大学物理 量子物理基础知识点总结
量子物理知识点总结
量子物理知识点总结一、量子物理的基本概念1. 量子的概念量子是指微观世界的基本粒子在能量、动量、角动量等物理量上的离散化。
按照量子理论的观点,能量、动量、角动量等物理量并不是连续的,而是以最小单位的量子数为单位进行变化,这个最小单位就称为量子。
在量子理论中,物质和辐射都具有波粒二象性,在某些场合下可以表现出波动性,在另一些场合下又可以表现出粒子性。
2. 波函数和波动方程在量子力学中,波函数是用来描述微观粒子的行为和性质的一种物理量。
波函数的数学表达形式是薛定谔方程,它描述了微观粒子在外场作用下的运动规律。
波函数不但可以给出微观粒子的位置、动量、能量等物理量,还可以用来解释微观世界中的诸多现象。
3. 不确定性原理不确定性原理是量子力学的基本原理之一,由海森堡提出。
它指出,对于一对共轭变量,如位置和动量、能量和时间等,不可能同时精确地确定它们的数值。
也就是说,我们不能同时确定一个微观粒子的位置和动量,或者同时确定它的能量和时间。
这一原理对于我们理解微观世界的自然规律有着深远的影响。
二、量子力学1. 粒子的波函数和哈密顿量在量子力学中,粒子的波函数是描述粒子状态的重要物理量。
它满足薛定谔方程,在外场作用下会发生演化。
哈密顿量则是用来描述物质在外场作用下的总能量,包括动能和势能等。
2. 角动量和自旋在量子力学中,角动量和自旋是微观粒子的两个重要性质。
它们满足一系列的代数关系,如角动量算符与角动量本征态的关系等,对于理解微观粒子的行为和性质有着重要的作用。
3. 平移不变性和动量平移不变性是指在空间中进行平移操作后,物理规律不发生改变。
在量子力学中,平移不变性导致了动量的守恒定律,即粒子在外场作用下的动量是守恒的。
4. 动力学和量子力学中的测量问题在量子力学中,测量是一个非常重要的问题。
在经典物理学中,我们可以通过测量来准确地确定物体的位置、速度等物理量,但在量子力学中,由于不确定性原理的存在,我们不能够同时确定一对共轭变量,因此在测量过程中会对微观粒子的状态产生影响。
量子物理基础小结
七 波函数 薛定谔方程
(1) 波函数(自由粒子) (r,t)Aei2h(Etpr)
(2)波函数的统计解释
某一时刻出现在某点附近在体积元 dV 中的粒子的概率
为:
dW 2dV* dV
| |2 为粒子在某点附近单位体积内粒子出现的几率,称为几率
密度。即: | |2
E1
8
2 0
h2
1 3.6e V (电离能)
五 德布罗意物质波
Ehm2c P m h 德布罗意公式
h h P m
德布罗意波长为:
玻恩提出:德布罗意波是概率波。
统计解释:在某处德布罗意波的强度是与粒 子在该处邻近出现的概率成正比。
六 不确定关系
xpቤተ መጻሕፍቲ ባይዱ h
③光的波粒二象性
0
A h
A ek
U0 k
h
P h h c
三、康普顿效应
康普顿公式 m h0c(1cos)C(1cos)
结论
散射光波长的改变量 仅与有关
与 的关系与物质无关,是光子与自由电子
间的相互作用。
0,0
π, ( )ma x2C
Ua o
U
②光电子初动能与入射光频率的关系
Ekmax 12mmax2 e | Ua |
|Ua|kU0,
截止电压的大小反映光 电子初动能的大小。
③产生光电效应的条件(截止频率0 ——红限)
12mm 2 axekeU 00,
即: U0 ,
k
令:
0
U0 k
,
④光电效应是瞬时的。
三、受激辐射和自发辐射的特点:
自发辐射的光波是非相干的。 受激辐射的光波是相干光 。 四、产生激光的必要条件:
量子力学基础 知识点
量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
大学物理 量子物理基础知识点总结
大学物理 量子物理基础知识点1.黑体辐射(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2521M T ()1hckthc eλπλλ=-(,)3.