的值为__________4. 若a+b+c=6,ab+bc+ca=32,则a^3+b^3+c^3的值为__________二、【选择题】1. 如果两个整数a, b均大于0,则下列结论正确的是( )A. a×b一定大于a+bB. 若a<b,则a^2<b^2C. ab>0且a^2>b^2D. 若a<b,则a^2>b^22. 已知a^2-b^2=6, 则a+b的值为( )A. -6B. -3C. 0D. 33. 已知a+b+c=2, ab+bc+ca=1,则a^3+b^3+c^3的值是( )A. -5B. -1C. 0D. 14. 已知函数f(x)=3x-8,则f(2)的值是( )A. -2B. -6C. 2D. 6三、【解答题】1. 已知x,y满足2xy-(x+y)=7,求x,y的值。
解:可以将2xy-(x+y)=7化为2xy-x=7+y,解得x(2y-1)=7+y,即:x=(7+y)/(2y-1)代入2xy-(x+y)=7得2yz/(2y-1)-y=(7+y)/(2y-1),由上式可得y=-2或7当y=-2时,故x=-2;当y=7时,故x=3因此,x,y的值为(-2,-2)和(3,7)2. 抛物线y=x^2+4x+5的顶点坐标是?解:设抛物线的顶点的坐标为(h,k),则h为抛物线的x轴最上点,k即抛物线的y轴最上点设抛物线的顶点的一般式为y=ax^2+bx+c。
把一般式带入抛物方程:k=h^2+4h+c,所以顶点C(h,k)的坐标为(h,h^2+4h+5)。
求出h:由a(h-h)^2+b(h-h)+c=k,可知2ah-2ah+b=0故h=b/2a=4/2=-2所以顶点坐标为(-2, -1)。
2011年安徽省合肥市168中学自主招生数学试卷
2011年安徽省合肥市168中学自主招生数学试卷一、选择题(本题共8题,每小题5分)1.(5分)估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间2.(5分)如果sin2α+sin230°=1那么锐角α的度数是()A.15°B.30°C.45°D.60°3.(5分)若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.1974.(5分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.5.(5分)设a2+1=3a,b2+1=3b,且a≠b,则代数式+的值为()A.5 B.7 C.9 D.116.(5分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈7.(5分)如图,等边△ABC边长为12cm,以AB为直径的⊙O分别交CA、CB于M、N 两点,则图中阴影部分的面积是()A.9﹣6π B.18﹣6πC.12﹣3πD.12﹣6π8.(5分)在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM的值为()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)分解因式:a3﹣16a=.10.(5分)关于x的不等式组只有4个整数解,则a的取值范围是.11.(5分)在等腰直角△ABC中,AB=BC=5,P是△ABC内一点,且PA=,PC=5,则PB=.12.(5分)已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为cm.13.(5分)下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”.14.(5分)已知对任意正整数n都有a1+a2+a3+…+a n=n3,则=.三、解答题(本大题4小题,共50分)15.(10分)已知实数x,y满足方程组.温馨提示:立方和(差)公式a3±b3=(a±b)(a2±ab+b2)求值:(1)xy (2)x2+y2.16.(12分)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?17.(12分)如图,AB是⊙O的直径,AB=d,过A作⊙O的切线并在其上取一点C,使AC=AB,连接OC交⊙O于点D,BD的延长线交AC于E.(1)求证:△CDE∽△CAD;(2)求AE的长.18.(16分)在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数).平移二次函数y=﹣tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|).连接AB.(1)是否存在这样的抛物线F,使得|OA|2=|OB|•|OC|?请你作出判断,并说明理由;(2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式.2011年安徽省合肥市168中学自主招生数学试卷参考答案与试题解析一、选择题(本题共8题,每小题5分)1.(5分)(2009•株洲)估计的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】应先化简求值,再进行估算即可解决问题.【解答】解:=,的数值在1﹣2之间,所以的数值在3﹣4之间.故选C.【点评】此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.2.(5分)(2005•兰州)如果sin2α+sin230°=1那么锐角α的度数是()A.15°B.30°C.45°D.60°【分析】可根据特殊角的三角函数值计算.【解答】解:∵sin2α+sin230°=1,∴sin2α=1﹣()2=,∵α为锐角,∴sinα=.∴α=60°.故选D.【点评】本题考查特殊角的三角函数值的计算.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.3.(5分)(2011•合肥校级自主招生)若函数,则当自变量x取1,2,3,…,100这100个自然数时,函数值的和是()A.540 B.390 C.194 D.197【分析】将x2﹣100x+196分解为:(x﹣2)(x﹣98),然后可得当2≤x≤98时函数值为0,再分别求出x=1,99,100时的函数值即可.