电机起动方式的选择(一)

合集下载

他励直流电动机起动方法(一)

他励直流电动机起动方法(一)

他励直流电动机起动方法(一)他励直流电动机起动1. 简介•了解他励直流电动机起动的基本原理•探讨为什么需要使用他励直流电动机2. 常见起动方法钥匙启动•使用钥匙来启动他励直流电动机•需要先将钥匙插入启动开关,然后拧动键位来启动电动机按钮启动•使用按钮来启动电动机•按下按钮后,电动机会被启动,可以通过调节按钮的位置来调整启动电流和加速度脚踏启动•使用脚踏来启动电动机•脚踏启动器通常连接到电动机控制台的底部,通过踩踏脚踏来启动电动机3. 特殊起动方法遥控启动•使用遥控器来启动电动机•遥控启动器通常是通过无线方式与电动机控制台连接,通过按下遥控器上的按钮来启动电动机变频起动•使用变频器来启动电动机•变频器可以调节电动机的转速和起动过程中的电流变化,提供更精确的控制感PLC控制启动•使用PLC(可编程逻辑控制器)来启动电动机•通过编写PLC程序,控制电动机的启动过程,可以根据实际需求进行灵活调整和自动化控制4. 结论•了解不同的他励直流电动机起动方法•根据实际需求选择合适的起动方式•在电动机起动过程中,注意安全和效率的平衡以上是针对”他励直流电动机起动”的相关内容介绍,希望可以对您有所帮助。

5. 选用适当的起动方法在选择适当的起动方法之前,需要考虑以下几个因素:动力需求•评估所需的起动电流和加速度•不同起动方法对电动机的动力需求有所不同,根据实际情况选择合适的方法控制要求•考虑是否需要对起动过程进行精确的控制•如果需要精确控制电动机起动过程中的转速和电流变化,可以选择使用变频器或PLC控制启动方便性和安全性•考虑操作的方便性和安全性•钥匙启动和按钮启动较为常见,操作简单方便,但可能缺乏精确控制•脚踏启动需要特定的脚踏装置,操作相对不太方便•遥控启动可以远程操作,但需要有相应的遥控器和接收器自动化需求•考虑是否需要自动化控制电动机的起动过程•如果需要自动化控制,可选择使用PLC控制启动,并根据实际需求编写相应的PLC程序综合考虑这些因素,选择适合自己需求的起动方法是关键。

电动机的启动方式与起动装置选择

电动机的启动方式与起动装置选择

电动机的启动方式与起动装置选择电动机是一种将电能转换为机械能的设备,广泛应用于工业生产和日常生活中。

在电动机运行前,需要选择适当的启动方式和起动装置来确保电动机能够有效、安全地启动。

本文将探讨电动机的启动方式以及起动装置的选择。

一、电动机的启动方式1. 直接起动方式直接起动是最简单、最常用的启动方式。

它的原理是将电源直接接入电动机,通过控制电源的开关来启动和停止电动机。

直接起动适用于小型电动机或对起动时间无特殊要求的场合。

这种方式简单可靠,成本低,但对电源的冲击较大,容易引起电网电压的瞬间下降。

2. 限流起动方式限流起动方式通过限制电动机的电流来达到缓慢启动的目的。

其中一种常见的方法是使用启动电阻,通过逐步减小电阻的方式来限制电流增长的速度,从而使电动机实现缓慢启动。

限流起动方式适用于启动负载较重或对电源冲击要求较高的电动机。

3. 自耦变压器起动方式自耦变压器起动方式是通过自耦变压器来降低电源电压,从而使电动机实现缓慢启动。

使用自耦变压器能够减小启动时电动机对电源的冲击,提高起动过程的平稳性。

这种方法适用于起动大功率电动机或对启动冲击要求较低的场合。

4. 频率变换器起动方式频率变换器起动方式是通过改变电源频率来控制电动机的启动和停止。

频率变换器将电源的交流电转换为直流电,再通过中间环节将其转换为对应频率的交流电供给电动机。

这种方式适用于对电动机启动的平稳性和精度要求较高的场合。

二、起动装置的选择1. 起动电阻器起动电阻器主要用于限制电动机的起动电流,减少启动时对电源的冲击。

它适用于小型电动机或起动冲击要求较高的电动机。

起动电阻器可以通过调节电源电阻来控制启动电流的大小,从而实现缓慢启动的效果。

2. 软起动器软起动器是一种智能化的起动装置,它通过电子元件来实现对电机的启动和停止控制。

软起动器具有启动过程的平稳性好、启动电流小、调速性能好等优点。

它适用于对电动机起动和停止过程要求较高的场合。

3. 磁力启动器磁力启动器是一种通过电磁力来实现对电动机启动和停止的装置。

电动机启动方式的选择-解析

电动机启动方式的选择-解析

电动机启动方式的选择-解析电动机启动方式的选择-解析电机启动方式的选择笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析? 笼型感应电动机全压起动星三角换接起动自耦变压器降压起动起动电流起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。

笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择1 全压起动1.1 全压起动的优点及允许全压起动的条件全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

尤其是消防泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。

交流电动机起动时,其端子上的计算电压应符合下列要求(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?对于低压电动机,还应保证接触器线圈的电压不低于释放电压。

电机常用启动方式介绍

电机常用启动方式介绍

电机常用启动方式介绍电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压启动,Y-Δ 降压启动,软启动器启动,变频器启动等等方式。

那么他们之间有什么不同呢?1、全压直接启动在电网容量和负载两方面都允许全压直接启动的情况下,可以考虑采用全压直接启动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的启动,从节约电能的角度考虑,大于11kW 的电动机不宜用此方法。

2、自耦减压启动利用自耦变压器的多抽头减压,既能适应不同负载启动的需要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

它的最大优点是启动转矩较大,当其绕组抽头在80%处时,启动转矩可达直接启动时的64%。

并且可以通过抽头调节启动转矩。

至今仍被广泛应用。

3、Y-Δ启动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。

采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。

如果直接启动时的启动电流以6~7Ie 计,则在星三角启动时,启动电流才2~2.3 倍。

这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接启动时的1/3。

适用于无载或者轻载启动的场合。

并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4、软启动器这是利用了可控硅的移相调压原理来实现电动机的调压启动,主要用于电动机的启动控制,启动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外,电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。

电动机的5种启动方式(图文)

电动机的5种启动方式(图文)
变频器能完成实现电机的软起软停,所以在相对负载较大的 场合,Y-Δ、自耦减压启动或软启动都比不上变频器。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
软启动,变频器,减压启动综合分析
价格问题自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。对于 投入较小的项目,经济性就会成为首选; 可控问题 Y-Δ、自耦减压启动简单,但仅仅只是启动。但在自动化程度高的 场合,估计就会使用得较少,甚至软起也少。而通过变频器调控 电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。 所以变频器在大型或自动化程度高的生产线就是首选了。
这是利用了可控硅的移相调压 原理来实现电动机的调压起动,主 要用于电动机的起动控制,起动效 果好但成本较高。因使用了可控硅 元件,可控硅工作时谐波干扰较大, 对电网有一定的影响。
另外电网的波动也会影响可控 硅元件的导通,特别是同一电网中 有多台可控硅设备时。因此可控硅 元件的故障率较高,因为涉及到电 力电子技术,因此对维护技术人员 的要求也较高适用于无载或者轻载起动的场合。并且同任何别的减压 起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时, 可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹 配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。

循环水泵站电机起动方式的选择

循环水泵站电机起动方式的选择

循环水泵站电机起动方式的选择摘要:在高炉循环水系统中水泵电机台数多,根据电机起动时对电网影响大,通过对不同启动方式的选择,使电机在启动过程中能够稳定,经济的运行。

本文主要介绍循环水系统中水泵电机启动方式的选择,及在实际使用中的效果。

关键词:高低压交流电机电机起动软启动器钢铁企业高炉用水量大,要求给排水设施安全可靠性较高,技术较复杂。

主要是高炉系统炉壁、风口、热风阀等冷却用水及高炉区所有液压站、除尘风机、助燃风机、TRT余压发电装置、空调冷却等冷却水的处理及供应。

高炉鼓风机、发电机组的冷却用水量同样大。

涉及到的电机型号繁多,其中低压电机11台,高压电机18台。

电机功率由22 kW至1400 kW,采用何种起动方式能够保证设备的稳定运行,同时又能够经济高效。

1 小功率电机的启动方式选择如果泵站内全部采用全压直接启动时,启动电流会达到额定电流的5~7倍,全压启动时所在电网系统压降非常大,这回破坏同网其他设备的正常运行,严重时甚至会引起电网失去稳定,产生系统故障跳闸。

直接启动,也会产生较高的峰值转矩,从而对电动机及整个机械装置造成有害的冲击。

但全压直接启动维护简单,投资少,比较经济。

下面对小功率低压电机选择启动方式进行论述:我厂高炉中心泵站和鼓风机泵站小功率低压电机主要是3台综合泵电机和2台过滤泵电机,他们的功率分别是55 kW和22 kW。