光电效应和光的波粒二象性(1)遏止电压a U 和光电子最大初动能的关系为:212a mu eU = (2)光电效应方程: 212h mu A ν=+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K hν== (4)光的波粒二象性(爱因斯坦光子理论):2mc hεν==;hp mc λ==;00m =其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )hm cλλλθ∆=-=- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610hm m cλ-==⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()22111T T HR m n n m m nνλ==-=->()()(), (2)频率条件: k nkn E E hν-=(3) 角动量量子化条件:,1,2,3...e L m vr n n ===其中2hπ=,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 12213.6n E eVE n n=-=- 6.实物粒子的波粒二象性和不确定关系(1)德布罗意关系式: h h p u λμ== (2)不确定关系: 2x p ∆∆≥; 2E t ∆∆≥7.波函数和薛定谔方程(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1Vr t r t d ψψτ*=⎰(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)iiir t c r t c r t c r t ψψψψ=++=∑(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂=-∇+⎢⎥∂⎣⎦8.电子自旋和原子的壳层结构(1)电子自旋: 11),2S s ==;1,2z s s S m m ==±注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构①原子核外电子可用四个量子数(,,,l s n l m m )描述:主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
量子物理学的基础知识
量子物理学的基础知识量子物理学是一个全新的科学领域,它研究的是微观粒子的行为,如电子、质子、中子和光子等。
在这个领域,有很多有趣的现象和理论,如量子纠缠、量子隧道和双缝干涉等,它们都是我们理解这个世界的一部分。
接下来,让我们深入探讨量子物理学的基础知识。
1. 波粒二象性波粒二象性是指微观粒子既像波动又像粒子。
这种现象最早被德国物理学家德布罗意在1924年提出。
他认为,电子在某些情况下会表现出波动性,如经过双缝实验时,电子会在屏幕上形成干涉条纹,显示出波动性。
但是,在其他情况下,电子又会表现出粒子性,如在湮灭中,电子表现为一个点状物体,显示出粒子性。
这种波粒二象性是几乎所有微观粒子都具有的。
2. 不确定性原理不确定性原理是量子物理学中最著名的理论之一。
它由德国物理学家海森堡于1927年提出。
不确定性原理指出,在任何时候,我们都不能完全确定一个粒子的位置和动量。
粒子的位置可以测量出来,但是这会在一定程度上破坏粒子的动量。
而如果我们要测量粒子的动量,又会影响粒子的位置。
因此,不确定性原理告诉我们,在微观世界中,一切都是不确定的。
3. 纠缠态纠缠态是指两个微观粒子之间的一种特殊状态。
在这种状态下,两个粒子之间存在着一种神秘的联系。
当其中一个粒子发生变化时,另一个粒子也会立即发生相应的变化,即使它们之间的距离很远。
这种现象被称为“量子纠缠”。
纠缠态是量子通信和量子计算的关键。
在量子通信中,我们可以使用纠缠态来保证信息的安全性。
在量子计算中,我们可以利用纠缠态进行量子并行计算,加快计算速度。
4. 双缝干涉实验双缝干涉实验是理解波粒二象性的一个重要实验。
在这个实验中,光子或电子被射向一块屏幕,在屏幕上有两个狭缝。
当光子或电子通过这两个狭缝中的任意一个时,它们会在屏幕上形成两个互相干涉的波峰和波谷。
如果我们关闭其中一个狭缝,光子或电子就会像粒子一样在屏幕上形成单一的点状图案。
这表明,微观粒子具有波动性和粒子性两个不同的方面。
大学物理理论:量子力学基础
大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。
本文将介绍一些关于量子力学的基本概念和原理。
2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。
解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。
