BUCK无隔离电路设计分析
BUCK-BOOST电路原理分析
BUCK/BOOST 电路原理分析
Buck 变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q 为开关管,其驱动电压一般为PWM(Pulse width modulaTIon 脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Boost 变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许
在Dy=1 的状态下工作。
电感Lf 在输入侧,称为升压电感。
Boost 变换器也
有CCM 和DCM 两种工作方式
Buck/Boost 变换器:也称升降压式变换器,是一种输出电压既可低于
也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电。
400v非隔离buck电路
400V非隔离Buck电路1. 引言Buck电路是一种常见的降压转换器,用于将高电压转换为较低的电压。
在本文中,我们将讨论一种名为400V非隔离Buck电路的设计和工作原理。
我们将详细解释该电路的构成、工作原理、性能特点以及应用范围。
2. 构成和工作原理400V非隔离Buck电路由以下几个主要组件构成:•输入电源:提供高电压输入(例如400V)。
•开关管:控制能量流动的开关元件。
•输出滤波电感:用于平滑输出电压。
•输出负载:连接到输出端的负载。
该电路通过周期性地打开和关闭开关管来调节能量流动。
在每个周期的开启阶段,开关管导通,输入电源通过开关管向输出滤波电感充放能量。
在每个周期的关闭阶段,开关管断开,输出滤波电感中储存的能量被释放到输出负载中。
基于这种工作原理,400V非隔离Buck电路可以实现对输入高压进行降压处理,并提供稳定的低压输出。
3. 性能特点400V非隔离Buck电路具有以下几个性能特点:•高效率:该电路通过周期性地开启和关闭开关管,可以实现高效的能量转换,减少能量损耗。
•稳定输出:通过控制开关管的工作频率和占空比,可以实现稳定的输出电压。
•快速响应:由于开关管的快速开启和关闭,该电路具有快速响应的特点,适用于对输出动态变化要求较高的应用场景。
•小体积:该电路由简单的元件组成,并且不需要额外的隔离元件,因此可以实现小体积设计。
4. 应用范围400V非隔离Buck电路在许多领域都有广泛应用,包括但不限于以下几个方面:•电力系统:用于降压处理高压输入,并提供给低压负载。
•汽车电子:用于汽车电子系统中对高压输入进行降压处理,并为各种汽车设备提供稳定低压供电。
•工业自动化:用于工业自动化设备中对高压输入进行降压处理,并为各种传感器、驱动器等设备提供稳定低压供电。
•通信设备:用于通信设备中对高压输入进行降压处理,并为各种通信模块、路由器等设备提供稳定低压供电。
5. 总结本文介绍了400V非隔离Buck电路的构成、工作原理、性能特点以及应用范围。
非隔离型三电平Buck-Boost双向变换器研究
非隔离型三电平Buck-Boost双向变换器研究非隔离型三电平Buck/Boost双向变换器研究摘要随着新能源的快速发展,双向变换器在能量转换中扮演着至关重要的角色。
本文研究了一种非隔离型三电平Buck/Boost双向变换器,旨在提高其转换效率,并在实际应用中取得更佳的性能。
首先,对该变换器进行了详细的分析和建模,证明了其具有较高的转换效率和压降能力。
接着,通过调节开关频率和占空比等参数,充分优化了该变换器的工作性能。
最后,在实验室中进行了电路实现和实际测试,并与传统变换器进行了比较。
结果表明,该非隔离型三电平Buck/Boost双向变换器具有更高的转换效率和更好的电压稳定性,在实际应用中具有较大的潜力和发展前景。
关键词:双向变换器;能量转换;非隔离型;三电平Buck/Boost;转换效率;电压稳定性AbstractWith the rapid development of new energy,bidirectional converters play a crucial role in energy conversion. This paper studies a non-isolated three-level Buck/Boost bidirectional converter with the aim of improving its conversion efficiency and achieving better performance in practical applications. Firstly, the converter is analyzed and modeled in detail, which proves that it has high conversion efficiency and voltage drop capability. Then, by adjusting the switching frequency and duty cycle, etc., the working performance of the converter is fully optimized. Finally, circuit implementation and actual testing are carried out in the laboratory, and the results are compared with traditional converters. The results show that the non-isolated three-level Buck/Boost bidirectional converter has higher conversion efficiency and better voltage stability, and has great potential and development prospects in practical application.Keywords: bidirectional converter; energy conversion; non-isolated; three-level Buck/Boost; conversion efficiency; voltage stabilityThe development of bidirectional converters has attracted significant attention in recent years due to their importance in energy conversion systems. Thenon-isolated three-level Buck/Boost bidirectional converter is one such converter that has shown great potential in energy conversion applications. Theconverter can be used to convert energy in both directions, making it suitable for energy storage and retrieval applications.The implementation and testing of the converter were carried out in the laboratory, and the results were compared with traditional converters. The testing showed that the non-isolated three-level Buck/Boost bidirectional converter has higher conversion efficiency and better voltage stability compared to the traditional converters. These results demonstrate that the non-isolated three-level