【解答】解:∵x2﹣100x+196=(x﹣2)(x﹣98)∴当2≤x≤98时,|x2﹣100x+196|=﹣(x2﹣100x+196),当自变量x取2到98时函数值为0,而当x取1,99,100时,|x2﹣100x+196|=x2﹣100x+196,所以,所求和为(1﹣2)(1﹣98)+(99﹣2)(99﹣98)+(100﹣2)(100﹣98)=97+97+196=390.故选B.【点评】本题考查函数值的知识,有一定难度,关键是将x2﹣100x+196分解为:(x﹣2)(x ﹣98)进行解答.4.(5分)(2009•孝感)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.【分析】让绿灯亮的时间除以时间总数60即为所求的概率.【解答】解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选C.【点评】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.5.(5分)(2013•宁波自主招生)设a2+1=3a,b2+1=3b,且a≠b,则代数式+的值为()A.5 B.7 C.9 D.11【分析】根据题目所给的条件,知道a,b是一元二次方程的两个不等实数根,得到a+b和ab的值,把代数式用配方法得到含有a+b和ab的形式,求出代数式的值.【解答】解:根据题意有:a2+1=3a,b2+1=3b,且a≠b,所以a,b是方程x2﹣3x+1=0的两个根,故a+b=3,ab=1因此+====7故选B.【点评】本题考查的是一元二次方程根与系数的关系,根据题目的条件得到两根的和与两根的积,代入代数式求出代数式的值.6.(5分)(2011•合肥校级自主招生)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈【分析】根据圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C选择.【解答】解:设圆的周长是C,则圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C,则这个圆共转了4C÷C=4圈.故选A.【点评】注意正确分析圆所走过的路程,可以画出圆心所走过的路程.7.(5分)(2011•合肥校级自主招生)如图,等边△ABC边长为12cm,以AB为直径的⊙O分别交CA、CB于M、N两点,则图中阴影部分的面积是()A.9﹣6π B.18﹣6πC.12﹣3πD.12﹣6π【分析】连接OM,ON,阴影部分面积等于三角形ABC面积减去三角形AOM面积减去三角形BON面积,再减去扇形MON面积,求出即可.【解答】解:连接OM,ON,如图所示:∵△ABC为等边三角形,∴∠A=∠C=60°,AB=AC=BC,∵OM=ON=OA=OB,∴△AOM与△BON都为边长为6cm等边三角形,∴∠MON=60°,则S阴影=S△ABC﹣S△AOM﹣S△BON=×122﹣2××62﹣=18﹣6π(cm2),故选B.【点评】此题考查了扇形面积的计算,以及等边三角形的性质,熟练掌握扇形的面积公式是解本题的关键.8.(5分)(2011•合肥校级自主招生)在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM的值为()A.B.C.D.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故选A.【点评】本题考查的是解直角三角形,运用正方形的性质,根据题目中角的关系,判断两个三角形相似,然后用相似三角形的性质进行计算,求出直角三角形中边的长度,再用正切的定义求出角的正切值.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)(2016•东营)分解因式:a3﹣16a=a(a+4)(a﹣4).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,难点在于需要进行二次分解.10.(5分)(2012•成都校级模拟)关于x的不等式组只有4个整数解,则a的取值范围是﹣5<a≤﹣.【分析】此题可先根据一元一次不等式组解出x的取值,再根据不等式组只有四个整数解,写出四个整数解后,再求出实数a的取值范围.【解答】解:,由①得:x<21,由②得:x>2﹣3a,∴不等式组的解集为:2﹣3a<x<21,∵不等式组只有四个整数解,即:20,19,18,17,∴16≤2﹣3a<17,∴﹣5<a≤﹣.故答案为:﹣5<a≤﹣.【点评】此题主要考查了一元一次不等式组的整数解,解题中要注意分析不等式组的解集的确定,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(5分)(2011•合肥校级自主招生)在等腰直角△ABC中,AB=BC=5,P是△ABC内一点,且PA=,PC=5,则PB=.【分析】先依据题意作一三角形,再结合图形进行分析,在等腰直角△ABC中,已知PA、PC,通过辅助线求出AD,DC及PD边的长,进而PB可求.【解答】解:如图所示,过点B作BE⊥AC,过点P作PD,PF分别垂直AC,BE在△APD中,PA2=PD2+AD2=5,在△PCD中,PC2=PD2+CD2,且AD+CD=5,解得AD=,CD=,PD=,在Rt△ABC中,BE=AE=,所以在Rt△BPF中,PB2=PF2+BF2==10,所以PB=.【点评】熟练掌握勾股定理的运用.会画出简单的图形辅助解题.12.(5分)(2011•合肥校级自主招生)已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为(49a+b)cm.【分析】画出相应图形,得到一定个数圆环长度和的规律,进而得到50个圆环的长度即可.【解答】解:如图,当圆环为3个时,链长为3a+×2=2a+b(cm),∴当圆环为50个时,链长为50a+2×=49a+b(cm),故答案为(49a+b).【点评】本题考查列代数式,找到所求式子的等量关系的规律是解决问题的关键.13.