结构动力学计算题
结构动力计算习题
160结构动力计算习题一.选择题8-1 体系的动力自由度是指( )。
A .体系中独立的质点位移个数B .体系中结点的个数C .体系中质点的个数D .体系中独立的结点位移的个数 8-2 下列说法中错误的是( )。
A .质点是一个具有质量的几何点;B .大小、方向作用点随时间变化的荷载均为动荷载;C .阻尼是耗散能量的作用;D .加在质点上的惯性力,对质点来说并不存在 8-3 图示体系EI =常数,不计杆件分布质量,动力自由度相同的为( )。
题8-3图A .(a )、(b )、(c )B .(a )、(b )C .(b )、(c )D .(a )、(c ) 8-4图示体系不计杆件分布质量,动力自由度相同的为( )。
(b )(c )题8-4图A .(a )、(b )、(c )B .(a )、(b )C .(b )、(c )D .(a )、(c )8-5 若要提高单自由度体系的自振频率,需要( )。
A .增大体系的刚度B .增大体系的质量C .增大体系的初速度D .增大体系的初位移 8-6不计阻尼影响时,下面说法中错误的是( )。
A .自振周期与初位移、初速度无关;B .自由振动中,当质点位移最大时,质点速度为零;C .自由振动中,质点位移与惯性力同时达到最大值;D .自由振动的振幅与质量、刚度无关 8-7 若结构的自振周期为T ,当受动荷载)(P t F =t F θsin 0作用时,其自振周期T ( )。
A .将延长B .将缩短C .不变D .与荷载频率θ的大小有关8-8 若图(a )、(b )和(c )所示体系的自振周期分别为a T 、b T 和c T ,则它们的关系为( )。
(a)(b)(c)题8-8图A .a T >b T >c TB .a T >c T >b TC .a T <c T <b TD .a T =c T <b T 8-9 振幅计算公式βst y A =中的st y 为( )。
结构的动力计算习题
《结构的动力计算》习题一、判断题1、图示等效体系的关系是:3211111k k k k ++=。
( )2、结构的动力反应只与初始条件及动荷载有关。
( )3、任何动力荷载作用下均可以采用公式:1221-⎪⎪⎭⎫⎝⎛-=ωθβ计算动力系数。
( ) 4、外界感干扰力只影响振幅、不影响体系的自振频率。
( )5、体系的动力自由度数与质点的个数无关、也与结构静定或超静定无关。
( )6、图示体系各杆自重不计、EA =∞,则该体系在初始时刻的干扰力作用下将做竖向振动。
( )二、选择题1、增加单自由度体系的阻尼、但仍保持为低阻尼体系,其结果是( )。
A 、周期变长 B 、周期不变 C 、周期变短 D 、 周期视具体体系而定2、图示两个等效结构,正确的刚度关系是( )。
A 、k=k 1+k 2 B 、21111k k k += C 、21211k k k k k += D 、2112k kk k k +=3、图示体系不计阻尼,平稳阶段最大动位移y max =4Pl 3/7EI ,其最大动力弯矩为( )。
A 、3Pl /7 B 、4Pl /7 C 、12Pl /7 D 、4Pl /21 4、下列哪句话有错误或不够准确()。
第3题图A、在多自由度体系自由振动问题中,主要问题是确定体系的全部自振频率和相应的主振型; B 、多自由度体系的自振频率不止一个,其个数与自由度个数相等;C 、每个自振频率都有自己相应的主振型,主振型就是多自由度体系振动时各质点的位移变化形式;D 、与单自由度体系相同,多自由度体系的自振频率和相应的主振型也是体系本身的固有性质。
5、图示单自由度体系自振周期的关系为( )。
A 、(a)=(c)B 、(a)=(b)C 、(b)=(c)D 、都不相等6、单自由度振动体系中,若质点在杆的中点,各杆EI 、l 相同,其自振周期的大小排列顺序为(A 、(c)>(a)>(b)B 、(c)>(b)>(a) C 、(a)>(b)>(c) D 、(b)>(c)>(a)三、分析计算题1、梁的抗弯刚度为EI2m3、柱的自重不计,求图示刚架的自振频率。
结构动力学试题及答案
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
结构动力学习题
结构动力学习题2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。
