细胞的跨膜信号转导
第二节 细胞的跨膜
动作电位
2)复极化:细胞去极化至一定程度 Na+通道 关闭,K+通道开放,在细胞内外△【K+】 的 作用下K+外流,形成复极化。 3)后电位:钠泵 排钠摄钾 形成微小的电
位波动 。
NF受刺激→膜去极化→部分电压门控Na+通 道开放(激活)→Na+顺电-化学梯度入C→ 膜进一步去极化(阈电位)→大量Na+通道开 放→形成AP上升支(去极相)→达到Na+平 衡电位,膜电位内正外负(动力:浓度差; 阻力:电位差)→Na+通道失活→膜对K+通 道开放→膜内K+顺电-化学梯度向外扩散→ 膜内电位变负→AP下降支(复极期)→K+平 衡电位→Na+通道恢复(复活)。
根据细胞膜上受体的种类以及与受体发生 联系,参与跨膜信号转导的相关分子不同, 主要有以下几种跨膜信号转导的途径:
一、G蛋白偶联受体介导的跨膜信号转导 二、通道介导的跨膜信号转导 三、酶偶联受体介导的跨膜信号转导
一、G蛋白偶联受体介导的跨膜信号 转导 1、受体(receptor)
存在于细胞膜上或细胞内的能与特定的化学 物质如神经递质、激素、药物等进行特异 性结合并引起生物学效应的特殊蛋白质。 2、G蛋白 是一类位于受体和效应器分子之间的偶联 蛋白
受体介导式入胞:
是一种最重要的入胞形式,通过这种方 式入胞的物质有50多种,包括血浆低密 度脂蛋白颗粒、运铁蛋白、VitB12 运输 蛋白、多种生长调节因子、胰岛素、抗 体和某些细菌毒素、病毒等。
coated pit
endosome
Primary lysosome
入胞的基本过程: 转运物质被 细胞膜识别 与转运物质相接触的膜发 生内陷,并逐渐将其包绕 吞食泡与溶酶 体融合,其内 容被酶消化
细胞的信号转导
• 由膜上的腺苷酸环化酶(AC)环化胞浆内 • ATP形成cAMP。 • cAMP是最早确定的第二信使。 正常情况下,cAMP的生成与分解保持平衡,使 胞浆内cAMP浓度保持在10-7M以下。当配体与受体 结合后,1个AC可生成许多cAMP,使cAMP的水平 在几秒钟内增高20倍以上。
• • • • • • •
3. PLA 2 –AA信号转导系统 花生四烯酸( AA)是通过磷脂酶水解膜磷脂释放的不饱
和脂肪酸。 1)PLA2的激活机制 :
许多细胞外信号(如肾上腺素能激动剂、缓激肽、凝血
酶等)都可激活PLA2,有些PLA2通过G蛋白激活;有些 PLA2被PLC激活,PLC通过增加胞内Ca2+、或激活PKC间 接激活PLA2。细胞外信号刺激PLA2途径直接在sn-2位置 脱酯释放AA,是生成AA的重要途径,也是细胞调控AA生
期使用激动剂和拮抗剂的药理或病理情况下,将之除去后受体 数量和反应性均可恢复。
(2)根据调节的种类,分为
1)受体的数目与结合容量:促使受体数目或结合
容量增加的调节称为上调。反之称为下调。
2)反应性:在内环境影响下,受体反应性会产生增
敏、失敏等现象。 增敏:细胞在某种因素的作用下,受体与配体结合的
敏感性增加。如甲状腺素可增加细胞对儿茶酚胺、TSH、
第二节 细胞的跨膜信号转导功能
• 跨膜信号转导 • (transmembrane signal transduction)
(一)细胞信号转导
1. 细胞信号转导的概念
不同形式的外界信号作用于细胞时,通常并不进入细胞或 直接影响细胞内过程,而是作用于细胞膜表面(少数类固 醇激素和甲状腺激素除外)通过引起膜结构中一种或数种 特殊蛋白质分子的变构作用,将外界环境变化的信息以新
3.3 细胞的跨膜信号转导
真核细胞内主要的跨膜信息传导途径: u G-蛋白耦联受体介导的跨膜信号传导 u 离子通道型受体介导 u 酶耦联受体介导
一、 Signal trnsduction mediated by G-ptotein-
linked receptor