2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。
通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。
3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。
通过波函数,可以计算出一系列平均值,用来描述系统的特征。
3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。
这涉及到测量的本质和粒子与波的性质之间的关系。
4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。
它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。
4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。
这为填充多电子原子如何达到稳态提供了解释。
5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。
它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。
5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。
6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。
介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。
6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。
结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。
大学物理第22章量子力学基础知识
一、波函数
波函数 描述具有波粒二象性的微观物体状态的函数称为波函数。如 果知道了某微观物体的波函数后,原则上确定该物体的全部物理性质。 波函数一般是时间和空间坐标的复数函数。
第五篇
近代物理
在波动学中,描述波动过程的数学函数都是空间、时间的二元函数。 一列沿X轴正向传播的平面单色简谐波的波动方程:
x t x y x, t A cos 2 A cos 2 t T
h 6.63 1034 p 8.8 1037 m mp v 50 15
电子的De Broglie波长与X 射线接近,人的De Broglie波长仪器根 本观测不到。可见,宏观物体的波动性根本不必考虑,只考虑其粒子性。
第五篇
近代物理
例2:两束电子动能分别为100eV和200eV,求电子的De Broglie波长。 解:电子的De Broglie波长分别为:
2
r , t 是 r , t 的共轭复数
德布罗意波又可以被称 概率波 probability wave
1926 年提出了对 波函数的统计解释
1954年 获诺贝尔物 理奖。
第五篇
近代物理
2
因概率密度
P r ,t r ,t
故在 r 矢端的体积元 dV dxdydz 内发现粒子 的概率为:
近代物理
二、波函数的统计解释
设描述粒子运动状态的波函数 为 r , t ,则: 空间某处波的强度与在该处发现 粒子的概率成正比; 在该处单位体积内发现粒子的 概率(即概率密度)与波函数的 模的平方成正比,并取比例系数 为1,即:
P r , t r , t r ,t r ,t
量子物理知识点总结
量子物理知识点总结量子物理是物理学中的一个重要分支,研究的是微观世界中微粒的行为和性质。
在量子物理的研究中,有许多重要的知识点。
本文将对量子物理的一些知识点进行总结和概述。
一、波粒二象性波粒二象性是指微粒既可以表现出波动性,又可以表现出粒子性。
这一概念是量子物理的基础,也是量子物理与经典物理的重要区别之一。
根据波粒二象性,微粒既可以像粒子一样具有确定的位置和动量,又可以像波一样具有干涉和衍射现象。
二、量子态和波函数在量子物理中,量子态描述了微粒的状态。
量子态可以用波函数来表示,波函数是描述微粒状态的数学函数。
波函数的平方表示了微粒在不同位置出现的概率。
波函数的演化遵循薛定谔方程,可以用来描述微粒随时间的变化。
三、不确定性原理不确定性原理是量子物理中的一个重要原理,由海森堡提出。