题2.1图2.2 建立题2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。
题2.2图2.3 试建立题2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。
题2.3图2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。
一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,见题 2.4图。
设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。
弹簧k2的自由长度为b。
题2.4图2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。
题2.5图2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。
计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。
3.1单自由度建筑物的重量为900kN,在位移为3.1cm时(t=0)突然释放,使建筑产生自由振动。
如果往复振动的最大位移为2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。
3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。
结构动力学试题
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
结构动力学试题及答案
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构动力学典型习题及答案
ω
2 2
=
537.287
1/ s2
{X
}1
=
1 1.870
ω1 = 9.885 1/ s ω2 = 23.179 1/ s
{X }2
=
−
1 0.642
ω12 = 7.965EI / ml3
ω
2 2
=
65.53EI
/
ml 3
ω1 = 2.822 EI / ml3
ω2 = 8.095 EI / ml3
m
EI1 = ∞
EI
2m
EI1 = ∞
2EI
y1
2EI
y2
l 2EI
l
X11 = 0.4612; X12 = −4.336
X 21
X 22
{X
}1
=
1 2.168
m2
EI1 = ∞
i2 m1
y2
i2 4m
k11 − m1ω 2 kδ 21
k12
=0
k22 − m2ω 2
EI1 = ∞
i1
i1y1 4m
X11 = 0.5347; X12 = −1.559
0.012ω 4 − 7.62ω 2 + 630 = 0
X 21
X 22
ω12 = 97.713 1/ s2
=1
=1 3l/16 5l/32 l/2
=1
δ
11
=
l3 192EI
ω = 13.856 EI / ml3
δ11
=
l3 EI
ω = EI / ml3
m
EI m y1
y2
EI
l/2 l/2
l/2 l/2
15结构的动力计算--习题
P h 2.5 6
M st
2
2
4
3.75kN m
Mmax Mst 3.751.375 5.156kN m
Ph/4 Ph/4
P Ph/4
Ph/4
Ph/4
Ph/4
动荷幅值弯矩图
Ph/4
动弯矩幅值图
Ph/4
结构力学电子教程
15 结构的动力计算
15.12 图示一个重物W=500N,悬挂在刚度k=4N/mm的弹簧
15.3 求图示体系的自振频率。
解:
1 1 l h h 2 lh2
EI 2
3 3EI
1
m
3EI Mlh2
M
I1=∞ EI
l
h
1
h h M1
结构力学电子教程
15 结构的动力计算
15.5 求图示刚架水平振动的圆频率。
解: k 12EI 3 36EI
h3
h3
k m
36EI 2mh3
18EI mh3
st
Wh3
A
3 2 104
106 16 104 20 103 33
108
9.8
41.74s1
y y0 cost, A y0 0.1cm. v y0 sin t, vmax y0 0.1 41.74 4.174cm / s. a y02 cost, amax y02 0.1 41.742 174.2cm / s2.
