代数学引论高教第二版答案(第一章)

合集下载

高等数学讲义答案第一章

高等数学讲义答案第一章

第一章 极限与连续第一节 函 数【例1】研究函数)1ln()(2x x x f ++=的奇偶性,并求其反函数. 【分析】()f x 定义域为R ,()ln(ln(()f x x x f x -=-==-+=-故()f x 为奇函数.由)1ln()(2x x x f ++=得,y e x =yex -=-+两式相减得.2y ye e x --=【例2】设0,0()1,0x f x x <⎧=⎨≥⎩, 22,1()||2,1x x g x x x ⎧-<⎪=⎨-≥⎪⎩, 试求[()],[()]f g x g f x .【分析】0,12[()]1,12x f g x x x ⎧≤<⎪=⎨<≥⎪⎩或,2,0[()]=1,0x g f x x <⎧⎨-≥⎩.【例3】设函数2||sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ).()()A 1,0- ()()B 0,1 ()()C 1,2 ()()D 2,3【分析】()1,0x ∈-,2||sin(2)11()(1)(2)144x x f x x x x -=≤=--⨯,故有界,选(A ) 2111||sin(2)sin(2)lim ()lim lim (1)(2)(1)x x x x x x f x x x x x ---→→→--===+∞--- 111sin(2)sin(2)lim ()lim lim (1)(1)x x x x x f x x x +++→→→--===-∞-- 222222sin(2)(2)1lim ()lim lim lim (2)(2)2x x x x x x f x x x x ++++→→→→--====+∞--- 故BCD 均不正确.第二节 极 限【例1】讨论11012lim12x x x→-+.【分析】1111001212lim 1,lim 11212x x x x xx+-→→--=-=++,故此极限不存在.【例2】讨论1121lim ()xx x x e e+→-. 【分析】111111221122lim ()lim ,lim ()limttttt t xx xx t t x x e e e ex e e x e e t t +-++++→+∞→-∞→→---==+∞-==故此极限不存在.【例3】110|sin |lim 21x x x x e x e →⎛⎫⎪- ⎪ ⎪+⎝⎭. 【分析】1111000|sin |sin lim 2lim 2lim 12111x xx x x x x x e x e x x e e +++→→→⎛⎫ ⎪-=-=-=- ⎪ ⎪++⎝⎭1111000|sin |sin lim 2lim 2lim 10111x xx x x x x x e x e x x e e --+→→→⎛⎫- ⎪-=-=--=- ⎪ ⎪++⎝⎭,故110|sin |lim 2 1.1x x x x e x e →⎛⎫⎪-=- ⎪ ⎪+⎝⎭【例1】)0,0,0()(lim 1>>>++∞→c b a c b a nnnn n【分析】不妨设0a b c ≥≥>,由3n n n nna abc a ≤++≤得11()3n nn n na abc a ≤++≤ 又因为1lim lim3nn n a a a →∞→∞==,由三明治定理得1lim().nnn nn a b c a →∞++=故()1lim()max ,,.nnn nn a b c a b c →∞++=【例2】)2211(lim 222n n nn n n +++++∞→【分析】由2221i i i n n n i n ≤≤+++得2221111n n n i i i i i in n n i n ===≤≤+++∑∑∑又因为22111lim lim 12nn n n i i i i n n n →∞→∞====++∑∑,由三明治定理得211lim .2nn i i n i→∞==+∑题型一 极限概念与性质【例1】设数列{}n x 与{}n y 满足lim 0n n n x y →∞=, 则下面断言正确的是 ( ).(A)若{}n x 发散,则{}n y 必发散 (B)若{}n x 无界,则{}n y 必有界 (C)若{}n x 有界, 则{}n y 必为无穷小 (D)若1{}nx 为无穷小,则{}n y 必为无穷小 【分析】令,0n n x n y ==,(A)不正确;令0,n n x y n ==,(C)不正确;令,1,3,50,1,3,5,0,2,4,6,2,4,6n n n n n x y n n n ==⎧⎧==⎨⎨==⎩⎩(B)不正确;选(D). 事实上,lim lim01nn n n n ny x y x →∞→∞==,分母趋于0,分子趋于0,(D)正确. 【例2】{},{},{}n n n a b c 均为非负数列, 且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞, 则 ( ). (A),n n a b n <∀ (B),n n b c n <∀ (C)lim n n n a c →∞不存在 (D)lim n n n b c →∞不存在【分析】对n ∀,(A) (B)肯定不正确,lim n n n a c →∞可能存在可能不存在,选(D).【例3】设函数()f x 在(),-∞+∞内单调有界, {}n x 为数列, 下面命题正确的是 ( ). (A)若{}n x 收敛,则{()}n f x 必收敛 (B)若{}n x 单调,则{()}n f x 必收敛 (C)若{()}n f x 收敛, 则{}n x 收敛 (D)若{()}n f x 单调, 则{}n x 收敛【分析】{}n x 单调,由于()f x 单调,则{()}n f x 单调,又因为其有界,故由单调有界定理,(B)正确.题型二 不定式求极限【例1】(1) 0x0011233lim .3x x xx o x o x x (2) )cos 1(sin 1tan 1limx x xx x -+-+→()30002tan 1cos 1tan sin 1lim lim .1222x x x x x x xx x x →→→--===⨯(3) limxlimlimlim1.x x x ===(4) 3012cos lim 13x x x x32200012cos 12cos 1cos 11lim 1lim ln lim .3336x x x x x x x xx x(5) sin 30limx xx e e x →-()sin sin 3330001sin 1lim lim lim .6x x x x x x x x e e e e x x x x x -→→→---===-(6) 211lim (arctan arctan )1x x x x →∞-+()222220011arctan arctan 11111lim (arctan arctan )lim lim 12x t t t t t t t t x x x t t →∞→→--++++-==+()()222011lim1.2t t t t t→++-+==(7) ()()4sin sin sin sin limx x x x x →-()()()34330001sin sin sin sin sin sin sin sin 16lim lim lim .6x x x x x x x x x x x x →→→--=== (8)()()()401cos ln 1tan limsin x x x x x→--+()()()()()42220001cos ln 1tan ln 1tan tan ln 1tan 11tan limlim lim sin 22x x x x x x x x x x x x xx x x →→→--+-+-+⎛⎫-==+ ⎪⎝⎭2201tan 112lim .24x xx →==【例2】 (1) 22211lim sin cos x x x x →⎛⎫- ⎪⎝⎭()()2222222224000cos sin cos sin 11cos sin lim lim lim sin cos cos sin x x x x x x x x x x x x x x x x x x x →→→+--⎛⎫-== ⎪⎝⎭30cos sin 22lim.3x x x x x →-==-(2)()12lim x x x x e →+∞⎛- ⎝ ()()()121222011lim lim 1.txx t t e t x x e t +→+∞→--+⎛-==- ⎝【例3】(1) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→()333000tan 1cos 11tan 1tan sin 1limln lim lim .1sin 1sin 2x x x x x x x x x x x x x →→→-+-⎛⎫⎛⎫=== ⎪ ⎪++⎝⎭⎝⎭ 311201tan lim .1sin x x x e x →+⎛⎫= ⎪+⎝⎭(2) 21coslim x x x ⎪⎭⎫ ⎝⎛∞→ 222211111lim ln cos lim cos 1lim .22x x x x x x x x x →∞→∞→∞⎛⎫⎛⎫⎛⎫=-=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2121lim cos .x x e x -→∞⎛⎫= ⎪⎝⎭ (3) ()110ln 1lim xe x x x -→+⎛⎫ ⎪⎝⎭()()()2000ln 1ln 1ln 1111lim ln lim 1lim .12x x x x x x x x e x x x x →→→+++-⎛⎫⎛⎫=-==- ⎪ ⎪-⎝⎭⎝⎭()11120ln 1lim .xe x x e x --→+⎛⎫= ⎪⎝⎭(4)()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()()()()()22lim ln lim .x x x x a x b x x x a b x a x b x a x b →∞→∞⎡⎤--+==-⎢⎥-+-+⎣⎦()()2lim .xa b x x e x a x b -→∞⎡⎤=⎢⎥-+⎣⎦(5) 11ln lim 1xxx x →+∞⎛⎫- ⎪⎝⎭()1112111ln 1ln 1ln 11ln lim ln 1lim lim lim 1.ln 111xx x x x x x x x x x x x x x x x x x x x x x x e →+∞→+∞→+∞→+∞-⎛⎫ ⎪⎛⎫--⎝⎭-=⋅===- ⎪⎛⎫⎛⎫⎝⎭--- ⎪ ⎪⎝⎭⎝⎭ 11ln 1lim 1.xxx x e -→+∞⎛⎫-= ⎪⎝⎭(6) lim nn →∞⎣⎦()02ln ln 1lim ln lim 1lim ln 22222t t x x t a b a b x x ab t +→+∞→+∞→⎤+-+=-===⎢⎢⎥⎣⎦⎣⎦lim lim n xn x →∞→+∞==⎣⎦⎣⎦【例4】 (1) 若30sin 6()lim0x x xf x x →+=, 求206()lim .x f x x →+233300006()sin 6()6sin 6sin 6()6sin 6limlim lim lim 36.x x x x f x x xf x x x x xf x x xx x x x →→→→+++-+-==+=(2)设0ln(1()sin 5)lim 121x x f x x →+=-, 求0lim ().x f x →000ln(1()sin 5)()sin 55()lim lim lim 1.21ln 2ln 2x x x x f x x f x x f x x →→→+===-0ln 2lim ().5x f x →= 题型三 连加或连乘求极限【例1】(1) ()11lim ()nn i l N i i l +→∞=∈+∑(2)231lim nn i i n →∞=∑ (3) n n x x x 2cos 4cos 2cos lim ∞→ 11111111111,11,lim 1.()22311()nnn i i l i i l n n n i i l →∞====-+-++-=-=++++∑∑1111111111112,11,()232422212ni l i i l n n n n =⎛⎫⎛⎫==-+-++-=+-- ⎪ ⎪++++⎝⎭⎝⎭∑1111lim 1.()22nn i i i l →∞=⎛⎫=+ ⎪+⎝⎭∑同理,得()11111lim1.()2nn i l N i i l l l +→∞=⎛⎫∈=+++ ⎪+⎝⎭∑ (2)231lim nn i i n →∞=∑ ()()2331111lim lim 121.63nn n i i n n n nn →∞→∞==⨯++=∑ (3) n n xx x 2cos 4cos 2coslim ∞→cos cos cos 2sin sin sin 2422lim cos cos cos limlim .2422sin 2sin 22n n nn n n n n n n nx x x xx x x x x x x x →∞→∞→∞⋅===【例2】 (1))212654321(lim nn n -⋅⋅∞→()()()()()22222212+11352113355711()=24622462+12+12n n n n n n n --⨯⨯⨯⋅⋅⋅⋅⋅≤ 因为1lim=02+1n n →∞,由三明治定理得213521lim()=02462n n n →∞-⋅⋅, 故13521lim()=0.2462n n n→∞-⋅⋅ (2)⎰∞→xx dt t x 0sin 1lim()()()10sin sin 11,sin 1n n xt dtt dt n x n t dt n x n ππππππ+≤<+≤≤+⎰⎰⎰即()()02121sin 1xn n t dt n x n ππ+≤≤+⎰ ()()2122lim lim 1x x n n n n πππ→∞→∞+==+,由三明治定理得012lim sin .x x t dt x π→∞=⎰(3))0,0i n p a >>设()12max ,,p M a a a =M ≤≤lim n n M M →∞==,由三明治定理得()1max ,,.p n M a a == 【例3】(1)1limn n i →∞=11011limlnln 1112lim lim .nn i in nxdxn n n n i n e e e n n n →∞=-→∞→∞=∑⎛⎫⎰=⋅⋅⋅=== ⎪⎝⎭(2)lim n11013lim 112lim .n n i i xdxn n n e e e →∞=⎛⎫+ ⎪+⎝⎭∑⎰===【例4】(1) 1limn i →∞=111nnni i i ===≤≤11lim lim 1.nnn n i i →∞→∞====由三明治定理,得1lim 1.nn i →∞==(2)1limnn i →∞=((11111lim lim ln ln 1.nnn n i i x n →∞→∞======+⎰(3)1limnn i →∞=)10111lim lim 21.nn n n i i n →∞→∞======⎰(4)21limnn i →∞=222111nn ni i i ===≤≤22111lim lim .3n n n n i i →∞→∞====故211lim.3nn i →∞==(5)11limnn i n i →∞=+∑()1100111111lim lim ln 1ln 2.11nn n n i i dx x i n i n x n→∞→∞=====+=+++∑∑⎰(6)21limn i nn i →∞=++∑2221111nn ni i i i i in n n n n i n n ===≤≤++++++∑∑∑ 22111lim lim .12nnn n i i i i n n n n n →∞→∞====++++∑∑ 故211lim.2nn i i n n i →∞==++∑ (7) 221limnn i n n i →∞=+∑ 1102222011111lim lim arctan .141nnn n i i n dx x n i n x i n π→∞→∞======++⎛⎫+ ⎪⎝⎭∑∑⎰(8) 221lim1nn i n n i →∞=++∑()22222211111nnni i i nn nn i n i ni ===≤≤+++++∑∑∑()1222220111lim lim .141nnn n i i nn dx n i x n i π→∞→∞=====++++∑∑⎰【例5】(1)2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭222sin sin sin sin sin sin sin sin sin 1111112n n n n n n n n n n n n n n n n nn n n n n πππππππππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪+++≤+++≤+++ ⎪ ⎪ ⎪++++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1022sin sin sin sin sin sin 2lim lim sin .111n n n n n n n n n n xdx n n n n n n ππππππππ→∞→∞⎛⎫⎛⎫ ⎪ ⎪+++=+++== ⎪ ⎪+++ ⎪ ⎪⎝⎭⎝⎭⎰2sin sin sin 2lim .1112n n n n n n n n n ππππ→∞⎛⎫⎪+++=⎪+ ⎪++⎝⎭(2)21tanlim nn i i n n n i →∞=+∑222111tann tan tan 1n n ni i i i i in n n n n n n n i n ===≤≤+++∑∑∑1100222111tantan tanlim lim lim tan ln cos lncos1.1n n n n n n i i i i i in n n n n n xdx x n n n n →∞→∞→∞=======-=-++∑∑∑⎰【例6】(1)1lim 1nn i →∞=⎫⎪⎪⎭∑111lim 1lim .4nn n n i i →∞→∞==⎫==⎪⎪⎭∑ (2)()1222411lim n n n i n i n →∞=+∏()()()12222421011limln 2ln 12242arctan 2411lim25.n n n i n i nn nx dx n i niee e n →∞=⎡⎤+⎢⎥+⎢⎥-+⎣⎦→∞=∏⎰+===∏题型四 数列极限的存在性【例1】(1)设111,0n a a +=+=,证明数列{}n a 收敛,并求lim n n a →∞.121,0a a ==设1k k a a +≤,则≤21k k a a ++≤由数学归纳法得{}n a 递减下面证明n a ≥显然112a ≥-设12k a +≥-则12+≥-,即112k a +≥-由数学归纳法得n a ≥由单调有界必收敛得{}n a 收敛.设lim ,n n a A →∞=两边取极限得0A =,即A =(2) 123a a a === ,证明数列{}n a 收敛,并求lim n n a →∞.lim 2.n n a →∞=(3) 设1111,2n n n a a a a a a +⎛⎫=>=+ ⎪⎝⎭,证明数列{}n a 收敛,并求lim n n a →∞. lim n n a →∞=(4) 设1103,n a a +<<={}n a 收敛,并求lim n n a →∞.3lim .2n n a →∞= 【例2】设)(x f 是区间[)0,+∞上单调减少且非负的连续函数,()()()11,1,2,nnn k a f k f x dx n ==-=∑⎰…证明数列{}n a 的极限存在.()()()()1111110n n n n nna a f n f x dx f n f n dx +++-=+-≤+-+=⎰⎰,即{}n a 递减.()()()()()()23112112nn n k a f k f x dx f f x dx f f x dx ==-=-+-+∑⎰⎰⎰()()()()110.nn f n f x dx f n f n -+--+≥≥⎰故{}n a 有下界.由单调有界定理,{}n a 的极限存在.题型五 含参数的极限【例1】确定,,a b c 值,使()()3sin lim0ln 1x x bax xc c t dtt→-=≠+⎰. 【分析】分式极限不为0,分子趋于0,则分母趋于0,故0.b =()()()233000sin cos cos limlimlim 0ln 1ln 1x x x x ax xa x a xc c x t x dttx→→→---===≠++⎰故11,.2a c ==【例2】()()22ln 1lim2x x ax bx x →+-+=,求,a b .【分析】()()()()222222001ln 12lim lim 2x x x x o x ax bx x ax bx x x →→-+-++-+==故51,.2a b ==-题型六 含变积分限的极限【例1】设()(),g f x x 连续,且()()()g 0f x x x → ,又lim ()0x ax ϕ→=,证明:()()()()()0x x f t dt g t dt x a ϕϕ→⎰⎰.【例2】设)(x f 是[)0,+∞上的连续函数,且满足()2lim 1x f x x →+∞=,求()()220limxx t x e e f t dtf x -→+∞⎰.【分析】()()()()()222222222limlimlimxxxxttt xxx x x ee f t dte f t dte f t dt xf x x e f x x e -→+∞→+∞→+∞=⋅=⎰⎰⎰()()()2222221limlim .22222xxx x f x e f x x x x x xx e →+∞→+∞==⋅=++题型七 函数的连续与间断【例1】设()()()f x x ϕ-∞+∞和在内有定义,()f x 为连续函数,且()()0,f x x ϕ≠有间断点,则 ( ). (A)()f x ϕ⎡⎤⎣⎦必有间断点(B)()2f x ϕ⎡⎤⎣⎦必有间断点(C)()f x ϕ⎡⎤⎣⎦必有间断点 (D)()()x f x ϕ必有间断点【分析】(D) 【例2】设函数nn x xx f 211lim)(++=∞→,讨论函数)(x f 的连续性与间断点.【分析】0,11,11()1,10,1x x x f x x x ≤-⎧⎪+-<<⎪=⎨=⎪⎪>⎩()f x 在1x =处是跳跃间断点,在其他区域均连续.【例3】求()sin sin sin lim sin x t xt x t f x x -→⎛⎫=⎪⎝⎭的间断点,并判别其类型.【分析】()sin sin sin sin lim .sin xx t xxt x t f x e x -→⎛⎫== ⎪⎝⎭其中,,0x k k Z k π=∈≠且为第二类间断点,0x =为可去间断点.。