Buck/Boost bidirectional converter has significant potential for practical applications in energy conversion systems.Overall, the non-isolated three-level Buck/Boost bidirectional converter has emerged as a promising solution for energy conversion applications. Its high conversion efficiency and voltage stability make it an attractive alternative to traditional converters. With further development and refinement, this converter has the potential to play a significant role in shaping the future of energy conversion systemsThe non-isolated three-level Buck/Boost bidirectional converter also offers potential for practical applications in renewable energy systems, particularlyin wind and solar power. With the increasing demandfor renewable energy, the need for efficient and effective energy conversion systems is more pressing than ever before. The three-level converter offers significant advantages in this regard, allowing for a higher conversion efficiency in renewable energy systems.In addition, the converter can also be utilized in electric vehicle (EV) charging systems, offering high-power density and improved efficiency compared to traditional converters. As EVs become more prevalent and the need for efficient charging systems grows, the non-isolated three-level Buck/Boost bidirectional converter can play a crucial role in addressing this challenge.Moreover, the converter has the potential to be usedin energy storage systems, which are becoming increasingly important in an era of intermittent renewable energy sources. The converter caneffectively manage the flow of energy to and from energy storage systems, improving their efficiency and reliability.Despite its many advantages, the non-isolated three-level Buck/Boost bidirectional converter is notwithout its challenges. One of the main challenges is the complexity of the control system, which requires advanced algorithms and sensors to ensure proper operation. Additionally, the converter may require more space and components compared to traditional converters, which could potentially increase costs.In conclusion, the non-isolated three-level Buck/Boost bidirectional converter has emerged as a promising solution for energy conversion systems. Its high conversion efficiency, voltage stability, andpotential for practical applications in renewable energy, EV charging, and energy storage systems make it a promising alternative to traditional converters. While challenges remain, continued research and development of this converter could lead tosignificant improvements in energy conversion systems and the wider adoption of renewable energy sourcesIn addition to its potential applications in renewable energy, electric vehicles, and energy storage systems, the bidirectional DC-DC converter also has potential for use in data centers and telecommunications networks, where it can help improve overall energy efficiency through better management of power supply and demand.One of the key challenges facing the wider adoption of the bidirectional DC-DC converter is cost. While its high conversion efficiency and voltage stability make it an attractive option for energy conversion systems, the cost of manufacturing and installing the converter remains relatively high compared to traditional converters. Continued research and development could help bring down costs and make the technology more accessible to a wider range of industries.Another challenge is the size and weight of the converter. While the bidirectional DC-DC converter is smaller and lighter than traditional converters, itcan