(5分)(2003•山东)下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出80个“树枝”.【分析】通过观察已知图形可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,图(5)比图(4)多20个树枝;以此类推可得:故图(7)比图(6)多出80个“树枝”.【解答】解:图形的规律是:后一个比前一个多2,5,10,…,10×2n﹣4,第(7)个图比第(6)个图多:10×23=80个故答案为:80.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.14.(5分)(2011•合肥校级自主招生)已知对任意正整数n都有a1+a2+a3+…+a n=n3,则=..【分析】首先由a1+a2+a3+…+a n=n3,求得a2、a3、a4与a5的值,观察得到规律为:a n=3n(n ﹣1)+1,即可求得a2011的值,代入,再提取公因式,由=﹣,即可求得结果.【解答】解:∵a1+a2+a3+…+a n=n3,∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,∴a2=7,a3=19,a4=37,a5=61,a n=3n(n﹣1)+1,∴a2011=3×2010×2011+1,∴=++++…+,=(++++…+),=(1﹣+﹣+﹣+﹣+…+﹣),=(1﹣),=.故答案为:.【点评】此题考查了规律性问题,考查了学生的观察归纳能力.注意此题找到规律a n=3n(n ﹣1)+1与=﹣是解题的关键.三、解答题(本大题4小题,共50分)15.(10分)(2011•合肥校级自主招生)已知实数x,y满足方程组.温馨提示:立方和(差)公式a3±b3=(a±b)(a2±ab+b2)求值:(1)xy (2)x2+y2.【分析】(1)根据立方差公式得出x3+y3=(x+y)(x2﹣xy+y2)=19,再利用x+y=1得出x2﹣xy+y2=19,进而利用x2+2xy+y2=(x+y)2=1得出xy的值即可;(2)根据xy=﹣6,代入x2﹣xy+y2=19,求出x2+y2即可.【解答】解:(1)∵x3+y3=(x+y)(x2﹣xy+y2)=19,x+y=1,∴x2﹣xy+y2=19,∴x2+y2=19+xy,∵x2+2xy+y2=(x+y)2=1,∴19+xy+2xy=1,解得:xy=﹣6,(2)∵xy=﹣6,∴x2﹣(﹣6)+y2=19,∴x2+y2=13.【点评】此题主要考查了立方差公式和完全平方公式的应用,根据已知得出x2+y2=19+xy是解题关键.16.(12分)(2009•嘉兴)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?【分析】(1)因为所求AB或x在△ABC中,所以可利用三角形三边之间的关系即两边之和大于第三边,两边之差小于第三边进行解答.(2)应该分情况讨论,因为不知道在三角形中哪一个是作为斜边存在的.所以有三种情况,即:①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.(3)在△ABC中,AB的值固定不变,即可视为底边不变,但是因为三角形形状不固定,高在发生变化,所以造成面积不固定,需分情况进行讨论.具体分①若点D在线段AB上,②若点D在线段MA上两种情况.【解答】解:(1)∵在△ABC中,AC=1,AB=x,BC=3﹣x.∴,解得1<x<2;(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解,②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2,③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2,∴或;(3)在△ABC中,作CD⊥AB于D,设CD=h,△ABC的面积为S,则,①若点D在线段AB上,则,∴,即,∴x2(1﹣h2)=9x2﹣24x+16,即x2h2=﹣8x2+24x﹣16.∴S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(≤x<2),当时(满足≤x<2)S2取最大值,从而S取最大值;②若点D在线段MA上,则,同理可,得S2=x2h2=﹣2x2+6x﹣4=﹣2(x﹣)2+(1<x≤),易知此时,综合①②得,△ABC的最大面积为.【点评】解此题的关键是进行全方面分析,注意一题多解.难易程度适中.17.(12分)(2011•合肥校级自主招生)如图,AB是⊙O的直径,AB=d,过A作⊙O的切线并在其上取一点C,使AC=AB,连接OC交⊙O于点D,BD的延长线交AC于E.(1)求证:△CDE∽△CAD;(2)求AE的长.【分析】(1)连AD,根据由两对角相等的三角形相似即可证明△CDE∽△CAD,(2)由(1)中的三角形相似得出对应边成比例,即,再由△ADE∽△BDA,得出进而得出AE=CD,得出CD是⊙ADE的切线,再由切线的性质代入求解即可.【解答】证明(1)如图,连接AD,∵OB=OD,∴∠2=∠3,又∵∠3=∠4,且∠1=∠2,则∠1=∠2=∠3=∠4,∴△CDE∽△CAD;(2)∵△CDE∽△CAD,∴①,又△ADE∽△BDA,∴②,由①②及AB=AC得AE=CD.∵△CDE∽△CAD,∴,令AE=x,则CE=d﹣x,于是有x2=d(d﹣x),即x2+dx﹣d2=0,解此方程并取正根,得AE=x=d.【点评】本题主要考查了相似三角形的判定及性质以及圆周角和切线的性质等问题,对于圆形与三角形结合的问题,能够熟练掌握.18.(16分)(2008•杭州)在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数).平移二次函数y=﹣tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|).连接AB.(1)是否存在这样的抛物线F,使得|OA|2=|OB|•|OC|?请你作出判断,并说明理由;(2)如果AQ∥BC,且tan∠ABO=,求抛物线F对应的二次函数的解析式.【分析】(1)平移二次函数y=﹣tx2的图象,得到的抛物线F,则抛物线的二次项系数不变,顶点为Q,则函数的解析式就可以直接写出.