(一) G蛋白耦联受体 receptor:一类Mw:290kD,α2βγδ 五聚体,形成中间一个 孔道样结构。有4个跨膜螺旋/亚单位,孔道的内 壁由5个亚单位的M2螺旋构成。 孔道:Na+, K+均可通过
u Ach 与2个α亚单位结合,通道开放, Na+内流, 少量K+外流,产生终板电位。
u 分布:肌细胞终板膜、神经细胞的突触后膜等, →终板电位、突触后电位及感受器电位。
2、分布:神经轴突和骨骼肌、心肌细胞的质膜中 →动作电位。
钠通道的α亚单位
S5,S6之间 的胞外环构 成孔道内壁
᭗ ى᭲҅ᄶތၚྋғኪӨរSᔜ4࿕ํ ᯢᩢ࿕ᯢ
失活:与结 构域Ⅲ和Ⅳ 之间胞内环 有关
(三)机械门控通道
Mechanically-gated channel: 存在于对机械刺 激敏感的细胞如内耳毛细胞、下丘脑的渗透压 敏感神经元。
4-5ӻԵ֖ܔ ҁᙞ᱾҂ᕟ ౮҅॔ݍ4ེ ᑯᬦᕡᙱᛂ
֛ݑၚ۸
ᐶৼ᭗᭲න
ᛂ݄ຄ۸
ᕣኪ֖
(二)电压门控通道
1、开放与关闭:由膜电位决定,即通道存在一些对 膜电位改变敏感的结构域或基团,后者诱发通道分 子功能状态改变,改变相应的离子跨膜扩散→细胞 生物电活动改变。 电压门控钠通道:α、β1、β2三个亚单位组成,α亚单 位是形成孔道的亚单位。
ᯈ֛Өᕡᙱक़ྦྷᕮݳ
ࣳදݒ ᯗ࿕ᯢᄶᯠၚ۸
细胞的跨膜信号转导功能
静息电位(resting potential,RP)是指细胞在静 息状态下(未受刺激)存在于细胞膜两侧的电位差。
生 理 学
谢谢观看!
生 理 学
细胞的跨膜信号转 导功能
细胞的跨膜信号转导功能
机体各种器官、组织和细胞的活动是相互联系的, 通过神经和体液调节成为一个有机整体,并与环境相适 应。因此,细胞之间必须存在传递信息的信号交流机 制,保证机体功能活动的完整性和统一性。能在细胞间 传递信息,并能与受体发生特异性结合的信号物质称为 配体(ligand),如神经递质、激素、细胞因子等。
细胞的跨膜信号转导功能
三、 酶耦联型受体介导的信号转导
酶耦联型受体(enzyme-linked receptor)是 存在于细胞膜上的一些蛋白质,它们既有受体的作 用,又有酶的活性,或能激活与之相连的酶,从而 能够完成信号的转导。其中,较重要的有酪氨酸激 酶受体、鸟苷酸环化酶受体和酪氨酸激酶结合型受 体三种类型。
细胞的跨膜信号转导功能
1.酪氨酸激酶受体
酪氨酸激酶受体的配 体结合位点位于细胞 外侧,而伸入细胞质 的一侧具有酪氨酸激 酶活性。
鸟苷酸环化酶受体 的配体结合位点位 于细胞外侧,而胞 质的一侧则具有鸟 苷酸环化酶活性。
酪氨酸激酶结合型受 体本身没有蛋白激酶 活性,但其与细胞外 配体结合后,引起细 胞内效应。
细胞的跨膜信号转导功能
一、 G蛋白耦联受体介导的信号转导
图 1-8 G 蛋白耦联受体介导的信号转导示意图
细胞的跨膜信号转导功能
二、 离子通道型受体介导的信号转导
离子通道型受体是一种同时具有受体和离子通道 两种功能的蛋白质,通常是指化学门控通道。通道 的开放(或关闭)不仅涉及离子的跨膜转运,还可 以实现化学信号的跨膜转导,因而这一信号转导途 径称为离子通道型受体介导的信号转导。
细胞的跨膜信号转导
细胞的跨膜信号转导1、跨膜信号转导或跨膜信号传递的共性各种外界信号(物理、生物、化学等信号)J膜蛋白构型变化J信号传递到膜内J靶细胞功能变化(如电变化)2、跨膜信号转导的方式有3种:①离子通道介导②G蛋白耦联介导③酶耦联受体介导3、受体定义:能与激素、神经递质、药物或细胞内的信号分子结合并引起其功能的改变的生物大分子分类:部位——胞膜、胞浆、胞核受体配基——胆碱能、肾上腺素能、多巴胺能受体结构——离子通道、G蛋白、酶、转录调控受体特征: ①高度特异性②饱和性③竞争抑制④亲和力⑤可逆性⑥高效性功能:①识别与结合②传递信息一、由离子通道介导的跨膜信号传导(一)、化学门控通道——配体门控通道定义:当膜外特定的化学信号(配体)与膜上的受体结合后通道就开放,因而称为化学门控通道或配体门控通道,也称为通道型受体分布:神经元突触后膜,肌细胞终板膜受体—化学信号结合位点- 促离子型受体转到途径:化学信号膜通道蛋白\ / 通道蛋白变构J 通道开放J离子异化扩散J完成跨膜信号传导J产生效应二)、电压门控通道 分布在除突触后膜和终板膜以外的细胞膜 三)、机械门控通道 定义:感受机械刺激引发细胞功能改变的通道结构 、由G 蛋白耦联受体介导的跨膜信号转导1、 G 蛋白耦联受体是一种与细胞内侧 G 蛋白的激活有关的独立受体蛋白质分子2、 G 蛋白是鸟苷酸结合蛋白: G 蛋白未被激活时,他与一个分子的GDP 吉合,G 蛋白的激活很短暂3、 G 蛋白效应器,:催化生成第二信使的酶和离子通道4、 蛋白激酶:丝氨酸/苏氨酸激酶可是底物蛋白的丝氨酸或苏氨酸残基磷酸化,包括:蛋白激酶 A 、蛋白激酶 G 蛋白激酶C 5、 几条主要跨膜信号转导途径①受体 -G 蛋白 -AC 信号转导途径Gs ATP TcAMPf+ /\ + + /\配体+受体ACPKA+ \/--\/GiATPt cAMP f②受体 -G 蛋白 - PLC 信 号转导途径PIL2 rn Gi \ Gp \DG受体IP3+IP3PLC /受体T 内质网或肌浆网释放Ga+。
第三章-信号转导
原分解-小分子物质是环-磷酸腺苷(cyclic
adenosine monophosphate,cAMP)。
17
许多激素-与膜表面的特异受体结合-膜内
cAMP增加/减少-细胞功能改变。
外来的化学信号(激素)-第一信使(first
messenger)。
cAMP-第二信使(second messenger)。
类途径实现的
6
(三)跨膜信号转导还有信号放大作用
信号的级联放大:一个上游信号分子可激活多
个下游信号分子,并依次类推,于是产生了信
号的级联放大,使少量的细胞外信号分子可以
引发靶细胞的显著反应。
7
受体(膜受体,部分为核受体):离子通道受 体、G蛋白偶联受体、酶偶联受体(或具有内
在酶活性的受体)
一种细胞外化学信号在发挥其生物作用时,可
磷酸肌醇(inositol triphosphate,IP3),二酰甘
油(diacylglycerol,DG),Ca++,NO。
NO气体-第一/第二信使-激活鸟苷酸环化酶 (guanylyl cyclase,GC)-胞内cGMP增加-细 胞功能改变。 NO在心血管、免疫、神经系统活动中具有重要 的调节作用。
C, PLC)、磷酸二酯酶(phosphodiesterase,
PDE)、磷脂酶A2(phospholipase A2)。
(2)离子通道: G蛋白也可直接或简接调控离子 通道的活动,如Ca2+通道。
37
4、第二信使 cAMP、cGMP、IP3、DG、NO、Ca2+等。 第二信使是细胞外信号分子作用于细胞膜后产生
在种类和数量上远没有化学信号多。这些信号大
人体生理学习题及参考答案[1]
人体生理学课程习题及参考答案第二章细胞的基本功能选择题1 下列哪种物质参与细胞的跨膜信号转导并几乎全部分布在膜的胞质侧?A磷脂酰肌醇B 磷脂酰胆碱C 磷脂酰乙醇胺D磷脂酰丝氨酸E鞘脂2 细胞膜的“流动性”主要决定于A膜蛋白的多少B 膜蛋白的种类C膜上的水通道D脂质分子层E糖类3 与产生第二信使DG和IP3有关的膜脂质是A磷脂酰胆碱B磷脂酰肌醇C磷脂酰丝氨酸D 磷脂酰乙醇胺E鞘脂4葡萄糖通过一般细胞膜的方式是A单纯扩散 B 载体介导的易化扩散 C 通道介导的易化扩散D原发性主动运输 E 继发性主动运输5细胞膜内外保持Na+和K+的不均匀分布是由于A 膜在安静时对K+的通透性较大B 