still be bulky and heavy in some applications. Efforts to improve the design of the converter and reduce its overall size and weight could help overcome this challenge.Overall, the bidirectional DC-DC converter represents a significant step forward in the development ofenergy conversion systems with potential applications in renewable energy, electric vehicles, energy storage systems, data centers, and telecommunications networks. Continued research and development of this technology is needed to overcome the remaining challenges and unlock its full potential for a variety of industriesOverall, the bidirectional DC-DC converter is a promising technology that has the potential to revolutionize the energy conversion systems for various industries, including renewable energy, electric vehicles, energy storage systems, data centers, and telecommunications networks. Although there are still challenges to be overcome, such as efficiency and size limitations, continued research and development will likely address these issues and further improve the performance and reliability of the bidirectional DC-DC converter。
Buck电路的原理分析和参数设计
Buck电路的原理分析和参数设计连续工作状态一Buck工作原理将快速通断的晶体管置于输入与输出之间,通过调节通断比例(占空比)来控制输出直流电压的平均值。
该平均电压由可调宽度的方波脉冲构成,方波脉冲的平均值就是直流输出电压。
Q导通:输入端电源通过开关管Q及电感器L对负载供电,并同时对电感器L充电。
电感相当于一个恒流源,起传递能量作用电容相当于恒压源,在电路里起到滤波的作用Q闭合:电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
导通时Q的电流闭合时C的电流L的电流和输出电流的关系。
输出电压与输入电压的关系(不考虑损耗)二 buck 的应用Buck 为降压开关电路,具有效率高,体积小,功率密度高的特点1.Buck 的效率Buck 的损耗:1.交流开关损耗 2.管子导通损耗3.电感电容等效电阻损耗Buck 的效率很高,一般可以达到60%以上,2.Buck 的开关频率频率越高,功率密度越大,但也同时带来了开关损耗。
在25~50KHZ 范围内buck 的体积可随频率的增大而减小。
三.参数的设计1.电感的参数电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。
在临界不连续工作状态时 2120I I I -=ON OI T I V V L 20-=' ON I T LV V I I 012-=- 所以L L '≥ L 越大,进入不连续状态时的电流就越小2.电容的参数电容的选择必须满足输出纹波的要求。
电容纹波的产生:1. 电容产生的纹波: 相对很小,可以忽略不计2. 电容等效电感产生的纹波:在300KHZ~500KHZ 以下可以忽略不计3. 电容等效电阻产生的纹波:与esr 和流过电容电流成正比。
为了减小纹波,就要让esr 尽量的小。
不连续工作状态(1)开关管Q 导通,电感电流由零增加到最大(2)开关管Q 关断,二极管D 续流,电感电流从最大降到零; (3)开关管Q 和二极管D 都关断(截止),在此期间电感电流保持为零,负载由输出滤波电容来供电。
Buck电路的闭环设计及仿真分析
Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。
其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。
然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。
本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。
文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。
在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。
同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。
为了验证设计的有效性,文章采用了仿真分析的方法。
通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。
仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。
文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。
通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。
二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。
其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。
Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。
在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。
当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。
Buck电路的工作原理基于电感的电压-电流关系。
BUCK电路方案设计
BUCK电路方案设计在电子领域中,BUCK电路是一种非常常见且重要的电路方案。
BUCK电路是一种降压型DC-DC转换器,也被称为降压开关电源。
它通过将输入电压降低到一个较低的输出电压来实现电源调节功能。
BUCK电路的工作原理是,当开关管导通时,输入电压源通过电感和开关管输出到输出电容上,输出电压上升。
当开关管截止时,电感中的能量继续通过电容供应负载,输出电压下降。
通过这种方式,BUCK电路能够稳定地将输入电压变为较低的输出电压。
1.确定输入和输出电压要求:根据具体应用需求确定输入和输出电压范围。
在此基础上,选择合适的开关管和电感。
2.计算工作频率:选择合适的工作频率,一般常见的有几十kHz到几MHz的范围。
工作频率的选择要平衡转换效率和滤波器尺寸。
3.计算电感和电容值:根据输入和输出电压范围,使用以下公式计算电感和电容值:电感值(L)=(输出电压/工作频率)*(输入电压-输出电压)/输出电流电容值(C)=输出电流/(工作频率*最大纹波电压)4.根据负载要求计算开关管的最大电流和功耗:通过确定负载电流以及开关管的最大导通时间和导通电阻,计算开关管的最大电流和功耗。
5.添加反馈控制:为了实现稳定的输出电压,需要使用反馈控制回路。
一般采用PID控制,通过调节开关管的导通时间来实现输出电压的调节。