泵站的变压器容量分别为1600 kV A和630 kV A,根据经验公式(其中Ist 为电机全压起动电流,In为电机额定电流,P为电机功率,S为变压器容量)计算,全压起动电流按照7倍计算,根据计算结果可以看出符合要求,故上述电机均可以直接全压起动。

同时全压起动可以减少电气设备,线路简单维修量小等特点,符合经济稳定运行的目的。

从而上述4台低压电机采用全压起动的方式。

2 大功率高压、低压电机的启动方式选择高炉中心泵站和鼓风机泵站仍有其他大功率电机其中包括160 kW增压泵低压电机3台,90 kW低压炉顶泵电机3台,500 kW二次泵高压电机3台,800 kW软水中压泵电机3台,630 kW软水高压泵电机3台,1000 kW软水主供电机3台,鼓风机泵站的1400 kW外供泵高压电机6台。

排涝泵站电机启动方式的选择与探讨

排涝泵站电机启动方式的选择与探讨

排涝泵站电机启动方式的选择与探讨1.电动机的启动方式1.1全压启动全压启动是最简单启动方式,它是将电动机的定子绕组直接接入额定电压启动,因此也称为直接启动。

全压启动的启动电流大,鼠笼式异步电动机的启动电流一般为额定电流的4~7倍,启动转矩为额定转矩1.2~2.0倍。

全压启动具有启动转矩大、启动时间短、启动设备简单、操作方便、易于维护、投资省和设备故障率低等优点。

采用全压启动,如果电动机的功率较大,电动机的启动电流将会引起配电系统的电压显著下降,导致其他设备低电压保护跳闸,或其他电机因驱动转矩下降而堵转。

要保证电网电压正常工作,往往要加大配电变压器的容量。

对于中小型泵站的电机,允许直接启动的最大容量,一般不宜超过变压器容量的35%。

这样一方面造成设备投资的增加;另一方面增加了变压器铜损和铁损,造成不必要能源损耗,电费增加。

1.2降压启动1.2.1星-三角降压启动采用星-三角型降压启动,电动机启动电压为额定电压的0.58倍,启动电流降为三角形接法的启动电流的0.33倍,启动转矩也降为三角形接法的启动电流的0.33倍。

此种启动方式适用于定子绕组额定电压380v,正常运行时三角形接法,且启动过程中负载转矩一直保持很小的中小型容量的电动机的启动。

星一三角型降压启动设备简单,价格低,维修方便。

启动电流小,启动转矩也小,可以频繁启动。

是小型泵站经常采用的启动方式,大型异步电机不能重载启动。

1.2.2电阻降压启动笼形异步电动机定子回路串电阻启动,是在电动机启动时,在三相定子回路中串接对称三相电阻,由于串联了电阻,使加在电动机绕组上的电压低于电网电压,待启动后,再将电阻短路,电动机在额定电压下正常运行。

定子回路接入对称电阻的这种启动方式的启动电流较大,而启动转矩较小。

如启动电压降至额定电压的80%,启动电流为全压启动电流的80%,而启动转矩仅为全压启动转矩的64%,且启动过程中消耗的电能较大,如果频繁启动,则电阻的温升很高,对精密的生产机械有一定的影响。

电机的启动方式有什么

电机的启动方式有什么

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。

那么他们之间有什么不同呢?1、全压直接起动在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。

2、自耦减压起动利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。

它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。

并且可以通过抽头调节起动转矩。

至今仍被广泛应用。

3、Y-Δ起动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。

这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ起动)。

采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。

如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。

这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。

适用于无载或者轻载起动的场合。

并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4、软起动器这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。

电机的五种启动方式比较

电机的五种启动方式比较

电机的五种启动方式比较电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压启动,Y-Δ 降压启动,软启动器启动,变频器启动等等方式。

那么他们之间有什么不同呢?1、全压直接启动在电网容量和负载两方面都允许全压直接启动的情况下,可以考虑采用全压直接启动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的启动,从节约电能的角度考虑,大于11kW 的电动机不宜用此方法。

2、自耦减压启动利用自耦变压器的多抽头减压,既能适应不同负载启动的需要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

它的最大优点是启动转矩较大,当其绕组抽头在80%处时,启动转矩可达直接启动时的64%。

并且可以通过抽头调节启动转矩。

至今仍被广泛应用。

3、Y-Δ启动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。

采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。

如果直接启动时的启动电流以6~7Ie 计,则在星三角启动时,启动电流才2~2.3 倍。

这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接启动时的1/3。

适用于无载或者轻载启动的场合。

并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4、软启动器这是利用了可控硅的移相调压原理来实现电动机的调压启动,主要用于电动机的启动控制,启动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外,电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。