0.05534
9.8
1 1 9.035
2 2 0.05534
k mW
g
Psin t
A y(t) max
yst
P k
=9.035
50 =0.11294m=112.94mm 4000
第12章 结构的动力计算 习题
习 题12-1 是非判断(1) 引起单自由度体系自由振动的初速度值越大,则体系的自振频率越大。
( )(2) 如果单自由度体系的阻尼增大,将会使体系的自振周期变短。
( )(3) 在土木工程结构中,阻尼对自振周期的影响很小。
( )(4) 由于各个质点之间存在几何约束,质点体系的动力自由度数总是小于其质点个数。
( ) (5) 多自由度体系的自振频率与引起自由振动的初始条件无关。
( )(6) n 个自由度体系有n 个自振周期,其中第一周期是最长的。
( )(7) 如果考虑阻尼,多自由度体系在简谐荷载作用下的质点振幅就不能用列幅值方程的方法求解。
( )12-2 填空(1) 单自由度体系运动方程为2P 2()/y y y F t m ξωω++=,其中未考虑重力,这是因为 。
(2) 单自由度体系自由振动的振幅取决于: 。
(3) 若要改变单自由度体系的自振周期,应从改变体系的或着手。
(4) 若由式(12-23)求得的动力系数β为负值。
则表示 。
(5) 习题12-2(5)图所示体系发生共振时,干扰力与 平衡。
(6) 求习题12-2(6)图所示质点系的自振频率时(EI =常数),其质量矩阵[M ]= 。
第12章 结构的动力计算m(7) 习题12-2(7)图所示体系不考虑阻尼,EI =常数。
已知θ =0.6ω(ω为自振频率),其动力系数β = 。
(8) 已知习题12-2(8)图所示体系的第一主振型为(1)12Y ⎡⎤⎡⎤=⎢⎥⎣⎦⎣⎦,利用主振型的正交性可求得第二主振型(2)Y ⎡⎤=⎣⎦。
(9) 习题12-2(9)图所示对称体系的第一主振型(1)Y ⎡⎤=⎣⎦,第二主振型(2)Y ⎡⎤=⎣⎦ 。
12-3 确定习题12-3图所示质点体系的动力自由度。
除注明者外各受弯杆EI =常数,各链杆EA =常数。
12-4 不考虑阻尼,列出习题12-4图所示体系的运动方程。
No.12-185 12-5 求习题12-5图所示单自由度体系的自振频率。
结构动力学习题+讲解
&&(t ) + (ω2 – n2 )S (t) = 0 --------------------------------------------(5) S
1.当 n >ω时(强阻尼) 方程(5)的解为: S (t) = A1sh n − ω t +A2ch n − ω t
2 2 2 2
从而,方程(4)的解为:
若时间 t 不是从 0 开始,而是从τ开始的,则(9)式写为:
y (t ) =
p∆t sinω(t-τ) mω
---------------------------------------(10)
写作: ,记ω2 =
K m
,2n =
C ,又可写作: m
& &(t ) + 2n y & (t ) +ω2 y (t ) = 0 y
利用常数变易法,令 y (t ) = e
− nt
---------------------------------------------(4)
S (t ) 代入方程(4)中 得:
K/2 VBA
48i/7L
2
A
取横梁为研究对象,Σ X=0,得:K= 4)振动方程
24 EI L3
即,
&(t ) - K y(t ) + Psinθt = 0 y - 2 m& &(t ) + y 2 m&
24 EI y(t ) = Psinθt L3
一、 无阻尼的自由振动
振动方程
&(t ) +K y (t ) = 0 , m& y & &(t ) + y K y (t ) = 0 m
中国大学MOOC结构动力学习题含答案-精品
中国大学MOOC结构动力学习题(含答案)1、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、1B、2C、3D、4答案:22、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、1B、2C、3D、4答案:23、忽略杆件的轴向变形和分布质量,图示结构动力自由度的个数()oA、0B、1C、2D、3答案:24、在很短时间内,荷载值急剧增大或急剧减小的荷载是()oA、可变荷载B、偶然荷载C、冲击荷载D、爆炸答案:冲击荷载5、动力自由度的个数()集中质量的个数。
图所示刚架结构,不计分布质量,动力自由度个数为()o 此题为多项选择题。