代数学引论第二版课程设计

代数学引论第二版课程设计

代数学引论第二版课程设计一、课程概述本课程为高等数学系列课程中的一门代数学基础课程,是对代数学基础理论和方法的概括与总结,旨在帮助学生全面掌握代数学基本概念,理解代数学基本原理,掌握代数学基本方法和技巧,在将来学习更高阶的数学课程时有更加扎实的数学基础。

二、课程目标通过本课程的学习,学生应该能够:1.掌握代数学的基本概念和基本理论;2.理解代数学基本方法和技巧;3.能够熟练运用代数学中的基本操作;4.能够解决代数学中的基本问题。

三、课程大纲第一章代数系统1.代数系统的定义和基本概念;2.代数系统的分类;3.群、环、域的定义和基本概念。

第二章群论1.群的定义和基本性质;2.等价关系与商群;3.群的同态与同构;4.子群、左陪集和右陪集;5.群的生成元和表示;6.群的分类。

第三章环论1.环的定义和基本性质;2.环的同态与同构;3.互反元、单位元和幺环;4.环的理想和商环;5.环的生成元和表示;6.环的分类。

第四章域论1.域的定义和基本概念;2.域的同态与同构;3.域的代数性与超越性;4.域的扩张:代数扩张与超越扩张;5.域扩张的应用。

四、参考书目1.《代数学引论(第二版)》,李文治,高等教育出版社;2.《现代代数学基础(第二版)》,杨学义,高等教育出版社;3.《线性代数及其应用(第四版)》,Gilbert Strang,机械工业出版社。

五、考核方式本课程的考核方式主要包括平时成绩、期中考试和期末考试三个环节。

其中,平时成绩占课程总评成绩的30%,期中考试占40%,期末考试占30%。

教师根据学生的表现情况,适时设置小组讨论和作业,以及课堂互动等环节,以增强学生的学习兴趣和主动性。

同时,教师将通过每门课程结束时的总结,及时进行反思和修改,以提高本课程的教学质量和效果。

六、结语代数学作为一门基础学科,为其他数学领域的发展奠定了坚实的数学基础,其对我们现代生活的影响至关重要。

本门课程旨在帮助学生体会代数学的精髓,全面掌握代数学的基础知识和理论,为将来的数学学习打下坚实的基础。

近世代数第一章答案

近世代数第一章答案

近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)

代数学引论(聂灵沼_丁石孙版)第一章习题答案(可编辑修改word版)
(Ⅱ)因集合 G 对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然 Bn=A2=E 为幺元.
(Ⅳ)对 Bi(i=1,2,…,n),有
BiBn-i=E;
对 ABi(i=1,2,…,n),有
(ABi)(Bn-iA)=E,
因此 G 内任何一元都可逆.
G={a1,a2,…,an}={aka1, aka2,…, akan}<3>
G={a1,a2,…,an}={a1ak, a2ak,…, anak}<4>
由<1>和<3>知对任意atG,存在amG,使得
akam=at.
由<2>和<4>知对任意atG,存在asG,使得
asak=at.
由下一题的结论可知 G 在该乘法下成一群.
对任意 a,bG,
ba=bae=ba(ab)2=ba(ab)(ab)
因此 G 为交换群. [方法 2]
对任意 a,bG,
=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab
a2b2=e=(ab)2,
由上一题的结论可知 G 为交换群.
3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:
<2>证明a1at= ata1;
因为
a1(ata1)at=(a1at) (a1at)=(a1)2a1(a1at)at=(a1a1)at=a1(a1at)= (a1)2,
故此
a1(ata1)at= a1(a1at)at.
由条件(1),(2)可得到
<3>证明at就是G的幺元;对任意akG,
a1at= ata1.
我们注意到
a-1bka== bkr,

代数学引论(聂灵沼_丁石孙版)第一章习题解答

代数学引论(聂灵沼_丁石孙版)第一章习题解答

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b∈G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b∈G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,b∈G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i≠j(I,j=1,2,…,n),有a k a i≠a k a j------------<1>a i a k≠a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t∈G, 存在a m∈G,使得a k a m=a t.由<2>和<4>知对任意a t∈G, 存在a s∈G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t∈G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k∈G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a∈G,存在b∈G,使得ab=ba=e.<1> 对任意a∈G,存在b∈G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a∈G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b∈G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d∈G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2≠x2y2.[思路] 在一个群G中,x,y∈G, xy=yx ⇔(xy)2=x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=(123213), y=(123132)那么(xy)2=(123312)≠(123123)= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:[132]表示置换(123132), 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示[123], [132],[213], [231], [312], [321]那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b∈G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=b r i.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=b r1, 结论成立;假设当k=n时结论成立, 即a-n ba n=b r n成立, 下面证明当k=n+1时结论也成立.我们注意到= b kr,a-1b k a=(a−1ba)(a−1ba)…(a−1ba)⏟k个因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1b r n a=b r n r=b r n+1,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射x↦x−1是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射x↦x−1是一同构映射.由逆元的唯一性及(x−1)−1=x可知映射x↦x−1为一一对应,又因为(xy)-1=y-1x-1,并且群G为一个交换群,可得y-1x-1=x−1y−1.因此有(x y)-1=x−1y−1.综上可知群G为一个交换群时映射x↦x−1是一同构映射.(Ⅱ)接着证明当映射x↦x−1是一同构映射,则群G为一个交换群.若映射x↦x−1是一同构映射,则对任意x,y∈G有(x y)-1=x−1y−1,另一方面,由逆元的性质可知(y x)-1=x−1y−1.因此对任意x,y∈G有xy=yx,即映射x↦x−1是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1∈S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a∈G,有a~a,故此aa-1=e∈S;对任意a,b∈S,由(ab)b-1=a∈S,可知ab~b,又be-1=b∈S,故b~e,由传递性可知ab~e,即(ab)e-1=ab∈S.再者因ae-1=a∈S, 故a~e,由对称性可知e~a,即ea-1=a-1∈S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a∈G, 有aa-1=e∈S,故此a~a(自反性);若a~b,则ab-1∈S,因为S为G的子群,故(ab-1)-1=ba-1 ∈S,因此b~a(对称性);若a~b,b~c,那么ab-1∈S,bc-1∈S,故ab-1 bc-1=ac-1∈S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明x↦nx为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a∉H, 有H∩aH=∅,并且aH⊂G,H⊂G,又注意到aH和H中都有n个元素, 故此H∪aH=G.同理可证对任意a∉H, 有H∩Ha=∅, H∪Ha=G,因此对任意a∉H,有aH=Ha.对任意a∈H, 显然aH⊂H, Ha⊂H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a∈G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a∈H, h∈H, 显然有aha-1∈H.对给定的x∉H, 有H∩xH=∅, H∪xH=G.这是因为若假设y∈H∩xH, 则存在h∈H,使得y=xh,即x=yh-1∈H产生矛盾,因此H∩xH=∅;另一方面, xH⊂G,H⊂G, 又注意到xH和H中都有n个元素, 故此H∪xH=G.那么任取a∉H,由上面的分析可知a∈xH, 从而可令a=xh1这里h1∈H.假设存在h∈H, 使得aha-1∉H,则必有aha-1∈xH,从而可令aha-1=xh2这里h2∈H.那么xh1ha-1=xh2,即a= h2h1h∈H,产生矛盾.因此,任取a∉H, h∈H, 有aha-1∈H.综上可知对任取a∈G, h∈H, 有aha-1∈H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a≠e适合a2=e.证明:设b∈G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a∈G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=(0110), B=(e2πin00e−2πi n)证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i∙B j=B i+j,注意到B n=(10)故此01B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(2) A B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t∈G,这里i=sn+t,k∈Z,0<t≤n.那么B i∙(AB j)=( B i∙A)B j=(AB n-t) ∙B j∈G(4)(AB i)∙(AB j)=A(B i AB j)=A((AB n-t) ∙B j)=A2(B n-t ∙B j)= B n-t ∙B j) ∈G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群. 证明:对任意a,b∈Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=(0−110)的阶为4,元素b=(01−1−1)的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=(1101),对任何正整数n,(ab)n=(1n01)≠(1001)可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b∈S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab∈S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1∈S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={a1,a12,… ,a1n1}为G的一个子群;G中取a2∉G1,并设其阶数为n2,则循环群G2={a2,a22,… ,a2n2}为G的一个子群;G中取a3∉G1∪G2,并设其阶数为n3,则循环群G3={a3,a32,… ,a3n3}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<a2>,G2=<a4>,…,G n=<a2n>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= k1−1h1−1∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK ⊂KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH ⊂HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明|HK|=|H|∙|K| |H∩K|.证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=∅.----------------(2)由(1),(2)我们得到|HK|=r|K|=|H|∙|K| |H∩K|.[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠∅,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M∩N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G 的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN↦m,那么该映射显然是一一对应,另外f(m i N⋅m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1.M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M∩N,产生矛盾.2. 设f: MN/N→MmN↦m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax⇒a=x-1ax⇒ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S⇒S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)⊂N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群G={e,a,b,c},那么a2=b2=c2=e,ab=ba=c,ac=ca=b,bc=cb=a. 群表如下:综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)∙(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“⊕”与乘法“⊙”为a⊕b=ab, a⊙b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a⊕b=a+b-1,a⊙b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算⊕下构成交换群:由⊕的定义,得到(a⊕b)⊕c=(a+b-1) ⊕c=a+b-1+c-1=a+b+c-2a⊕(b⊕c)= a⊕(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a⊕b)⊕c= a⊕(b⊕c).----------------(1)同时由⊕的定义还可以得到a⊕1= 1⊕a=a,------------------------(2)a⊕(2-a)=(2-a) ⊕a=1,---------------(3)a⊕b=b⊕a,----------------------------(4)由(1),(2),(3)(4)可知L在运算⊕下构成交换群.(ii)证明L中运算⊙满足结合律和交换律:容易证明这里略过.(iii)证明乘法⊙对加法⊕满足分配律:因为a ⊙(b ⊕c)= a ⊙(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a ⊙b)⊕(a ⊙c)=(a+b-1) ⊕(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a ⊙(b ⊕c)= (a ⊙b)⊕(a ⊙c).由于⊕和⊙满足交换律,故此(b ⊕c) ⊙a= (b ⊙a)⊕(c ⊙a).因此新定义的乘法⊙对新定义的加法⊕满足分配律(iv) 设0为环(L ,+,∙)的零元,则0⊙a=a ⊙0=a由(i),(ii),(iii),(iv)可得到(L ,⊕,⊙)为交换幺环.(v) 最后证明(L ,+,∙)与(L ,⊕,⊙)同构:设f: L→Lx ↦1-x ,容易证明f 为(L ,+,∙)到(L ,⊕,⊙)的同构映射.30. 给出环L 与它的一个子环的例子,它们具有下列性质:(i) L 具有单位元素,但S 无单位元素;(ii) L 没有单位元素,但S 有单位元素;(iii) L, S 都有单位元素,但互不相同;(iv) L 不交换,但S 交换.解:(i) L=Z ,S=2Z ;(ii) L={(a b 00)|a,b ∈R},S={(a 000)|a ∈R}; (iii) L={(a00b )|a,b ∈R},S={(a 000)|a ∈R}; (iv) L={(a 0b 0)|a,b ∈R},S={(a 000)|a ∈R}; 31. 环L 中元素e L 称为一个左单位元,如果对所有的a ∈L ,e L a= a ;元素e R 称为右单位元,如果对所有的a ∈L ,ae R =a.证明:(i)如果L 既有左单位元又有右单位元,则L 具有单位元素; (ii)如果L 有左单位元,L 无零因子,则L 具有单位元素; (iii)如果L 有左单位元,但没有右单位元,则L 至少有两个左单位元素.证明:(i) 设e L 为一个左单位元,e R 为右单位元,则e L e R =e R =e L .记e=e R =e L ,则对所有的a ∈L ,ea=ae=a , 因此e 为单位元素;(ii) 设e L 为一个左单位元,则对所有的a(≠0)∈L ,a(e L a)=a 2;另一方面,a(e L a)=(ae L )a.所以a 2=(ae L )a.因为L 无零因子,所以满足消去律[注],故此a= ae L .另外,若a=0,则a= ae L =e L a. 因此左单位元e L 正好是单位元.(iii) 设e L 为一个左单位元,因为L 中无右单位元,故存在x ∈L ,使得xe L ≠x,即xe L -x≠0,则e L + xe L -x≠e L ,但是对所有的a ∈L ,(e L + xe L -x)a=a,因此e L + xe L -x 为另一个左单位元,所以L 至少有两个左单位元素.[注意] L 无零因子,则满足消去律(参考教材46页).32. 设F 为一域.证明F 无非平凡双边理想.证明:设I 为F 的任意一个理想,且I≠{0},则对任意a(≠0)∈I ,则a -1∈F,于是a -1a=1∈I.从而F 中任意元素f ,有f ∙1=f ∈I ,故I=F ,即F 只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L 是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L 是一体(域).33. 如果L 是交换环,a ∈L ,(i) 证明La={ra|r ∈L}是双边理想;(ii) 举例说明,如果L 非交换,则La 不一定是双边理想.证明:(i) 容易验证La 为L 的一个加法群. 任取ra ∈La ,l ∈L ,则l(ra)=(lr)a ∈La ,(ra)l=r(al)=r(la)=(rl)a ∈La故La 为L 的一个双边理想.(ii) 设L=M 2(R),那么L 显然不是交换环,取h=(1010),下面考察Lh 是否为L 的理想: 取k=(1200),容易验证h ∈Lh ,hk ∉ Lh ,因此Lh 不是L 的一个理想.34. 设I 是交换环L 的一个理想,令rad I ={r ∈L|r n ∈I 对某一正整数n},证明rad I 也是一个理想.radI 叫做理想I 的根.35. 设L 为交换幺环,并且阶数大于1,如果L 没有非平凡的理想,则L 是一个域.证明:只要证明非零元素均可逆即可.任取a ∈L ,那么La 和aL 是L 的理想,且La ≠{0},aL ≠{0},因L 无平凡的理想,故此La=aL=L ,因此ax=1和ya=1都有解,因而a 为可逆元.36. Q 是有理数域,M n (Q)为n 阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K 为M n (Q)的非零理想,下面证明K=M n (Q).为了证明这一点,只要证明n 阶单位矩阵E ∈K.记E ij 为除了第i 行第j 列元素为1,其余元素全为0的矩阵.那么E ij E st ={E it ,j =s 0, j ≠s而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b. (iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数θ,0≤θ≤1,使得f(θ)=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g ∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