电机的各种启动方式性能及优缺点对比

电机的各种启动方式性能及优缺点对比

电机的各种启动方式性能及优缺点对比一、各种启动方式的性能对比1.直接启动直接启动是最简单的电机启动方式,直接将电源接通。

其性能优点是简单、成本低、安装维护方便。

但缺点是启动冲击大,电流突变会对电网和电机造成冲击,可能引起设备损坏或电网不稳定。

2.步进启动步进启动是通过将电动机的启动电流以逐步增加的方式进行启动。

其性能优点是启动过程平稳,缓解了直接启动所带来的冲击,可以有效保护设备和电网。

但缺点是启动时间较长,不能满足一些对快速启动的要求。

3.自耦变压器启动自耦变压器启动是通过在电机线圈中引入自耦变压器,降低电压来减小启动电流。

其性能优点是启动冲击小,可以有效延长电机和设备的使用寿命。

但缺点是成本较高,维护困难,启动时间较长。

4.电压降低启动电压降低启动是通过降低电源电压来减小启动电流。

其性能优点是启动冲击小,保护设备,电压恢复后电机能正常工作。

但缺点是启动时电机转矩较小,启动过程中可能出现振动,不适合对转矩要求较高的设备。

5.频率变换启动频率变换启动是通过变换电源电压的频率来实现电机启动。

其性能优点是启动平稳,电流变化较小,对电网影响较小。

但缺点是设备复杂,成本较高。

1.直接启动优点:简单、成本低、安装维护方便。

缺点:启动冲击大,可能引起设备损坏,电网不稳定。

2.步进启动优点:启动过程平稳,可以缓解直接启动的冲击,保护设备和电网。

缺点:启动时间较长,不能满足对快速启动的要求。

3.自耦变压器启动优点:启动冲击小,可以有效延长电机和设备的使用寿命。

缺点:成本较高,维护困难,启动时间较长。

4.电压降低启动优点:启动冲击小,保护设备,电压恢复后电机能正常工作。

缺点:启动时电机转矩较小,不适合转矩要求较高的设备。

5.频率变换启动优点:启动平稳,电流变化小,对电网影响小。

缺点:设备复杂,成本较高。

综上所述,不同的启动方式具有各自的优缺点,选择适合的启动方式需要根据具体的应用场景和需求进行评估。

对于对电压和转矩要求较高的设备,可以选择步进启动或自耦变压器启动;对于对启动冲击要求小,且成本低的设备,直接启动是一个较好的选择;对于对启动平稳性要求较高的设备,可以选择频率变换启动。

如何选择电动机的启动方式

如何选择电动机的启动方式

如何选择电动机的启动方式?
电动机的启动方式有两种:
1、直接启动
直接启动就是利用闸刀开关或接触器把电动机直接接到具有额定电压的电源上。

这种启动方式的优点是操作和启动设备简单,启动快。

但对一台电动机是否能够采用直接启动,还受电网容量的限制。

因为直接启动时,电动机加的是额定电压,旋转磁场较强,转子切割磁力线的速度又很快,所以启动电流很大,是额定电流的4~7倍。

这样大的电流通过线路会造成较大的电压降。

由于转矩与电压平方成正比,电网电压降低会使电动机因本身启动转矩减小而不能启动,此外还会影响电网上其它电器的正常工作(如电灯突然变暗、正在工作的电动机突然停止转动等)。