不确定性原理指出,在一些物理量的测量中,位置和动量、能量和时间等一对共轭变量无法同时精确确定。
不确定性原理揭示了微观世界的固有不确定性,限制了对微粒状态的完全确定。
四、量子纠缠量子纠缠是量子物理中的一个重要现象,描述了两个或多个微粒之间的特殊关系。
当两个微粒发生纠缠后,它们之间的状态是相互关联的,无论它们之间有多远的距离,改变其中一个微粒的状态都会立即影响到另一个微粒的状态。
量子纠缠被广泛应用于量子通信和量子计算等领域。
五、量子隧穿效应量子隧穿效应是量子物理中的一个重要现象,描述了微粒在势垒或势阱中具有穿透性的行为。
在经典物理中,微粒遇到高于其能量的势垒或势阱时会被完全反射或完全吸收。
但在量子物理中,微粒具有一定的概率穿越势垒或势阱,即使其能量低于势垒或势阱的高度。
六、量子态的量子叠加和量子重叠量子态的量子叠加是指一个量子系统可以处于多个状态的叠加态。
量子重叠是指两个或多个量子态之间的相互干涉现象。
量子叠加和量子重叠是量子物理的核心概念之一,也是量子计算和量子信息领域的基础。
七、量子计算和量子通信量子计算和量子通信是量子物理的两个重要应用领域。
量子物理学入门知识
量子物理学入门知识
量子物理学是物理学的一个分支,研究微观粒子的行为和性质。
它引入了许多关键的概念,例如量子态、波粒二象性、不确定性原理等。
以下是量子物理学入门知识:
1. 波粒二象性:量子物理学中的微观粒子既有粒子性,也有波动性。
这个概念突破了牛顿力学中的经典观念,让人们对物质的本质有了更深入的理解。
2. 量子态:在量子物理学中,微观粒子的状态可以用波函数来描述。
波函数是一个复数函数,它包含了所有可能的状态信息。
通过运用波函数,可以计算出微观粒子出现在某一个状态的概率。
3. 不确定性原理:量子物理学中,我们不能同时精确地测量微观粒子的位置和动量。
这个概念被称为不确定性原理,它告诉我们测量的精度越高,对另一个物理量的测量就会越不准确。
4. 纠缠态:两个或多个微观粒子可以处于纠缠态,这意味着它们之间的状态是相互关联的。
当一个粒子的状态发生变化时,另一个粒子的状态也会相应地发生变化,即使它们之间的距离很远。
5. 量子隧穿效应:当微观粒子遇到障碍时,它们有一定的概率穿过障碍物。
这种现象被称为量子隧穿效应,它在量子物理学中扮演着重要的角色。
以上是量子物理学的入门知识。
在现代科学中,量子物理学是一门非常重要的学科,它不仅可以解释微观世界的行为,还对我们对宏观物理学的理解产生了影响。
量子物理学入门知识
量子物理学入门知识
量子物理学是现代物理学的重要分支,它主要研究微观粒子的行为和性质。
以下是一些关于量子物理学的入门知识:
1. 原子结构:原子由核和电子组成。
电子在原子中的位置和运动状态由量子力学描述。
2. 波粒二象性:量子力学认为微观粒子既可以表现出波动性质,也可以表现出粒子性质。
这是个非常奇妙的现象。
3. 不确定性原理:根据不确定性原理,我们无法同时精确地知道一个微观粒子的位置和动量。
这种不确定性是量子物理学的核心概念。
4. 超导:超导是一种让电流在物质中无阻力地流动的现象。
量子物理学可以解释这一现象。
5. 量子纠缠:量子纠缠是一种神秘的现象,它描述了两个微观粒子之间的非常强的联系。
当一个粒子发生改变时,另一个粒子会立即发生相应的变化。
6. 量子计算:量子计算是利用量子力学的一些特殊性质来进行计算的方法。
它有潜力解决当前计算机无法解决的一些问题。
以上是量子物理学的一些入门知识,希望能够帮助读者进一步了解这个神奇的领域。
- 1 -。
量子物理复习要点(全)
量子物理部分复习要点第26章波粒二象性§1 黑体辐射一.热辐射的基本概念1.热辐射及其特点2.描写热辐射的物理量:Mν、M二.黑体和黑体辐射的基本规律1.黑体(绝对黑体)2.黑体的Mν的实验曲线及特点3.两个实验定律νm(1)斯特潘—波尔兹曼定律M= σ T 4(2)维恩位移定律四.普朗克的能量子假说和黑体辐射公式1.普朗克公式:2.普朗克假说§2.光电效应(自学)一.光电效应二.实验规律三.理论解释§3光的二象性光子一.爱因斯坦光子假说二.对光电效应的解释§4康普顿散射(Compton Scattering)一.康普顿散射及实验特点二.康普顿的理论解释1.物理图象2.会由能量守恒、动量守恒处理微观粒子的碰撞问题。
3.对康普顿效应的解释。