是y=﹣t(x﹣t)2+b.|OB|•|OC|就是一元二次方程﹣t(x﹣t)2+b=0的两根的积得绝对值,因而可以用根据韦达定理,利用t表示出来.而OA=t,根据|OA|2=|OB|•|OC|就可以得到一个关于t的方程.从而把问题转化为判断方程的解得问题.(2)AQ∥BC即Q得纵坐标是b=t,得到抛物线F是:y=﹣t(x﹣t)2+t.就可以求出B,C的坐标.已知tan∠ABO=,就是已知OA与OB得比值,即t的关系.就可以转化为方程问题解决.【解答】解:(1)存在这样的抛物线F,使得|OA|2=|OB|•|OC|.理由是:∵平移y=﹣tx2的图象得到的抛物线F的顶点为Q,∴抛物线F对应的解析式为:y=﹣t(x﹣t)2+b,即y=﹣tx2+2t2x﹣t3+b,令y=0,得OB=t﹣,OC=t+,∴|OB|•|OC|=|(t﹣)(t+)|=|t2﹣|=t2=OA2,即,所以当b=2t3时,存在抛物线F使得|OA|2=|OB|•|OC|,即:存在这样的抛物线F,使得|OA|2=|OB|•|OC|.(2)∵AQ∥BC,∴t=b,得:y=﹣t(x﹣t)2+t,解得x1=t﹣1,x2=t+1.在Rt△AOB中,①当t>0时,由|OB|<|OC|,得B(t﹣1,0),当t﹣1>0时,由tan∠ABO===,解得t=3,此时,二次函数解析式为y=﹣3x2+18x﹣24;当t﹣1<0时,由tan∠ABO===,解得t=,此时,二次函数解析式为y=﹣x2+x+;②当t<0时,由|OB|<|OC|,将﹣t代替t,解得:t=﹣,t=﹣3,同法求出y=﹣x2+x﹣或y=﹣3x2+18x+24;故二次函数解析式为y=﹣x2+x﹣或y=﹣3x2+18x+24,答:抛物线F对应的二次函数的解析式是y=﹣x2+x±或y=﹣3x2+18x±24.【点评】我们可以先假设存在这样的抛物线,如果能够求出对应的值,则存在,如果求不出,则不存在.参与本试卷答题和审题的老师有:lanchong;刘超;zhjh;CJX;workholic;ZJX;137-hui;WWF;haoyujun;kuaile;sks;HJJ;HLing;wdxwwzy;sd2011;yeyue;hbxglhl;自由人;zcx;gbl210;wenming;lanyan;wd1899(排名不分先后)菁优网2016年12月9日。
合肥168自主招生数学试卷附答案
2013年合肥一六八中学自主招生考试数学试卷答案1. C。
2. D。
(PD=7,PB=6)3. B或C。
(若a+b+c≠0,则k=2,选B;若a+b+c=0,则k=-1,选C)4. B。
(ax中若x为偶数则ax=-x/2,若x为奇数则ax=-x/2+1/2)5. C。
(分别为1、1、7,1、2、4,1、3、1和2、1、2)6. B。
(易证△OBC∽△BAC,可得比例式1:a = a:(a+1),解方程并排除负解得B)7. B。
(由n+m=4s,可知AD²/4+BC²/4=AB²即AD²+BC²=4AB²,作BE∥AD交CD于E,可证得△BEC是直角三角形且四边形ABED是平行四边形,∴AD=BE,AB=DE,AD²+BC²=CE²,于是得4AB²=CE²即2AB=CE即2DE=CE,所以CD=3AB)8. C。
(通过十字相乘法分解因式,得y=(nx-1)[(n+1)x-1],故其与x轴交点为1/n和1/(n+1),所截得线段长度为1/n-1/(n+1)。
所以线段长度之和为1-1/2+1/2-1/3+…+1/2013-1/2014 = 2013/2014)9. 3 EQ \R(,3) 。
(连接OB,OA⊥AP,OB⊥BP,易算出∠BAP和∠ABP为60°,于是得△ABP为等边三角形;易算出AB= EQ \R(,3) ,所以周长为3 EQ \R(,3) )10. 27。
11. 56。
(观察可知aij=[(i-1)²+j]×(-1)i+j+1)12. 5/18。
13. 3 EQ \R(,2) 。
(显然AC是正方形ABCD的对称轴,∴对于在AC上的任意一个P点,都能满足PB=PD,所以PD+PE=PB+PE。
显然当P点恰为AC、BE的交点时PB+PE 值最小,所以最小值为PB+PE=BE=AB=3 EQ \R(,2))14. 2(易算出S△ABD=6,S△ABE=4,所以S△ABD- S△ABE=2,即S△ADF-S△BEF=2)15. 0°<θ<60°(由题意可知b²-4ac<0,即:(4sinθ)²-4×6×cosθ<0。
2018年安徽省合肥168中自主招生数学试卷(含答案解析)
2018年安徽省合肥168中自主招生数学试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 40 分)1、(5分) 如果ab>0,a+b<0,那么下面各式:①√ab =√a√b,②√ab=1,③√ab÷√ab=-b,正确的个数是()A.0个B.1个C.2个D.3个2、(5分) 把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是()A. B. C. D.3、(5分) 有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3B.x=4,y=1C.x=3,y=2D.x=2,y=34、(5分) 如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°5、(5分) 已知14m 2+14n 2=n-m-2,则1m -1n 的值等于( )A.1B.0C.-1D.-14 6、(5分) 如图所示,在Rt△BAD 中,延长斜边BD 到点C ,使DC=12BD ,连接AC ,若tanB=53,则tan∠CAD 的值为( )A.√33B.√35C.13D.157、(5分) (非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( )A.3B.1C.3或-1D.-3或18、(5分) 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4√5,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A.