膜在兴奋时对Na+的通透性较大C Na+易化扩散的结果D K+易化扩散的结果E膜上Na+-K+泵的作用6 在细胞膜的物质转运中,Na+跨膜转运的方式是A 单纯扩散和易化扩散B 单纯扩散和主动转运C 易化扩散和主动转运D 易化扩散和受体介导式入胞E单纯扩散,易化扩散和主动运输7 细胞膜上实现原发性主动转运功能的蛋白是A 载体蛋白B 通道蛋白C 泵蛋白D 酶蛋白E 受体蛋白8 Ca2+通过细胞膜的转运方式主要是A 单纯扩散和易化扩散B 单纯扩散和主动转运C 单纯扩散,易化扩散和主动运输D易化扩散和主动转运E易化扩散和受体介导式入胞9 在细胞膜蛋白质的帮助下,能将其他蛋白质分子有效并选择性地转运到细胞内的物质转运方式是A 原发性主动运输B 继发性主动运输C 载体介导的易化运输D 受体介导式入胞E 液相入胞10 允许离子和小分子物质在细胞间通行的结构是A 化学性突触B 紧密连接C 缝隙连接D 桥粒E 曲张体11 将上皮细胞膜分为顶端膜和基侧膜两个含不同转运体系区域的结构是A缝隙连接B紧密连接C中间连接D 桥粒E 相嵌连接12 在心肌,平滑肌的同步收缩中起重要作用的结构是A化学性突触B紧密连接C缝隙连接D桥粒E曲张体13 下列跨膜转运方式中,不出现饱和现象的是A 单纯扩散B经载体进行的易化扩散C原发性主动运输D 继发性主动运输E Na+--Ca2+交换14 单纯扩散,易化扩散和主动运输的共同特点是A 要消耗能量B顺浓度梯度C需要膜蛋白帮助D转运物质主要是小分子E 有饱和性15 膜受体的化学本质是A 糖类B 脂类C蛋白质D胺类E 核糖核酸16 在骨骼肌终板膜上,Ach通过下列何种结构实现其跨膜信号转导A化学门控通道B电压门控通道C机械门控通道D M型Ach受体 E G-蛋白偶联受体17 终板膜上Ach受体的两个结合位点是A两个α亚单位上B 两个β亚单位上C 一个α亚单位和一个β亚单位上D一个α亚单位和一个γ亚单位上E一个γ亚单位和一个δ亚单位上18 由一条肽链组成且具有7个跨膜α-螺旋的膜蛋白是A G-蛋白B 腺苷酸环化酶C 配体门控通道D酪氨酸激酶受体E G-蛋白偶联受体19 以下物质中,属于第一信使是A cAMPB IP3C Ca2+D AchE DG20光子的吸收引起视杆细胞外段出现超极化感受器电位,其产生的机制是A Cl-内流增加B K+外流增加C Na+内流减少D Ca2+内流减少E 胞内cAMP减少21 鸟苷酸环化酶受体的配体是A心房钠尿肽B 乙酰胆碱C 肾上腺素D 去甲肾上腺素E 胰岛素样生长因子22 酪氨酸激酶受体的配体是A 心房钠尿肽B 乙酰胆碱C 肾上腺素D去甲肾上腺素E胰岛素样生长因子23 即早基因的表达产物可A 激活蛋白激酶B 作为通道蛋白发挥作用C 作为膜受体发挥作用D 作为膜受体的配体发挥作用E 诱导其他基因的表达24 静息电位条件下,电化学驱动力较小的离子是A K+和Na+B K+和Cl-C Na+和Cl-D Na+和Ca2+E K+ 和Ca2+25 细胞处于静息电位时,电化学驱动力最小的离子是A Na+B K+C Cl-D Ca2+E Mg2+26 在神经轴突的膜两侧实际测得的静息电位A 等于K+的平衡电位B 等于Na+的平衡电位C 略小于K+的平衡电位D略大于K+的平衡电位 E 接近于Na+的平衡电位27 细胞膜外液K+的浓度明显降低时,将引起A 膜电位负值减小B K+电导加大C Na+内流的驱动力增加D平衡电位的负值减小 E Na+-K+泵向胞外转运Na+增多28 增加细胞外液的K+浓度后,静息电位将A 增加B 减少C 不变D 先增大后变小E 先减小后增大29 增加离体神经纤维浴液中的Na+浓度后,则单根神经纤维动作电位的超射值将A 增加B 减少C 不变D 先增大后变小E 先减小后增大30细胞膜对Na+通透性增加时,静息电位将A 增加B 