人教版七年级数学下册《二元一次方程组》教学设计

合集下载

人教版七年级数学下册第八章二元一次方程组大单元教学设计

人教版七年级数学下册第八章二元一次方程组大单元教学设计
教师强调代入法和消元法在实际问题中的应用,提醒学生注意解题过程中易错点和注意事项。同时,教师鼓励学生提出疑问,解答学生的困惑。
五、作业布置
为了巩固学生对二元一次方程组的学习,教师应布置具有针对性和层次性的作业,让学生在课后能够自主复习和拓展提高。
1.基础作业:
(1)完成课本后的练习题,包括填空题、选择题和解答题,以巩固二元一次方程组的基本概念和解法。
(二)过程与方法
在学习本章的过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论的方式,探究二元一次方程组的解法,培养学生的团队协作能力和问题解决能力。
2.利用代入法、消元法解决实际问题,提高学生运用数学知识解决实际问题的能力。
3.通过绘制图形,观察二元一次方程组的几何意义,培养学生的空间想象能力和直观感知能力。
在讲解过程中,教师注重引导学生观察方程组的变化,解释每一步操作的数学原理。此外,教师还会通过图形展示方程组的几何意义,帮助学生建立直观的认识。
(三)学生小组讨论
在这一环节,教师将学生分成小组,每组分配一个实际问题,让学生合作讨论,将问题转化为二元一次方程组,并尝试使用代入法或消元法求解。
教师巡回指导,观察学生的讨论过程,及时解答学生的疑问,鼓励学生发表自己的观点。小组讨论结束后,每个小组分享解题过程和答案,教师点评并给予反馈。
(一)教学重难点
1.理解并掌握二元一次方程组的定义及其解法(代入法、消元法)。
2.能够将实际问题抽象为二元一次方程组,并运用所学知识解决实际问题。
3.理解二元一次方程组的几何意义,通过图形分析方程组的解。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、思考、讨论的方式,主动探究二元一次方程组的解法。

新人教版数学七年级数学下册第八章二元一次方程组8.1二元一次方程组教案

新人教版数学七年级数学下册第八章二元一次方程组8.1二元一次方程组教案
首先,我发现有些学生在理解方程组的解的概念上存在困难。他们知道要找到同时满足两个方程的解,但在实际操作中,却往往忽略了这一点。在今后的教学中,我需要更加注重让学生通过具体实例来感受和理解这个概念。
其次,代入法和加减消元法的操作步骤对学生来说是一个挑战。在课堂上,我尽量用简单明了的语言和步骤来讲解,但仍有学生跟不上。我考虑在下一节课中,通过设计更多具有针对性的练习题,让学生在实践中掌握这些方法。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二元一次方程组的基本概念。二元一次方程组是由两个一次方程构成的方程组,包含两个未知数。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二元一次方程组在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调代入法和加减消元法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何选择合适的方程和未知数进行求解。
三、教学难点与重点
1.教学重点
-理解二元一次方程组的定义及其组成部分,包括两个方程、两个未知数等;
-掌握代入法与加减消元法求解二元一次方程组的具体步骤和操作方法;
-能够将实际问题抽象为二元一次方程组模型,并利用方程组解决实际问题。
举例说明:
-重点讲解如何从实际情境中提取信息,建立二元一次方程组;
-强调代入法中如何选择方程和未知数进行代入,以及如何解出另一个未知数;
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二元一次方程组的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二元一次方程组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

数学人教版七年级下册§8.1 二元一次方程组(第一课时)教学设计

数学人教版七年级下册§8.1  二元一次方程组(第一课时)教学设计

§8.1 二元一次方程组(第一课时)教学设计教学目标:使学生掌握二元一次方程、二元一次方程组的概念;使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

教学重点、难点:重点:使学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。

掌握检验一对数是否是某个二元一次方程的解的书写格式。

难点:理解二元一次方程组的解的含义。

课时安排1课时教与学互动设计(一)复习旧知一元一次方程的定义(二)创设情境导入新课鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足。

问鸡兔各几何?学生思考自行解答,教师巡视。

最后集体讨论解决方案。

设有只鸡,则有只兔子。

根据题意得:……交流此时复习一元一次方程的有关概念,“元”指什么?“次”指什么?教师:上面的问题还有其他的方法求解吗?(引入新课)(三)合作交流,解读探究自主探索学生独立看书、自学教材。

想一想上面的问题还有其他的方法求解吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数列方程。

)设有只鸡,有只兔,根据题意得:1.针对学生列出的这两个方程,引入二元一次方程和二元一次方程组2.二元一次方程、二元一次方程组的解探究满足的值有哪些?请填入表中:教师:那么什么是二元一次方程组的解呢?学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程。