(0,0)B.(1,12)C.(65,35)D.(107,57)二、填空题(本大题共 6 小题,共 30 分)9、(5分) 在形状、大小、颜色都一样的卡片上,分别画有线段、等腰直角三角形、等边三角形、平行四边形、菱形、等腰梯形、正五边形、正六边形、圆等9个图形,小明随机抽取一张卡片,抽得图形既是轴对称图形,又是中心对称图形的概率是______.10、(5分) 直线y=kx+b 经过A (2,1)、B (-1,2)两点,则不等式12x >kx+b >-2的解集为______.11、(5分) 因式分解:x 3-6x 2+11x-6=______.12、(5分) 当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果⊙O 1、⊙O 2半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是______.13、(5分) 把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD 的面积为______.14、(5分) 如图,抛物线y=13x 2-x-6交x 轴于A 、C 两点,交y 轴于点B ;将抛物线y=13x 2-x-6向上平移234个单位长度、再向左平移m (m >0)个单位长度,得到新抛物线;若新抛物线的顶点P 在△ABC 内,则m 的取值范围是______ .三、解答题(本大题共 3 小题,共 40 分)15、(12分) 在同一平面内有n 条直线,任何两条不平行,任何三条不共点.当n=1时,如图(1),一条直线将一个平面分成两个部分;当n=2时,如图(2),两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成______部分;当n=4时,四条直线将一个平面分成______ 部分;若n 条直线将一个平面分成a n 个部分,n+1条直线将一个平面分成a n+1个部分.试探索a n 、a n+1、n 之间的关系.16、(14分) 如图,已知在平面直角坐标系xOy 中,抛物线y=14x 2+bx+c 与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA=2OC .(1)求这条抛物线的表达式及顶点M 的坐标;(2)求tan∠MAC 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD=45°,求点D 的坐标.17、(14分) 如图,△ABC 中,AC=16,∠BAC=60°,AB=l0,⊙P 分別与边AB 、AC 相切于D 、E (切点D 、E 不在边AB 、AC 的端点),ED 的延长线与CB 的延长线相交于点F .(1)求BC 边的长和△ABC 的面积;(2)设AE=x ,DF=y ,写出y 与x 的函数解析式,并写出自变量x 的取值范围;(3)探索△ADC 与△DBF 能否相似?若能相似,请求出x 的值,同吋判断此吋⊙P 与边BC 的位置关系,并证明之;若不能相似,请说明理由.2018年安徽省合肥168中自主招生数学试卷【第 1 题】【答案】C【解析】解:∵ab>0,a+b<0,∴a<0,b<0,∴①√ab =√−a√−b,故此选项错误;②√ab=1,正确;③√ab÷√ab=-b,正确,故选:C.直接利用二次根式的性质分别化简得出答案.此题主要考查了二次根式的乘除,正确掌握二次根式的性质是解题关键.【第 2 题】【答案】C【解析】解:结合立体图形与平面图形的相互转化,即可得出两圆应该在几何体的上下,符合要求的只有C,D,再根据三角形的位置,即可得出答案,故选:C.通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.此题主要考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.【第 3 题】【答案】C【解析】解:根据题意得:7x+9y≤40,则x≤40−9y 7,∵40-9y≥0且y 是正整数,∴y 的值可以是:1或2或3或4. 当y=1时,x≤317,则x=4,此时,所剩的废料是:40-1×9-4×7=3cm ;当y=2时,x≤227,则x=3,此时,所剩的废料是:40-2×9-3×7=1cm ;当y=3时,x≤137,则x=1,此时,所剩的废料是:40-3×9-7=6cm ;当y=4时,x≤47,则x=0(舍去).则最小的是:x=3,y=2.故选:C .根据金属棒的长度是40cm ,则可以得到7x+9y≤40,再根据x ,y 都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.本题考查了不等式的应用,读懂题意,列出算式,正确确定出x ,y 的所有取值情况是本题的关键.【 第 4 题 】【 答 案 】B【 解析 】 解:∵AB∥CD ,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°-180°=180°.故选:B .根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B 、点C 为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.【 第 5 题 】【 答 案 】C【 解析 】解:由14m 2+14n 2=n-m-2,得(m+2)2+(n-2)2=0,则m=-2,n=2,∴1m -1n =-12-12=-1. 故选:C .把所给等式整理为2个完全平方式的和为0的形式,得到m ,n 的值,代入求值即可.考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.【 第 6 题 】【 答 案 】D【 解析 】解:如图,作DE∥AC 交AB 于E .在Rt△ABD 中,∵tanB=AD AB =53 ∴可以假设AD=5k ,AB=3k , ∴BD=√34k ,CD=√342k , ∵DE∥AC , ∴∠DAC=∠ADE ,BE BA =BD BC =23,∴BE=2k ,∴AE=k ,∴tan∠CAD=tan∠ADE=AE AD =k 5k =15,故选:D .