高等数学第二版第三册__高等教育出版社__物理类专业用 第一章行列式课后习题答案

高等数学第二版第三册__高等教育出版社__物理类专业用 第一章行列式课后习题答案
c i − c1 × x i
x2 x2 − m L x2 L L L L 0 0 L −m
L L L L
xn xn L xn − m
0 −m L 0
n 1 = ∑ xi − m L i = 2 , 3Ln i =1 1
第 一章 习 题答案解析
1. 计算下列排列的反序数,从而判断奇偶性。 计算下列排列的反序数,从而判断奇偶性。 (3) τ (n( n − 1) L 321) )
= ( n − 1) + ( n − 2) + L + 2 + 1 n( n − 1) = 2
(4) )
τ (135L( 2n − 1)246L ( 2n))
L a2 n − 1 − a1n − 1 L a3 n − 1 − a2 n − 1 L L L xn − 1 − a( n − 2 )( n − 1) L 0
= x1 ( x2 − a12 )( x3 − a23 )L( xn − a( n − 1) n )
(4) a1 − b1 )
a1 − b2 L a1 − bn a2 − b2 L a2 − bn L L L an − b2 L an − bn
1 z2 0 x2
1 y2 x 0
2
, ( xyz ≠ 0)
0 21 左边 = ( xyz ) c2 ÷ x 1 c3 ÷ y c4 ÷ z 1
r2 ÷ x r3 ÷ y r4 ÷ z
1 0 z xy y xz
1 z2 0 x2
1 z xy 0 x yz
1 r2 × xyz 0 r3 × xyz y xz r4 × xyz 1 xyz = xyz xyz x yz 0 xyz
a1n a2 n a3 n L a( n − 1 ) n xn

线性代数数学答案整理(高等教育出版社)

线性代数数学答案整理(高等教育出版社)

第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---; ( 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-2.按自然数从小到大为标准次序,求下列各排列的逆序数: (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯--- =143102211014--321132c c c c ++1417172001099-=0 5.证明:(1)1112222b b a a b ab a +=3)(b a -;证明(1)00122222221312a b ab a a b a ab ac c c c ------=左边 ab ab a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nnnn ------=---+; 提示:利用范德蒙德行列式的结果. 解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n a a a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行 交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D 即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.第二章 矩阵及其运算3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B求.23B A A AB T 及- 解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 5.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗? (3)22))((B A B A B A -=-+吗? 解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故 22))((B A B A B A -≠-+ 6.举反列说明下列命题是错误的: (1)若02=A ,则0=A ;(2)若A A =2,则0=A 或E A =; (3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A (2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠ (3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠9.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵. 证明 已知:A A T =则 AB B B A B A B B AB B T T T T TT T T===)()( 从而 AB B T 也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T =充分性:BA AB =⇒A B AB T T =⇒)(AB AB T=即AB 是对称矩阵.必要性:AB AB T=)(⇒AB A B T T =⇒AB BA =. 11.求下列矩阵的逆矩阵:(2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; 解(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A(3) 2=A , 故1-A 存在 024312111==-=A A A 而 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫ ⎝⎛-----=171621321301212.解下列矩阵方程:(2) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;解(2) 1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18.设n 阶矩阵A 的伴随矩阵为*A ,证明: (1) 若0=A ,则0=*A ; (2) 1-*=n A A .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)( 由此得O A E A A AA A ===-*-**11)()(O A =∴* 这与0≠*A 矛盾,故当0=A 时 有0=*A (2) 由于*-=A AA 11, 则E A AA =* 取行列式得到: nA A A =*若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA19.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B .解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133020. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得(A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B .解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1 )21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A . 解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=68468327322731 24(不). 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛--340313021201; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211 3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.3.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛323513123; 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~4.(不) (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .4.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;解(1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为 ⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X .9.求下列矩阵的秩,并求一个最高阶非零子式:(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; 解(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1;(2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. 13.求解下列非齐次线性方程组:(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x解 (3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x17.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267第四章 向量组的线性相关性4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5不. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2,a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示. 6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T . 解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关.11.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明 设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相 关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解 则4321,,,b b b b 线性相关.综合得证.13. 求下列向量组的秩, 并求一个最大无关组:(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7). 解 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫ ⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.22.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ 第五章 相似矩阵及二次型1.试用施密特法把下列向量组正交化:(1) ⎪⎪⎪⎭⎫ ⎝⎛=931421111),,(321a a a ;解 (1) 根据施密特正交化方法:令⎪⎪⎪⎭⎫ ⎝⎛==11111a b ,[][]⎪⎪⎪⎭⎫ ⎝⎛-=-=101,,1112122b b b a b a b ,[][][][]⎪⎪⎪⎭⎫⎝⎛-=--=12131,,,,222321113133b b b a b b b b a b a b ,故正交化后得: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=311132013111),,(321b b b .5.求下列矩阵的特征值和特征向量:(2)⎪⎪⎪⎭⎫⎝⎛633312321;并问它们的特征向量是否两两正交?解(2) ① )9)(1(633312321-+-=---=-λλλλλλλE A 故A 的特征值为9,1,0321=-==λλλ. ② 当01=λ时,解方程0=Ax ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=000110321633312321~A 得基础解系⎪⎪⎪⎭⎫⎝⎛--=1111P 故)0(111≠k P k 是对应于01=λ的全部特征值向量. 当12-=λ时,解方程0)(=+x E A ,由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+000100322733322322~E A 得基础解系⎪⎪⎪⎭⎫⎝⎛-=0112P 故)0(222≠k P k 是对应于12-=λ的全部特征值向量 当93=λ时,解方程0)9(=-x E A ,由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A 得基础解系⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=121213P故)0(333≠k P k 是对应于93=λ的全部特征值向量.③ 0011)1,1,1(],[2121=⎪⎪⎪⎭⎫ ⎝⎛---==P P P P T,012121)0,1,1(],[3232=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==P P P P T ,012121)1,1,1(],[3131=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==P P P P T , 所以321,,P P P 两两正交.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则 (A 2-3A +2E )x =λ2x -3λx +2x =(λ2-3λ+2)x =0.因为x ≠0, 所以λ2-3λ+2=0, 即λ是方程λ2-3λ+2=0的根, 也就是说λ=1或λ=2. 9. 设A 为正交阵, 且|A |=-1, 证明λ=-1是A 的特征值. 证明 因为A 为正交矩阵, 所以A 的特征值为-1或1.因为|A |等于所有特征值之积, 又|A |=-1, 所以必有奇数个特征值为-1, 即λ=-1是A 的特征值.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T )32 ,32 ,31(1=p . 对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4). (2)⎪⎪⎭⎫⎝⎛----542452222.解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得 T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).16.试求一个正交的相似变换矩阵,将下列对称矩阵化为对角矩阵:(1)⎪⎪⎪⎭⎫⎝⎛----020212022; (2)⎪⎪⎪⎭⎫ ⎝⎛----542452222. 解 (1) λλλλ-------=-20212022E A )2)(4)(1(+--=λλλ 故得特征值为4,1,2321==-=λλλ. 当21-=λ时,由0220232024321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----x x x 解得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛2211321k x x x 单位特征向量可取:⎪⎪⎪⎭⎫⎝⎛=3232311P 当12=λ时,由0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----x x x 解得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛2122321k x x x单位特征向量可取: ⎪⎪⎪⎭⎫ ⎝⎛-=3231322P当43=λ时,由0420232022321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------x x x 解得⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1223321k x x x . 单位特征向量可取: ⎪⎪⎪⎭⎫⎝⎛-=3132323P得正交阵⎪⎪⎪⎭⎫⎝⎛--==12221222131),,(321P P P P⎪⎪⎪⎭⎫ ⎝⎛-=-4000100021AP P(2)⎪⎪⎪⎭⎫⎝⎛-------=-λλλλ542452222E A )10()1(2---=λλ, 故得特征值为10,1321===λλλ 当121==λλ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----000442442221321x x x 解得⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10201221321k k x x x 此二个向量正交,单位化后,得两个单位正交的特征向量⎪⎪⎪⎭⎫⎝⎛-=012511P⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=*15452012540122P 单位化得⎪⎪⎪⎭⎫ ⎝⎛=15452352P当103=λ时,由⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x 解得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛2213321k x x x 单位化⎪⎪⎪⎭⎫⎝⎛--=221313P :得正交阵),,(321P P P⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=323503215545131155252⎪⎪⎪⎭⎫⎝⎛=-1000100011AP P .18.设3阶方阵A 的特征值为1,0,1321-===λλλ;对应的特征向量依 次为⎪⎪⎪⎭⎫ ⎝⎛=2211P ,⎪⎪⎪⎭⎫⎝⎛-=1222P ,⎪⎪⎪⎭⎫ ⎝⎛--=2123P 求A .解 根据特征向量的性质知),,(321P P P 可逆,得:⎪⎪⎪⎭⎫⎝⎛=-3213211321),,(),,(λλλP P P A P P P 可得1321321321),,(),,(-⎪⎪⎪⎭⎫⎝⎛=P P P P P P A λλλ 得⎪⎪⎪⎭⎫⎝⎛-=022********A19.设3阶对称矩阵A 的特征值6,3,3,与特征值6对应的特征向量为)1,1,1(1TP =,求A .解 设⎪⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A 由⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1116111A ,知①⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x3是A 的二重特征值,根据实对称矩阵的性质定理知E A 3-的秩为1,故利用①可推出⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---33111333653542653542321~x x x x x x x x x x x x x x x 秩为1.则存在实的b a ,使得②⎩⎨⎧-=-=)3,,()1,1,1(),3,()1,1,1(653542x x x b x x x a 成立.由①②解得1,4,1564132======x x x x x x .得⎪⎪⎪⎭⎫ ⎝⎛=411141114A .22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100.解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1.因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.24.(1) 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求9105)(A A A -=ϕ; 解 (1) ⎪⎪⎭⎫⎝⎛-=3223A 是实对称矩阵.故可找到正交相似变换矩阵⎪⎪⎪⎪⎭⎫⎝⎛-=21212121P 使得Λ=⎪⎪⎭⎫ ⎝⎛=-50011AP P从而11,--Λ=Λ=P P A P P A k k因此1911091055)(--Λ-Λ=-=P P P P A A A ϕ11011050055001--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=P P P P 10004-⎪⎪⎭⎫ ⎝⎛-=P P ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1111210004111121 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛----=111122222.。

代数学引论-第2版

代数学引论-第2版

《代数学引论(第2版)》是教育部“高等教育面向21世纪教学
内容和课程体系改革计划”的研究成果,是面向21世纪课程教材。

《代数学引论(第2版)》是作者根据多年教学经验,在原有讲义基础上经过修改、补充而成的。

书中介绍了代数学的基本知识:第一至第七章给出群、环、模、域四个基本的代数结构及其性质;第八章介绍伽罗瓦理论;第九章是多重线性代数初步。

各章后配有相当数量的习题。

全书相当于一学年课程的教材。

《代数学引论(第2版)》取材恰当,论证严谨,文字简洁、流畅。

第二版除进行少量文字修改外,对习题作了一些调整,较难的习题用星号标出,并给以适当的提示。

《代数学引论(第2版)》可用作高等学校数学系抽象代数课的教材,也可供其他相关专业的师生参考。

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

(完整版)代数学引论(聂灵沼_丁石孙版)第一章习题答案

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,bG,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,bG,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,bG,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若ij(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G 内元素.下面证明任意aG,存在bG,使得ab=ba=e.<1> 对任意aG,存在bG,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元aG,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意bG, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意dG, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,bG,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,yG, xy=yx (xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,bG,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意aG,有a~a,故此aa-1=eS;对任意a,bS,由(ab)b-1=aS,可知ab~b,又be-1=bS,故b~e,由传递性可知ab~e,即(ab)e-1=abS.再者因ae-1=aS, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意aG, 有aa-1=eS,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构. [讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意aH, 有HaH=,并且aHG,HG,又注意到aH和H中都有n个元素, 故此HaH=G.同理可证对任意aH, 有HHa=, HHa=G,因此对任意aH,有aH=Ha.对任意aH, 显然aHH, HaH又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意aG,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取aH, hH, 显然有aha-1H.对给定的xH, 有HxH=, HxH=G.这是因为若假设yHxH, 则存在hH,使得y=xh,即x=yh-1H产生矛盾,因此HxH=;另一方面, xHG,HG, 又注意到xH和H中都有n个元素, 故此HxH=G.那么任取aH,由上面的分析可知axH, 从而可令a=xh1这里h1H.假设存在hH, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1hH,产生矛盾.因此,任取aH, hH, 有aha-1H.综上可知对任取aG, hH, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素ae适合a2=e.证明:设bG,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取aG,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构. 证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,kZ,0<rn.(2)A B i B j=B r G这里i+j=kn+r,kZ,0<rn.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,kZ,0<tn.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,bGa i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,bS,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即abS.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;… … …我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈a H;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果MN={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为MN={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmNm,那么该映射显然是一一对应,另外f(m i Nm j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1MN={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈MN,产生矛盾.2. 设f: MN/N→MmNm,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=axa=x-1axax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=SS=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p 阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为ab=ab, ab=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:ab=a+b-1,ab=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构. 证明:(i)证明L在运算下构成交换群:由的定义,得到(ab)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(bc)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(ab)c= a(bc).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)ab=ba,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(bc)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(ab)(ac)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(bc)= (ab)(ac).由于和满足交换律,故此(bc)a= (ba)(ca).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a. 所以a2=(ae L)a.因为L无零因子,所以满足消去律[注],故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