即:既是方程①的解又是方程②的解.教师:二元一次方程的两个方程的公共解叫做这个二元一次方程组的解。

例如:从方案一中我们知道能使方程组中的每一个方程成立,所以我们把叫做二元一次方程组的解。

(注意:二元一次方程组的解是成对出现的,要用大括号连接起来,表示“且”。

)议一议 将上面“鸡兔同笼”问题的各种方案进行对比,你有哪些想法? (四)应用迁移,巩固提高 练习1、2(五)总结反思,拓展升华 归纳 :1、二元一次方程定义:2、二元一次方程组定义:3、二元一次方程的解的定义4、二元一次方程组的解的定义:自我检测:1、在式子 y x 23+, 053-22=++y x )(, z y x =+2, 1=-xy x , yx 253=-, 22=-y y 中,是二元一次方程的是 。

人教版七年级下册第八章二元一次方程组课程设计

人教版七年级下册第八章二元一次方程组课程设计

人教版七年级下册第八章二元一次方程组课程设计前言二元一次方程组是初中数学的一个基础课程,也是后续数学学习的重要基础。

本文将介绍一份适用于人教版七年级下册第八章的二元一次方程组课程设计,旨在帮助学生深入理解概念、掌握解题方法。

课程目标•理解二元一次方程组的概念和基本性质;•掌握解二元一次方程组的基本方法;•培养实际问题转化为数学方程组的能力;•增强数学应用能力和解决问题的思维能力。

课程安排第一课时:二元一次方程组的概念教学目标•了解二元一次方程组;•掌握方程组的符号表示与求解实数解的方法。

教学重点•理解二元一次方程组的概念;•掌握求解实数解的方法。

教学难点•在实际问题中建立数学方程组;•认识无解和无数解的情况。

教学内容1.二元一次方程组的概念2.方程组的符号表示3.方程组解的分类4.方程组的解法第二课时:解二元一次方程组教学目标•掌握解二元一次方程组的方法;•培养实际问题转化为数学方程组的能力。

教学重点•掌握消元法、代入法、加减法解法;•学会如何应用解法解决实际问题。

教学难点•判断是否有解及解的情况。

教学内容1.消元法的应用2.代入法的应用3.加减法的应用4.实际问题的应用第三课时:应用题教学目标•将实际问题转化为数学方程组;•运用所学知识解决实际问题。

教学重点•训练学生转化实际问题为数学方程组的能力;•强化学生解决实际问题的思维能力。

教学难点•在复杂问题中建立数学模型;•安排步骤,运用所学知识解决问题。

教学内容1.实际问题的转化2.数学模型的建立3.解决实际问题课程总结通过本节课程的学习,学生们已经了解了二元一次方程组的概念和基本性质,掌握了解二元一次方程组的基本方法。

在应用题环节,学生们通过转化实际问题为数学方程组,解决实际问题的过程中,不仅提高了数学应用能力,还培养了解决问题的思维能力。

希望学生们能够在今后的学习中,深入掌握数学知识,运用数学方法解决各种问题。

初一数学二元一次方程组教案初一下二元一次方程组教案(三篇)

初一数学二元一次方程组教案初一下二元一次方程组教案(三篇)

初一数学二元一次方程组教案初一下二元一次方程组教案(三篇)初一数学二元一次方程组教案初一下二元一次方程组教案篇一第9章:角9.1角的表示 9.2角的比拟 9.3角的度量 9.4对顶角9.5垂直第10章:平行线10.1同位角 10.2平行线和他的画法 10.3平行线的性质10.4平行线的判定第11章:图形与坐标11.1怎样确定平面内的位置 11.2平面直角坐标系 11.3直角坐标系中的图形 11.4函数与图像 11.5一次函数和它的图像第12章:二元一次方程组12.1熟悉二元一次方程组 12.2向一元一次方程转化12.3图像的妙用 12.4列方程组解应用题第13章:走进概率13.1天有不测风云 13.2确定大事与不确定大事 13.3可能性的大小13.4概率的简洁计算第14章:整式的乘法14.1同底数幂的乘法与除法 14.2指数可以是零和负整数吗 14.3科学计数法 14.4积的乘方和幂的乘方 14.5单项式的乘法 14.6多项式乘多项式第15章:平面图形的熟悉15.1三角形 15.2多边形 15.3多边形的密铺 15.4圆的初步熟悉15.5用直尺和圆规作图2、根底学问的内容第9章:角:主要讲角的根本概念、性质、垂直的概念。

第10章:平行线:主要讲解平行线的性质和判定。

第11章:图形与坐标:主要讲平面直角坐标系和一次函数.第12章:二元一次方程组:主要讲二元一次方程组的解法及其应用.第13章:走进概率:主要讲确定大事与不确定大事及概率的简洁计算第14章:整式的乘法:主要讲幂的性质及单项式与多项式乘法.第15章:平面图形的熟悉:主要讲三角形与多边形的概念及圆的初步熟悉.3、学生根本力量和技能的培育(1)、经受观看、猜测、验证、演算、归纳等数学活动过程,进一步培育学生发觉问题、提出问题和解决问题的力量。