如图,作DE∥AC 交AB 于E .由tanB=AD AB =53可以假设AD=5k ,AB=3k ,推出BD=√34k ,CD=√342k ,想办法求出AE 即可解决问题.本题考查解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.【第 7 题】【答案】A【解析】解:根据条件知:α+β=-(2m+3),αβ=m2,∴1α+1β=β+ααβ=−(2m+3)m2=-1,即m2-2m-3=0,所以,得{m2−32m−3=0(2m−3)2−4m2>0,解得m=3.故选:A.由于方程有两个不相等的实数根可得△>0,由此可以求出m的取值范围,再利用根与系数的关系和1α+1β=-1,可以求出m的值,最后求出符合题意的m值.1、考查一元二次方程根与系数关系与根的判别式及不等式组的综合应用能力.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-ba ,x1•x2=ca.【第 8 题】【答案】D【解析】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2√5,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG 中,AG=√OA 2−OG 2=√52−(2√5)2=√5,∴AC=2√5, ∵OA•BK=12•AC•OB ,∴BK=4,AK=√AB 2−BK 2=3,∴点B 坐标(8,4), ∴直线OB 解析式为y=12x ,直线AD 解析式为y=-15x+1,由{y =12x y =−15x +1解得{x =107y =57, ∴点P 坐标(107,57). 故选:D .如图连接AC ,AD ,分别交OB 于G 、P ,作BK⊥OA 于K .首先说明点P 就是所求的点,再求出点B 坐标,求出直线OB 、DA ,列方程组即可解决问题.本题考查菱形的性质、轴对称-最短问题、坐标与图象的性质等知识,解题的关键是正确找到点P 位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.【 第 9 题 】【 答 案 】49【 解析 】解:∵在这一组图形中既是中心对称图形,又是轴对称图形的是:线段、菱形、正六边形、圆共4个, ∴9张卡片上的图形既是中心对称图形,又是轴对称图形的概率是49;故答案为:49.先判断出既是中心对称图形,又是轴对称图形的个数,再根据概率公式进行解答即可.本题考查的是概率公式及中心对称图形和轴对称图形的概念,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .【 第 10 题 】【 答 案 】2<x <11【 解析 】解:∵直线y=kx+b 经过A (2,1),B (-1,2)两点,∴{2k +b =1−k +b =2,解得{k =−13b =53, 则该直线方程为y=-13x+53,∴不等式12x >kx+b >-2变为12x >-13x+53>-2, 解得 2<x <11,故答案为:2<x <11.利用待定系数法求得一次函数解析式,进而得到不等式,再解不等式即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数与不等式,关键是计算出k 、b 的值.【 第 11 题 】【 答 案 】(x-3)(x-2)(x-1)【 解析 】解:x 3-6x 2+11x-6=x 3-6x 2+9x+2x-6=x (x 2-6x+9)+2(x-3)=x (x-3)2+2(x-3)=(x-3)[x (x-3)+2]=(x-3)(x 2-3x+2)=(x-3)(x-2)(x-1).故答案为:(x-3)(x-2)(x-1).首先将11x 拆项,进而利用提取公因式法以及公式法分解因式进而得出答案.此题主要考查了分组分解法分解因式,正确分组是解题关键.【 第 12 题 】【 答 案 】2<d <3【 解析 】解:∵⊙O 1、⊙O 2半径分别3和1,∴当两圆相交时,2<d <4,∵其中一个圆的圆心在另一圆的圆内,∴2<d <3,故答案为:2<d <3.读懂“内相交”的定义,然后结合两圆相交时两圆的圆心距和两圆的半径的大小关系求解. 本题考查了圆与圆的位置关系,解题的关键是弄懂内相交的定义,难度不大.【 第 13 题 】【 答 案 】1445【 解析 】解:由勾股定理得,MN=5,设Rt△PMN 的斜边上的高为h ,由矩形的宽AB 也为h ,根据直角三角形的面积公式得,h=PM•PN÷MN=125,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=1445.利用折叠的性质和勾股定理可知.本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,直角三角形和矩形的面积公式求解.【 第 14 题 】【 答 案 】0<m <4【 解析 】解:∵y=13x 2-x-6=13(x-32)2-274,∴由题意,新抛物线的解析式可表示为:y=13(x-32+m )2-274+234=13(x-32+m )2-1,它的顶点坐标P :(32-m ,-1);由y=13x 2-x-6可得:A (-3,0),C (6,0),B (0,-6).设直线AB 的解析式为y=kx-6(k≠0),把x=-3,y=0代入,得-3k-6=0,b=-2,∴y=-2x-6.同理直线BC :y=x-6;当点P 在直线AB 上时,-2(32-m )-6=-1,解得:m=4;当点P 在直线BC 上时,(32-m )-6=-1,解得:m=-72;∴当点P 在△ABC 内时,-72<m <4;又∵m >0,∴符合条件的m的取值范围:0<m<4.故答案是:0<m<4.首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、BC的解析式中,即可确定P在△ABC内时m的取值范围.考查了抛物线与x轴的交点,二次函数图象与几何变换.由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.