§5 粒子的波动性·德布罗意关系:§6§7 不确定关系一.坐标和动量的不确定的关系二.时间与能量的不确定关系三.会用不确定关系作数量级估算和解释一些现象(如零点能的存在)第27章薛定谔方程一.薛定谔方程一维薛定谔方程一维薛定谔方程二.定态薛定谔方程一维定态薛定谔方程三.会用波函数的物理条件来解简单问题1.一维无限深方势阱的处理及结果2.一维势垒的穿透几率3 谐振子的结果第28章 原子、分子的能级与光谱 §1 氢原子的能级与光谱 一.玻尔的氢原子理论 二.量子力学的修正三.氢原子能级与光谱结果与图§2 碱金属原子的能级与光谱 一. 碱金属原子的能级与光谱特点及图主线系: 各 nP → 2S (最低S ) 第一辅线系:各 nD → 2P (最低P )sp df 4p 4d n Li 基态Li 原子H 原子(漫线系)第二辅线系:各 nS → 2P (最低P ),(n >2) (锐线系)基线系: 各 nF → 3D (最低D )二.角动量空间量子化(m l = l , l-1,……,-l+1 ,-l* μl z = -(e /2m )L z = -(e /2m ) m l h μl z = -m lμB玻尔磁子(是轨道磁矩的最小单元):ehμB = 2m三.电子自旋1.史特恩---盖拉赫实验(重要实验)2.电子自旋的假设 ·自旋角动量:自旋量子数s = 1/2 ·自旋在特殊方向的投影:自旋磁量子数:m s = ±(1/2)·自旋磁矩z B S★史特恩---盖拉赫实验的意义:(1)证实了空间量子化;(2)证实了自旋的存在。
量子物理知识点总结大学
量子物理知识点总结大学一、基本概念1. 波粒二象性在量子物理中,粒子表现出了波动性。
这意味着粒子不仅可以像经典物理学中的粒子那样具有位置和动量,还可以像波动那样传播。
这一现象成为波粒二象性。
著名的实验有双缝干涉实验,它展示了粒子具有波动性的特征。
2. 不确定性原理不确定性原理是量子物理的核心概念之一,由著名的物理学家海森堡提出。
它表明,对于一对共轭的物理量(比如位置和动量),我们无法同时精确地知道它们的数值。
如果我们知道其中一个量的值,那么对于另一个量,我们就无法确定其精确数值,并且只能知道其可能的取值范围。
这个原理对于解释微观世界中的许多现象都是非常重要的。
3. 物理量的量子化在经典物理中,我们习惯于将物理量看作是连续变化的,比如位置、速度、能量等。
然而在量子物理中,这些物理量被发现是离散的,只能取某些特定的数值,这一现象被称为量子化。
比如,电子只能存在于特定的能级上,能量也只能以量子的形式发射和吸收。
4. 相互作用的量子描述在经典物理中,我们常常通过描述相互作用的力来理解物质世界。
然而在量子物理中,力被描述为一种粒子交换的过程。
例如,电磁力是通过光子的交换传递的,强核力是通过胶子的交换传递的。
5. 观察者效应在量子物理中,观察者的存在和观察行为会影响到物质的状态和行为。
这一现象是被称为观察者效应。
具体来说,当我们观察量子粒子时,它的行为会因观察者的观察方式而发生变化。
二、量子力学1. 薛定谔方程薛定谔方程是量子力学中最基本的方程之一,描述了量子系统的演化。
它是线性、时间反演不变的方程,描述了量子系统的波函数随时间的演化。
通过薛定谔方程,我们可以预测量子系统在未来的状态。
2. 波函数和概率波在量子力学中,我们用波函数来描述粒子的状态。
波函数是一个数学函数,它包含了粒子的全部信息。
通过波函数,我们可以计算出粒子在不同位置和动量上的概率分布。
这个概率分布被称为概率波。
3. 微扰理论微扰理论是量子力学中的一种重要的近似计算方法,它被用于处理那些无法通过精确解析方法进行求解的问题。
大学物理下必考15量子物理知识点总结
§15.1 量子物理学的诞生—普朗克量子假设 一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2 hν, …分立值,其中n = 1,2,3…,h = 6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍。
§15.2 光电效应 爱因斯坦光量子理论 一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时, 光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