代数学引论第二版答案

代数学引论第二版答案

代数学引论第二版答案【篇一:代数学引论第一章答案】则g. 证明: 对任意a,b错误!未找到引用源。

g,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群g为交换群.2. 如果群g中,每个元素a都适合a2=e, 则g为交换群. 证明: [方法1] 对任意a,b错误!未找到引用源。

g,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此g为交换群.[方法2] 对任意a,b错误!未找到引用源。

g,a2b2=e=(ab)2,由上一题的结论可知g为交换群.3. 设g是一非空的有限集合,其中定义了一个乘法ab,适合条件: (1)a(bc)=(ab)c; (2) 由ab=ac推出b=c; (3) 由ac=bc推出a=b; 证明g在该乘法下成一群. 证明:[方法1]设g={a1,a2,…,an},k是1,2,…,n中某一个数字,由(2)可知若i错误!未找到引用源。

j(i,j=1,2,…,n),有akai错误!未找到引用源。

ak aj------------1 aiak错误!未找到引用源。

aj ak------------2再由乘法的封闭性可知g={a1,a2,…,an}={aka1, aka2,…, akan}------------3g={a1,a2,…,an}={a1ak, a2ak,…, anak}------------4由1和3知对任意at错误!未找到引用源。

g, 存在am错误!未找到引用源。

g,使得akam=at.由2和4知对任意at错误!未找到引用源。

g, 存在as错误!未找到引用源。

g,使得asak=at.由下一题的结论可知g在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明g在给定的乘法运算下成一群,只要证明g内存在幺元(单位元),并且证明g内每一个元素都可逆即可.为了叙述方便可设g={a1,a2,…,an}. (Ⅰ) 证明g内存在幺元.1 存在at错误!未找到引用源。

代数学引论(聂灵沼,丁石孙版)第一章习题解答

代数学引论(聂灵沼,丁石孙版)第一章习题解答

-1
-1
-1 -1
-1
bc =ac S,因此 a~c(传递性).
-1
-1
10. 设 n 为一个正整数, nZ 为正整数加群 Z 的一个子群,证明 nZ 与 Z 同构. 证明: 我们容易证明为 Z 到 nZ 的同构映射,故此 nZ 与 Z 同构.
11. 证明:在 S4 中,子集合 B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} 是子群,证明 B 与 U4 不同构. 证明: 可记 a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下: e e a b c e a b c a a e c b b b c e a c c b a e
由该表格可以知道 B 中的元素对置换的乘法封闭, 并且 B 的每一元都可逆(任意元的逆为其本身),因此 B 为 S4 的子群. 这个群(以及与其同构的群)称为 Klein(C.L.Klein,1849-1925)四元群. 假设 B 与 U4 同构,并设 f 为 B 到 U4 的同构映射, 则存在 B 中一元 x 使得 f(x)=i(i 为虚数单位),那么 f(x )= f (x)=i =-1 另一方面, f(x )=f(e)=1(注意 x =e),产生矛盾.所以假设不成立, 即 B 与 U4 不同构. [讨论] B 与 U4 都是 4 元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.
2
再者对任意 dG, xd=ea 在 G 内有解,即 G 内任意元素对 ea 存在左逆元, 又因乘法满足结合律,故此 G 在该乘 法下成一群.
[总结] 群有几种等价的定义: (1) 幺半群的每一个元素都可逆,则称该半群为群. (2) 设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且 G 内包含幺元, G 内任意元素 都有逆元,则称 G 为该运算下的群. (3) 设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且 G 内包含左幺元, G 内任意元 素对左幺元都有左逆元,则称 G 为该运算下的群. (4) 设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且对于任一对元素 a,bG,下列方 程 ax=b 和 ya=b 分别在 G 内恒有解,则称 G 为该运算下的群. 值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.

代数学引论(近世代数)答案

代数学引论(近世代数)答案

第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a G,存在b G,使得ab=ba=e.<1> 对任意a G,存在b G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2x2y2.[思路] 在一个群G中,x,y G, xy=yx(xy)2x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=, y=那么(xy)2= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:表示置换, 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示,,,,那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=, 结论成立;假设当k=n时结论成立, 即a-n ba n=成立, 下面证明当k=n+1时结论也成立.我们注意到a-1b k a== b kr,因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1a==,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a G,有a~a,故此aa-1=e S;对任意a,b S,由(ab)b-1=a S,可知ab~b,又be-1=b S,故b~e,由传递性可知ab~e,即(ab)e-1=ab S.再者因ae-1=a S, 故a~e,由对称性可知e~a,即ea-1=a-1S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a G, 有aa-1=e S,故此a~a(自反性);若a~b,则ab-1S,因为S为G的子群,故(ab-1)-1=ba-1S,因此b~a(对称性);若a~b,b~c,那么ab-1S,bc-1 S,故ab-1 bc-1=ac-1S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH和H中都有n个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G,因此对任意a H,有aH=Ha.对任意a H, 显然aH H, Ha H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a H, h H, 显然有aha-1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H,使得y=xh,即x=yh-1H产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH和H中都有n个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh1这里h1H.假设存在h H, 使得aha-1H,则必有aha-1xH,从而可令aha-1=xh2这里h2H.那么xh1ha-1=xh2,即a= h2h1h H,产生矛盾.因此,任取a H, h H, 有aha-1H.综上可知对任取a G, h H, 有aha-1H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a e适合a2=e.证明:设b G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G 中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=, B=证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构.证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i B j=B i+j,注意到B n=故此B i B j=B r G这里i+j=kn+r,k Z,0<r n.(2) A B i B j=B r G这里i+j=kn+r,k Z,0<r n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t G,这里i=sn+t,k Z,0<t n.那么B i(AB j)=( B i A)B j=(AB n-t)B j G(4)(AB i)(AB j)=A(B i AB j)=A((AB n-t)B j)=A2(B n-t B j)= B n-t B j)G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群.证明:对任意a,b Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5)由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=的阶为4,元素b=的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=,对任何正整数n,(ab)n=≠可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G 中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={,…}为G的一个子群;G中取a2G1,并设其阶数为n2,则循环群G2={,…}为G的一个子群;G中取a3G1∪G2,并设其阶数为n3,则循环群G3={,…}为G的一个子群;………我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<>,G2=<>,…,G n=<>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= ∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a ∈KH,那么有HK KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a ∈HK,那么有KH HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j ∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn ∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN m,那么该映射显然是一一对应,另外f(m i N m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1M N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M N,产生矛盾.2. 设f: MN/N→MmN m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax a=x-1ax ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群G={e,a,b,c},那么a2=b2=c2=e,ab=ba=c,ac=ca=b,bc=cb=a. 群表如下:这是Klein四阶群.综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein 四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为a b=ab, a b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a b=a+b-1,a b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算下构成交换群:由的定义,得到(a b)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(b c)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a b)c= a(b c).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)a b=b a,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(b c)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a b)(a c)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(b c)= (a b)(a c).由于和满足交换律,故此(b c)a= (b a)(c a).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};31.环L中元素e L称为一个左单位元,如果对所有的a∈L,e L a= a;元素e R称为右单位元,如果对所有的a∈L,ae R=a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a.所以a2=(ae L故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h∈Lh,hk Lh,因此Lh不是L的一个理想.34.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a∈L,那么La和aL是L的理想,且La≠{0},aL≠{0},因L无平凡的理想,故此La=aL=L,因此ax=1和ya=1都有解,因而a为可逆元.36.Q是有理数域,M n(Q)为n阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K为M n(Q)的非零理想,下面证明K=M n(Q).为了证明这一点,只要证明n阶单位矩阵E∈K.记E ij为除了第i行第j列元素为1,其余元素全为0的矩阵.那么E ij E st=而E=E11+E22+…+E nn.我们只要证明E ii∈K(i=1,2,…,n)就有E∈K.设A∈K,且A≠0,又令A=(a ij)n×n,假设a kj≠0,则有E ik AE ji=a kj E ii(i=1,2,…,n).由于a kj≠0,故存在逆元a kj-1.设B= a kj-1E ii,则BE ik AE ji= a kj-1E ii E ik AE ji= a kj-1E ik AE ji=E ik E kj E ji=E ii.因为K为理想,A∈K,所以E ii=BE ik AE ji∈K,证毕.37.设L为一环,a为L中一非零元素.如果有一非零元素b使aba=0,证明a是一个左零因子或一右零因子.证明:若ab=0,则a为左零因子;若ab≠0,则aba=(ab)a=0,故ab为右零因子.38.环中元素x称为一幂零元素,如果有一正整数n使x n=0,设a为幺环中的一幂零元素,证明1-a可逆.证明:设a n=0,那么(1+a+a2+…+a n-1)(1-a)=(1-a) (1+a+a2+…+a n-1)=1-a n=1因此1-a可逆.39.证明:在交换环中,全体幂零元素的集合是一理想.证明:略.40.设L为有限幺环.证明由xy=1可得yx=1.证明:当L只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy;当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元[注],因此yL=L.又因L为有限环,所以存在z∈L,使得yz=1.注意到(xy)z=z,x(yz)=x,所以x=z,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L有多于一个元素时(即0≠1时),若xy=1,y不是左零元.因为若存在z ≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41.在幺环中,如果对元素a有b使ab=1但ba≠1,则有无穷多个元素x,适合ax=1. (Kaplansky定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c ≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1. (iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0}包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.解:45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.网易全新推出企业邮箱。