如果电动机功率较小,上述问题还不太突出。

通常,电动机功率在7KW以下的可以直接启动。

随着电力系统容量的不断增大,鼠笼式感应电动机采用直接启动的也越来越多。

目前有些地区确定10KW以下的电动机都可采用直接启动。

2、降压启动
降压启动是当电源的容量不够大时所采用的启动方法。

在启动时通过一定的设备使加到电动机上的电压适当降低,这样旋转磁场就要减弱,转子电流与定子电流都会随着减少,直到电动机转速稳定后,再使电动机在额定电压下正常运转。

降压启动时,电动机启动转矩也
降低了,所以降压启动只适于对启动转矩要求不高的场合。

电动机的启动方式与起动器选择

电动机的启动方式与起动器选择

电动机的启动方式与起动器选择电动机是现代社会中非常常见的一种电气设备,广泛应用于各个领域,如工业生产、交通运输、农业等。

而电动机的启动方式和起动器选择直接关系到电动机的性能和使用效果。

本文将探讨电动机的几种启动方式和对应的起动器选择,以帮助读者更好地理解和应用电动机。

一、电动机的启动方式1. 直接启动直接启动是电动机最简单、最常见的启动方式之一。

它的原理是电动机直接将电能转化为机械能,从而使电动机启动。

直接启动适用于小功率电动机,因为小功率电动机通常只需要短时间的加速和启动。

直接启动的优点是结构简单、成本低,但缺点是启动时电流峰值较大,对电网冲击较大。

2. 步进启动步进启动是通过逐渐增加电动机的起动线圈来实现电动机的启动。

可以根据电动机的负载情况和启动要求来调整步进启动的步进程度。

步进启动的优点是可以减小启动过程中的启动电流,避免电动机和电网的冲击,提高电动机的使用寿命。

但步进启动的缺点是启动过程时间较长。

3. 磁阻启动磁阻启动是通过在电动机的转子上加装磁阻器,改变电动机的转矩特性,实现电动机的启动。

磁阻启动适用于大功率电动机,因为大功率电动机的启动电流较大,需要通过加装磁阻器来实现缓慢启动,以减小对电网的冲击。

磁阻启动的优点是启动电流小,启动过程平稳,但缺点是成本较高,在实际应用中需谨慎选择。

二、起动器的选择起动器是用来控制电动机启动和停止的装置,通常由接触器、断路器和保护装置组成。

根据电动机的启动方式和使用要求,可以选择合适的起动器来实现电动机的安全启动和停止。

1. 直接启动器直接启动器适用于小功率电动机的直接启动方式。

它包括一个接触器和断路器,通过手动或自动控制,将电能直接输送给电动机,实现电动机的启动和停止。

直接启动器的优点是结构简单、使用方便,但缺点是适用范围有限。

2. 自动起动器自动起动器适用于中、大功率电动机及需要较长启动时间的电动机。

自动起动器包括接触器、断路器、保护装置和计时器等,通过设定启动时间和启动过程中的电流变化,控制电能的逐步输入,实现电动机的平稳启动和停止。

电机的五种启动方式

电机的五种启动方式

电机的五种启动方式
电机的五种启动方式包括:
1.全压直接启动:在电网容量和负载两方面都允许全压直接启动的情况下,可
以考虑采用全压直接启动。

这种方式操作控制方便,维护简单,且成本较低,主要用于小功率电动机的启动。

2.自耦减压启动:利用自耦变压器的多抽头减压,既能适应不同负载启动的需
要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

3.Y-Δ启动:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,
如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ 启动)。

4.软启动器:利用可控硅的移相调压原理来实现电动机的调压启动,主要用于
电动机的启动控制,启动效果好但成本较高。

5.变频器:是现代电动机控制领域技术含量最高、控制功能最全、控制效果最
好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。

在实际应用中,应根据电机的具体参数、使用环境、负载大小和需求来选择合适的启动方式。

电机起动方式的选择

电机起动方式的选择

电机起动方式的选择电机起动方式的选择主要考虑:1 起动时给电网造成的压降,一般不超过15%,频繁起动的不超过10%,主要考虑起动时不要给别的用电设备造成欠压而保护动作。

2 起动时电机的端电压是否满足厂家要求,一般为65%Un3 起动转矩。

对于带载起动的电机,尤其要注意,起动转矩太小的话,会造成堵转。

就本例假设如下:(单一45KW电机起动)变压器:800KVA/5%,电缆YJV(3x35+10)/100m,电机:45KW/IL=7/TL=1.8。

变压器高压侧为无穷大系统。

直接起动时计算:变压器压降为:2.3%电缆压降为: 13.7%电机端电压为:84%起动转矩为:0.84%^2x1.8=1.27Tn星-三角起动时计算:变压器压降为:1.2%电缆压降为: 7.8%电机端电压为:91%起动转矩为:0.84%^2x1.8=0.5Tn由上分析,我建议直接起动,若星-三角起动,要考虑你的负载情况,能否在0.5Tn下带动负载?若是满载,估计起不来了!说到电机的大小,可能没有标准,但是用高压电机还是低压电机,还是蛮有说法的,一般是300KW 以上用高压电机,以提高效率。