212m m eU =v 二、爱因斯坦光子假说和光电效应方程 1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子; 频率为v 的每一个光子所具有的能量为h εν=, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv ,如果hv 大于该金属的电子逸出功A ,这个电子就能从金属中逸出,并且有上式为爱因斯坦光电效应方程,式中2m 12m v 为光电子的最大初动能。
当h Aν<时,电子无法获得足够能量脱离金属表面,因此存在 三、光(电磁辐射)的波粒二象性光子能量2E mc h ν==光子质量2h hm c c νλ==光子动量h hp mc c νλ===光具有波粒二象性。
大学物理 量子物理
二.实物粒子的不确定性关系 物理根源是粒子的波动性 实物粒子的不确定性关系与光子的相同
三.能量与时间的不确定性关系
Et 2
• 能级自然宽度和寿命 设体系处于某能量状态的寿命为 t 则该状态能量的不确定程度E(能级自然宽度)
E 2t
四. 用不确定性关系作数量级估算 例1.原子中电子运动不存在“轨道” 设电子的动能 T =10 eV,平均速度
ˆ H 若 0 t
2
粒子的总能量
ˆ 为能量算符 称 H
用哈密顿量表示薛定谔方程 ˆ i ( r , t ) H (r , t ) t
§7 定态薛定谔方程
ˆ H 若 0 ,或U(x)与时间无关, t 则薛定谔方程可分离变量。 一.定态薛定谔方程 1.分离变量 设 ( x , t ) ( x ) T ( t ) 则 i d T( t ) ( x ) [ H ˆ ( x )]T ( t ) dt d T( t ) 1 1 ˆ i H( x ) E dt T ( t ) ( x )
• 光电效应是瞬时发生的 驰豫时间不超过10-9s ·饱和光电流强度 im 与入射光强 I成正比
im2 im1
-Uc
二.经典物理学所遇到的困难 按照光的经典电磁理论: • 光波的强度与频率无关,电子吸收的能 量也与频率无关,更不存在截止频率! • 光波的能量分布在波面上,阴极电子积 累能量克服逸出功需要一段时间,光电 效应不可能瞬时发生! 三.爱因斯坦的光量子论 1.普朗克假定是不协调的 只涉及发射或吸收,未涉及辐射在空间的传播。
例题3:将波函数 归一化 f x exp 2 x 2 2
设归一化因子为C,则归一化的波函数为 (x)= C exp(-2x2/2)
量子物理 知识点
量子物理是现代物理学中一门重要的学科,它研究的是微观世界中微粒的行为和性质。
量子物理的发展对于解释和理解微观世界的现象具有重要意义。
本文将从基础知识点出发,逐步介绍量子物理的一些重要概念和原理。
1.电子的波粒二象性量子物理的基础概念之一是波粒二象性,即微观粒子既具有粒子性又具有波动性。
例如,电子既可以表现为粒子,具有质量和电荷,又可以表现为波动,具有波长和频率。
这一概念由德布罗意提出,并通过实验证实。
2.不确定性原理量子物理的另一重要原理是不确定性原理,由海森堡提出。
它指出,不能同时准确测量微观粒子的位置和动量,测量其中一个属性的准确性越高,另一个属性的不确定性就越大。
这一原理揭示了微观世界的固有不确定性和测量的局限性。
3.波函数和量子态在量子物理中,波函数是描述微观粒子状态的数学函数。
它包含了对粒子位置、动量、能量等的描述。
波函数根据薛定谔方程演化,它的平方模的积分给出了在某个位置找到粒子的概率。
波函数的演化过程可以用量子力学中的幺正演化算符来描述。
4.超导和量子隧穿超导是一种特殊的物质状态,在低温下电阻消失,电流可以无损耗地流动。
超导的理论解释可以通过量子隧穿现象来理解。
量子隧穿是指微观粒子在经典物理学中无法克服的能量势垒时,通过量子力学的作用,出现在势垒的另一侧的现象。
5.干涉和纠缠量子物理中的干涉现象是指波动性粒子在相干条件下与自身或其他粒子干涉的现象。
干涉现象可以通过双缝干涉实验证实。
另外,量子物理中的纠缠现象是指两个或多个粒子之间存在的一种特殊的相关性,一个粒子的状态发生改变会立即影响到其他粒子的状态。
6.量子计算和量子通信量子物理的应用领域之一是量子计算和量子通信。
量子计算利用量子叠加和纠缠等特性,可以在某些特定情况下进行并行计算,从而具备超越经典计算机的计算能力。
量子通信则利用了量子纠缠的性质,实现了更加安全的信息传输。
总结起来,量子物理作为现代物理学的重要分支,揭示了微观世界中微粒的奇特行为和性质。
量子物理知识归纳总结
量子物理知识归纳总结量子物理是现代物理学的一门重要分支,研究微观世界的奇妙现象和规律。
在过去的一个世纪中,科学家们通过实验证明了许多关于量子物理的基本概念和原理。