请帮忙给出正确答案和分析,谢谢! •日目•2EI:一.c(A)2个(B)3个(C)4个(D)5个答案:B自由度个数有3个,因此正确答案为(B)。
1、一、单项选择题(每题2分,共6分)答案:ABDAC二.实验探究题(共20分)2、二、填空题(每题2分,共4分)1.相比静力计算,动力计算列平衡方程时,在所考虑的力系中要包括。
2. 爆炸荷载属于。
答案:1、从力系平衡角度建立自由振动微分方程的方法是()oA、刚度法B、柔度法C、静力法D、动力法答案:刚度法2、忽略杆件的轴向变形和均布质量,各图质点的质量、杆长、质点位置相同,杆件EI相同且为常数。
结构自振频率最大的是()oA、coaB、3bC、3cD、3d答案:3a3、与单自由度体系自由振动的频率有关的量是()oA、初速度vOB、初位移yOC、相位角aD、质量m答案:阻尼越大,振幅越大4、按照GB50009-2012《建筑结构荷载规范》,高度为2001Tl的高耸钢筋混凝土结构的基本周期一般为()0A、0.14sB、1.4sC、14sD、140s答案:1.4s5、yst是指()oA.自然伽码与电阻率B.方位与井斜C.工具与井斜D.工具面与方位答案:A1、一、填空题(每题5分,共20分)答案:【计分规贝":Am=K/c2.72X10-268.41X10- 4437.82X10-4;145.94X10-42、二、计算题(每题20分,共80分)答案:【计分规则】:一、回答问题(每题2分、共10分)二、分析(每题10分、共30分)三、计算题(第1题40分, 第2题20分、共60分)1、当。
结构动力学习题
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水平 位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程为 :A .()()()y l P s in m y EI =-77683θ t /;B .()()m y EI y lP s in /+=19273θ t ;C .()()m y EI y l P s in /+=38473θ t ;D .()()()y l P s in m y EI =-7963θ t / 。
ll0.50.52、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增 大 E I ; D .增 大 l 。
结构动力学试题及答案
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
结构动力学计算题
=
−6.612375 = −2.6923 2.456 1 −2.570 2.470 1 1.5 2 1.5 2.25 4.50 = 15.05625 23.109
������ ������ 0 ������ ������
������3 0 =
������
������ 3
������ ������ 0 = ������3
=
������������ ������ ������������������
平面运动刚体的动能T = ������������������ 2 + ������������ ������ 2 , 随质心平移的动能和绕质心转动的动能 之和。 细直杆绕质心的转动惯量:������������ = 动惯量:������������ = ������������ 2 。
=
0 0 0 ������ ������ ������������ ������ = ������ 1 ������1 ������ + ������ 2 ������2 ������ +
������3������30������
弯曲梁计算题 弯矩与曲率关系:M = −������������
������ 2 ������ ������ ,������ ������ 2 ������ ������������ ������������
= −������������������′′ ;剪力Q =
������ 2 ������ (������ ,������ ) ������ 2 ������
;
等截面梁自由振动偏微分方程:������
+ ������������
������ 4 ������ (������ ,������ ) ������ 4 ������
结构动力计算习题
160结构动力计算习题一.选择题8-1 体系的动力自由度是指( )。
A .体系中独立的质点位移个数B .体系中结点的个数C .体系中质点的个数D .体系中独立的结点位移的个数 8-2 下列说法中错误的是( )。