(2)、通过观看、试验、归纳等探究过程,逐步培育学生数学建模的思想,表达数形结合是发觉问题、提出问题和解决问题的常用方法。

人教版数学七年级下册第八章《二元一次方程组》教学设计

人教版数学七年级下册第八章《二元一次方程组》教学设计

人教版数学七年级下册第八章《二元一次方程组》教学设计《人教版数学七年级下册第八章《二元一次方程组》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学内容人教版《义务教育课程标准实验教科书·数学》七年级下册第八章“二元一次方程组”第一课时。

教学目标1、通过与一元一次方程类比,学生能够说出二元一次方程(组)及其解的含义。

2、学生能够用代入的方法判断一组数是不是某个二元一次方程(组)的解。

3、学生能够列出二元一次方程组,并根据问题的实际意义找出问题的解。

教学重点、难点重点:二元一次方程组及其解的含义。

难点:二元一次方程组的解的意义。

教学过程一、课前准备复习引言:方程是刻画现实世界数量关系的一个有效工具。

思考:(1)我们已经学习了哪一类方程?(2)我们是从哪些方面来研究这类方程的?【设计意图】通过让学生回忆研究一元一次方程的方法:一元一次方程的定义、一元一次方程的解、一元一次方程的解法,为本课类比研究二元一次方程(组)提供直接经验。

故事导入:康熙微服私访南巡经过扬州,碰到一个牛贩子和两个差役在争执。

只听牛贩子跟一个差役说:“你买了我五头牛,三匹马,应付我三十八两银子。

”又跟另一个差役说:“你买了我六头牛,四匹马,应付我四十八两银子。

”“现在你们总共只付我五十八两银子,那怎生了得?”可是那两个差役蛮不讲理,拒不给钱。

康熙见此情景,站出来说:“买卖公平,天经地义。

”两个差役见出来一个管闲事的,就蛮横地说:“那你说说每头牛和每匹马的单价。

”康熙低头沉思了一会儿,就说出了牛和马的单价。

两个差役虽然很是惊诧,但还是拒不给钱。

最后,康熙拿出玉玺,两个差役吓得连连磕头谢罪并补上银两。

问:“你想知道他是怎样快速解决的吗?今天,就让我们一起来做皇帝,给两个差役上一节数学课。

”【设计意图】激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。

让学生在学习过程中,发现问题、解决问题,从而达到培养创新意识,发展创新能力的目的。

人教版教科书数学七年级下册《二元一次方程组》教学设计

人教版教科书数学七年级下册《二元一次方程组》教学设计

第八章二元一次方程组8.1 二元一次方程组【知识与技能】1.了解二元一次方程、二元一次方程组的概念.2.理解二元一次方程的解、二元一次方程组的解的概念.【过程与方法】经历有关含有两个等量关系的应用题的列方程的过程,了解二元一次方程的概念及二元一次方程组的概念.在此基础上学习二元一次方程的解、二元一次方程组的解的概念.【情感态度】让同学们用已学过的一元一次方程的有关知识类比地学习本节的新知识,体验“推陈出新”的哲学思想.【教学重点】二元一次方程、二元一次方程组及其解的概念.【教学难点】二元一次方程、二元一次方程组的概念的准确理解.一、情境导入,初步认识问题1篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负1场得1分,某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题2判断下列方程哪些是二元一次方程,哪些不是二元一次方程,为什么?(1)2s+3t=-6;(2)1x+y=8;(3)xy=9;(4)3x+2y+3z=17问题3判断下列方程组哪些是二元一次方程组,哪些不是二元一次方程组,为什么?(1)23xy=⎧⎨=-⎩,;(2)712x yxy+=⎧⎨=⎩,;(3)115119x yx y⎧+=-⎪⎪⎨⎪-=⎪⎩,;(4)827s tt w+=⎧⎨+=⎩,;(5)13 3210. xx y+=⎧⎨+=⎩,【教学说明】对问题1,可提示学生找出题目中两个等量关系,然后指示学生设两个未知数,设出两个二元一次方程,从而引出二元一次方程的概念.对于二元一次方程的概念,一定要讲解清楚“含未知数的项的次数都是1”,要指示学生将“项”字打上着重号,并要举例帮助学生理解.问题2能帮助学生理解二元一次方程的概念,要对(2)、(3)、(4)不是二元一次方程的理由阐述清楚;(2)(3)都不满足“含未知数的项的次数都是1”,(4)所含的未知数多于2.问题3可帮助学生理解二元一次方程组的概念,虽然二元一次方程组在教材里没有严格下定义,但是学生一定要会判断具体的方程组是不是二元一次方程组.要对(2)、(3)、(4)不是二元一次方程组的理由阐述清楚;(2)中的第二个方程不是二元一次方程,(3)中的两个方程都不是二元一次方程,(4)中共含有3个未知数.二、思考探究,获取新知思考什么是二元一次方程?怎样理解二元一次方程、二元一次方程组的解?【归纳结论】重要定义:二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.二元一次方程组:把其含两个未知数的一次方程合在一起,就组成了一个二元一次方程组.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.一般来说,一个二元一次方程有无数个解,二元一次方程的解不能叫做根.二元一次方程组的解:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.三、运用新知,深化理解1.你能自己编一个二元一次方程吗?给你一对数值12xy=-⎧⎨=⎩,你能写出一个二元一次方程,使这对数值是满足这个方程的一个解吗?2.若(a-3)x+y|a|-2=9是关于x、y的二元一次方程,求a的值.3.方程组125x yx y+=⎧⎨-=⎩,的解是()A.12xy=-⎧⎨=⎩,B.23xy=-⎧⎨=⎩,C.21xy=⎧⎨=⎩,D.21xy=⎧⎨=-⎩,4.若关于x,y的二元一次方程A1x+B1y=C1的解为,关于x,y的二元一次A2x+B2y=C2的解为,则二元一次方程组的解为________.5.写出一个关于x,y 的二元一次方程组,使它的解为【教学说明】本环节通过学生自主编题,小组讨论,充分调动学生的学习自主性,在活动中辨析二元一次方程、二元一次方程组、二元一次方程组的解等概念.四,能力提升1.“鸡兔同笼”问题出自我国古代数学名著《孙子算经》。