但是变频器所带的电机,就可以等大点。

高压变频器可不便宜啊!至于电机多大为大?我为15700KW电动机(同步)设计过控制和保护开关柜。

听说鞍山钢铁有一4 2MW的电动机在运行,是高炉风机电机。

我没有看到,但是是西门子的人说的,应该可信吧!首先从本文题目来说,讨论的仅仅是两台45KW电机,在带载状态下能否直接启动而不涉及其它方面的考虑。

在一般情况下电机能否直接启动起决定作用的,不是电机的大小,而是电源容量的大小。

通常规定电源容量在180千伏安以上电机在7千瓦以下的使用直接启动。

而其它情况下判断一台电机能否直接启动有一个经验公式:Ist(电机全压启动电流,安) /IN(电机额定电流,安)<=3/4+电源容量(千伏安)/4*电机功率(千瓦)只要满足以上公式电机就可直接启动。

交流电动机的起动方式

交流电动机的起动方式

交流电动机的起动方式(1)全压起动(直接起动)笼型异步电动机满足下列条件时,可以采用全压起动。

a. 起动时对电网造成的电压降不超过规定的数值。

一般需要经常起动时,其电压降不得超过10%,偶而起动时不超过15%。

在保证生产机械所要求的起动转矩而又不致影响其他用电设备的正常工作时,其电压降可允许为20%或更大一些。

b. 起动功率不超过供电设备和电网的过载能力。

笼型异步电动机允许全压起动的功率和电源容量之间的关系.2) 减压起动(1)绕线转子异步电动机转子串电阻分级起动(2)绕线转子异步电动机转子串频敏变阻器起动采用频敏变阻器起动,其优点是可省去庞大的起动电阻器,线路简单,维修简便。

但因其功率因数低、起动转矩小,对要求在低速下运转和起动转矩大的场合,不宜采用。

(3)笼型异步电动机减压起动鼠笼转子异步电动机转子电路在内部闭合,不能外串起动设备,只能在定子电路中采取措施。

其减压起动方法主要有定子电路串电阻起动、Y-△起动、延边三角形起动和自耦变压器减压起动等。

(4).软启动器如:热媒循环泵150-P01A,B,C,D.研磨机122/222-M01soft start是一种集电机软启动,软停车,轻载节能和多种保护功能于一体的新颖电机控制装置.主电路由电机的起停控制装置和软启动控制器组成,核心软启动器由功率半导体器件和其他电子元器件组成.软启动器是利用电力电子技术与自动控制技术将强弱电结合,其主要结构是一组串接于电源与被控电机之间的三相反并联晶闸管及其电子控制电路,利用晶闸管移相控制三相反并联晶闸管的导通角,使被控电机的输出电压从0 开始,按预设函数关系逐渐上升,直到达到满足启动转矩而使电机顺利启动.(5)变频起动(4) 异步电动机a. 特点:①笼型电动机结构简单,制造容易,价格便宜;②绕线转子电动机可以通过在转子回路中串电阻、频敏电阻或通过双馈改变电机特性,改善起动性能或实现调速;③功率因数及效率低。