A .质点是一个具有质量的几何点;B .大小、方向作用点随时间变化的荷载均为动荷载;C .阻尼是耗散能量的作用;D .加在质点上的惯性力,对质点来说并不存在 8-3 图示体系EI =常数,不计杆件分布质量,动力自由度相同的为( )。
题8-3图A .(a )、(b )、(c )B .(a )、(b )C .(b )、(c )D .(a )、(c ) 8-4图示体系不计杆件分布质量,动力自由度相同的为( )。
(b )(c )题8-4图A .(a )、(b )、(c )B .(a )、(b )C .(b )、(c )D .(a )、(c )8-5 若要提高单自由度体系的自振频率,需要( )。
A .增大体系的刚度B .增大体系的质量C .增大体系的初速度D .增大体系的初位移 8-6不计阻尼影响时,下面说法中错误的是( )。
A .自振周期与初位移、初速度无关;B .自由振动中,当质点位移最大时,质点速度为零;C .自由振动中,质点位移与惯性力同时达到最大值;D .自由振动的振幅与质量、刚度无关 8-7 若结构的自振周期为T ,当受动荷载)(P t F =t F θsin 0作用时,其自振周期T ( )。
A .将延长B .将缩短C .不变D .与荷载频率θ的大小有关8-8 若图(a )、(b )和(c )所示体系的自振周期分别为a T 、b T 和c T ,则它们的关系为( )。
(a)(b)(c)题8-8图A .a T >b T >c TB .a T >c T >b TC .a T <c T <b TD .a T =c T <b T 8-9 振幅计算公式βst y A =中的st y 为( )。
结构动力学基础知识(典型例题分析)
分析:
图 2a
图 2b
(1)由于结构对称,质量分布对称,所以质点 m 无水平位移,只有竖向位移,此桁架为单 自由度体系。
( ) ∑ (2)
挠度系数: δ 11
=
1 EA
FN2l
=
l EA
1+
2
(3) 自振频率:ω = 1 mδ11
3. 计算图 3a 结构的自振频率,设各杆的质量不计。
图 3a
图 3b
一、自由度 1. 判断自由度的数量。
典型例题分析(动力学)
二、单自由度体系的自振频率 1. 试列出图 1a 结构的振动方程,并求出自振频率。EI=常数。
分析:
图 1a
图 1b M1
图 1c M2
(1) 质点 m 的水平位移 y 为由惯性力和动荷载共同作用引起: y = δ11 (− m&y&) + δ12 Fp (t ) 。
( M 2 = Y (2)T MY (2) = 1 4.6)⎢⎣⎡20m m0 ⎥⎦⎤⎜⎜⎝⎛ 41.6⎟⎟⎠⎞ = 22.16m
F1(t) = Y (1)T Fp (t) = (1
−
0.44)⎜⎜⎝⎛
Fp (t
0
)⎟⎟⎠⎞
=
Fp
(t
)
F2 (t) = Fp (t)
(6)
求正则坐标:突加荷载时ηi (t)
y2 (t) = −0.44η1(t) + 4.6η2 (t)
五、能量法求第一自振频率
1. 试用能量法求 1a 梁具有均布质量 m=q/8 的最低频率。
[ ] 已知:位移形状函数:Y (x) = q 3l 2 x2 − 5lx3 + 2x4 48EI
结构动力学习题
结构动力计算习题习题9-1图示各系统的动力自由度为多少?都是什么?m m m m m m mm(1) (2) (3) (1)①△1x =△2x (2)①△1x =△2x =△3x (3)①△1y =△3y ②△1y ②△1y ②△2y ③△2y ③△3ymmmmmmmmm(4) (5) (6) (4)①△1x (5)①△1y (6)①△1y ②△1y =△2y ②△2x ②△2x ③△3y ③△2y =△3y ③△2y =△3ym m mm mm mm(7) (8) (9) (10) (7)①△1x =△2x (8)①△1x (9)①△1x (10)①△1x ②△2y ②△1y ②△2x ②△2x ③△2x ③△2y ④△2ym m mm m m mm m(11) (12) (13)(11)①△1x =△2x =△3x (12)①△1x =△2x =△3x =△4x (13)①△1x =△2x②△2y ②△1y ②△1y③△4y ③△2ym mm mm mmm(14) (15) (16) (17) (14)①△1x (15)①△1x (16)①△1x (17)①△1x =△2x ②△2x ②△1y ②△1y ②△2y ③△2x ③△2x ④△2y习题9-2图示各系统作强迫振动,已知激振力的频率与系统的自振频率之比,试求系统的动力系数β和最大动弯矩m ax d M 。