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。

教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。

情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。

教学难点:二元一次方程组的解的含义。

教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。

3.如何检验一对数是否是某个二元一次方程(组)的解。

6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。

并不是任意两个二元一次方程都能组成二元一次方程组。

(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。

七年级数学二元一次方程组教案

七年级数学二元一次方程组教案

七年级数学二元一次方程组教案七年级数学二元一次方程组教案作为一位优秀的人民教师,就难以避免地要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么应当如何写教案呢?下面是小编帮大家整理的七年级数学二元一次方程组教案,希望对大家有所帮助。

七年级数学二元一次方程组教案1一、教材分析1.教材的地位与作用二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。

在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。

本节内容主要学习和二元一次方程组有关的四个概念。

本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

2.教学目标[知识技能]掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。

[数学思考]体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

[解决问题]通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

[情感态度]引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

3.教学重点与难点按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

通过学生亲身体验,理解二元一次方程(组)解的个数的确定。

二、学情分析七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。

因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。

一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

人教版七年级数学下册全册教案-第八章-二元一次方程组

人教版七年级数学下册全册教案-第八章-二元一次方程组

人教版七年级数学下册全册教案-第八章-二元一次方程组第八章《二元一次方程组》全章教材分析一、教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。

教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。

接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。

然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。

最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。

二、教学目标(一)知识与技能目标1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。

(二)过程与方法目标1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。

2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。

(三)情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。

三、重点、难点重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题;难点:以方程组为工具分析问题、解决含有多个未知数的问题。

四、课时划分建议本章共12课时:二元一次方程(组)1课时,消元思想3课时,应用方程组解决实际问题2课时,三元一次方程组2课时,复习1课时,单元检测2课时,讲评1课时。

新人教版七年级下册数学《二元一次方程组》教学设计

新人教版七年级下册数学《二元一次方程组》教学设计

新人教版七年级下册数学《二元一次方程组》教学设计教学设计:二元一次方程组课题:二元一次方程组科目:数学课时:1课时教学目标:知识技能:掌握二元一次方程、二元一次方程组及其解的概念,了解二元一次方程和方程组在数学模型中的重要性。

数学思考:通过实例认识二元一次方程和方程组的应用,体会它们在现实世界中多个量之间相等关系的重要作用。

解决问题:提高学生分析问题、解决问题和逻辑思维能力。

情感态度:引导学生对情境问题的观察和思考,激发学生的好奇心和求知欲,建立研究的自信心。

教学重点:二元一次方程组及其解的概念。

教学难点:引导学生运用“实际问题——数学问题”的建模意识来理解和探索二元一次方程的解。

教学过程:1.创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分。

某队在10场比赛中得到16分,那么这个队胜负分别是多少?2.探索新知问题1:能不能根据题意直接设两个未知数,使列方程变得容易呢?问题2:这两个方程与一元一次方程有什么不同?它们有什么特点?问题3:什么是二元一次方程组?3.巩固练让学生判断下列哪些是二元一次方程:1) x + y = 52) 2x + y = 83) 3x + 2y = 104) x^2 + y^2 = 255) 2x + y + z = 1然后让学生解决下列问题:设这个队胜场为x,负场为y。