代数学引论(聂灵沼丁石孙版)第一章习题集解答

代数学引论(聂灵沼丁石孙版)第一章习题集解答

第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b∈G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b∈G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,b∈G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i≠j(I,j=1,2,…,n),有a k a i≠a k a j------------<1>a i a k≠a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t∈G, 存在a m∈G,使得a k a m=a t.由<2>和<4>知对任意a t∈G, 存在a s∈G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法2]为了证明G在给定的乘法运算下成一群,只要证明G内存在幺元(单位元),并且证明G内每一个元素都可逆即可.为了叙述方便可设G={a1,a2,…,a n}.(Ⅰ) 证明G内存在幺元.<1> 存在a t∈G,使得a1a t=a1.(这一点的证明并不难,这里不给证明);<2> 证明a1a t= a t a1;因为a1(a t a1)a t=(a1a t) (a1a t)=(a1)2a1(a1a t)a t=(a1a1)a t=a1(a1a t)= (a1)2,故此a1(a t a1)a t= a1(a1a t)a t.由条件(1),(2)可得到a1a t= a t a1.<3> 证明a t就是G的幺元;对任意a k∈G,a1(a t a k) =(a1a t)a k=a1a k由条件(2)可知a t a k=a k.类似可证a k a t=a k.因此a t就是G的幺元.(Ⅱ) 证明G内任意元素都可逆;上面我们已经证明G内存在幺元,可以记幺元为e,为了方便可用a,b,c,…等符号记G内元素.下面证明任意a∈G,存在b∈G,使得ab=ba=e.<1> 对任意a∈G,存在b∈G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知ba=ab.因此G内任意元素都可逆.由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则G在该乘法下成一群.证明:取一元a∈G,因xa=a在G内有解, 记一个解为e a ,下面证明e a为G内的左幺元. 对任意b∈G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以e a b= e a(ac)= (e a a)c=ac=b,因此e a为G内的左幺元.再者对任意d∈G, xd=e a在G内有解,即G内任意元素对e a存在左逆元, 又因乘法满足结合律,故此G在该乘法下成一群.[总结]群有几种等价的定义:(1)幺半群的每一个元素都可逆,则称该半群为群.(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b∈G,下列方程ax=b和ya=b分别在G内恒有解,则称G为该运算下的群.值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5.在S3中找出两个元素x,y,适合(xy)2≠x2y2.[思路] 在一个群G中,x,y∈G, xy=yx ⇔(xy)2=x2y2(这一点很容易证明).因此只要找到S3中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取x=(123213), y=(123132)那么(xy)2=(123312)≠(123123)= x2y2.[注意]我们可以通过mathematica软件编写S n的群表,输出程序如下:Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成S n群表*)(a=Se[n];T able[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当n=3时群表如下:[说明]:[132]表示置换(123132), 剩下的类似.为了让更清楚,我们分别用e,a,b,c,d,f表示[123], [132],[213], [231], [312], [321]那么群表如下:6.对于n>2,作一阶为2n的非交换群.7.设G是一群, a,b∈G,如果a-1ba=b r,其中r为一正整数,证明a-i ba i=b r i.证明:我们采用数学归纳法证明.当k=1时, a-1ba=b r=b r1, 结论成立;假设当k=n时结论成立, 即a-n ba n=b r n成立, 下面证明当k=n+1时结论也成立.我们注意到= b kr,a-1b k a=(a−1ba)(a−1ba)…(a−1ba)⏟k个因此a-(n+1)ba n+1= a-1 (a-n ba n)a=a-1b r n a=b r n r=b r n+1,可见k=n+1时结论也成立.由归纳原理可知结论得证.8.证明:群G为一交换群当且仅当映射x↦x−1是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射x↦x−1是一同构映射.由逆元的唯一性及(x−1)−1=x可知映射x↦x−1为一一对应,又因为(xy)-1=y-1x-1,并且群G为一个交换群,可得y-1x-1=x−1y−1.因此有(x y)-1=x−1y−1.综上可知群G为一个交换群时映射x↦x−1是一同构映射.(Ⅱ)接着证明当映射x↦x−1是一同构映射,则群G为一个交换群.若映射x↦x−1是一同构映射,则对任意x,y∈G有(x y)-1=x−1y−1,另一方面,由逆元的性质可知(y x)-1=x−1y−1.因此对任意x,y∈G有xy=yx,即映射x↦x−1是一同构映射,则群G为一个交换群.9.设S为群G的一个非空子集合,在G中定义一个关系a~b当且仅当ab-1∈S.证明这是一个等价关系的充分必要条件为S是一个子群.证明:首先证明若~是等价关系,则S是G的一个子群.对任意a∈G,有a~a,故此aa-1=e∈S;对任意a,b∈S,由(ab)b-1=a∈S,可知ab~b,又be-1=b∈S,故b~e,由传递性可知ab~e,即(ab)e-1=ab∈S.再者因ae-1=a∈S, 故a~e,由对称性可知e~a,即ea-1=a-1∈S.可见S是G的一个子群.接着证明当S是G的一个子群,下面证明~是一个等价关系.对任意a∈G, 有aa-1=e∈S,故此a~a(自反性);若a~b,则ab-1∈S,因为S为G的子群,故(ab-1)-1=ba-1 ∈S,因此b~a(对称性);若a~b,b~c,那么ab-1∈S,bc-1∈S,故ab-1 bc-1=ac-1∈S,因此a~c(传递性).综上可知~是一个等价关系.10.设n为一个正整数, nZ为正整数加群Z的一个子群,证明nZ与Z同构.证明:我们容易证明x↦nx为Z到nZ的同构映射,故此nZ与Z同构.11.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.12.证明:如果在一阶为2n的群中有一n阶子群,它一定是正规子群.证明:[方法1]设H是2n阶群G的n阶子群, 那么对任意a∉H, 有H∩aH=∅,并且aH⊂G,H⊂G,又注意到aH和H中都有n个元素, 故此H∪aH=G.同理可证对任意a∉H, 有H∩Ha=∅, H∪Ha=G,因此对任意a∉H,有aH=Ha.对任意a∈H, 显然aH⊂H, Ha⊂H又因aH,Ha及H中都有n个元素,故aH=Ha=H.综上可知对任意a∈G,有aH=Ha,因此H是G的正规子群.[方法2]设H是2n阶群G的n阶子群,那么任取a∈H, h∈H, 显然有aha-1∈H.对给定的x∉H, 有H∩xH=∅, H∪xH=G.这是因为若假设y∈H∩xH, 则存在h∈H,使得y=xh,即x=yh-1∈H产生矛盾,因此H∩xH=∅;另一方面,xH⊂G,H⊂G, 又注意到xH和H中都有n个元素, 故此H∪xH=G.那么任取a∉H,由上面的分析可知a∈xH, 从而可令a=xh1这里h1∈H.假设存在h∈H, 使得aha-1∉H,则必有aha-1∈xH,从而可令aha-1=xh2这里h2∈H.那么xh1ha-1=xh2,即a= h2h1h∈H,产生矛盾.因此,任取a∉H, h∈H, 有aha-1∈H.综上可知对任取a∈G, h∈H, 有aha-1∈H,因此H为G的一个正规子群.13.设群G的阶为一偶数,证明G中必有一元素a≠e适合a2=e.证明:设b∈G,且阶数大于2,那么b≠b-1,而b-1的阶数与b的阶数相等.换句话说G中阶数大于2的元素成对出现,幺元e的阶数为1,注意到G的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G是一2n阶交换群,n为奇数则G中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange定理.[2] 群G中,任取a∈G,有a n=e,那么G一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n有什么关系?14.令A=(0110), B=(e2πin00e−2πin)证明:集合{B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群, 而这个群与群D n同构.证明:下面证明G={B,B2,…,B n,AB,AB2,…,AB n}在矩阵的乘法下构成一群.(Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1)B i∙B j=B i+j,注意到B n=(1001)故此B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(2) A B i∙B j=B r∈G这里i+j=kn+r,k∈Z,0<r≤n.(3)容易证明BAB=A=AB n,BA=B i AB(s+1)n=AB n-t∈G,这里i=sn+t,k∈Z,0<t≤n.那么B i∙(AB j)=( B i∙A)B j=(AB n-t) ∙B j∈G(4)(AB i)∙(AB j)=A(B i AB j)=A((AB n-t) ∙B j)=A2(B n-t ∙B j)= B n-t ∙B j) ∈G由(1),(2),(3),(4)知G对乘法运算封闭.(Ⅱ)因集合G对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立.(Ⅲ)显然B n=A2=E为幺元.(Ⅳ)对B i(i=1,2,…,n),有B i B n-i=E;对AB i(i=1,2,…,n),有(AB i)(B n-i A)=E,因此G内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知G在矩阵乘法下构成一群.最后证明G与D n同构.令f:G→D nf(B i)=T i, f(AB i)=ST i(i=1,2,…,n),可以证明f就是G到D n的同构映射,这里不予证明了.15.设i是一个正整数, 群G中任意元素a,b都适合(ab)k=a k b k, k=I,i+1,i+2,证明G为交换群. 证明:对任意a,b∈Ga i+2b i+2=(ab)i+2=(ab) (ab)i+1=(ab) (a i+1b i+1)=a(ba i+1)b i+1,根据消去律可得a i+1b=ba i+1.----------------------(1)同时a i+1b i+1=(ab)i+1=(ab) (ab)i=(ab) (a i b i)=a(ba i)b i+1,根据消去律可得a i b=ba i.---------------------------(2)因此a i+1b=a(a i b)=a(ba i)=(ab)a i----(3)另外ba i+1=(ba)a i----------------------(4)结合(1),(3),(4)有(ab)a i=(ba)a i---------------------(5) 由消去律可得到ab=ba.因此G为交换群.16.在群SL2(Q)中,证明元素a=(0−110)的阶为4,元素b=(01−1−1)的阶为3,而ab为无限阶元素.证明:可以直接验证a的阶为4,b的阶为3.因为ab=(1101),对任何正整数n,(ab)n=(1n01)≠(1001)可见ab的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素.[问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17.如果G为一个交换群,证明G中全体有限阶元素组成一个子群.证明:交换群G中全体有限阶元素组成的集合记为S,任取a,b∈S,并设a的阶为m,b的阶为n,则(ab)mn=(a m)n(b n)m=e因此ab为有限阶元素,即ab∈S.a-1的阶数与a相同,故此a-1也是有限阶元素,即a-1∈S.综上可知S为G的一个子群.18.如果G只有有限多个子群,证明G为有限群.证明:采用反证法证明.假设G为无限群,则G中元素只可能有两种情况:(1)G中任意元素的阶数都有限、(2)G中存在一个无限阶元素.(1)首先看第一种情况:G中取a1≠e,并设其阶数为n1,则循环群G1={a1,a12,… ,a1n1}为G的一个子群;G中取a2∉G1,并设其阶数为n2,则循环群G2={a2,a22,… ,a2n2}为G的一个子群;G中取a3∉G1∪G2,并设其阶数为n3,则循环群G3={a3,a32,… ,a3n3}为G的一个子群;………我们一直这样做下去,可以得到G的互不相同的子群构成的序列G n(n=1,2,…),所以G有无穷多个子群,产生矛盾;(2)再看第二种情况:设a∈G的阶数为无穷,那么序列G1=<a2>,G2=<a4>,…,G n=<a2n>,…是G的互不相同的子群,所以G有无穷多个子群,产生矛盾.综上就可知“G是无限群”这个假设不成立,因此G是有限群.19.写出D n的所有正规子群.20.设H,K为群G的子群,HK为G的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH,下面证明HK为G的一子群.任取a,b∈HK,可令a=h1k1,b=h2k2这里h i∈H,k i∈K,i=1,2.那么ab=(h1k1)(h2k2)=h1(k1h2)k2 ---------------(1)因HK=KH,故此k1h2= h3k3 ----------------------(2)这里h3∈H,k3∈K.由(1),(2)知ab= h1(h3k3)k2=(h1h3)(k3k2)∈HK. ------------(3)另外,a-1= (h1k1)-1= k1−1h1−1∈KH=HK. ----------------- (4)由(3),(4)知HK是G的子群.(Ⅱ) HK为G的一子群,下面证明HK=KH.若a∈HK,易知a-1∈KH. HK是子群,任取a∈HK,有a-1∈HK,因此(a-1)-1=a∈KH,那么有HK ⊂KH.若a∈KH,易知a-1∈HK. HK是子群,任取a∈KH,有a-1∈HK,因此(a-1)-1=a∈HK,那么有KH ⊂HK.综上知,HK=KH.21.设H,K为有限群G的子群,证明|HK|=|H|∙|K| |H∩K|.证明:因H∩K为H的子群,那么可设H的左陪集分解式为H=h1(H∩K)∪h2(H∩K)∪…∪h r(H∩K)这里r为H∩K在H中的指数,h i∈H,当i≠j,h i-1h j∉H∩K(事实上等价于h i-1h j∉K),i, j=1,2,…,r.又(H∩K)K=K,所以HK=h1K∪h2K∪…∪h r K.------------(1)注意到h i-1h j∉K,所以当i≠j(i, j=1,2,…,r)时,h i K∩h j K=∅.----------------(2)由(1),(2)我们得到|HK|=r|K|=|H|∙|K| |H∩K|.[总结]左陪集的相关结论设H为G的一子群,那么(1)a∈aH;(2)a∈H⇔aH=H;(3)b∈aH⇔aH=bH;(4)aH=bH⇔a-1b∈H;(5)aH∩bH≠∅,有aH=bH.22.设M,N是群G的正规子群.证明:(i)MN=NM;(ii)MN是G的一个正规子群;(iii)如果M∩N={e},那么MN/N与M同构.证明:(i)[方法1]任取a∈MN,可设a=mn(m∈M,n∈N).因为M为G的正规子群,故n-1mn∈M. 所以a=n(n-1mn) ∈NM,故此MN⊆NM.同样的方法可以证明NM⊆MN. 因此MN=NM.[方法2]任取a,b∈MN,可设a=m1n1(m1∈M,n1∈N),b=m2n2(m2∈M,n2∈N).下面只要证明MN为G的一个子群即可(由第20题可知),也就是说只要证明ab-1∈MN即可.因为ab-1=m1n1n2-1m2-1= [m1(n1n2-1m2-1n2n1-1)](n1n2-1),而M为G的正规子群,故n1n2-1m2-1n2n1-1∈M,所以ab-1∈MN.(ii) 由(i)可知MN为G的一个子群.任取a∈MN, 可设a=mn(m∈M,n∈N).因为M和N为G的正规子群,对任意g∈G,有g-1ag= g-1mng= (g-1mg)(g-1ng) ∈MN.所以MN为G的正规子群.(iii) 易知N为MN的正规子群,因此MN/N是一个群. 因为M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N[注].作一个MN/N到M的映射f[注],f: MN/N→MmN↦m,那么该映射显然是一一对应,另外f(m i N⋅m j N)= f(m i m j N)= m i m j,因此f为MN/N到M的同构映射,即MN/N与M同构.[讨论]1. 只要M和N的一个是正规子群,那么MN就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M和N中有一个不是正规子群时MN一定不是正规子群.[注意]1.M∩N={e},对任何m i≠m j∈M, 有m i N≠m j N.证明:若存在m i≠m j∈M, 有m i N=m j N,那么m i m j-1∈N,而m i m j-1∈M. 因此m i m j-1∈M∩N,产生矛盾.2. 设f: MN/N→MmN↦m,则由于对任何m i≠m j∈M, 有m i N≠m j N,故此f为MN/N到M的一个映射.23.设G是一个群,S是G的一非空子集合.令C(S)={x∈G|xa=ax,对一切a∈S}N(S)= {x∈G|x-1Sx=S}.证明:(i) C(S),N(S)都是G的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G的子群.任取x,y∈C(S),那么对任意a∈S有xa=ax,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy∈C(S).另一方面,xa=ax⇒a=x-1ax⇒ax-1=x-1a所以x-1∈C(S).因此,C(S)是G的子群.接着证明N(S)都是G的子群.任取x,y∈N(S),则x-1Sx=S,y-1Sy=S. 那么一方面,(xy)-1S(xy)=x-1(y-1Sy)x=x-1Sx=S所以xy∈N(S).另一方面,x-1Sx=S⇒S=xSx-1所以x-1∈N(S).因此,N(S)是G的子群.(ii) 任取x∈C(S),a∈S,则xa=ax,即a=x-1ax,亦即S= x-1Sx. 因此x∈N(S),即C(S)⊂N(S).任取x∈C(S),y∈N(S),a∈S,则存在a y∈S使得yay-1=a y,因此a=y-1a y y.那么(y-1xy)a(y-1xy)-1=y1[x(yay-1)x-1]y= y1(xa y x-1)y= y-1a y y=a,即(y-1xy)a=a(y-1xy).所以y-1xy∈C(S),因此C(S)是N(S)的正规子群.24.证明任意2阶群都与乘法群{1,-1}同构.证明:略.25.试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1)若存在一个四阶元,并设a为一个四阶元,那么该四阶群为<a>.(2)若不存在四阶元,那么除了单位元e的阶为1,其余元素的阶只能是2,即设四阶群222综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)∙(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“⊕”与乘法“⊙”为a⊕b=ab, a⊙b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a⊕b=a+b-1,a⊙b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算⊕下构成交换群:由⊕的定义,得到(a⊕b)⊕c=(a+b-1) ⊕c=a+b-1+c-1=a+b+c-2a ⊕(b ⊕c)= a ⊕(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a ⊕b)⊕c= a ⊕(b ⊕c).----------------(1)同时由⊕的定义还可以得到a ⊕1= 1⊕a=a ,------------------------(2) a ⊕(2-a)=(2-a) ⊕a=1,---------------(3) a ⊕b=b ⊕a ,----------------------------(4) 由(1),(2),(3)(4)可知L 在运算⊕下构成交换群.(ii)证明L 中运算⊙满足结合律和交换律:容易证明这里略过. (iii)证明乘法⊙对加法⊕满足分配律:因为a ⊙(b ⊕c)= a ⊙(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1, (a ⊙b)⊕(a ⊙c)=(a+b-1) ⊕(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a ⊙(b ⊕c)= (a ⊙b)⊕(a ⊙c).由于⊕和⊙满足交换律,故此(b ⊕c) ⊙a= (b ⊙a)⊕(c ⊙a).因此新定义的乘法⊙对新定义的加法⊕满足分配律 (iv) 设0为环(L ,+,∙)的零元,则0⊙a=a ⊙0=a由(i),(ii),(iii),(iv)可得到(L ,⊕,⊙)为交换幺环. (v) 最后证明(L ,+,∙)与(L ,⊕,⊙)同构:设f: L →L x ↦1-x ,容易证明f 为(L ,+,∙)到(L ,⊕,⊙)的同构映射.30. 给出环L 与它的一个子环的例子,它们具有下列性质: (i) L 具有单位元素,但S 无单位元素; (ii) L 没有单位元素,但S 有单位元素; (iii) L, S 都有单位元素,但互不相同; (iv) L 不交换,但S 交换. 解:(i) L=Z ,S=2Z ; (ii) L={(a b00)|a,b ∈R},S={(a 000)|a ∈R}; (iii) L={(a 00b )|a,b ∈R},S={(a)|a ∈R}; (iv) L={(a 0b 0)|a,b ∈R},S={(a00)|a ∈R};31. 环L 中元素e L 称为一个左单位元,如果对所有的a ∈L ,e L a= a ;元素e R 称为右单位元,如果对所有的a ∈L , ae R =a.证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素.证明:(i) 设e L为一个左单位元,e R为右单位元,则e L e R=e R=e L.记e=e R=e L,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设e L为一个左单位元,则对所有的a(≠0)∈L,a(e L a)=a2;另一方面,a(e L a)=(ae L)a.所以a2=(ae L)a.因为L无零因子,所以满足消去律[注],故此a= ae L.另外,若a=0,则a= ae L=e L a.因此左单位元e L正好是单位元.(iii) 设e L为一个左单位元,因为L中无右单位元,故存在x∈L,使得xe L≠x,即xe L-x≠0,则e L+ xe L-x≠e L,但是对所有的a∈L,(e L+ xe L-x)a=a,因此e L+ xe L-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f∙1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=(10),下面考察Lh是否为L的理想:10取k=(12),容易验证h∈Lh,hk∉Lh,因此Lh不是L的一个理想.0034.设I是交换环L的一个理想,令rad I={r∈L|r n∈I对某一正整数n},证明rad I也是一个理想.radI叫做理想I的根.35.设L为交换幺环,并且阶数大于1,如果L没有非平凡的理想,则L是一个域.证明:只要证明非零元素均可逆即可.任取a ∈L ,那么La 和aL 是L 的理想,且La ≠{0},aL ≠{0},因L 无平凡的理想,故此La=aL=L ,因此ax=1和ya=1都有解,因而a 为可逆元.36. Q 是有理数域,M n (Q)为n 阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单 环). 证明:我们社K 为M n (Q)的非零理想,下面证明K=M n (Q).为了证明这一点,只要证明n 阶单位矩阵E ∈K.记E ij 为除了第i 行第j 列元素为1,其余元素全为0的矩阵.那么E ij E st ={E it ,j =s0, j ≠s而E=E 11+E 22+…+E nn .我们只要证明E ii ∈K(i=1,2,…,n)就有E ∈K.设A ∈K ,且A ≠0,又令A=(a ij )n ×n ,假设a kj ≠0,则有E ik AE ji =a kj E ii (i=1,2,…,n).由于a kj ≠0,故存在逆元a kj -1.设B= a kj -1E ii ,则BE ik AE ji = a kj -1E ii E ik AE ji = a kj -1E ik AE ji =E ik E kj E ji =E ii .因为K 为理想,A ∈K ,所以E ii =BE ik AE ji ∈K ,证毕.37. 设L 为一环,a 为L 中一非零元素.如果有一非零元素b 使aba=0,证明a 是一个左零 因子或一右零因子. 证明:若ab=0,则a 为左零因子;若ab ≠0,则aba=(ab)a=0,故ab 为右零因子.38. 环中元素x 称为一幂零元素,如果有一正整数n 使x n =0,设a 为幺环中的一幂零元素, 证明1-a 可逆. 证明:设a n =0,那么(1+a+a 2+…+a n-1)(1-a)=(1-a) (1+a+a 2+…+a n-1) =1-a n =1因此1-a 可逆.39. 证明:在交换环中,全体幂零元素的集合是一理想. 40. 设L 为有限幺环.证明由xy=1可得yx=1. 证明:当L 只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy ;当L 有多于一个元素时(即0≠1时),若xy=1,y 不是左零元[注],因此yL=L.又因L 为有限环,所以存在z ∈L ,使得yz=1.注意到(xy)z=z ,x(yz)=x ,所以x=z ,即yx=1. [注意]1.幺环多于一个元素当且仅当0≠1.2.当L 有多于一个元素时(即0≠1时),若xy=1,y 不是左零元.因为若存在z ≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41. 在幺环中,如果对元素a 有b 使ab=1但ba ≠1,则有无穷多个元素x ,适合ax=1. (Kaplansky 定理)证明:首先,若ab=1但ba≠1,则a至少有两个右逆元[注].现在假设a只有n(>1)个右逆元,并设这些元素为x i(i=1,2,…,n).那么a(1-x i a+x1)=1(i=1,2,…,n),又当i≠j时,1-x i a+x1≠1-x j a+x1[注],这里i,j=1,2,…,n.于是{x i|i=1,2,…,n}={1-x i a+x1| i=1,2,…,n },故存在x k∈{x i|i=1,2,…,n}使得x1=1-x k a+x1,即x k a=1.因为n>1,我们取x t≠x k∈{x i|i=1,2,…,n},那么(x k a)x t=x t,(x k a)x t =x k(ax t)=x k因此x t=x k,产生矛盾,所以假设不成立,即a有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a至少有两个右逆元. 因为易验证1-ba+a就是另一个右逆元.2. 假设当i≠j时,1-x i a+x1=1-x j a+x1,则x i a=x j a,故x i ax1=x j ax1,因此x i=x j,产生矛盾.42.设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得aba=a.证明:(i) L无零因子;(ii) bab=b;(iii) L有单位元素;(iv) L是一个体.证明:(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L无左零因子.类似可证L无右零因子.(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b. (iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为a(a2b-a+b)a=a,所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.43.令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I,一定有个实数θ,0≤θ≤1,使得f(θ)=0对所有的f(x)∈I;(ii) 是一零因子当且仅当点集{x∈[0,1]|f(x)=0} 包含一个开区间.证明:(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g ∈I可逆.(ii) 提示:用连续函数的局部保号性.44.令F=Z/pZ为p个元素的域.求(i) 环M n(F)的元素的个数;(ii) 群GL n(F)的元素的个数.45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