减少C 不变D 先增大后变小E 先减小后增大31 神经纤维电压门控Na+通道与通道的共同特点中,错误的是A 都有开放状态B 都有关闭状态C 都有激活状态D 都有失活状态E 都有静息状态32 人体内的可兴奋组织或细胞包括A神经和内分泌腺B 神经,肌肉和上皮组织C神经元和胶质细胞D 神经,血液和部分肌肉E神经,肌肉和部分腺体33 骨骼肌细胞和腺细胞受刺激而兴奋时的共同特点是A膜电位变化B囊泡释放C 收缩D 分泌E产生第二信使34把一对刺激电极置于神经轴突外表面,当同一直流刺激时,兴奋将在A 刺激电极正极处B 刺激电极负极处C 两个刺激电极处同时发生D两处均不发生 E 正极处向发生,负极处后发生35 细胞膜内负电位由静息电位水平进一步加大的过程称为A 去极化B 超极化C 复极化D超射E 极化36 细胞膜内负电位从静息电位水平减小的过程称为A 去极化B 超极化C 复极化D超射E 极化37神经纤维的膜内电位值由+30mV变为-.70mV的过程称为A 去极化B 超极化C 负极化D超射E 极化38 可兴奋动作电位去极化相中膜内电位超过0mV的部分称为A 去极化B 超极化C 负极化D超射E 极化39细胞静息时膜两侧电位所保持的内负外正状态称为A 去极化B 超极化C 负极化D超射E 极化40与神经纤维动作电位去极相形成有关的离子主要是A Na+B Cl-C K+D Ca2+E Mg2+41与神经纤维动作电位复极相形成有关的离子主要是A Na+B Cl-C K+D Ca2+E Mg2+42 将神经纤维膜电位由静息水平突然上升并固定到0mV水平时A 先出现内流电流,而后逐渐变为外向电流B先出现外向电流,而后逐渐变为内向电流C 仅出现内向电流D 仅出现外向电流E 因膜两侧没有电位差而不出现跨膜电位43 实验中用相同数目的葡萄糖分子代替浸浴液中的Na+,神经纤维动作电位的幅度将A逐渐增大B逐渐减小C基本不变D先增大后减小 E 先减小后增大44 用河豚毒处理神经轴突后,可引起A 静息电位值减小,动作电位幅度加大B静息电位值加大,动作电位幅度减小C静息电位值不变,动作电位幅度减小D静息电位值加大,动作电位幅度加大E 静息电位值减小,动作电位幅度不变45 在电压钳实验中,直接纪录的是A 离子电流B 离子电流的镜像电流C 离子电导D 膜电位E 动作电位46 记录单通道离子电流,须采用的是A膜电位细胞内纪录B 电压钳技术C电压钳结合通道阻断剂D膜片钳技术E膜片钳全细胞纪录47 正后电位是指A 静息电位基础上发生的缓慢去极化电位B 静息电位基础上发生的缓慢超极化电位C 峰电位后缓慢的去极化电位D 峰电位后缓慢的复极化电位E 峰电位后缓慢的超极化电位48 具有“全或无”特征的电反应是A 动作电位B 静息电位C终板电位D 感受器电位E 突触后电位49 能以不衰减形式细胞膜传播的电活动是A 动作电位B 静息电位C终板电位D 感受器电位E 突触后电位50 神经-肌肉头后膜上产生的能引起骨骼肌细胞兴奋的电反应是A 动作电位B 静息电位C终板电位D 感受器电位E 突触后电位51 细胞兴奋过程中,Na+ 内流和K+外流的量决定于A各自的平衡电位B细胞的阈电位CNa+-K+泵的活动程度D绝对不应期的长短E 刺激的强度52 需要直接消耗能量的过程是A静息电位形成过程中K+外流B 动作电位升支的Na+内流C复极化K+外流D复极化完毕后的Na+外流和K+内流E静息电位形成过程中极少量的Na+内流53 低温,缺氧或代谢抑制剂影响细胞的Na+-K+泵活动时,将导致A 静息电位值增大,动作电位幅度减小B静息电位值减小,动作电位幅度增大C静息电位值增大,动作电位幅度增大D静息电位值减小,动作电位幅度减小E 静息电位和动作电位均不受影响54 采用两个细胞外电极记录完整神经干的电活动时,可记录到A 动作电位幅度B 组织反应强度C 