根据题意,得到以下方程组:y = 10 - x2x + y = 16解得x = 6,y = 4.因此,这个队胜6场,负4场。

4.总结归纳让学生总结二元一次方程组的概念和解法,并引导他们思考如何运用这些知识解决实际问题。

教学设计意图:本节课通过篮球联赛的例子引入二元一次方程组的概念,让学生了解方程组在数学模型中的重要性。

然后,通过练,让学生掌握解决二元一次方程组的方法。

最后,让学生总结归纳这些知识,并思考如何运用它们解决实际问题。

这样能够提高学生的数学思维能力和解决问题的能力。

本节课主要教学内容是二元一次方程组的概念和解法。

人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》

人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》

人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。

通过学习,学生能够解决实际问题,提高解决问题的能力。

教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。

二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。

但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。

同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。

三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。

2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。

五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。

2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。

3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。

4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。

六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。

2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。

3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。

2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。

8.1二元一次方程组教学设计人教版数学七年级下册

8.1二元一次方程组教学设计人教版数学七年级下册

《8.1 二元一次方程组》教学设计教材分析二元一次方程组是第八章第一节的内容,在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用.本节内容主要学习和二元一次方程组有关的几个概念.本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的准备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用.备课素材一、新知导入【情景导入】古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”方法一:算数方法把兔子都看成鸡,则多出94—35×2=24只脚,每只兔子比鸡多出两只脚,由此可先求出兔子有24÷2=12(只),进而求出鸡有35—12=23(只).方法二:列一元一次方程求解设有x只鸡,则有(35—x)只兔子.根据题意,得2x+4(35—x)=94.问题:上面的问题可以用一元一次方程来解,还有其他方法吗?【说明与建议】说明:以古老的数学名题引入,可以增强学生的民族自豪感,激发学生学习数学的兴趣.能用方法一来解的学生算术功底比较好,应给予高度赞赏.方法二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好了铺垫.建议:教师利用课件出示问题,学生思考,自行解答,教师巡视.最后,在学生动手动脑的基础上,通过讨论给出各种解决方案.【置疑导入】播放多媒体:姚明和刘翔的合影照片.已知姚明比刘翔高37 cm,刘翔身高的2倍比姚明高152 cm,则他们的身高分别是多少?假设姚明的身高为x cm,刘翔的身高为y cm,你能得到怎样的方程?能列几个?【说明与建议】说明:由同学们熟悉的姚明和刘翔的身高,为新课的引入做准备,还可以调节气氛,给学生以轻松的感觉,以对话的形式再次引出方程问题,让学生再次经历建模的同时,以相对轻松的状态进入后面的学习.建议:引导学生回答问题,小组合作完成题目,教师参与并指导.二、命题热点命题角度1 认识二元一次方程(组) 1.下列方程中,为二元一次方程的是(D)A .2x +3=0B .3x -y =2zC .x 2=3D .2x -y =52.若关于x ,y 的方程7x |m|+(m -1)y =6是二元一次方程,则m 的值为(A) A .-1 B .0 C . 1 D .2 3.下列方程组中,是二元一次方程组的是(D)A.⎩⎨⎧3x -y =52y -z =6B.⎩⎨⎧x +3=1y =x 2C.⎩⎨⎧5x +2y =1xy =-1D.⎩⎨⎧x +y =2y -2x =4命题角度2 二元一次方程(组)的解4.在下列各组数中,是方程组⎩⎨⎧2x -3y =-8,x +2y =3的解的是(D)A.⎩⎨⎧x =2y =4B.⎩⎨⎧x =-3y =1C.⎩⎨⎧x =1y =1D.⎩⎨⎧x =-1y =25.已知⎩⎨⎧x =4,y =1是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值是1.命题角度3 建立二元一次方程(组)模型6.“今有50鹿进舍,小舍容4鹿,大舍容6鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,若每个圈舍都住满,求所需圈舍的间数.设需要大圈舍x 间,小圈舍y 间,则列二元一次方程为6x +4y =50.7.某公司要购买办公桌,A 型办公桌每张500元,B 型办公桌每张300元,购买10张办公桌共花费4 200元.设购买A 型办公桌x 张,B 型办公桌y 张,则根据题意可列方程组为⎩⎨⎧x +y =10500x +300y =4 200.教学设计授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.方程2x-3=1是一元一次方程,其解是x=2,有1个解.2.下列方程中,解为x=4的方程是(C)A.x-1=4 B.4x=1C.4x-1=3x+3 D.2(x-1)=1师生活动:学生独立完成,班内统一答案.师生共同回顾一元一次方程及其解.通过简单的提问,帮助学生回顾一元一次方程,为学习新课做好准备.活动一:创设情境、导入新课【课堂引入】活动一:对话老牛喘着气吃力地说:“累死我了!”小马说:“你还累?这么大的个,才比我多驮了2个.”老牛气喘吁吁地说:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!”小马天真而不信地说:“真的?”它们各驮了多少包裹呢?设老牛驮了x个包裹,小马驮了y个包裹,你能得到怎样的方程?能列几个?问题1:老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程?问题2:若老牛从小马背上拿来1个包裹,老牛的包裹数就是小马的包裹数的2倍,由此你又能得到怎样的方程?活动二:多媒体展示公园门票问题,学生认真观看图片,部分学生开始在练习本上计算.设他们中有x个成人,y个儿童,由此你能得到怎样的方程?根据学生的生活实际和认知实际,创设具体的问题情境,让学生经历建模的同时,调节心情,以相对轻松的状态进入后面的学习.活动二:【探究新知】习,抓住二元一次A.⎩⎪⎨⎪⎧x =4y =3B.⎩⎪⎨⎪⎧x =3y =6C.⎩⎪⎨⎪⎧x =2y =4D.⎩⎪⎨⎪⎧x =4y =2 例5 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,480个学生刚好住满.设大房间有x 个,小房间有y 个,则列出方程组为⎩⎪⎨⎪⎧x +y =708x +6y =480. 【变式训练】1.若(a -1)x +4y |a|=3是二元一次方程,则a =-1.2.小明在解题时发现二元一次方程□x-y =3中,x 的系数已经模糊不清(用“□”表示),但查看答案发现⎩⎪⎨⎪⎧x =-2,y =5是这个方程的一组解,则“□”表示的数为-4.师生活动:学生先独立思考并作答,然后分小组交流讨论,派学生代表进行讲解,教师最后进行完善. 活动四: 课堂检测【课堂检测】1.下列各组数中,不是x +y =5的解的是(B)A.⎩⎪⎨⎪⎧x =2y =3B.⎩⎪⎨⎪⎧x =1y =6C.⎩⎪⎨⎪⎧x =-2y =7D.⎩⎪⎨⎪⎧x =0y =5 2.在方程组⎩⎪⎨⎪⎧2x -y =1,y =3z +1;⎩⎪⎨⎪⎧x =2,3y -x =1;⎩⎪⎨⎪⎧x +y =0,3x -y =5;⎩⎪⎨⎪⎧xy =1,x +2y =3;⎩⎪⎨⎪⎧1x +1y =1,x +y =1中, 是二元一次方程组的有(A)A .2个B .3个C .4个D .5个3.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是(A)A.⎩⎪⎨⎪⎧x =1y =2B.⎩⎪⎨⎪⎧x =0y =1C.⎩⎪⎨⎪⎧x =7y =0D.⎩⎪⎨⎪⎧x =1y =-24.如图,设他们中有x 个成人,y 个儿童,根据图中的对话可得方程组(C)A.⎩⎪⎨⎪⎧x +y =3030x +15y =195B.⎩⎪⎨⎪⎧x +y =19530x +15y =8 针对本课时的主要问题,分层次进行检测,达到了解课堂学习效果的目的.。