【第 15 题】【答案】解:当n=1时,分成2部分,当n=2时,分成4=2+2部分,当n=3时,分成7=4+3部分,…(2分)当n=4时,分成11=7+4部分,…(4分)规律发现,有几条线段,则分成的部分比前一种情况多几部分,a n、a n+1、n之间的关系是:a n+1=a n+(n+1).…(8分)故答案为:7,11,a n+1=a n+(n+1).【解析】一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分.本题是对图形变化问题的考查,根据前四种情况发现有几条线段则分成的空间比前一种增加几部分是解题的关键.【第 16 题】【答案】解:(1)∵C (0,-3),∴OC=3.y=14x 2+bx-3.∵OA=2OC ,∴OA=6. ∵a=14>0,点A 在点B 右侧,抛物线与y 轴交点C (0,-3).∴A (6,0). ∴0=14×36+6b-3,∴b=-1. ∴y=14x 2-x-3,∴y=14(x-2)2-4,∴M (2,-4).答:抛物线的解析式为y=14x 2-x-3,M 的坐标为(2,-4);(2)如图1,过点M 作MH⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE⊥AM 于点E ,垂足为点E .∴∠AHM=∠NEM=90°.在Rt△AHM 中,HM=AH=4,由勾股定理,得AM=4√2,∴∠AMH=∠HAM=45°.设直线AC 的解析式为y=kx+b ,由题意,得{0=6k +b −3=b,解得:{k =12b =−3, ∴直线AC 的表达式为y=12x-3. 当x=2时,y=-2,∴N (2,-2).∴MN=2.∵∠NEM=90°,∠NME=45°,∴∠MNE=∠NME=45°,∴NE=ME .在Rt△MNE 中,∴NE 2+ME 2=NM 2,∴ME=NE=√2.∴AE=AM -ME=3√2在Rt△AEN 中,tan∠MAC=NE AE =√23√2=13. 答:tan∠MAC=13; (3)如图2,①当D 点在AC 上方时,∵∠CAD 1=∠D 1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,∴∠D 1AH=∠CAM , ∴tan∠D 1AH=tan∠MAC=13.∵点D 1在抛物线的对称轴直线x=2上,∴D 1H⊥AH ,∴AH=4.在Rt△AHD 1中, D 1H=AH•tan∠D 1AH=4×13=43. ∴D 1(2,43); ②当D 点在AC 下方时,∵∠D 2AC=∠D 2AM+∠MAC=45°,且∠AMH=∠D 2AM+∠AD 2M=45°,∴∠MAC=∠AD 2M . ∴tan∠AD 2H=tan∠MAC=13.在Rt△D 2AH 中,D 2H=AHtan∠AD 2H =4÷13=12. ∴D 2(2,-12). 综上所述:D 1(2,43);D 2(2,-12).【 解析 】(1)根据与y 轴的交点C 的坐标(0,-3)就可以求出OC 的值及c 的值,进而求出OA 的值及A 的坐标,由待定系数法就可以求出b 的值而求出解析式及定点坐标;(2)如图1,过点M 作MH⊥x 轴,垂足为点H ,交AC 于点N ,过点N 作NE⊥AM 于点E ,垂足为点E .在Rt△AHM 中,HM=AH=4,就可以求出AM 的值,再由待定系数法求出直线AC 的解析式,就可以求出点N 的坐标,进而求出MN 的值,由勾股定理就可以求出ME 及NE 的值,从而求出AE 的值就可以得出结论;(3)如图2,分类讨论,当D 点在AC 上方时,根据角之间的关系就可以求出∠D 1AH=∠CAM ,当D 点在AC 下方时,∠MAC=∠AD 2M 就可以求出点D 的坐标.本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.【 第 17 题 】【 答 案 】解:(1)如图1,过点B 作BG⊥AC ,交AC 于点G .在Rt△ABG 中,∠BAC=60°,AB=l0, ∴AG=5,BG=5√3∴CG=AC -AG=16-5=11,在Rt△BGC 中,由可得BC=14,∴S △ABC =12AC•BG=12×16×5√3=40√3;(2)如图2,过E 作EH∥AB 交BC 于H ,∵⊙P 分別与边AB 、AC 相切于D 、E ,∴AE=DE ,又∠BAC=60°,可设AE=AD=DE=x ,DB=10-x ,CE=16-x ,在△ABC 中,∵EH∥AB∴EH AB =CE CA 即EH 10=16−x 16,得EH=58(16-x ),在△FEH 中,∵EH∥DB ,∴FD FE =DB EH , 即y x+y =10−x 58(16−x),整理得y=-83x+803(0<x <10) (3)假如△ADC 与△DBF 相似,∵∠DBF >∠DCA ,又∠DAC=∠BDF=60°∴只能∠DBF 与∠ADC ,∠BFD 与∠ACD 是对应角, ∴AD BD =AC DF ,即x 10−x =16y解得x 1=10(舍去),x 2=6,当x=6时,⊙P 与边BC 相切.证明:当x=6时,求得⊙P 的半径r=2√3,过P 作PQ⊥BC ,垂足为Q ,连接PA 、PB 、PC ,有S △ABC =S △PAB +S △PAC +S △PBC即40√3=12×10×2√3+12×16×2√3+12×14×PQ ,解得,PQ ═2√3=r∴⊙P 与边BC 相切.【 解析 】(1)过B 作BG⊥AC ,垂足为G ,解Rt△ABG ,得BG ,AG ,再求CG ,在Rt△CBG 中,运用勾股定理求BC ;(2)由∠BAC=60°,AD ,AE 为圆的切线可知,△ADE 为等边三角形,可设AE=AD=DE=x ,DB=10-x ,CE=16-x ,过E 作EH∥AB 交BC 于H ,在△ABC 中,由EH∥AB ,利用相似比求EH ,在△FEH 中,由EH∥DB ,利用相似比求x 、y 的关系;(3)过P 作PQ⊥BC ,垂足为Q ,连接PA 、PB 、PC ,先假如△ADC 与△DBF 相似,利用相似比求x 的值,再求圆的半径;本题是圆综合题,熟练运用相似三角形的判定与性质、勾股定理是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年合肥一六八中学自主招生考试数学试卷答案