动作电位频率D阈值 E 刺激持续时间55 通常用于衡量组织兴奋性高低的指标是A 动作电位幅度B组织反应强度C 动作电位频率D阈值E 刺激持续时间56 神经纤维的阈电位是引起A Na+通道大量开放的膜电位临界值B Na+通道大量关闭的膜电位临界值C K+通道大量关闭的膜电位临界值D K+通道大量开放的膜电位临界值E Na+通道少量开放的膜电位值57 在一般细胞膜中,阈电位较其静息电位(均指绝对值)A 小10-15mVB 大10-15mV C小10-15mV D大30-50mV E 小,但两者几乎相等58 在同一神经纤维上相邻的两个峰电位,其中后一个峰电位最早见于前一个峰电位引起的A绝对不应期B 相对不应期C 超常期 D 低常期E 兴奋性恢复正常后59 如果某种细胞的动作电位持续时间是2ms,则理论上每秒内所能产生和传导的动作电位数最多不超过A 5 次B 50 次C 400 次D 100 次E 500次60细胞在一次兴奋后,阈值最低的时期是A 绝对不应期B 相对不应期C 超常期D 低常期E 兴奋性恢复后61 实验中,如果同时刺激神经纤维两端,产生的两个动作电位A将各自通过中点后传到另一端B 将在中点相遇,然后传回到起始点C 将在中间相遇后停止传导D 只有较强的动作电位通过中点而到达另一端E 到达中点后将复合成一个更大的动作电位62 局部电位的时间性总和是指A 同一部位连续的两个阈下刺激引起的去极化反应的叠加B 同一部位连续的两个阈上刺激引起的去极化反应的叠加C 同一时间不同部位连续的两个阈上刺激引起的去极化反应的叠加D 同一时间不同部位的两个阈上刺激引起的去极化反应的叠加E 同一部位一个足够大的刺激引起的去极化反应63 局部电位的空间性总和是指A 同一部位连续的两个阈下刺激引起的去极化反应的叠加B 同一部位连续的两个阈上刺激引起的去极化反应的叠加C 同一时间不同部位连续的两个阈上刺激引起的去极化反应的叠加D 同一时间不同部位的两个阈上刺激引起的去极化反应的叠加E 同一部位一个足够大的刺激引起的去极化反应64 神经末梢兴奋引起囊泡释放递质时,其主要媒介作用并直接导致递质释放的是A神经末梢Na+的内流 B 神经末梢K+的内流 C 神经末梢Cl-的内流D 神经末梢的Na+-K+交换E 神经末梢Ca2+的内流65 在兴奋收缩耦联过程中起主要媒介作用的离子是A Na+B Cl-C K+D Ca2+E Mg2+66骨骼肌细胞兴奋收缩耦联过程中,胞质中的Ca2+来自于A 横管膜上电压门控Ca2+通道开放引起的外Ca2+内流B 细胞膜上NMDA受体通道开放引起的外Ca2+内流C 肌质网上Ca2+通道开放引起的释放D 肌质网上Ca2+泵的主动转运E 线粒体内Ca2+的释放67 有机磷中毒时,可使A 乙酰胆碱与其受体亲和力增高B 胆碱酯酶活性降低C 乙酰胆碱释放量增加D 乙酰胆碱水解加速E 乙酰胆碱受体功能障碍68 重症肌无力患者的骨骼肌对运动神经动作电位的反应降低是由于A 递质含量减少B 递质释放量减少C胆碱酯酶活性增高D乙酰胆碱水解加速E 乙酰胆碱受体功能障碍69 下列物质中,能阻断终板膜上胆碱能受体的物质是A 河豚毒B 阿托品C 美洲箭毒D 心得安E四乙胺70 骨骼肌细胞膜中横管的主要作用是A Ca2+ 进出肌细胞的通道B将动作电位引向肌细胞处C 乙酰胆碱进出细胞的通道D Ca2+ 的储存库E 产生终板电位71 微终板电位是A 神经末梢连续兴奋引起B 神经末梢一次兴奋引起C 数百个突触小泡释放的Ach引起D 个别突触小泡释放引起的ACH引起的E 个别Ach分子引起的72 在神经-肌接头处,消除乙酰胆碱的酶是A A TP酶B胆碱酯酶 C 腺苷酸环化酶 D Na+-K+依赖式ATP酶 E 单胺氧化酶73 肌丝滑行学说的直接根据是,肌肉收缩时A暗带长度不变,明带和H带缩短B暗带长度不变,明带缩短,而H带不变C 