人教版七年级下册第八章二元一次方程组第八章:二元一次方程组教学设计

人教版七年级下册第八章二元一次方程组第八章:二元一次方程组教学设计

人教版七年级下册第八章二元一次方程组教学设计教学目标1.理解二元一次方程组的概念及其解法;2.掌握利用代数方法解二元一次方程组;3.能够在生活实际问题中应用二元一次方程组进行求解。

教学重点1.理解二元一次方程组的概念;2.掌握利用代数方法解二元一次方程组。

教学难点培养学生应用二元一次方程组解决实际问题的能力。

教学内容及教学步骤教学内容1.二元一次方程组的概念;2.代数方法解二元一次方程组。

教学步骤第一步:导入1.老师介绍二元一次方程组的概念及其应用场景:解决两个未知数的问题;2.激发学生的兴趣。

第二步:复习1.回顾一元一次方程的解法;2.引导学生思考:如何求解两个未知数的方程?第三步:讲解1.教师讲解二元一次方程的概念和解法,并介绍利用代数方法解二元一次方程组;2.通过例题引导学生理解二元一次方程组的概念和代数解法。

第四步:练习1.分组练习二元一次方程组的代数解法;2.对练习中出现的问题进行及时纠正。

第五步:扩展1.小组讨论生活实际问题,引导学生应用二元一次方程组进行求解;2.分组汇报讨论结果。

第六步:总结1.教师对本节课的教学进行总结;2.检查学生的掌握情况。

课后作业1.完成课后作业;2.思考如何应用二元一次方程组解决其他实际问题。

教学反思通过以上教学步骤,学生能够通过代数方法解二元一次方程组,提高了学生的二元一次方程组解题的能力。

在课程设计中,通过引导学生进行小组讨论及汇报,增强了学生的交流与合作能力。

不足之处是,需要针对不同层次的学生进行个性化教育,此外,引导学生从家庭生活、社会实践中寻找问题,借助二元一次方程组进行求解,可增加学生对数学知识的应用性和实际意义的认识。

(完整word版)新人教版七年级下册第八章《二元一次方程组》全章教案(共10份)

(完整word版)新人教版七年级下册第八章《二元一次方程组》全章教案(共10份)

8.1二元一次方程组教学过程设计(总第二八课时)8.2 消元——二元一次方程组的解法(1)教学过程设计(总第二九课时)8.2 消元——二元一次方程组的解法(2)教学过程设计(总第三十课时)8.2 消元——二元一次方程组的解法(3)教学过程设计(总第三一课时)8.2 消元——二元一次方程组的解法(4)教学过程设计(总第三二课时)8.3 实际问题与二元一次方程组(1)——和差倍分问题教学过程设计情境创设:引发学生注意力营造学习气氛,激发探索热情。