2l ltF θsin m2llmFFlM 图(1)32=ωθ, 2211ωθβ-=599411=-=, Fl M d 59m ax =tF θsin mlmlM 图FFl(2)32=ωθ, 2211ωθβ-=33211=-=, Fl M d 3m ax =ltF θsin lmM 图FFl /2(3)53=ωθ, 2211ωθβ-=255311=-=, 45m ax Fl M d = tF θsin mlmlM 图FFl(4)21=ωθ, 2211ωθβ-=22111=-=, Fl M d 2m ax =l /2tF θsin l /2mM 图FFl /4(5)32=ωθ, 2211ωθβ-=33211=-=, 43m ax FlM d =l l /2tF θsin mll /2mFFl /2M 图(6)21=ωθ, 2211ωθβ-=344111=-=, 32max Fl M d =llmtF θsin llmM 图FFl(7)43=ωθ, 2211ωθβ-=44311=-=, Fl M d 4m ax =mtF θsin ll /2M 图FFl /2Fl /2(8)31=ωθ, 2211ωθβ-=233111=-=, 43m ax Fl M d = mtF θsin ll /2mM 图F Fl /2Fl /2(9)31=ωθ, 2211ωθβ-=899111=-=, 169m ax Fl M d = 习题9-3求图示各系统的自振频率。
结构动力学结构动力学试卷(练习题库)(2023版)
结构动力学结构动力学试卷(练习题库)1、结构动力计算与静力计算的主要区别是什么?2、什么是动力自由度,确定体系动力自由度的目的是什么?3、结构动力自由度与体系几何分析中的自由度有何区别?4、结构的动力特性一般指什么?5、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?6、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手7、建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?8、直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件?9、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便?10、计重力与不计重力所得到的运动方程是一样的吗?11、自由振动的振幅与哪些量有关?12、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样?13、若要避开共振应采取何种措施?14、增加体系的刚度一定能减小受迫振动的振幅吗?15、突加荷载与矩形脉冲荷载有何差别。
16、平断面假定17、弯曲要素18、梁的边界条件19、叠加原理20、三弯矩方程21、平断面假定22、梁的边界条件23、叠加原理24、三弯矩方程25、虚位移原理26、虚力原理27、位能驻值原理28、板条梁29、开口和闭口薄壁杆件。
30、应力的重新分布。
31、几何不变体32、自由度33、多余约束34、超静定结构35、形常数和载常数36、试简述影响线与内力图的区别?37、力法和位移法的解题思路?38、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
39、有多余约束的体系一定是几何不变体系。
40、计算自由度W小于等于零是体系几何不变的充要条件。
41、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
42、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无阻尼自由振动计算题(单位:kg、N = kg・m/s2、Pa = N/m2、)无阻尼自由振动运动方程:u(t) = u(0) cos w n t +丝^sinw湛;w n刚度k = F/* (kN/m);自振圆频率3〃= £ = (rad/s);无阻尼体系简谐荷载反应:其中频率比P = 0/w n;17(0) P o /? 1 P o 1u0)=状0)cos w n t + - sin啪 + 9t稳态反应等效静位移四=Po/k = P0/mw n2;稳态反应振幅I/。