6.性能评估和优化:通过仿真和实验评估BUCK电路的性能,包括效率、稳定性和纹波等。
根据评估结果进行优化,例如选择更合适的元件、调整控制参数等。
总之,BUCK电路是一种常用且重要的电路方案,适用于很多应用场景。
通过合理的设计和优化,可以实现稳定、高效的输出电压。
在实际应用中,还需考虑元件的选取、温度变化等因素,并根据具体需求进行优化调整,以实现最佳的电路性能。
入门级Buck电路原理—简洁而不简单
Buck、Boost、Buck-Boost作为直流开关电源中应用广泛的拓扑结构,属于非隔离的直流变换器。
本期内容小编将对其中的Buck电路展开详细介绍。
*Buck基础拓扑电路降压式(Buck)变换器是一种输出电压≤输入电压的非隔离直流变换器。
Buck变换器的主电路由开关管Q,二极管D,输出滤波电感L和输出滤波电容C构成。
接下来将从:1. 开关整流器基本原理2. 传说中的“伏-秒平衡” 3. 同步整流死区时间等三部分详细介绍Buck电路的工作原理。
让我们打起精神,擦亮眼睛,深刻体会简洁而不简单的Buck电路吧!Part 1 开关整流器基本原理导通时间关断时间在[0,Ton]期间,开关导通;在[Ton,Ts]期间,Q截止。
设开关管开关周期为Ts,则开关频率fs=1/Ts。
导通时间为Ton,关断时间为Toff,则Ts=Ton+Toff。
设占空比为D,则D=Ton/Ts。
改变占空比D,即改变了导通时间Ton的长短,这种控制方式成为脉冲宽度调制控制方式(Pulse Width Modulation, PWM)。
Buck电路特征•输出电压≤输入电压•输入电流断续•输出电流连续•需要输出滤波电感L和输出滤波电容CPart 2 传说中的“伏-秒平衡”伏秒原则,又称伏秒平衡,是指开关电源稳定工作状态下,加在电感两端的电压乘以导通时间等于关断时刻电感两端电压乘以关断时间,或指在稳态工作的开关电源中电感两端的正伏秒值等于负伏秒值。
在一个周期T 内,电感电压对时间的积分为0,称为伏秒平衡原理。
正如本文开头视频中指出,任何稳定拓扑中的电感都是传递能量而不消耗能量,都会满足伏秒平衡原理。
Part 3 同步整流死区时间同步整流是采用极低导通电阻的的MOSFET来取代二极管以降低损耗的技术,大大提高了DCDC的效率。
物理特性的极限使二极管的正向电压难以低于0.3V。
对MOSFET来说,可以通过选取导通电阻更小的MOSFET来降低导通损耗。
开关电源拓扑之BUCK电路详解
Buck电路原理
上式中,对于Lc和D1 为固定值时,降压变换器的电流连续与否是由R = Vo/Io 值确定的。当R的欧姆值增大时,工作状态将从连续转化为不连续。另一方面 ,如果R和DTs 是固定的,则电感器的L<Lc 时,其工作状态由连续转化为不连 续。当Fs增大时,则保持开关变换器的连续状态工作的Lc降低。 从上图14、图15中可看到输入电流is是脉动的,与降压变换器的连续与否工作 状态无关。这个脉动电流,在实际应用中应受到限制,以免影响其他电器正常 工作。通常,电源Vs 和变换器的输入端之间会加上一些输入滤波器,这种滤 波器必须在开关变换器设计的早期阶段和建立模型过程就要预先进行考虑。否 则,在开关变换器与输入滤波器连接时,可能会引起意外的自激振荡。
+-
D
+
S
L2 C2
R
-
图6:Sepic
S
D
T
L
+
C
R
-
图8:单端反激变换器
开关电源拓扑概述
S1
D1
L
T
S2
D2
+
C
R
-
图9:推挽变换器
D1
L
C1
S1
T
D2
C2
S2
+
C3
R
-
D1
L
S1 S2
T
C
D2 S3 S4
图10:半桥变换器
+
R
-
图11:全桥变换器
之 开关电源拓扑介绍
Buck电路原理
Buck电路原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳 压器。
源的主要组成部分是开关型DC_DC变换器,它是整个变换的核心。
非隔离型Buck—Boost型变换器分析与研究
非隔离型Buck—Boost型变换器分析与研究作者:袁浩薛艳静来源:《科学与财富》2017年第07期摘要:双向DC/DC变换器(Bidirectional DC-DC Converter, BDC)作为一种新的形式,已经在开关领域上占据越来越重要的地位。
本文选择了非隔离型双向Buck-Boost变换器作为研究对象进行重点分析,详细介绍了非隔离型双向Buck-Boost变换器的基本原理以及控制方法。
经过分析表明,非隔离型双向Buck-Boost变换器能较好达到理论分析要求,在之后的电能变换深入研究中具有重要参考价值。
关键词:BDC;非隔离型双向Buck-Boost变换器引言DC/DC变换器是一种转变输入电压后有效输出固定电压的电压转换器。
DC/DC功率变换器的种类很多。
它的输入电路和输出电路有两种隔离方式为非隔离型和隔离型。
非隔离型双向DC/DC变换器电路主要有Buck/Boost、Buck-Boost、Cuk、Sepic/Zeta这四种结构;隔离型双向DC/DC变换器有单端正激式、单端反激式、双端半桥、双端全桥等四种形式。
从基本的Buck-Boost型变换器电路拓扑可以演化、派生出一系列用于不同电能变换的电路结构和拓扑,对于电力电子拓扑的研究具有参考价值。
1非隔离型双向Buck-Boost变换器的主电路分析1.1 主电路的拓扑结构非隔离型双向Buck-Boost变换器由Buck变换器衍化而来的一种拓扑结构,双向DC/DC 变换器拓扑电路即在晶体管Q上反并联二极管D,在二极管D上反并联晶体管Q。
两个开关管处于互补互通的状态,当能量从V1流向V2,Q1工作,Q2不工作,V1为电源端,则该变换器为Buck变换器;当能量从V2流向V1,Q2工作,Q1不工作,V2为电源端,则该变换器为Boost变换器。
若为第三种情况,即两侧都有电源时,此时能量流动方式的判断方式是比较两电源电压大小以及占空比大小。
为了避免两个开关管同时导通,应准确计算电感L的大小,由此得出相应的死区时间,实现开关管的零电压开通,并避免了二极管的反向恢复问题。
《2024年单相非隔离型Buck-Boost逆变器》范文
《单相非隔离型Buck-Boost逆变器》篇一一、引言随着电力电子技术的不断发展,逆变器作为电力转换的核心设备,其性能和效率的优化显得尤为重要。
单相非隔离型Buck-Boost逆变器作为一种常见的电力转换装置,具有结构简单、成本低廉、转换效率高等优点,在许多领域得到了广泛应用。
本文将详细介绍单相非隔离型Buck-Boost逆变器的工作原理、设计方法以及应用领域。
二、单相非隔离型Buck-Boost逆变器的工作原理单相非隔离型Buck-Boost逆变器是一种直流到交流的电力转换装置,其基本原理是通过电力电子开关的控制,将直流电源的电能转换为交流电能。
该逆变器主要由Buck电路和Boost电路组成,通过控制开关的通断,实现电能的升降压转换。
当开关处于导通状态时,Buck电路将直流电源的电能传输至负载端,同时Boost电路将电能储存于电感中。
当开关断开时,电感中的电能将通过二极管传输至负载端,从而实现电能的升降压转换。
三、单相非隔离型Buck-Boost逆变器的设计单相非隔离型Buck-Boost逆变器的设计主要包括电路设计、控制策略设计以及参数选择等方面。
1. 电路设计:根据应用需求,选择合适的Buck电路和Boost 电路拓扑结构,确保电路的稳定性和可靠性。
2. 控制策略设计:采用合适的控制策略,如PWM控制、SPWM控制等,以实现电能的精确控制和高效转换。
3. 参数选择:根据电路设计和控制策略,选择合适的开关器件、二极管、电感、电容等元件,以确保逆变器的性能和效率。
四、单相非隔离型Buck-Boost逆变器的应用单相非隔离型Buck-Boost逆变器广泛应用于太阳能发电、风能发电、电动汽车等领域。
在太阳能发电和风能发电系统中,该逆变器将直流电能转换为交流电能,以供电网使用。
在电动汽车中,该逆变器将电池的直流电能转换为交流电能,以驱动电动机工作。
此外,单相非隔离型Buck-Boost逆变器还广泛应用于UPS电源、通信电源等领域,为电力电子技术的发展提供了重要的支持。
非隔离型DCDC变换器-buck
o i
根据伏秒平衡
U Uo Dp i D Uo
(U i U o ) DT U o DpT
电感电流峰值
I Lp
Ui Uo DT L
3.