学生认真审题教师给出问题,引发学生思考,充分发挥学生的学习积极性。

教师引导学生寻找解决问题的方法:1.找出题中的未知量,设出未知数。

2.根据题意列出二元一次方程组3.求出二元一次方程组的解。

4.根据方程组的解来检验估算的准确性。

通过此题训练让学生明确实际问题转化为数学问题关键是找出问题中的相等关系,列出二元一次方程组,从而体会方程组的应用价值。

“爱心”加深问题难度,巩固应用二元一次方程组解决实际问题的方法进一步提高学生分析问题、解决问题的能力。

教师关注:1)学生能否多角度考虑问题2)学生能否表达出自己的意见。

3)学生能否理解题意,是否对这样的问题感兴趣并积极参与讨论。

(总第三三课时)8.3 实际问题与二元一次方程组(2)——几何图形问题教学过程设计教学内容师生活动情景引入1、把长方形纸片折成面积相等的两个小长方形,有哪些折法?2、把长方形纸片折成面积之比为1:2的两个小长方形,又有哪些折法?老师提出问题,鼓励学生多角度出发学生小组讨论,把设计方案画在草稿纸上。

展示学生的不同分法,并让学生表达出来合作探一、自主预习、初识知识【探究2】据统计资料,甲、乙两种作物的单位面积产量的比是1:2.现要把一块长200 m、宽100 m的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?问题1 结合上面的小结,和“探究1”的解决过程,如何解决这个问题?追问1 本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解情境创设:引发学生注意力营造学习气氛,激发探索热情。

人教版数学七年级下册教案8.1《二元一次方程组》

人教版数学七年级下册教案8.1《二元一次方程组》

人教版数学七年级下册教案8.1《二元一次方程组》一. 教材分析人教版数学七年级下册教案8.1《二元一次方程组》是学生在学习了《一元一次方程》的基础上,进一步研究两个未知数之间的关系。

本节课通过解决实际问题,引导学生认识二元一次方程组,并学会用消元法解二元一次方程组。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。

二. 学情分析学生在六年级时已经学习了《一元一次方程》,对方程的概念、解法等方面有了初步的了解。

但七年级的学生刚接触数学中的代数知识,对于两个未知数之间的关系,以及如何求解二元一次方程组可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解并掌握二元一次方程组的知识。

三. 教学目标1.理解二元一次方程组的概念,知道二元一次方程组的解的意义。

2.学会用消元法解二元一次方程组,提高学生解决实际问题的能力。

3.培养学生的合作交流能力,提高学生的逻辑思维能力。

四. 教学重难点1.重点:二元一次方程组的概念、解法。

2.难点:二元一次方程组的解的意义,以及如何运用消元法解二元一次方程组。

五. 教学方法采用问题驱动法、案例分析法、合作交流法、启发式教学法等,引导学生主动探究,提高学生分析问题、解决问题的能力。

六. 教学准备1.准备相关的生活案例,用于引导学生理解二元一次方程组的实际意义。

2.准备多媒体教学设备,用于展示解题过程。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活案例,引导学生回顾一元一次方程的知识,为新课的学习做好铺垫。

例如,小明买了一本书和一支笔,书的价格是x元,笔的价格是y元。

已知书和笔的总价是15元,求书和笔的单价。

2.呈现(15分钟)引导学生列出二元一次方程组,并观察方程组的特点。

如:x + y = 15然后,引导学生思考如何解这个方程组,引出消元法的概念。

3.操练(15分钟)让学生分组讨论,尝试用消元法解二元一次方程组。

人教版初中数学七年级下册8.1《二元一次方程组》教案设计

人教版初中数学七年级下册8.1《二元一次方程组》教案设计

8.1二元一次方程组教学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,3.会求二元一次方程的正整数解.教学重点:理解二元一次方程组的解的意义.教学难点:求二元一次方程的正整数解.教学过程:一、情境导入引言:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程表示为:x +y =222x +y =40议一议:著名的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?” 设鸡有x 只,兔y 只,根据题意,得 则有:二、合作探究二元一次方程(组)及其解的定义 观察上面四个方程,有何共同特征?(1)含有2个未知数(2)含有未知数的项的次数是1上面四个方程中,每个方程都含有两个未知数(x 和y ),并且含有未知数的项的次数是1,像这样的方程叫做二元一次方程.944235=+=+y x y x注意:(1)“一次”是指含未知数的项的次数是1,而不是未知数的次数(2)方程的左右两边都是整式 把两个方程合在一起,写成:x +y =222x +y =40这样:把两个二元一次方程合在一起,就组成了一个二元一次方程组. 探究:满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入上表中.上表中哪对x 、y 的值还满足方程②?一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.注意:一般地,一个二元一次方程有无数个解。