= u st R d = y—K I1-P I阻尼c = 2mw n^ (kN * s/m);阻尼比(=—=—— = 有阻尼圆频率c cr 2mw n 2nn ut+nW D = w n y/l-^2;有阻尼自振周期T D=L/房寻有阻尼体系动力方法系数R d= — = u st1/J[1一供]2 + [2〈仞2;拉格朗日方程计算题lagrange方程:,(茶J 一 *" += Q);其中Q)为非有势力对应于广义坐标0/的广义力平面运动刚体的动能T = |mv c2+|/c w2,随质心平移的动能和绕质心转动的动能之和。
细直杆绕质心的转动惯量:J c—,对喘部:J z=■ ^mZ2;圆盘对其质心的转JL£O动惯量:]0— ^mr2o振型叠加法计算题(第一类型)频率方程:\[K] - a)2[M]| = 0得自振频率s由特征方程:([K] - 口2[的){勿=0;设{飕)=1,得到{破)和{泌。
已知条件 1:切}i = [o.644,、{必2 = {-0.601,、切}3={-2.57>、[M]= (0.311.52.可得振型质量:M n =同理可知M 2 = 2.456, M3 = 23.109。
1.5 ) 加已知条件 2: m (0)} = {2.5 }m,位(0)} = {2.25 m/s4.50)-0.6762.47可知 Mi = {0}7[M]{0h = (1 0.644 0.3)1 ・1.5 .2.。
:44"。
2, 0.3 J13.75J 可得振兴坐标表示的初始条件:(1 0.644 0.3)小、{^}i[M]u(0)Qi(0)=1 ・1.5. 2. 1.25 2.5 3.755.915 =3.2825 1.80202(°)=ri(1.25) (1 -0.601 -0.676)1.52.5■2. (3.75)-6.07375 2.456何片网成。
)03(0)=ri (1.25)(1 -2.570 2.470)1.52.52. (3.75)__ 10.1375M 3 =0.43868ri (1.5)(1 0.644 0.3)1.52.252 JU.50)Mi =3.53696.3735 1.8021.25Mi1.8022.456M 2 =-2.47323.10923.1091.802・小、何片网讥。
)91(0)==0.65153由初始条件引起各广义坐标的自由振动q?(t) = Q n (0) cosw n t + ^-^sin w n 结构自由振动反应方程{u°(t)) = Y 切Lq?(t)=切}iq?(t) +切}20珀)+(p3q30t弯曲梁计算题弯矩与曲率关系:M = -£7*^=-£7/;剪力Q = * 等截面梁自由振动偏微分方程:m 空笋+引竺"=0,分成两个方程 d z t d^x 1) 单自由度体系无阻尼自由振动不。
)+ o )2q(t) = 0得解:随时间变化振幅:q(t) = q 处(0) cos wt +迎^sin 切w2) 振动形状方程:拭”3)-。
403)= 0,其中mu )2 = a 4EI ;得解:振动形状通解(边界条件):位移:(p(x) = Asinax + Bcosax + Csinhax + Dcoshax 斜率:0‘(x) = a(bcosax — Bsinax + Ccoshax + Osinhax)弯矩:(p H (x) = a 2 (—bsinax — Bcosax + Csinhax + Dcoshax) 剪力:<p" (x) = a 3 (—bcosax +Bsinax + Ccoshax + £)s inh ax) 悬臂端集中质量边界条件:一端固定,一端自由其边界条件可表示为:1在x = 0处,位移和转角为零0(0) = 0; 0‘(0) = 0;在x = L 处,弯矩:(p H(L) = 0;剪力:El (p ,n(L) = -Ma )2(/)(L);S(o)=倒网讥。
)M2ri (1.5)(1 -0.601 -0.676)1.52.252 J U.50)S(0)=-6.612375 ""2.456-=-2.6923{以网讯0)(1 -2.570 2.470)11.52」U.50)M 3 23.10915.05625 23.109mud 2t1=1a —2.456代入在x = 0处的边界条件可得B + D = O;Q(,+C)=O;即B = -D; A=-C;利用(p" (A) = 0可得9" (L) = a2(—i4sinaL —BcosaL + CsinhaL + DcoshaL) = 0 所以有:/(sinaL + sinhaL) +B(cosaL + cosha,)= 0 ;利用剪力:EI Q ' (L) = —Ma)2(p(L),得到EIa3(—AcosaL + BsinaL + CcoshaL +Z^s inh aZ士以n2 /s in aL +Bcos aL+Cs inh aL士庆osh