14
Buck变换器——器件的选择
UVD(t) Ui
IL=IO
Ui-UO
IL=IO
当负载不变,电感↓, △IL↑ 或其他参数不变,负载RL↑ ,IO↓
I1减小 到一定程度后,等于0
U iT 1 I O I D(1 D) I OC 2 2L
13
Ioc是保证电感电流连续的 最小负载电流,也是电感 电流连续的临界值。 D=0.5, Ioc= Iocm
io IO
1 I T IT 2 2 2 8 Q IT DU i (1 D) U C C 8C 8LCf 2
电容与负载并联, △uc= △uo, 输出纹波电压与f2、L、C成反比
12
Buck变换器——工作原理
临界连续模式
I L I 2 I1 Ui Uo ton L 1 1 I O I 2 I L I1 I L 2 2
试设计一降压变换器,已知:输入电压 VS=46~53V, 输出电压Vo=5V, Io=1A~4A,工作开 关频率f=80kHz。如果设计成全部工作在电流 不连续状态,求各工作段占空比、电感值和开 关管峰值电流。
26
1 T 1 ton 1 T vL dt (ui uo )dt uo dt 0 L 0 L 0 L ton
iL1 iL 2
《单相非隔离型Buck-Boost逆变器》
《单相非隔离型Buck-Boost逆变器》篇一一、引言随着电力电子技术的不断发展,逆变器作为电力转换的核心设备,其性能和效率的优化显得尤为重要。
单相非隔离型Buck-Boost逆变器作为其中的一种重要类型,因其结构简单、成本低廉以及适用于多种电源场景等优点,被广泛应用于各类电力转换系统中。
本文将详细介绍单相非隔离型Buck-Boost逆变器的原理、设计及其实际应用。
二、单相非隔离型Buck-Boost逆变器原理单相非隔离型Buck-Boost逆变器是一种直流到交流的功率转换器,其基本原理是通过开关管的通断控制,将直流电源的电压和电流进行斩波和重组,从而得到所需的交流电压和电流。
该逆变器具有Buck(降压)和Boost(升压)两种工作模式,可以根据需要灵活切换。
三、单相非隔离型Buck-Boost逆变器设计单相非隔离型Buck-Boost逆变器的设计涉及到电路设计、器件选择、控制策略等多个方面。
1. 电路设计:根据应用需求,设计合理的电路拓扑结构。
通常包括输入电路、开关管电路、输出电路以及控制电路等部分。
2. 器件选择:选择合适的开关管、二极管、电容等器件,以满足系统的性能和效率要求。
3. 控制策略:采用适当的控制策略,如PWM(脉宽调制)控制、SPWM(正弦脉宽调制)控制等,以实现逆变器的稳定运行和优化性能。
四、单相非隔离型Buck-Boost逆变器应用单相非隔离型Buck-Boost逆变器广泛应用于各种电力转换系统,如太阳能发电系统、风力发电系统、电动汽车充电设施等。
在太阳能发电系统中,该逆变器可以将太阳能电池板产生的直流电转换为交流电,供给家庭或工业用电。
在风力发电系统中,该逆变器可以将风力发电机产生的电能进行转换和调节,以实现并网或独立供电。
在电动汽车充电设施中,该逆变器可以将电网的电能转换为适合电动汽车充电的直流电。
五、结论单相非隔离型Buck-Boost逆变器作为一种重要的电力转换设备,具有结构简单、成本低廉、适用范围广等优点。
一种非隔离DC/DCBUCK转换电路的应用
优点。 大势 所趋 。 31L 1 6 . T 7 7调整器 的工 作原 理
图 4 直流 3 V B C . — U K开 关 电 源 的 等效 3 分 析 直 流 33 _ U K开 关 电 源 的 工作 . BC V
8 S N YC
同步 引脚
的波形 为矩 形 波 , 方 波的 电压 平 均 该 值 为 : 。
3 一种变频 器通讯 转接板 3 V电源 的设计 . 3
电感 L 和 ,电容 c 1 5组成滤波器, 接
于 V 和 之 间 , 使输 出 , 电压 成 为幅 1 它 处
变频器应用在工业现场时,需要同其他 的 自动 化设 备一 起接 入 现场 的多 种现 场 总线 和 工业 以太 网。A Y U 通 讯转 接板 的作 用 NBS
摘 要: 本文介 绍 了一种 变频 器通 讯转 接板 的低 压 直流 3 v开 关 电源 的实现 方案 。此 电源 由恒 频 率 , . 3 占空 比可调 的 B C U K转 换 器 实 现 。文 中量化 分析 了电路工 作原 理和 工作过 程 , 确定 主要 外 围元 器件 参数 选择 , 并得 出 P B B a C or 电源工作 的 实际波 形 。 d和 关 键词 : 关电 源 ; 隔 离 DCDC; UC 开 非 / B K转换 器 中图分 类号 :T 7 21 1 M 6. + 文 献标识 码 : A
, 输入
并 将 采 样值 与 误 差 放 大 器 的 同相 输 入 端 的
A Y U 通 讯转 接板需 要 2 电源 :5 NBS 路 +V 和 + . 。其 中+V 电压取 自驱 动板 上 的 A / 33 V 5 C
开关电源原理分析与制作教学课件:非隔离电源电路的分析--降压电路
压Vout,有很小纹波(电压),但可认为基本保持不变, 其值为Vo。 (3) 电感和电容均为无损耗的储能元件。
8 8
(1) 模态1 [0—Ton] [对应于图 (a)]
在t=0时,Q1导通,Vin通过Q1 加到二极管D1 和输出 滤波电感Lf 、输出滤波电容Cf上以及给负载供电,因此续 流二极管D1截止,电源Vin对电感Lf充电,其电流iLf线性 上升,上升斜率为 (Vin-Vo)/Lf。
Osc
16
Vfb
Vout
V1
Comp
Sense Gnd
Vref的输出通过电阻Rt给Ct充电和放电,pin4输出一个振 荡三角波
27 27
(5)output---PWM波的输出
输出PWM波去控制MOS管的导通与关断,一般通过一个电阻
连接到MOS管的门极。对于Buck变换器,源极浮地。要采用
驱动变压器,连接电路如下图所示:
电解电容,其ESR×C1的值近似为常数,为(50~80)×10-6 F。
32
(10)输出滤波电容C1的选择
假设纹波电压峰-峰值为0.12V。则0.12=ΔI×ESR,则ESR=0.12Ω。 若ESRC1=50×10-6F,则C1=50×10-6/0.12≈417μF 根据实际情况,在仿真电路中选取C1=470μF。
S1
Refv Vp
Osc
Vfb
Vout
Comp
Sense Gnd
UC3842 U1
TX2
IDEAL D2
1 R8 750 R9 1n
C3
700u L1
IDEAL D1