本文将对几个重要的量子物理知识进行归纳总结,以帮助读者更好地理解这一领域的奥秘。
一、波粒二象性在量子物理中,物质既可以表现出波动性,又可以表现出粒子性。
这就是著名的波粒二象性。
根据德布罗意关系,任何物体都具有波动特性,其波长与其动量成反比。
这就使我们可以将微观粒子,如电子和光子,看作是既具有粒子性质又具有波动性质的实体。
二、不确定性原理不确定性原理是量子物理中的一个重要原理,由海森堡提出。
它指出,在测量某一粒子的位置和动量时,我们无法同时确定它们的准确值。
精确测量其中一个属性会导致对另一个属性的测量结果的不确定性增加。
这是由于测量本身的干扰不可避免,而量子粒子的位置和动量是彼此关联的。
三、量子叠加态和量子纠缠量子叠加态是指在未经观测之前,一个系统可以处于多个可能状态的叠加中。
只有在我们对其进行测量时,系统才会坍塌到其中一个确定的状态上。
这种现象可以通过著名的薛定谔猫故事来解释,即猫在未观测之前既是死又是活的。
量子纠缠是另一个引人入胜的量子物理现象。
当两个或多个粒子发生相互作用后,它们的状态会变得紧密相关,无论它们之间的距离有多远。
这意味着对一个粒子的测量会立即影响到其他纠缠粒子的状态。
这种纠缠关系一直被广泛应用于量子通信和量子计算等领域。
四、量子隧穿效应量子隧穿效应是指粒子能够穿过经典物理学中看似不可能的势垒或势阱的现象。
传统上,当粒子遇到一个比其能量高的势垒时,其应该被完全反射。
然而,在量子尺度下,粒子具有概率穿透势垒的特性,即使其能量低于势垒的能量。
五、量子态和量子比特在量子物理中,我们使用量子态来描述一个量子系统的状态。
一个量子态可以表示为几个基态的线性组合。
而量子比特是量子计算的基本单位,类似于经典计算机中的比特。
不同的是,量子比特可以同时处于0和1两个状态,这被称为叠加态。
大学物理量子力学总结(范本)
大学物理量子力学总结大学物理量子力学总结篇一:大学物理下必考15量子物理知识点总结15.1 量子物理学的诞生—普朗克量子假设一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2hν, …分立值,其中n = 1,2,3…,h =6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时,辐射和吸收的能量是hν的整数倍。
15.2 光电效应爱因斯坦光量子理论一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时,光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
1 mvm2?eU2二、爱因斯坦光子假说和光电效应方程1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子;频率为v 的每一个光子所具有的能量为??h?, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv,如果hv 大于该金属的电子逸出功A,这个电子就能从金属中逸出,并且有 1上式为爱因斯坦光电效应方程,式中mvm2为光电子的最大初动能。
量子基础必学知识点
量子基础必学知识点1. 量子力学的基本原理:量子力学是描述微观世界的物理学理论,其基本原理包括波粒二象性、不确定性原理、量子叠加原理和量子纠缠原理等。
2. 波粒二象性:根据波粒二象性,微观粒子既有粒子性质,如位置和动量,又有波动性质,如波长和频率。
3. 不确定性原理:不确定性原理指出,无法同时精确测量粒子的位置和动量,或者能量和时间。
即精确地测量其中一个物理量将导致对另一个物理量的测量结果不确定。
4. 量子叠加原理:量子叠加原理是指在某些情况下,量子系统可以同时处于多个可能的状态,而不必仅仅处于其中的一个。
5. 量子态:量子态用于描述量子系统的状态,可以通过波函数来表示。
波函数是一个复数函数,其模的平方表示该态下测量某一物理量得到特定结果的概率。
6. 测量与量子跃迁:在测量过程中,量子系统的态会发生跃迁,由一个可能的状态坍缩到一个确定的状态。
量子跃迁是量子力学中的一个基本现象。
7. 算符与算符的期望值:算符是用来描述物理量的操作符号,其作用于量子态会产生特定的效果。
算符的期望值是指对于某个物理量的测量结果的平均值。
8. Heisenberg 方程:Heisenberg 方程是用来描述量子系统中算符随时间演化的方程。
它是量子力学中的基本方程之一。