aL=0£7Q3(_/(COSQ L + coshaL) + B (sinaL— sinhaL))+ Ma)2(A(sinaL — sinhaL) + B(cosaL— coshaL)) = 0刀[—£7Q3(COSQ L + coshoL) + M32(sinaL — sinhoL)]+ 8[£7尸6赢七—sinhaL) + M3? (COSQ L — coshoL)] = 0使A,B不同时为零的条件时联立方程组系数行列式为零sinaL + sinhaL cosaL + coshaL —EIa3(cosaL + coshaL) + Ma>2 (sinaL — sinhaL) Ela3 (sinaL — sinhaL) + Mo)2(cc.\f _ 10 m k chki sin 以一.、加7cos kl \E/a3 ((sinaL)2— (sinhaL)2) + Mo)2 (cosaL — coshaL)(sinaL + sinhaL)+£7Q3((COSQ L)2 + (coshaL)2 + 2 cos aL cosh aL)—Ma)2(sinaL — sinhaL) (cosaL + coshaL) = 0EZa3 [(sinaL)2 + (cosaL)2 + (coshaL)2— (sinhaL)2 + 2 cos aL cosh aL]+ Ma)2 [(cosaL — coshaL)(sinaL + sinhaL)—(sinaL — sinhaL) (cosaL + coshaL)] = 02£7Q3(I + cos aL cosh aL) + 2Ma)2 (cosaL ・ sinhaL — sinaL - coshaL) = 0 , 因为mu)2 = a4 Eh所求频率方程:m(l + cos aL cosh aL) + Ma^cosaL - sinhaL - sinaL -cosha£=0注意:sinh(O) = 0,cosh(0) = 1 ; cosh2t — sinh2 t = 1 ; (cosh*)' = sinhx ; (sinh *)' = coshx2、端部弹性支撑边界条件:(p n (L) = 0 >剪力:El(p‘"(L) = k(p(L);/(sin。
%+ sinhaL) + B(cosaL + cosh 以)=0;EIa3(—AcosaL + BsinaL + CcoshaL + Ds inhaL)= k^AsinaL + BcosaL + CsinhaL + DcoshaL)刀〔—£7Q3(COSQ L + cosh 以)—k(sinaL— sinh。
%)]+ 研£7Q3(sinaL — sinh。
%) —k(cosaL— cosh。
%)] = 0sinaL + sinhaL (cosaL + coshaL) —£7Q3(COSQ L + coshaL) —k (sinaL— sinhaL) El a3 (sinaL — sinhaL) —k^cosaL —=0(sinaL + sinhaL) [El a3 (sinaL — sinhaL) — k(cosaL — coshaL)]—(cosaL + coshaL) [—Ela3 {cosaL + coshaL) — k (sinaL — sinhaL)]=0[EZa3(sin2aL — sinh2 aL) — k^sinaL + sinhaL^cosaL — coshaL)]—[—EIc^^cosaL + coshaL)2— k^cosaL + co shaL) {sinaL — sinhaL')]=0El a3 (sin2 aL — sinh2 aL) + EIa3(cosaL + coshaL)2—k (sinaL + sinhaL) (cosaL — coshaL)+ k^cosaL + coshaL) (sinaL — sinhaL') = 0Elc^^sin2 aL — sinh2 aL +cos2 aL + cosh2 aL + 2 cos aL coshaL)+ k (sinaL + sinhaL) ^coshaL — cosaL)+ k^cosaL + coshaL) (sinaL — sinhaL) = 02£7Q3(I +1 cos aL coshaL) + 2k{sinaLcoshaL — cosaLsinhaL) = 0可矢口:£7Q3(I + cos aL cosh aL) + fc(sinaLcoshaL — cosaLsinhaL) = 03、端部弹性支撑,固定集中质量M边界条件:(p n (L) = 0、剪力:El0〃'O = k(p(L) -。