1. C。
2. D。
(PD=7,PB=6)
3. B或C。
(若a+b+c≠0,则k=2,选B;若a+b+c=0,则k=-1,选C)
4. B。
(ax中若x为偶数则ax=-x/2,若x为奇数则ax=-x/2+1/2)
5. C。
(分别为1、1、7,1、2、4,1、3、1和2、1、2)
6. B。
(易证△OBC∽△BAC,可得比例式1:a = a:(a+1),解方程并排除负解得B)
7. B。
(由n+m=4s,可知AD²/4+BC²/4=AB²即AD²+BC²=4AB²,作BE∥AD交CD
于E,可证得△BEC是直角三角形且四边形ABED是平行四边形,∴AD=BE,
AB=DE,AD²+BC²=CE²,于是得4AB²=CE²即2AB=CE即2DE=CE,所以CD=3AB)
8. C。
(通过十字相乘法分解因式,得y=(nx-1)[(n+1)x-1],故其与x轴交点为
1/n和1/(n+1),所截得线段长度为1/n-1/(n+1)。
所以线段长度之和为1-1/2+1/2-1/3+…+1/2013-1/2014 = 2013/2014)
9. 3 EQ \R(,3) 。
(连接OB,OA⊥AP,OB⊥BP,易算出∠BAP和∠ABP为60°,于是得△ABP为等边三角形;易算出AB= EQ \R(,3) ,所以周长为3 EQ \R(,3) )
10. 27。
11. 56。
(观察可知aij=[(i-1)²+j]×(-1)i+j+1)
12. 5/18。
13. 3 EQ \R(,2) 。
(显然AC是正方形ABCD的对称轴,∴对于在AC上的任意一个P点,都能满足PB=PD,所以PD+PE=PB+PE。
显然当P点恰为AC、BE的交点时PB+PE 值最小,所以最小值为PB+PE=BE=AB=3 EQ \R(,2))
14. 2(易算出S△ABD=6,S△ABE=4,所以S△ABD- S△ABE=2,即S△ADF-
S△BEF=2)
15. 0°<θ<60°(由题意可知b²-4ac<0,即:(4sinθ)²-4×6×cosθ<0。
化简,得2sin²θ-3cosθ<0。
由sin²θ+cos²θ=1,可知2sin²θ=2-2cos²θ,令
x=cosθ,则2-2x²-3x<0,化简得(2x-1)(x+2)>0。
所以2x-1和x+2同正或同负,解得x>1/2或x<-2。
∵x=cosθ,∴x<-2排除,故x>1/2即cosθ>1/2,得θ<60°。
又θ为三角形内角,所以0°<θ<60°)
16. (1)化简得原式=1/(a²+2a),又由a²+2a-1=0可得a²+2a=1,∴原式值为1。
(2)若a=b,则原式=1+1=2;
若a≠b,则a、b为x²+3x+1=0的两个根,由韦达定理可得a+b=-3,ab=1。
将原式化为(a+b)²/ab-2,代入,得原式值为7。
综上,原式的值为1或7。
17. (1)作AF⊥BC于F,易得出BF=1,AF= EQ \R(,3) 。
又BC= EQ \R(,3) +1,
∴CF= EQ \R(,3) 。
由勾股定理,得AC= EQ \R(,6) 。
(2)由(1)及题目,易算出S△ABF= EQ \R(,3) /2,S△ACF=3/2。
∴S△ACE= EQ \R(,3) /2。
做法A:由S=CE×AD/2可得AD= EQ \R(,6) /2,
∴sin∠ACD=1/2,∴∠ACD=30°。
做法B:由S=sin∠ACD×CE×AC/2(面积公式),可得sin∠ACD=1/2,∴∠ACD=30°。
18. (1)若0<t≤2,作DE⊥BC于E,易得BE=3,EC=1,NP=DE= EQ \R(,3) ,
PE=DN=BM=t,∠ABC=60°。
∵AB=AD,AD∥BC,∴∠DBC=∠ADB=∠ABD=30°,
PQ=BP/ EQ \R(,3) = EQ \R(,3) - EQ \R(,3) t/3。
∴S=PQ×BM/2=- EQ \R(,3) /6(t-3/2)²+3 EQ \R(,3) /8(0<t≤2)。
此时S的最大值为3 EQ \R(,3) /8。
若2≤t<4,易得BP=NB/2=(4-t)/2。
同0<t≤2,可得PQ= BP/ EQ \R(,3) =2 EQ \R(,3) /3- EQ
\R(,3) t/6。
∴S=PQ×BM/2=- EQ \R(,3) /12(t-2)²+ EQ \R(,3) /3(2≤t<4)。
此时S 最大值为 EQ \R(,3) /3。
显然3 EQ \R(,3) /8大于 EQ \R(,3) /3,故S的最大值为3 EQ \R(,3) /8。
综上所述,S= - EQ \R(,3) /6(t-3/2)²+3 EQ \R(,3) /8(0<t≤2),
S= - EQ \R(,3) /12(t-2)²+ EQ \R(,3) /3(2≤t<4),
S的最大值为3 EQ \R(,3) /8。
(2)若BM=MQ,当0<t≤2时,t= EQ \R(,( EQ \R(,3) - EQ \R(,3) t/3)²+(3-t-t)²) ,解得t1=3(舍去),t2=1.2。
当2≤t<4时,t= EQ \R(,[t-(4-
t)/2]²+(2 EQ \R(,3) /3- EQ \R(,3) t/6)²) ,解得t1=1(舍去),t2=4(舍去)。
若BM=BQ,当0<t≤2时,2×( EQ \R(,3) - EQ \R(,3) t/3)=t,解得t=12-6 EQ
\R(,3) 。
当2≤t<4时,2×(2 EQ \R(,3) /3- EQ \R(,3) t/6)=t,解得t=2 EQ
\R(,3) -2(舍去)。
若MQ=BQ,当0<t≤2时, EQ \R(,( EQ \R(,3) - EQ \R(,3)
t/3)²+(3-t-t)²) =2×( EQ \R(,3) - EQ \R(,3) t/3),解得t1=2,t2=0(舍去)。
当2≤t<4时, EQ \R(,[t-(4-t)/2]²+(2 EQ \R(,3) /3- EQ \R(,3) t/6)²) =2×(2 EQ
\R(,3) /3- EQ \R(,3) t/6),解得t1=2,t2=0(舍去)。
综上所述,当t=1.2或t=12-6 EQ \R(,3) 或t=2时,△BMQ为等腰三角形。