代数学引论答案(第一章)

代数学引论答案(第一章)

1.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1] 对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.2.证明:群G为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群G为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为,并且群G为一个交换群,可得.因此有.综上可知群G为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群G为一个交换群.若映射是一同构映射,则对任意有,另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群G为一个交换群.3.设n为一个正整数, nZ为正整数加法群Z的一个子群,证明nZ与Z同构.证明:我们容易证明为Z到nZ的同构映射,故此nZ与Z同构.4.证明:在S4中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明B与U4不同构.证明:可记a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:由该表格可以知道B中的元素对置换的乘法封闭,并且B的每一元都可逆(任意元的逆为其本身),因此B为S4的子群. 这个群(以及与其同构的群)称为Klein(C.L.Klein,1849-1925)四元群.假设B与U4同构,并设f为B到U4的同构映射, 则存在B中一元x使得f(x)=i(i为虚数单位),那么f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意x2=e),产生矛盾.所以假设不成立, 即B与U4不同构.[讨论] B与U4都是4元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.5. 证明:如果在一阶为2n 的群中有一n 阶子群,它一定是正规子群.证明:[方法1]设H 是2n 阶群G 的n 阶子群, 那么对任意a H, 有H aH=,并且aH G,H G,又注意到aH 和H 中都有n 个元素, 故此H aH=G.同理可证对任意a H, 有H Ha=, H Ha=G ,因此对任意a H ,有aH=Ha.对任意a H, 显然aH H, Ha H 又因aH,Ha 及H 中都有n 个元素,故aH=Ha=H.综上可知对任意a G,有aH=Ha ,因此H 是G 的正规子群.[方法2] 设H 是2n 阶群G 的n 阶子群,那么任取a H, h H, 显然有aha -1H.对给定的x H, 有H xH=, H xH=G.这是因为若假设y H xH, 则存在h H ,使得y=xh,即x=yh -1H 产生矛盾,因此H xH=;另一方面, xH G,H G, 又注意到xH 和H 中都有n 个元素, 故此H xH=G.那么任取a H,由上面的分析可知a xH, 从而可令a=xh 1这里h 1H.假设存在h H, 使得aha -1H,则必有aha -1xH,从而可令aha -1=xh2,这里h 2H.那么,xh 1ha -1=xh 2,即a= h 2h 1h H,产生矛盾.因此,任取a H, h H, 有aha -1H.综上可知对任取a G, h H, 有aha -1H,因此H 为G 的一个正规子群.6. 设群G 的阶为一偶数,证明G 中必有一元素a e 适合a 2=e.证明: 设b G ,且阶数大于2,那么b≠b -1,而b -1的阶数与b 的阶数相等.换句话说G 中阶数大于2的元素成对出现,幺元e 的阶数为1,注意到G 的阶数为宜偶数,故此必存在一个2阶元,(切确的说阶数为2的元素有奇数个).[讨论][1] 设G 是一2n 阶交换群,n 为奇数则G 中只有一个2阶元.为什么?提示:采用反证法,并注意用Lagrange 定理.[2] 群G 中,任取a G ,有a n =e ,那么G 一定是有限群吗?如果不是请举出反例,若是有限群,阶数和n 有什么关系?7. 设H ,K 为群G 的子群,HK 为G 的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH ,下面证明HK 为G 的一子群.任取a,b ∈HK,可令a=h 1k 1,b=h 2k 2这里h i ∈H ,k i ∈K ,i=1,2. 那么ab=(h 1k 1)(h 2k 2)=h 1(k 1h 2)k 2 ---------------(1)因HK=KH ,故此k 1h 2= h 3k 3 ----------------------(2)。

线性代数 高教第二版 卢刚 第一章 课后答案

线性代数 高教第二版 卢刚 第一章 课后答案

7

第一章《线性代数》习题解答
10 2 3 4
10 2 3 4
(6)原
第2,3,4行都加到第1行
10
3
4
1 0 第2,3,4行都减去第1行
10 4 1 2
0
1 1 -3 2 -2 -2
10 1 2 3
0 -1 -1 -1
1 1 3 10 2 2 2 160.
按第1列展开
14. A2 A [1 (B I )]2 1 (B I ) 1 (B 2 2BI I 2 ) 1 (B I )
2
2
4
2
(B 2 2B I ) 2(B I ) B 2 I.
n
n
n
15.(1) tr( A B) (aii bii ) aii bii tr( A) tr(B) .
第2列减去第1列 28092 1000
28092 1
5 -1 3 5 -1 3
第2行的( 98) 倍加到第3行
按第1行展开
(4) 原
2 2 2=2 1 1 1 = 8 .
0 73 0 73
(5)利用 P22 例 6 的结论.原 [5 (4 1) 1](5 1)3 512 .
第 7 页 共 20 页
0 1 0 0
0 0 1 0
0 0 0 1
(4)(直接计算即可)令
A
0 0 0
0 0 0
1 0 0
0 10
,则
A2
0
0 0
0 0 0
0 0 0
1
0 0

A3
0
0 0
0 0 0
0 0 0
0
0 0

0 0 0 0

代数学引论(聂灵沼-丁石孙版)第一章习题解答

代数学引论(聂灵沼-丁石孙版)第一章习题解答

代数学引论(聂灵沼-丁石孙版)第一章习题解答第一章代数基本概念1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1)a(bc)=(ab)c;(2)由ab=ac推出a=c;(3)由ac=bc推出a=b;证明G在该乘法下成一群.证明:[方法1]设G={a1,a2,…,a n},k是1,2,…,n中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j------------<1>a i a k a j a k------------<2>再由乘法的封闭性可知G={a1,a2,…,a n}={a k a1, a k a2,…, a k a n}------------<3>G={a1,a2,…,a n}={a1a k, a2a k,…, a n a k}------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m=a t.由<2>和<4>知对任意a t G, 存在a s G,使得a s a k=a t.由下一题的结论可知G在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

代数学引论高教第二版答案(第一章)

代数学引论高教第二版答案(第一章)

1. 如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明: 对任意 a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到ba=ab, 由此可见群 G 为交换群.2. 如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1] 对任意 a,b G,ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,b G,a2b2=e=(ab)2, 由上一题的结论可知 G 为交换群.3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1) a(bc)=(ab)c; (2) 由 ab=ac 推出 b=c; (3) 由 ac=bc 推出 a=b;证明 G 在该乘法下成一群. 证明:[方法 1]设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2)可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2>再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3> G={a1,a2,…,an}={a1ak, a2ak,…, anak}------------<4>由<1>和<3>知对任意 at G, 存在 am G,使得 akam=at.由<2>和<4>知对任意 at G, 存在 as G,使得 asak=at.由下一题的结论可知 G 在该乘法下成一群.1下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 如果群 G 中,对任意元素 a,b 有(ab)2=a2b2,则 G 为交换群. 证明: 对任意 a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b 再由已知条件以及消去律得到ba=ab, 由此可见群 G 为交换群.2. 如果群 G 中,每个元素 a 都适合 a2=e, 则 G 为交换群. 证明: [方法 1] 对任意 a,b G,ba=bae=ba(ab)2=ba(ab)(ab) =ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,b G,a2b2=e=(ab)2, 由上一题的结论可知 G 为交换群.3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合条件: (1) a(bc)=(ab)c; (2) 由 ab=ac 推出 b=c; (3) 由 ac=bc 推出 a=b;证明 G 在该乘法下成一群. 证明:[方法 1]设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2)可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2>再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3> G={a1,a2,…,an}={a1ak, a2ak,…, anak}------------<4>由<1>和<3>知对任意 at G, 存在 am G,使得 akam=at.由<2>和<4>知对任意 at G, 存在 as G,使得 asak=at.由下一题的结论可知 G 在该乘法下成一群.1下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。