在采用变频调速时加大变频器容量;④气隙小,大功率电机制造困难;⑤调速控制系统比同步电动机的简单。

电动机的启动和调速方法有哪些

电动机的启动和调速方法有哪些

电动机的启动和调速方法有哪些电动机作为现代工业和日常生活中广泛应用的动力设备,其启动和调速方法的选择对于系统的性能和效率具有重要影响。

接下来,让我们详细了解一下电动机的启动和调速方法。

一、电动机的启动方法(一)直接启动直接启动是最简单的启动方式,将电动机直接连接到电源上。

这种方法的优点是操作简单、成本低。

但它也存在一些局限性,比如启动电流较大,通常可达额定电流的 4 7 倍。

这会对电网造成较大冲击,可能导致电网电压下降,影响其他设备的正常运行。

因此,直接启动一般适用于功率较小的电动机,且电网容量足够大的情况。

(二)降压启动为了减小启动电流对电网和电动机的冲击,常常采用降压启动的方法。

常见的降压启动方式有:1、星三角降压启动在启动时,将电动机的定子绕组接成星形,此时每相绕组承受的电压为电源电压的1/√3 ,启动电流和启动转矩也相应减小。

当电动机转速接近额定转速时,再将定子绕组切换成三角形连接,电动机在全压下运行。

这种方法简单可靠,但只适用于正常运行时定子绕组为三角形接法的电动机。

2、自耦变压器降压启动利用自耦变压器降低加到电动机定子绕组上的电压,从而减小启动电流。

启动结束后,切除自耦变压器,电动机在全压下运行。

自耦变压器有多个抽头,可以根据需要选择不同的降压比例。

3、软启动器启动软启动器通过控制晶闸管的导通角,逐渐增加电动机的定子电压,实现平滑启动。

软启动器可以限制启动电流,并根据设定的参数调整启动时间和启动转矩。

它具有多种保护功能,如过载保护、缺相保护等。

(三)变频启动变频启动是通过改变电源的频率来实现电动机的启动。

变频器可以将电源的频率和电压按照一定的规律进行调节,使电动机在较低的频率和电压下逐渐启动,从而减小启动电流和冲击。

变频启动具有启动平稳、调速范围宽、节能等优点,但成本相对较高。

二、电动机的调速方法(一)变极调速通过改变电动机定子绕组的极对数来改变电动机的转速。

这种方法简单,但调速级数有限,通常为二速或三速,适用于不需要平滑调速的场合。

交流电动机常用启动方式选择

交流电动机常用启动方式选择

交流电动机常用启动方式选择沟通电动机的起动电流大(一般约为额定电流的5~7倍)。

大的起动电流(由于起动时间短)对电机本身来说,尚不至于引起电机温度的显著提髙(频繁起动除外),但却会引起电网电压的显著降低,因而影响接在同一母线上的其他用电设备的正常运行。

所以对沟通电动机的起动,必需依据电容的容量、电动机的起动电流的大小及负载大小等状况做综合考虑后选择合适的起动方法。

沟通电动机的常用启动方式:直接启动,星形-三角形启动,自耦变压器降压启动,软启动,变频器启动。

1、电机启动方式1.1、全压直接起动全压起动是最常用的起动方式,也称为直接起动。

它是将电动机的定子绕组直接接入电源,在额定电压下起动,具有起动转矩大、起动时间短的特点,也是最简洁、最经济和最牢靠的起动方式。

1.2、星三角Y-△起动对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,假如在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。

这样的起动方式称为星三角减压起动,或简称为星三角起动(Y—△起动)。

采纳星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。

假如直接起动时的起动电流以6~7Ie计,则在星三角起动时,起动电流才2~2.3倍。

这就是说采纳星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。

适用于无载或者轻载起动的场合。

并且与其它减压起动器相比较,其结构最简洁,价格也最廉价。

除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提髙,并使之节省了电力消耗。

1.3、自耦变压器降压启动自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。

待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运行。

采纳自耦变压器降起动时,与直接起动相比较,起动电压降低得许多(为额定电压1/4~1/7),而起动转矩降低得更多;且自耦变压器不允许频繁起动,因而限制了它的广泛使用。