9. Schrödinger 方程:Schrödinger 方程是描述量子系统的演化的方程。
通过求解Schrödinger 方程,可以得到量子系统在不同时间的波函数演化。
10. 量子纠缠:量子纠缠是指两个或多个量子系统之间存在一种特殊的相互关系,使得一个系统的量子态无法独立地描述,只能通过同时描述这些系统的态来完全描述整个系统。
这些是量子基础中的一些必学知识点,对于了解和研究量子力学以及相关领域的物理学和工程学都是必备的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理 量子物理基础知识点
1.黑体辐射
(1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。
(2)斯特藩—玻尔兹曼定律:4
o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设
(1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=⨯⋅ (2)普朗克黑体辐射公式:2
5
21M T (
)1
hc
kt
hc e
λπλλ
=-(,)
3.光电效应和光的波粒二象性
(1)遏止电压a U 和光电子最大初动能的关系为:21
2
a mu eU = (2)光电效应方程: 21
2
h mu A ν=
+ (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h
ν=
= (4)光的波粒二象性(爱因斯坦光子理论):2mc h
εν==;h
p mc λ
==;00m =
其中0m 为光子的静止质量,m 为光子的动质量。
4.康普顿效应: 00(1cos )h
m c
λλλθ∆=-=
- 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h
m m c
λ-=
=⨯,0λ为康普顿波长。
5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221
11
T T H
R m n n m m n
νλ
=
=-=->()()(), (2)频率条件: k n
kn E E h
ν-=
(3) 角动量量子化条件:,
1,2,3...e L m vr n n ===
其中
2h
π
=
,称为约化普朗克常量,n 为主量子数。
(4)氢原子能量量子化公式: 122
13.6n E eV
E n n
=-=- 6.实物粒子的波粒二象性和不确定关系
(1)德布罗意关系式: h h p u λμ=
= (2)不确定关系: 2
x p ∆∆≥
; 2
E t ∆∆≥
7.波函数和薛定谔方程
(1)波函数ψ应满足的标准化条件:单值、有限、连续。
(2)波函数的归一化条件: (,)(,)1V
r t r t d ψψτ*
=⎰
(3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i
i
i
r t c r t c r t c r t ψψψψ=++=
∑
(4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ⎡⎤∂
=-∇+⎢⎥∂⎣⎦
8.电子自旋和原子的壳层结构
(1)电子自旋: 11),2
S s =
=
;1,
2
z s s S m m ==±
注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构
①原子核外电子可用四个量子数(,,,l s n l m m )描述:
主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。
角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。
磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。
自旋磁量子数:1
2
s m =± 它决定电子自旋角动量在外磁场方向上的分量。
②在多电子原子中,决定电子所处状态的准则是泡利不相容原理和能量最低原理。
9.X射线的发射和发射谱
(1)X射线谱是由两部分构成的,即连续谱和线状谱(也称标识谱)。
(2)连续谱是由高速电子受到靶的制动产生的韧致辐射;线状谱是由高速电子的轰击而使靶原子内层出现空位、外层电子向该空位跃迁所产生的辐射。