[方法 2]为了证明 G 在给定的乘法运算下成一群,只要证明 G 内存在幺元(单位元),并且证明 G 内每一个元素都可逆即可.为了叙述方便可设 G={a1,a2,…,an}. (Ⅰ) 证明 G 内存在幺元.<1> 存在 at G,使得 a1at=a1.(这一点的证明并不难,这里不给证明); <2> 证明 a1at= ata1; 因为故此a1(ata1)at=(a1at) (a1at)=(a1)2 a1(a1at)at=(a1a1)at=a1(a1at)= (a1)2,由条件(1),(2)可得到a1(ata1)at= a1(a1at)at.<3> 证明 at 就是 G 的幺元; 对任意 ak G,由条件(2)可知a1at= ata1. a1(atak) =(a1at)ak=a1ak类似可证atak=ak.因此 at 就是 G 的幺元. (Ⅱ) 证明 G 内任意元素都可逆;akat=ak.上面我们已经证明 G 内存在幺元,可以记幺元为 e,为了方便可用 a,b,c,…等符号记 G 内元素.下面证明任意 a G,存在 b G,使得ab=ba=e.<1> 对任意 a G,存在 b G,使得ab=e;(这一点很容易证明这里略过.)<2> 证明 ba=ab=e;因为a(ab)b=aeb=ab=ea(ba)b=(ab)(ab)=ee=e再由条件(2),(3)知2ba=ab. 因此 G 内任意元素都可逆. 由(Ⅰ),(Ⅱ)及条件(1)可知 G 在该乘法下成一群.4. 设 G 是非空集合并在 G 内定义一个乘法 ab.证明:如果乘法满足结合律,并且对于任一对 元素 a,b G,下列方程 ax=b 和 ya=b分别在 G 内恒有解,则 G 在该乘法下成一群. 证明:取一元 a G,因 xa=a 在 G 内有解, 记一个解为 ea ,下面证明 ea 为 G 内的左幺元. 对任意 b G, ax=b 在 G 内有解, 记一个解为 c,那么有 ac=b ,所以eab= ea(ac)= (eaa)c=ac=b, 因此 ea 为 G 内的左幺元. 再者对任意 d G, xd=ea 在 G 内有解,即 G 内任意元素对 ea 存在左逆元, 又因乘法满足结合律,故此 G 在该乘法下成一 群.[总结]群有几种等价的定义:(1) 幺半群的每一个元素都可逆,则称该半群为群. (2)设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且 G 内包含幺元, G 内任意元素都有逆元,则称 G 为该运算下的群. (3)设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且 G 内包含左幺元, G 内任意元素对左幺元都有左逆元,则称 G 为该运算下的群. (4)设 G 是一个非空集合,G 内定义一个代数运算,该运算满足结合律, 并且对于任一对元素 a,b G,下列方程 ax=b 和 ya=b分别在 G 内恒有解,则称 G 为该运算下的群. 值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.5. 在 S3 中找出两个元素 x,y,适合(xy)2 x2y2.[思路] 在一个群 G 中,x,y G, xy=yx (xy)2 x2y2(这一点很容易证明).因此只要找到 S3 中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素.解: 取3那么x=, y=(xy)2= x2y2.[注意]我们可以通过 mathematica 软件编写 Sn 的群表,输出程序如下: Pr[a_,b_,n_]:=(*两个置换的乘积*)(Table[a[[b[[i]]]],{I,1,n}]);Se[n_]:=(*{1,2,…,n}的所有可能的排列做成一个表格*)(Permutations[Table[i,{I,1,n}]]);Stable[n_]:=(*生成 Sn 群表*) (a=Se[n];Table[pr[a[[i]],a[[j]],n],{I,1,n},{j,1,n}])当 n=3 时群表如下:112233231312323121113322321213232131221133132321313212223311312123131232331122123231212313332211213132121323[说明]: 表示置换, 剩下的类似.为了让更清楚,我们分别用 e,a,b,c,d,f 表示 ,, , , 那么群表如下:eabcdfeeabcdfaaedfbcbbceafdccbfdeaddfaecbffdcbae6. 对于 n>2,作一阶为 2n 的非交换群.47. 设 G 是一群, a,b G,如果 a-1ba=br,其中 r 为一正整数,证明 a-ibai= . 证明:我们采用数学归纳法证明.当 k=1 时, a-1ba=br= , 结论成立;假设当 k=n 时结论成立, 即 a-nban= 成立, 下面证明当 k=n+1 时结论也成立.我们注意到a-1bka== bkr,因此可见 k=n+1 时结论也成立. 由归纳原理可知结论得证.a-(n+1)ban+1= a-1 (a-nban)a=a-1 a= =,8. 证明:群 G 为一交换群当且仅当映射是一同构映射.证明:(Ⅰ)首先证明当群 G 为一个交换群时映射是一同构映射.由逆元的唯一性及可知映射为一一对应,又因为, 并且群 G 为一个交换群,可得. 因此有.综上可知群 G 为一个交换群时映射是一同构映射.(Ⅱ)接着证明当映射是一同构映射,则群 G 为一个交换群.若映射是一同构映射,则对任意有, 另一方面,由逆元的性质可知.因此对任意有,即映射是一同构映射,则群 G 为一个交换群.59. 设 S 为群 G 的一个非空子集合,在 G 中定义一个关系 a~b 当且仅当 ab-1∈S.证明这是一个等价关系的充分必要 条件为 S 是一个子群.证明: 首先证明若~是等价关系,则 S 是 G 的一个子群. 对任意 a G,有 a~a,故此 aa-1=e S; 对任意 a,b S,由(ab)b-1=a S,可知 ab~b,又 be-1=b S,故 b~e,由传递性可知 ab~e,即(ab)e-1=ab S.再者因ae-1=a S, 故 a~e,由对称性可知 e~a,即 ea-1=a-1 S.可见 S 是 G 的一个子群. 接着证明当 S 是 G 的一个子群,下面证明~是一个等价关系. 对任意 a G, 有 aa-1=e S,故此 a~a(自反性);若 a~b,则 ab-1 S,因为 S 为 G 的子群,故(ab-1)-1=ba-1 S,因此b~a(对称性);若 a~b,b~c,那么 ab-1 S,bc-1 S,故 ab-1 bc-1=ac-1 S,因此 a~c(传递性). 综上可知~是一个等价关系.10. 设 n 为一个正整数, nZ 为正整数加法群 Z 的一个子群,证明 nZ 与 Z 同构.证明:我们容易证明为 Z 到 nZ 的同构映射,故此 nZ 与 Z 同构.11. 证明:在 S4 中,子集合B={e,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)}是子群,证明 B 与 U4 不同构. 证明:可记 a=(1 2)(3 4), b=(1 3)(2 4), c=(1 4)(2 3),那么置换的乘积表格如下:eabceeabcaaecbbbceaccbae由该表格可以知道 B 中的元素对置换的乘法封闭,并且 B 的每一元都可逆(任意元的逆为其本身),因此 B 为 S4 的 子群. 这个群(以及与其同构的群)称为 Klein(C.L.Klein,1849-1925)四元群.假设 B 与 U4 同构,并设 f 为 B 到 U4 的同构映射, 则存在 B 中一元 x 使得 f(x)=i(i 为虚数单位),那么 f(x2)= f2(x)=i2=-1另一方面, f(x2)=f(e)=1(注意 x2=e),产生矛盾.所以假设不成立, 即 B 与 U4 不同构.[讨论] B 与 U4 都是 4 元交换群,但是后者是循环群, 前者不是, 这是这两个群的本质区别.612. 证明:如果在一阶为 2n 的群中有一 n 阶子群,它一定是正规子群. 证明:[方法 1]设 H 是 2n 阶群 G 的 n 阶子群, 那么对任意 a H, 有 H aH= ,并且 aH G,H G,又注意到 aH 和 H 中都有 n 个元素, 故此 H aH=G.同理可证对任意 a H, 有 H Ha= , H Ha=G,因此对任意 a H,有 aH=Ha.对任意 a H, 显然 aH H, Ha H 又因 aH,Ha 及 H 中都有 n 个元素,故 aH=Ha=H.综上可知对任意 a G,有 aH=Ha,因此 H 是 G 的正规子群.[方法 2]设 H 是 2n 阶群 G 的 n 阶子群,那么任取 a H, h H, 显然有 aha-1 H.对给定的 x H, 有H xH= , H xH=G.这是因为若假设 y H xH, 则存在 h H,使得 y=xh,即 x=yh-1 H 产生矛盾,因此 H xH= ;另一方面, xH G,H G,又注意到 xH 和 H 中都有 n 个元素, 故此 H xH=G.那么任取 a H,由上面的分析可知 a xH, 从而可令a=xh1 这里 h1 H.假设存在 h H, 使得 aha-1 H,则必有 aha-1 xH,从而可令这里 h2 H. 那么aha-1=xh2xh1ha-1=xh2, 即产生矛盾.a= h2h1h H,7因此,任取 a H, h H, 有 aha-1 H. 综上可知对任取 a G, h H, 有 aha-1 H,因此 H 为 G 的一个正规子群.13. 设群 G 的阶为一偶数,证明 G 中必有一元素 a e 适合 a2=e. 证明: 设 b G,且阶数大于 2,那么 b≠b-1,而 b-1 的阶数与 b 的阶数相等.换句话说 G 中阶数大于 2 的元素成对出现,幺元 e 的阶数为 1,注意到 G 的阶数为宜偶数,故此必存在一个 2 阶元,(切确的说阶数为 2 的元素有奇数个).[讨论] [1] 设 G 是一 2n 阶交换群,n 为奇数则 G 中只有一个 2 阶元.为什么? 提示:采用反证法,并注意用 Lagrange 定理. [2] 群 G 中,任取 a G,有 an=e,那么 G 一定是有限群吗?如果不是请举出反例,若是有限群,阶数和 n 有什么关 系?14. 令A=, B=证明:集合{B,B2,…,Bn,AB,AB2,…,ABn}在矩阵的乘法下构成一群, 而这个群与群 Dn 同构. 证明:下面证明 G={B,B2,…,Bn,AB,AB2,…,ABn}在矩阵的乘法下构成一群. (Ⅰ)首先证明对乘法运算封闭. 下面进行分类讨论:(1) Bi Bj=Bi+j,注意到 Bn=故此Bi Bj=Br G 这里 i+j=kn+r,k Z,0<r n.(2) A Bi Bj=Br G 这里 i+j=kn+r,k Z,0<r n.(3) 容易证明 BAB=A=ABn,BA=BiAB(s+1)n=ABn-t G,这里 i=sn+t,k Z,0<t n.那么 Bi (ABj)=( Bi A)Bj=(ABn-t) Bj G(4) (ABi) (ABj)=A(BiABj)=A((ABn-t) Bj)=A2(Bn-t Bj)= Bn-t Bj) G 由(1),(2),(3),(4)知 G 对乘法运算封闭.(Ⅱ)因集合 G 对矩阵乘法封闭,再由矩阵乘法的性质可知,结合律肯定成立. (Ⅲ)显然 Bn=A2=E 为幺元. (Ⅳ)对 Bi(i=1,2,…,n),有BiBn-i=E;8对 ABi(i=1,2,…,n),有(ABi)(Bn-iA)=E,因此 G 内任何一元都可逆.由(Ⅰ),(Ⅱ),(Ⅲ),(Ⅳ)可知 G 在矩阵乘法下构成一群.最后证明 G 与 Dn 同构. 令 f:G→Dnf(Bi)=Ti, f(ABi)=STi(i=1,2,…,n),可以证明 f 就是 G 到 Dn 的同构映射,这里不予证明了. 15. 设 i 是一个正整数, 群 G 中任意元素 a,b 都适合(ab)k=akbk, k=I,i+1,i+2,证明 G 为交换群.证明:对任意 a,b Gai+2bi+2=(ab)i+2=(ab) (ab)i+1=(ab) (ai+1bi+1)=a(bai+1)bi+1,根据消去律可得ai+1b=bai+1.----------------------(1)同时ai+1bi+1=(ab)i+1=(ab) (ab)i=(ab) (aibi)=a(bai)bi+1,根据消去律可得aib=bai.---------------------------(2)因此ai+1b=a(aib)=a(bai)=(ab)ai----(3)另外bai+1=(ba)ai----------------------(4)结合(1),(3),(4)有(ab)ai=(ba)ai---------------------(5)由消去律可得到ab=ba.因此 G 为交换群.16. 在群 SL2(Q)中,证明元素 a=的阶为 4,元素 b=9的阶为 3,而 ab 为无限阶元素. 证明:可以直接验证 a 的阶为 4,b 的阶为 3. 因为ab=,对任何正整数 n,(ab)n=≠可见 ab 的阶为无限.[注意] 在一群中,有限阶元素的乘积并不一定也是有限阶的,但两个可交换的有限阶元素的乘积一定是有限阶元素. [问题] 若一群中所有元素的阶数都有限,那么这个群一定是有限群吗?17. 如果 G 为一个交换群,证明 G 中全体有限阶元素组成一个子群. 证明:交换群 G 中全体有限阶元素组成的集合记为 S,任取 a,b S,并设 a 的阶为 m,b 的阶为 n,则 (ab)mn=(am)n(bn)m=e因此 ab 为有限阶元素,即 ab S. a-1 的阶数与 a 相同,故此 a-1 也是有限阶元素,即 a-1 S. 综上可知 S 为 G 的一个子群.18. 如果 G 只有有限多个子群,证明 G 为有限群. 证明:采用反证法证明.假设 G 为无限群,则 G 中元素只可能有两种情况:(1)G 中任意元素的阶数都有限、(2)G 中存在 一个无限阶元素. (1) 首先看第一种情况:G 中取 a1≠e,并设其阶数为 n1,则循环群 G1={ ,… }为 G 的一个子群; G 中取 a2 G1,并设其阶数为 n2,则循环群 G2={ ,… }为 G 的一个子群; G 中取 a3 G1∪G2,并设其阶数为 n3,则循环群 G3={ ,… }为 G 的一个子群; ……… 我们一直这样做下去,可以得到 G 的互不相同的子群构成的序列 Gn(n=1,2,…),所以 G 有无穷多个子群,产生 矛盾; (2) 再看第二种情况: 设 a∈G 的阶数为无穷,那么序列10G1=<>,G 2=<>,…,G n =<>,…是G 的互不相同的子群,所以G 有无穷多个子群,产生矛盾.综上就可知“G 是无限群”这个假设不成立,因此G 是有限群.19. 写出D n 的所有正规子群.20. 设H ,K 为群G 的子群,HK 为G 的一子群当且仅当HK=KH.证明:(Ⅰ)设HK=KH ,下面证明HK 为G 的一子群.任取a,b ∈HK,可令a=h 1k 1,b=h 2k 2这里h i ∈H ,k i ∈K ,i=1,2.那么 ab=(h 1k 1)(h 2k 2)=h 1(k 1h 2)k 2 ---------------(1)因HK=KH ,故此k 1h 2= h 3k 3 ----------------------(2)这里h 3∈H ,k 3∈K.由(1),(2)知ab= h 1(h 3k 3)k 2=(h 1h 3)(k 3k 2)∈HK. ------------(3)另外,a -1= (h1k 1)-1=∈KH=HK. ----------------- (4)由(3),(4)知HK 是G 的子群.(Ⅱ) HK 为G 的一子群,下面证明HK=KH.若a ∈HK,易知a -1∈KH. HK 是子群,任取a ∈HK,有a -1∈HK,因此(a -1)-1=a∈KH,那么有HK KH.若a ∈KH,易知a -1∈HK. HK 是子群,任取a ∈KH ,有a -1∈HK,因此(a -1)-1=a∈HK,那么有KH HK.综上知,HK=KH.21. 设H ,K 为有限群G 的子群,证明证明:因H ∩K 为H 的子群,那么可设H 的左陪集分解式为H=h 1(H ∩K)∪h 2(H ∩K)∪…∪h r (H ∩K)这里r 为H ∩K 在H 中的指数,h i ∈H ,当i ≠j ,h i -1h j ∉H ∩K(事实上等价于h i -1h j ∉K),i, j=1,2,…,r.又(H ∩K)K=K,所以HK=h 1K ∪h 2K ∪…∪h r K.------------(1)注意到h i -1h j ∉K ,所以当i ≠j(i, j=1,2,…,r)时,hi K ∩h j K=.