暗带长度缩短,明带和H带不变D明带和暗带长度均缩短E明带和暗带长度均不变74 骨骼肌发生等张收缩时,下列那一项的长度不变?A 明带B 暗带C H带D 肌小节E 肌原纤维75 牵拉一条舒张状态的骨骼肌纤维,使之伸长,此时其A H带长度不变B 暗带长度不变C 明带长度增加D不完全强直收缩 E 完全强直收缩76 生理状态下,整体内骨骼肌的收缩形式几乎属于A单收缩B 单纯的等长收缩C 单纯的等张收缩D 不完全强直收缩 E 完全强直收缩77 使骨骼肌产生完全收缩的刺激条件是A足够强度的单刺激 B 足够强度和持续时间的单刺激C 足够强度和时间变化率的单刺激D 间隔小于单收缩收缩期的连续阈刺激E 间隔大于单收缩收缩期的连续阈刺激78 回收骨骼肌胞质中Ca2+的Ca2+泵主要分布在A肌膜B肌质网膜 C 横管膜 D 溶酶体膜 E 线粒体膜79 肌肉收缩中的后负荷主要影响肌肉的A兴奋性和传导性B初长度和缩短长度 C 被动张力和主动张力D 主动张力和缩短长度E 输出功率和收缩能力80 骨骼肌收缩时,在肌肉收缩所能产生的最大张力范围内增大后负荷,则A肌肉收缩的速度加快B肌肉收缩的长度增加C肌肉收缩产生的张力加大D开始出现收缩的时间缩短E肌肉的初长度增加81 各种平滑肌都有A 自律性B 交感和副交感神经的支配C 细胞间的电耦联D 内在神经从E时间性收缩和紧张性收缩82 与骨骼肌收缩相比,平滑肌收缩A不需要胞质内Ca2+浓度升高B没有粗肌丝的滑行C 横桥激活的机制不同D有赖于Ca2+与骨钙蛋白的结合 E 都具有自律性名词解释1 liposome2 facilitated diffusion3 chemically-gated channel4 secondary active transport5 symport6 antiport7 G-protein-coupled receptor8 exicitability9 resting potential ,RP 10 polarization 11 depolarization 12 hyperpolarization 13 action potential ,AP14 all or none 15 absolute refractory period ,ARP 16 threshold potential ,TP17 thrshold intensity 18 local excitation 19 temporal summation 20 electronic propagation21 saltatory condution 22 endplate potential ,EPP 23 excitation-contraction coupling24 isometric contraction 25 isotonic contraction 26 preload 27 contractility问答题1 细胞膜的跨膜物质转运形式有几种,举例说明之。
第三章 细胞的跨膜信号转导
GDP相结合。当配体与受体结合后,受体和G蛋白结合,并使之激活; 激活的G蛋白a亚单位对GTP具有高度亲和力,与GTP结合后,解离出 GDP。a亚单位与GTP的结合使三聚体G蛋白分成两部分,即a-GTP复 合物和b-g二聚体,两部分均可进一步激活它们的靶蛋白。
2012-2
Second messengers
cAMP NO
cGMP Ca2+
IP3
DG
Others
第二信使是细胞外信号分子作用于细胞膜后产生
的细胞内信号分子,它们的作用是将细胞外信号分子 作用于细胞膜的信息“传达”给胞内的靶蛋白,包括 各种蛋白激酶和离子通道。
2012-2
Protein kinases
2012-2
一、细胞可感受什么样的细胞外信号?