26 26
低PF非隔离Buck驱动基本原理
低PF非隔离Buck驱动基本原理目前LED驱动中,非隔离低功率因素的Buck(降压、Step-Down)电路占了大片江山,特别是LED光源产品上。
所以作为工程师一定要掌握这种电路的原理,以便研发。
为了讲解方便,我们用MOS外置的。
1、上电启动:上电后,整流桥后VM为典型的馒头波,220Vac输入时,VMmax=220*1.414V=310V。
Rst1和Rst2串联给C2充电,C2达到Vcc工作电压后芯片正式启动。
2、MOS导通:(假设Co电容已充满电)芯片GATE脚输出高电平,MOS导通时,此时加载L两端的电压为:VL1=VM-Vo,这里忽略了MOS导通时DS两端的电压和Vcs电压,因为实在太小了。
此时L上的电流是呈线性上升的。
δi=V*δt/L,变换下也即 VL1=L*δi/δt1。
δt1为开通时间,也即Ton。
3、MOS关断:当L上电流上升到一定程度,也即Rcs端电压达到限值时,MOS就关断了。
这就是典型的峰值电流控制模式。
MOS关断后,续流二极管D就发挥作用了,电流从L经过D流向输出。
VL2=Vo+VD;其中VD就是二极管D两端电压,只有0.5V左右,相比几十V输出也忽略了。
简化为 VL2=Vo;此时,电感放电,放电负载恒定,所以是电流线性下降的。
VL2=Vo=L*δi/δt2。
δt2为关断时间,也即Toff。
所以一个周期中L的电流波形如下图所示:把MOS 导通和关断两部分δt1+δt2=T,T 也就是工把VL1和VL2两个公式推L=Vo(1-Vo/VM)/(f*δ明显看出,L 和f 是负相好像要计算L,还得知道无论是MOS 关断还是导通LED 串和L 始终是串联的所以电感上的平均电流I 所以δi=2Io,VL1和VL 此时根据 L=Vo(1-Vo/V 是负相关的。
我们还可以得出:VL1*δ的伏秒定理,任何稳态下部分内容联合起来:是工作周期(一般工作在BCM 模式),周期f=式推导下:(具体就不解释了,使劲凑就行) δi),这样电感量L 就和工作频率f 负相关的,这种芯片,f 一般定在40-80K 间知道δi 呐。
《单相非隔离型Buck-Boost逆变器》
《单相非隔离型Buck-Boost逆变器》篇一一、引言在电力电子领域,逆变器作为电源系统中的重要一环,扮演着将直流电源转换为交流电源的重要角色。
单相非隔离型Buck-Boost逆变器作为其中的一种,因其结构简单、成本低廉、效率高等特点,在许多应用场景中得到了广泛的应用。
本文将详细探讨单相非隔离型Buck-Boost逆变器的工作原理、设计方法以及应用领域。
二、单相非隔离型Buck-Boost逆变器的工作原理单相非隔离型Buck-Boost逆变器是一种DC-AC转换器,通过电子开关控制能量的传递,将直流电源的电能转换为交流电源的电能。
其工作原理基于Buck和Boost电路的组合,实现了电压的升降和相位的转换。
当逆变器工作时,电子开关按照一定的频率进行开关操作,通过改变开关的通断状态,控制电流在电路中的流向和大小,从而实现对输出电压和电流的控制。
由于电路中不存在隔离变压器,因此该类型逆变器的结构相对简单,成本较低。
三、单相非隔离型Buck-Boost逆变器的设计方法设计单相非隔离型Buck-Boost逆变器时,需要考虑多个因素,如输入电压范围、输出电压范围、功率等级、效率等。
设计过程中需要遵循以下步骤:1. 确定电路拓扑结构:根据应用需求选择合适的电路拓扑结构,如全桥、半桥等。
2. 确定电子开关的型号和参数:根据电流和电压等级选择合适的电子开关器件及其驱动电路。
3. 设计滤波电路:为减小输出电压的谐波成分,需要设计合适的滤波电路。
4. 优化控制策略:根据应用需求,设计合适的控制策略,如PWM控制、SVPWM控制等。
5. 仿真验证:利用仿真软件对设计进行验证,确保电路的性能满足设计要求。
四、单相非隔离型Buck-Boost逆变器的应用领域单相非隔离型Buck-Boost逆变器因其结构简单、成本低廉、效率高等特点,在多个领域得到了广泛应用。
主要包括:1. 太阳能光伏发电系统:用于将太阳能电池板产生的直流电转换为交流电,供给负载使用。
Buck电路原理分析详解
参照图九,可以得出仿真结果,
Buck电路原理分析
蓝色:电感电流 红色:电感电压
绿色:开关驱动
棕色:输出电压
图九
Buck电路原理分析
3、DCM模式仿真验证:在上述BCM分析的基础上,得出储能电感的电感量80uH为临界 点,由系统工作在DCM的条件,可以将储能电感电感量设置为40uH。重点验证输入输 出电压关系以及输出平均电流关系。
同样,在一个周期进行分析,
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
图六
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode: 由图六可知,电路系统工作在DCM模式下,需要满足两个条件,一、电感充磁开 始以及消磁结束时流经电感的电流为零;二、电感消磁时间小于开关管关断时
五、BUCK电路仿真验证:
图七
Buck电路原理分析
上述电路中基本参数设置:
驱动波形:V=14V, f=20KHz,D=50%;输入电压:Vin=10Vdc;储能电感:L=80uH 1、BCM模式仿真验证:根据电路系统工作在BCM模式下的条件,进行理论计算,
因此,电阻可定义为
→
, T为工作周期,D为占空比: 为Q管导通时间,所以,
BUCK BOOST电路原理分析
BUCK BOOST电路原理分析电源网讯Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q 也为PWM控制方式。
LDO的特点:① 非常低的输入输出电压差② 非常小的内部损耗③ 很小的温度漂移④ 很高的输出电压稳定度⑤ 很好的负载和线性调整率⑥ 很宽的工作温度范围⑦ 较宽的输入电压范围⑧ 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:(1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
BUCK电路
开关电源拓扑结构分析(图文)一.非隔离型开关变换器(一).降压变换器Buck电路:降压斩波器,入出极性相同。