如果对未知数的取值附加某些限制条件,则可能有有限个解二元一次方程组的两个方程的公共解,叫做二元一次方程的组解.944235=+=+y x y x X显然二元一次方程组只有一对解,记作 牛刀小试:1.下列各式是不是二元一次方程,为什么? ①3x +2y ② 2-x +3+5=0 ③ 3x -4y =z ④x +xy =1 ⑤x 2+3x =5y ⑥7x -y =0 2.下列方程组是不是二元一次方程组?⎩⎨⎧=+=+75243y x y x ⎩⎨⎧=+=7524y x xy ⎩⎨⎧=+=+7243z x y x ⎩⎨⎧=+=+752432y x y x ⎩⎨⎧=+=74y x x3.已知下列三对值:⎩⎨⎧-=-=96y x ⎩⎨⎧-==610y x ⎩⎨⎧-==110y x 哪几对数值使方程21x -y =6的左、右两边的值相等?哪几对数值是方程组1622311x y x y ⎧-=⎪⎨⎪+=-⎩的解? 三、拓展提升例1(1)方程(a +2)x +(b -1)y = 3是二元一次方程,试求a 、 b 的取值范围.(2)方程x ∣a ∣ – 1+(a -2)y = 2是二元一次方程,试求a 的值. 例2 若方程x 2 m –1 + 5y 3n – 2 = 7是二元一次方程.求m 、n 的值 例3 求二元一次方程3x +2y =19的正整数解.四、反馈训练 (一)、课堂练习:教科书第89页练习 (二)、当堂达标1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x+4y=6 D .4x=24y - 2.下列方程组是不是二元一次方程组?⎩⎨⎧=+=+75243y x y x ⎩⎨⎧=+=7524y x xy ⎩⎨⎧=+=+7243z x y x ⎩⎨⎧=+=+752432y x y x3.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( ) A .246246216246 (22)222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 4.二元一次方程x+y=5的正整数解有______________. 5.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.五、总结升华:1. 通过本节课的探讨学习,你获得了哪些新知识?2. 你还有哪些疑惑?六、作业布置:习题8.1第1、2、3题七、板书设计二元一次方程组⎩⎪⎨⎪⎧二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组评价与反思1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组》教学设计
教学目标
1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.
重点、难点
重点: 理解二元一次方程组的解的意义
难点: 求二元一次方程的正整数解
教学过程
一、复习
1、什么是一元一次方程?“元”指什么?“次”指什么?
2、什么是方程的解?
设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、情境导入
在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分. 姚明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分.
这两个条件可以用方程表示吗?
学生自己先用一元一次方程来解答此题,然后根据两个等量关系列出方程:x+y=10,2x+y=16
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知
提问:这两个方程和我们以前学过的方程相同吗?什么共同特征?
学生通过观察,师生共同总结:
相同点1:未知数的个数都是2
2:含有未知数的项最高次数是1次
3:含有未知数的项是整式而不是分式
从而归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.
提问:对比两个方程,你能发现它们之间的关系吗?
师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.
探究:
满足x+y=10的值有哪些?请填入表中:
使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.
满足方程2x+y=16且符合问题的实际意义的x、y的值如下表:
不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.
思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

四、例题讲解
例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。

例2、暴风雨即将来临, 一群蚂蚁正忙着搬家.其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?
例3、
学生思考,试着解答,最后共同宣布答案。

设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。

五、随堂练习
1.下列方程中,是二元一次方程的是( )
A.3x-2y=4z B.6xy+9=0
C.+4y=6 D.4x=
2.下列方程组中,是二元一次方程组的是( )
A. B.
C. D.
3.在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程
,则k 值为( )
A .-2
B .2或-2
C .2
D .以上答案都不对
4.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( )
A 、
B 、
C 、
D 、
5.二元一次方程组⎩
⎪⎨⎪⎧x +y =5,2x -y =4的解为( ) A.⎩⎪⎨⎪⎧x =1y =4 B.⎩⎪⎨⎪⎧x =2y =3 C.⎩⎪⎨⎪⎧x =3y =2 D.⎩
⎪⎨⎪⎧x =4y =1 6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A .1种
B .2种
C .3种
D .4种 设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。

这一环节总的设计意图是反馈教学,升华知识
六、拓展延伸
1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是( )
A.⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35
B.⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5
C.⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35
D.⎩
⎪⎨⎪⎧2x +3y =15.56x +5y =35 2.甲、乙两人共同解方程组⎩
⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解
为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.
试计算a 2 016+(-110b)2 017. 设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。

七、课堂小结
以提问进行:
(1)、二元一次方程(组)的特征是什么?
(2)、二元一次方程组的解要满足什么条件?
设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。

有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.
八、教学反思
1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

参考答案
随堂练习
1、D
2、A
3、C
4、B
5、C
6、B
拓展延伸
1、A
2、解:把⎩
⎪⎨⎪⎧x =-3,y =-1代入方程②中,得 4×(-3)-b ×(-1)=-2,解得b =10. 把⎩
⎪⎨⎪⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1.
∴a
2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0.。

相关文档
最新文档