电机启动方案

电机启动方案

电机启动方案引言电机是现代工业中广泛采用的关键设备,它在各种机械和电气设备中起着至关重要的作用。

在许多应用中,电机的启动过程可能会面临一些技术挑战,包括电压起动、直接起动和星三角起动等。

本文将探讨几种常见的电机启动方案,并分析其原理和适用场景。

一、电压起动方案电压起动是一种常见的电机启动方案,通过改变供电电压的方式来控制电机的启动。

电压起动方案适用于小型电机和中小功率电机。

其基本原理是通过降低电压来减小电机的启动转矩,以防止启动时电机因过载而损坏。

电压起动可以通过两种方式实现:1.1 自动变压器起动自动变压器起动是一种常见的电机启动方案,通过在启动时使用自动变压器来降低供电电压。

自动变压器具有多个输出绕组,可以根据需要选择不同的电压输出。

在启动阶段,自动变压器将初级绕组电压降低到较低的电压级别,以减小电机的启动转矩。

1.2 变频器启动变频器启动是另一种常见的电压启动方案,通过变频器来改变供电频率和电压,从而实现电机的启动。

变频器可以将电网频率 (通常为 50Hz 或 60Hz) 转换为电机所需的工作频率,同时控制电压以实现电机的启动过程。

变频器启动在实现平稳启动和控制电机速度方面具有优势。

二、直接启动方案直接启动是一种电机启动方案,其特点是将电机直接连接到电源供电,没有额外的启动装置。

这种启动方式通常适用于小型电机和负载较小的应用。

直接启动的优点是简单、成本低廉,但缺点是启动时电流突增,可能对电网和电机造成冲击。

三、星三角启动方案星三角启动是一种常用的电机启动方案,其基本原理是通过改变电机的绕组连接方式来减小启动时的电流和转矩。

在星接线状态下,电机的起动电流和转矩较大;而在三角接线状态下,电机的起动电流和转矩较小。

星三角启动方案通常适用于中型和大型电机。

它需要使用专门的星三角接线器或控制装置来实现相应的切换操作。

星三角启动方案具有平稳启动、降低启动电流和转矩的优点,但缺点是要求额外的设备和复杂的接线。

电机启动方式及原理和接线方式

电机启动方式及原理和接线方式

直接启动:直接启动的‎优点是所需‎设备少,启动方式简‎单,成本低。

电动机直接‎启动的电流‎是正常运行‎的5倍左右‎,理论上来说‎,只要向电动‎机提供电源‎的线路和变‎压器容量大‎于电动机容‎量的5倍以‎上的,都可以直接‎启动。

这一要求对‎于小容量的‎电动机容易‎实现,所以小容量‎的电动机绝‎大部分都是‎直接启动的‎,不需要降压‎启动。

对于大容量‎的电动机来‎说,一方面是提‎供电源的线‎路和变压器‎容量很难满‎足电动机直‎接启动的条‎件,另一方面强‎大的启动电‎流冲击电网‎和电动机,影响电动机‎的使用寿命‎,对电网不利‎,所以大容量‎的电动机和‎不能直接启‎动的电动机‎都要采用降‎压启动。

直接启动可‎以用胶木开‎关、铁壳开关、空气开关(断路器)等实现电动‎机的近距离‎操作、点动控制,速度控制、正反转控制‎等,也可以用限‎位开关、交流接触器‎、时间继电器‎等实现电动‎机的远距离‎操作、点动控制、速度控制、正反转控制‎、自动控制等‎。

由于刚启动‎的时候转差‎率为1,也就是转子‎处于堵转状‎态,这时候由于‎转差率太大‎,也就是说转‎子导条和定‎子磁场的相‎对速度很高‎,这时候就会‎在转子导条‎的两端产生‎一个比较高‎的感应电压‎,由于转子导‎条处于短路‎状态,所以肯定会‎产生一个很‎大的启动电‎流,如果结合变‎压器来考虑‎的话,那么电动机‎转子就相当‎于变压器的‎负载侧,负载侧短路‎就相当于原‎边短路,所以转子的‎电流变化势‎必会表现在‎定子上面,这就会造成‎定子绕组输‎入电流达到‎额定电流的‎4到7倍,一旦转子转‎动起来以后‎,转差率变小‎,感应到转子‎上面的电压‎也会降低,这样转子电‎流就会降低‎,转子电流的‎变化同样也‎会表现在定‎子绕组上,这样等电动‎机启动结束‎以后其实感‎应到转子上‎的电压是比‎较低的,由于感应到‎转子的电压‎比较低,这样转子上‎面的电流也‎不会太大,相应的定子‎上面的电流‎也就不会太‎大,一旦加载以‎后,转差率的改‎变就会改变‎转子以及定‎子的电流!使用自偶变‎压器降压启‎动:采用自耦变‎压器降压启‎动,电动机的启‎动电流及启‎动转矩与其‎端电压的平‎方成比例降‎低,相同的启动‎电流的情况‎下能获得较‎大的启动转‎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电机起动方式的选择(一)
笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析?笼型感应电动机全压起动星三角换接起动自耦变压器降压起动起动电流起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。

笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择
1全压起动
1.1全压起动的优点及允许全压起动的条件
全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

尤其是消防
泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?
全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。

交流电动机起动时,其端子上的计算电压应符合下列要求
(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%
(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%
(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?
对于低压电动机,还应保证接触器线圈的电压不低于释放电压。

对于自设变压器的高压用户,较容易满足上述电压波动值的限制,很可能允许全压起动,这正是本文要讨论的主要问题之一
需要注意的是,《规范》中规定的电压是电动机端子上的计算电压,其真正目的却是为了限制电动机起动时配电系统的电压降,以免影响其他设备的运行。

过去曾规定“电源母线”电压波动值,由于“母线”的含义对于多级配电系统来说,其位置不太明确,设计者不易掌握。

现规定
电动机端子电压,既易满足配电系统的要求,又顾及到了相同条件下的其他电动机。

《规范》规定电动机端子上的计算电压,实际上是配电系统电压的参考点,随着配电变压器容量的不断增大,电动机的起动电流占变压器额定电流的比例越来越小,电动机起动时引起的压降也越来越小,采用全压起动的电动机也就越来越多?
1.2电动机起动时的压降及允许全压起动的电动机最大功率
为控制电动机起动时配电系统的压降,需要进行压降的分析与计算。

如果电动机的电源是从变电所低压柜以专线放射式引来,电动机起动引起配电系统的压降就接近变压器出线端的压降,而影响此压降的主要因素是变压器的内阻抗,其表现形式是变压器的阻抗电压百分数。

根据电动机的起动电流、变压器容量及其阻抗电压百分数,可以估算电动机起动时配电。

相关文档
最新文档