由于稳态时,电感充放电伏秒积相等,因此:Ui-Uo)*ton=Uo*toff,Ui*ton-Uo*ton=Uo*toff,Ui*ton=Uo(ton+toff),Uo/Ui=ton/(ton+toff)=Δ即,输入输出电压关系为:Uo/Ui=Δ(占空比)图1:Buck电路拓补结构在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。
输出电压因为占空比作用,不会超过输入电源电压。
(二).升压变换器Boost电路:升压斩波器,入出极性相同。
利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:Uo/Ui=1/(1-Δ)图2:Boost电路拓补结构这个电路的开关管和负载构成并联。
在S通时,电流通过L平波,电源对L充电。
当S断时,L向负载及电源放电,输出电压将是输入电压Ui+U L,因而有升压作用。
(三).逆向变换器Buck-Boost电路:升/降压斩波器,入出极性相反,电感传输。
电压关系:Uo/Ui=-Δ/(1-Δ)图3:Buck-Boost电路拓补结构S通时,输入电源仅对电感充电,当S断时,再通过电感对负载放电来实现电源传输。
所以,这里的L是用于传输能量的器件。
(四).丘克变换器Cuk电路:升/降压斩波器,入出极性相反,电容传输。
电压关系:Uo/Ui=-Δ/(1-Δ)。
图4:Cuk变换器电路拓补结构当开关S闭合时,Ui对L1充电。
当S断开时,Ui+EL1通过VD对C1进行充电。
再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。
这里的C1用于传递能量,而且输出极性和输入相反。
二.隔离型开关变换器1.推挽型变换器下面是推挽型变换器的电路。
图5:推挽型变换电路S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。
LED照明非隔离BUCK开关电源线路解析
LED照明非隔离BUCK开关电源线路解析
在LED 照明应用中,由于非隔离BUCK 开关电源的效率较高,所以
有较多客户青睐,占了一部分的市场份额。
以SN3 910 为代表,市场上有一系列类是功能的IC,如BP2808,SMD802,AM850,SN3910....等。
就价位来说,国内有些厂家的IC 已经降到两块多人民币。
所以对于低成本的应用,还是比
较合理的选择。
接下来以SN3910 为例来说明此类IC 的应用线路及思路。
图1 降压LED 电路图(BUCK ) 来自
工作原理:
1、当Q1 导通时,输入电流Iin 通过负载LED、电感L1、Q1 到输入电
源负极。
LED 等发光的同时L1 电感中的电流慢慢上升,达到峰值,直到Q1
断开,L1 储存能量。
2、当Q1 断开时,由于电容两端的电压不能突变,流过电感的电流不能
突变。
的原理,流过L1 电感的电流通过续流二级管D1,负载LED 形成回路。
电感中的电流从峰值下降到一个值(该值如果大于零,Q1 导通,则工作在CCM;等于零,Q1 立即导通,则工作在BCM;等于零,Q1 没有及时导通,则DCM),
直到Q1 导通。
注意:对于大部分的BUCK 电路多设计工作在CCM,因为有以下两点
好处:
1、工作在CCM,输出纹波电流比较小。
2、工作在CCM,输出电流比较好控制:Io=(ILpkh+ILpkl)/2
这里的Io 为输出电流有效值,ILpkh 和ILpkl 分别为电感电流峰值和谷值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Thermal shutdown
– turns the device off if the temperature exceeds a specified threshold
14
© 2003 National Semiconductor Corporation
– Losses and efficiency will be discussed
• Converters generate switching noise • Discrete filter components (L, C) are required • Higher switching frequency => smaller L, C
2
© 2003 National Semiconductor Corporation
Efficiency
Ig Io
Power supply
Vg + –
+ Vo _
µP/DSP core
output DC power Po Vo I o η= = = input DC power Pg Vg I g
0 1 D
8
© 2003 National Semiconductor Corporation
switch duty cycle
Switch-Mode Power Supplies
• Step-up, step-down and inverting configurations available • Switching converters are ideally 100% efficient • Real efficiency can be close to 100%; depends on operating conditions and implementation
Magnetic Buck Converters for Portable Applications
Frank De Stasi Mathew Jacob
1
Outline
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Why use Switching Regulators? Common Device/Converter Specifications Buck Converter Analysis CCM/DCM modes Selection of L and C Synchronous Buck Converters Conduction and Switching Losses Efficiency improvement using PWM/PFM/LDO modes Control Approaches Current Mode Models and Compensation Guidelines Transient Measurement Techniques Layout Guidelines
13
© 2003 National Semiconductor Corporation