----------------(2)由(1),(2)我们得到[总结]左陪集的相关结论设H 为G 的一子群,那么(1) a ∈aH;(2) a ∈H ⇔aH=H;(3) b ∈aH ⇔aH=bH;(4) aH=bH ⇔a -1b ∈H;(5) aH ∩bH≠,有aH=bH.22. 设M,N 是群G 的正规子群.证明:(i) MN=NM;(ii) MN 是G 的一个正规子群;(iii) 如果M N={e},那么MN/N 与M 同构.证明:(i)[方法1]任取a ∈MN,可设a=mn(m∈M,n ∈N).因为M 为G 的正规子群,故n -1mn ∈M. 所以a=n(n -1mn) ∈NM ,故此MN ⊆NM.同样的方法可以证明NM ⊆MN. 因此MN=NM.[方法2]任取a ,b ∈MN ,可设a=m 1n 1(m 1∈M ,n 1∈N),b=m 2n 2(m 2∈M ,n 2∈N).下面只要证明MN 为G 的一个子群即可(由第20题可知),也就是说只要证明ab -1∈MN 即可.因为ab -1=m 1n 1n 2-1m 2-1= [m 1(n 1n 2-1m 2-1n 2n 1-1)](n 1n 2-1),而M 为G 的正规子群,故n 1n 2-1m 2-1n 2n 1-1∈M ,所以ab -1∈MN.(ii) 由(i)可知MN 为G 的一个子群.任取a ∈MN, 可设a=mn(m ∈M ,n ∈N).因为M 和N 为G 的正规子群,对任意g ∈G ,有g -1ag= g -1mng= (g -1mg)(g -1ng) ∈MN.所以MN 为G 的正规子群.(iii) 易知N 为MN 的正规子群,因此MN/N 是一个群. 因为M N={e},对任何m i ≠m j ∈M, 有m i N ≠m j N [注]. 作一个MN/N 到M 的映射f [注],f: MN/N→M mN m ,那么该映射显然是一一对应,另外f(m i N m j N)= f(m i m j N)= m i m j ,因此f 为MN/N 到M 的同构映射,即MN/N 与M 同构.[讨论]1. 只要M 和N 的一个是正规子群,那么MN 就是子群,或者说成立MN=NM.这一点我们从(i)的证明方法2可知.2. M 和N 中有一个不是正规子群时MN 一定不是正规子群.[注意] 1M N={e},对任何m i ≠m j ∈M, 有m i N ≠m j N.证明:若存在m i ≠m j ∈M, 有m i N=m j N ,那么m i m j -1∈N ,而m i m j -1∈M. 因此m i m j -1∈M N ,产生矛盾.2. 设f: MN/N→M mN m ,则由于对任何m i ≠m j ∈M, 有m i N ≠m j N ,故此f 为MN/N 到M 的一个映射.23. 设G 是一个群,S 是G 的一非空子集合.令C(S)={x ∈G|xa=ax,对一切a ∈S}N(S)= {x ∈G|x -1Sx=S}.证明:(i) C(S),N(S)都是G 的子群;(ii) C(S)是N(S)的正规子群.证明:(i) 首先证明C(S)是G 的子群.任取x ,y ∈C(S),那么对任意a ∈S 有xa=ax ,ya=ay. 那么一方面,(xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy),所以xy ∈C(S).另一方面,xa=ax a=x -1ax ax -1=x -1a所以x -1∈C(S).因此,C(S)是G 的子群.接着证明N(S)都是G 的子群.任取x ,y ∈N(S),则x -1Sx=S ,y -1Sy=S. 那么一方面,(xy)-1S(xy)=x -1(y -1Sy)x=x -1Sx=S所以xy ∈N(S).另一方面,x -1Sx=S S=xSx -1所以x -1∈N(S).因此,N(S)是G 的子群.(ii) 任取x ∈C(S),a ∈S ,则xa=ax ,即a=x -1ax ,亦即S= x -1Sx. 因此x ∈N(S),即C(S)N(S).任取x ∈C(S),y ∈N(S),a ∈S ,则存在a y ∈S 使得yay -1=a y ,因此a=y -1a y y.那么(y -1xy)a(y -1xy)-1=y 1[x(yay -1)x -1]y= y 1(xa y x -1)y= y -1a y y=a ,即(y -1xy)a=a(y -1xy).所以y -1xy ∈C(S),因此C(S)是N(S)的正规子群.24. 证明任意2阶群都与乘法群{1,-1}同构.证明:略.25. 试定出所有互不相同的4阶群.解:我们分类讨论:(1)存在四阶元;(2)不存在四阶元.(1) 若存在一个四阶元,并设a 为一个四阶元,那么该四阶群为<a>.(2) 若不存在四阶元,那么除了单位元e 的阶为1,其余元素的阶只能是2,即设四阶群G={e ,a ,b ,c},那么a 2=b 2=c 2=e ,ab=ba=c ,ac=ca=b ,bc=cb=a. 群表如下:这是Klein 四阶群.综上可知,四阶群群在同构意义下只有两种或者是四阶循环群或者是Klein四阶群.26.设p为素数.证明任意两个p阶群必同构.证明:易知当p为素数时,p阶群必存在一个p阶元,即p阶群必是p阶循环群,故两个p阶群必同构.27.Z为整数环,在集合S=Z×Z上定义(a,b)+(c,d)=(a+c,b+d),(a,b)(c,d)=(ac+bd,ad+bc).证明S在这两个运算下成为幺环.提示:(1,0)为该环的单位元素.证明:略.28.在整数集上重新定义加法“”与乘法“”为a b=ab, a b=a+b试问Z在这两个运算下是否构成一环.答:不构成环.29.设L为交换幺环,在L中定义:a b=a+b-1,a b=a+b-ab.这里e为单位元素,证明在新定义的运算下,L仍称为交换幺环,并且与原来的环同构.证明:(i)证明L在运算下构成交换群:由的定义,得到(a b)c=(a+b-1)c=a+b-1+c-1=a+b+c-2a(b c)= a(b+c-1)= a+b+c-1-1=a+b+c-2这里2=1+1,所以(a b)c= a(b c).----------------(1)同时由的定义还可以得到a1= 1a=a,------------------------(2)a(2-a)=(2-a)a=1,---------------(3)a b=b a,----------------------------(4)由(1),(2),(3)(4)可知L在运算下构成交换群.(ii)证明L中运算满足结合律和交换律:容易证明这里略过.(iii)证明乘法对加法满足分配律:因为a(b c)= a(b+c-1)=a+(b+c-1)-a(b+c-1)=2a+b+c-ab-ac-1,(a b)(a c)=(a+b-1)(a+c-1)= (a+b-ab)+(a+c-ac)-1=2a+b+c-ab-ac-1,所以a(b c)= (a b)(a c).由于和满足交换律,故此(b c)a= (b a)(c a).因此新定义的乘法对新定义的加法满足分配律(iv) 设0为环(L,+,)的零元,则0a=a0=a由(i),(ii),(iii),(iv)可得到(L,,)为交换幺环.(v) 最后证明(L,+,)与(L,,)同构:设f: L→Lx1-x,容易证明f为(L,+,)到(L,,)的同构映射.30.给出环L与它的一个子环的例子,它们具有下列性质:(i) L具有单位元素,但S无单位元素;(ii) L没有单位元素,但S有单位元素;(iii) L, S都有单位元素,但互不相同;(iv) L不交换,但S交换.解:(i) L=Z,S=2Z;(ii) L={|a,b∈R},S={|a∈R};(iii) L={|a,b∈R},S={|a∈R};(iv) L={|a,b∈R},S={|a∈R};称为一个左单位元,如果对所有的a∈L,31.环L中元素eLea= a;L元素e称为右单位元,如果对所有的a∈L,Rae=a.R证明:(i)如果L既有左单位元又有右单位元,则L具有单位元素;(ii)如果L有左单位元,L无零因子,则L具有单位元素;(iii)如果L有左单位元,但没有右单位元,则L至少有两个左单位元素. 证明:(i) 设eL 为一个左单位元,eR为右单位元,则eLeR=eR=eL.记e=eR=eL,则对所有的a∈L,ea=ae=a,因此e为单位元素;(ii) 设eL 为一个左单位元,则对所有的a(≠0)∈L,a(eLa)=a2;另一方面,a(eLa)=(aeL)a.所以a2=(aeL )a.因为L无零因子,所以满足消去律[注],故此a= aeL.另外,若a=0,则a= aeL=eLa.因此左单位元eL正好是单位元.(iii) 设eL 为一个左单位元,因为L中无右单位元,故存在x∈L,使得xeL≠x,即xeL-x≠0,则eL + xeL-x≠eL,但是对所有的a∈L,(eL+ xeL-x)a=a,因此eL+ xeL-x为另一个左单位元,所以L至少有两个左单位元素.[注意] L无零因子,则满足消去律(参考教材46页).32.设F为一域.证明F无非平凡双边理想.证明:设I为F的任意一个理想,且I≠{0},则对任意a(≠0)∈I,则a-1∈F,于是a-1a=1∈I.从而F中任意元素f,有f1=f∈I,故I=F,即F只有平凡双边理想.[讨论] 事实上,一个体(又称除环)无非平凡双边理想. 另一方面,若L是阶数大于1的(交换)幺环,并且除了平凡理想,没有左或右理想,则L是一体(域).33.如果L是交换环,a∈L,(i) 证明La={ra|r∈L}是双边理想;(ii) 举例说明,如果L非交换,则La不一定是双边理想.证明:(i) 容易验证La为L的一个加法群. 任取ra∈La,l∈L,则l(ra)=(lr)a∈La,(ra)l=r(al)=r(la)=(rl)a∈La故La为L的一个双边理想.(ii) 设L=M2(R),那么L显然不是交换环,取h=,下面考察Lh是否为L的理想:取k=,容易验证h ∈Lh ,hk Lh ,因此Lh 不是L 的一个理想.34. 设I 是交换环L 的一个理想,令rad I ={r ∈L|r n ∈I 对某一正整数n},证明rad I 也是一个理想.radI 叫做理想I 的根.35. 设L 为交换幺环,并且阶数大于1,如果L 没有非平凡的理想,则L 是一个域.证明:只要证明非零元素均可逆即可.任取a ∈L ,那么La 和aL 是L 的理想,且La ≠{0},aL ≠{0},因L 无平凡的理想,故此La=aL=L ,因此ax=1和ya=1都有解,因而a 为可逆元.36. Q 是有理数域,M n (Q)为n 阶有理系数全体矩阵环.证明无非平凡的理想(这种环称为单环).证明:我们社K 为M n (Q)的非零理想,下面证明K=M n (Q).为了证明这一点,只要证明n 阶单位矩阵E ∈K.记E ij 为除了第i 行第j 列元素为1,其余元素全为0的矩阵.那么E ij E st =而E=E 11+E 22+…+E nn .我们只要证明E ii ∈K(i=1,2,…,n)就有E ∈K.设A ∈K ,且A≠0,又令A=(a ij )n×n ,假设a kj ≠0,则有E ik AE ji =a kj E ii (i=1,2,…,n).由于a kj ≠0,故存在逆元a kj -1.设B= a kj -1E ii ,则BE ik AE ji = a kj -1E ii E ik AE ji = a kj -1E ik AE ji =E ik E kj E ji =E ii .因为K 为理想,A ∈K ,所以E ii =BE ik AE ji ∈K ,证毕.37. 设L 为一环,a 为L 中一非零元素.如果有一非零元素b 使aba=0,证明a 是一个左零因子或一右零因子.证明:若ab=0,则a 为左零因子;若ab≠0,则aba=(ab)a=0,故ab 为右零因子.38. 环中元素x 称为一幂零元素,如果有一正整数n 使x n =0,设a 为幺环中的一幂零元素,证明1-a 可逆.证明:设a n =0,那么(1+a+a 2+…+a n-1)(1-a)=(1-a) (1+a+a 2+…+a n-1)=1-a n =1因此1-a 可逆.39. 证明:在交换环中,全体幂零元素的集合是一理想.证明:略.40. 设L 为有限幺环.证明由xy=1可得yx=1.证明:当L 只有一个元素,即L={0},亦即0=1[注],此时显然有xy=1=xy ;当L 有多于一个元素时(即0≠1时),若xy=1,y 不是左零元[注],因此yL=L.又因L 为有限环,所以存在z ∈L ,使得yz=1.注意到(xy)z=z ,x(yz)=x ,所以x=z ,即yx=1.[注意]1.幺环多于一个元素当且仅当0≠1.2.当L 有多于一个元素时(即0≠1时),若xy=1,y 不是左零元.因为若存在z≠0使得yz=0,则z=(xy)z=x(yz)=0,产生矛盾.41. 在幺环中,如果对元素a 有b 使ab=1但ba≠1,则有无穷多个元素x ,适合ax=1.(Kaplansky 定理)证明:首先,若ab=1但ba≠1,则a 至少有两个右逆元[注].现在假设a 只有n(>1)个右逆元,并设这些元素为x i (i=1,2,…,n).那么a(1-x i a+x 1)=1(i=1,2,…,n),又当i≠j 时,1-x i a+x 1≠1-x j a+x 1[注],这里i ,j=1,2,…,n.于是{x i |i=1,2,…,n}={1-x i a+x 1| i=1,2,…,n },故存在x k ∈{x i |i=1,2,…,n}使得x 1=1-x k a+x 1,即x k a=1.因为n>1,我们取x t ≠x k ∈{x i |i=1,2,…,n},那么(x k a)x t =x t ,(x k a)x t =x k (ax t )=x k因此x t =x k ,产生矛盾,所以假设不成立,即a 有无穷多个右逆元.[注意]1. 若ab=1但ba≠1,则a 至少有两个右逆元. 因为易验证1-ba+a 就是另一个右逆元.2. 假设当i ≠j 时,1-x i a+x 1=1-x j a+x 1,则x i a=x j a ,故x i ax 1=x j ax 1,因此x i =x j ,产生矛盾.42. 设L 是一个至少有两个元素的环. 如果对于每个非零元素a ∈L 都有唯一的元素b 使得aba=a.证明:(i) L 无零因子;(ii) bab=b;(iii) L 有单位元素;(iv) L 是一个体.证明:(i) 先证明L 无左零因子,假设a 为L 的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b 使得aba=a.但a(b+c)a=a,b+c≠b产生矛盾,所以L 无左零因子.类似可证L 无右零因子.(ii) 因aba=a ,所以abab=ab. 由(i)的结论知L 无零因子,因此满足消去律,而a≠0,故bab=b.(iii) 我们任一选取a(≠0)∈L ,再设aba=a(这里b 是唯一的),首先证明ab=ba.因为a(a 2b-a+b)a=a ,所以a 2b-a+b=b ,即a 2b=a=aba ,由消去律得到ab=ba.任取c ∈L ,则ac=abac ,故此c=(ba)c=(ab)c ;另一方面,ca=caba ,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab 就是单位元素,我们记ab=ba=1.(iv) 由(iii)可知任意a(≠0)∈L ,ab=ba=1,即任意非零元素都可逆,因此L 成为一个体.43. 令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明:(i) 对于的任一非平凡的理想I ,一定有个实数,,使得f()=0对所有的f(x)∈I ; (ii) 是一零因子当且仅当点集{x ∈[0,1]|f(x)=0}包含一个开区间.证明:(i) 证明思路:设I 为非零的非平凡理想,假设对任意x ∈[0,1],存在f(x)∈I 使得f(x)≠0,想法构造一个g ∈I 可逆. (ii) 提示:用连续函数的局部保号性.44. 令F=Z/pZ 为p 个元素的域.求(i) 环M(F)的元素的个数;n(F)的元素的个数.(ii) 群GLn解:45.设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:a-(a-1+(b-1-a)-1)-1=aba.证明:因为a-(a-1+(b-1-a)-1)-1=aba⇔1-(a-1+(b-1-a)-1)-1a-1=ab⇔(aa-1+a(b-1-a)-1)-1=1-ab⇔(1+a(b-1-a)-1)-1=1-ab⇔(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可.因为1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.21。

相关文档
最新文档