Device/Converter Specifications
• Overvoltage protection
– prevents the output voltage from rising above a specified limit
9
© 2003 National Semiconductor Corporation
Impact of efficiency: a system example
uP/DSP core mode % of time in this mode Load current Io [mA] Linear regulator Efficiency [%] Battery current Ig [mA] Average Ig in this mode [mA] 4.45 Efficiency [%] Battery current Ig [mA] Average Ig in this mode [mA] 2.12 29.1 0.14 0.13 78.4 0.53 0.02 93.7 4.45 0.13 93.0 44.82 1.12 87.7 142.60 0.71 Stand-by 90.0 0.1 34.7 0.12 0.11 Wait 4.0 1.0 40.9 1.02 0.04 Run1 3.0 10.0 41.6 10.02 0.30 Run2 2.5 100.0 41.7 100.02 2.50 FullRun 0.5 300.0 41.7 300.02 1.50
• Dynamic voltage regulation
– “Load transient response,” including peak output voltage variation and settling time for a step load transient – “Line transient response,” including output voltage variation and settling time for a step input voltage transient
– Component selection will be discussed
• Duty cycle is the control variable • Closed-loop output voltage control is usually applied
– Dynamic models and control will be discussed
12
© 2003 National Semiconductor Corporation
Device/Converter Specifications
• Static voltage regulation
– DC output voltage precision, i.e., % variation with respect to the nominal value over: • input voltage range (“line regulation”) • output load range (“load regulation”) • temperature
Device/Converter Specifications
• Frequency synchronization
– allows synchronization of the switching frequency to an external system clock
3
© 2003 National Semiconductor Corporation
Linear voltage regulator as power supply
Series pass transistor
Q Iload + Vg + – C Vo – +
Load
-
Vref
Bandgap reference
Advantages of using SMPS over Linear regulators
• SMPS results in significantly lower average battery current • High efficiency over a wide range of loads and output voltages is achieved with a SMPS • SMPS with low quiescent current modes provide longer battery life for mobile systems that spend most of their time in “stand-by”
Linear regulator power model
Ig Rs Io + Vg + – IQ Vo –
Bias current
I g = Io + IQ
Efficiency:
Vo ?< Linear regulator efficiency cannot be greater Vg than the ratio of the output and the input voltage
Total linear reg average Ig [mA] SMPS
Total SMPS average Ig [mA]
Example: • Vg = 3.6 V • Vo = 1.5 V • 0 < Io < 300 mA
10
© 2003 National Semiconductor Corporation
11
© 2003 National Semiconductor Corporation
Buck regulators in the system
Power distribution : Vg = 2.8-5.5 V
PS 3.6 V PS 2.5 V PS 1.5 V
Battery
Charger
Buck SMPS regulators
• Simple, low noise, small footprint area • Output voltage lower than the battery voltage • High efficiency only if Vo is close to Vg
4
© 2003 National Semiconductor Corporation
5
© 2003 National Semiconductor Corporation