➢ 化学信号:是细胞最常感受到的刺激信号 ➢ 物理信号:温度、机械力、生物电等
在动物进化的过程中,这些物理性刺激信号大都由一 些在结构上和功能上高度分化了的特殊的感受器(如视网 膜、耳蜗、前庭器官、肌梭、环层小体等)来感受。
可兴奋细胞具有接受邻近发生的电变化而引发自身新的电 反应的能力。
蛋白激酶(protein kinase)可分为两大类: ➢ 丝氨酸/苏氨酸蛋白激酶(serine/threonine kinase):
可使底物蛋白中的丝氨酸或苏氨酸残基磷酸化,占蛋白激酶中的大多数。
➢ 酪氨酸蛋白激酶(tyrosine kinase):
数量较少,主要在酶 耦联受体的信号转导路径中发挥作用。
电压门控通道(voltage-gated ion channel)和 机械门控通道(mechanically gated ion channel) 尽管在事实上是接受电信号和机械信号的受体, 但通常不称作受体。
第 二 章 细胞的基本功能1-3
细 胞 的 生 物 电 现 象
一、细胞膜的被动电学特性
膜的被动电学特性:细胞膜作为一个静态 的电学元件时所表现的电学特性; 包括静息状态下膜的电容、电阻以及它们 所决定的膜电流、膜电位的变化特征。
细 胞 的 生 物 电 现 象
(一)膜电容:
细胞膜具有显著的电容特性,且膜电
容较大;当膜上的离子通道开放而引起带
细 胞 的 跨 膜 信 号 转 导 功 能
配体:能与受体发生特异性结合的活性 物质(ligand)
分类
生物胺类激素:肾上腺素、去甲肾上腺 素、组胺、5-羟色胺 肽类激素:缓激肽、黄体生成素、甲状 腺激素 气味分子、光量子
细 胞 的 跨 膜 信 号 转 导 功 能
1.受体-G蛋白-AC(腺苷酸环化酶)途径 Gs家族G蛋白→激活腺苷酸环化酶(AC) →催化ATP→cAMP Gi家族G蛋白→抑制AC→降低cAMP
效 应
(只能引起局部反应)
终板电位 突触后电位
某些嗅、味觉感受细胞的膜中
感受器电位
细 胞 的 跨 膜 信 号 转 导 功 能
研 究
始于: 运动神经
(神经冲动)
乙酰胆碱
(ACh)
骨骼肌兴奋
(终板膜) N-受体
终板电位
通道蛋白质
化学本质 分子结构
N-型乙酰胆碱门控通道蛋白质 (化学门控通道) 烟碱
分子量为290KD的五聚体蛋白质(2)
细 胞 的 跨 膜 电 变 化
作 用 通过生成或分解第二信使,实现细 胞外信号向细胞内转导;
细 胞 的 跨 膜 信 号 转 导 功 能
4. 第二信使: 是指激素、递质、细胞
因子等信号分子(第一信使)作用于细胞 膜后产生的细胞内信号分子,能把细胞外 信号分子携带的信息转入胞内。 如:
细胞生物学 第五章 物质的跨膜运输和第八章 细胞信号转导
第五章 物质的跨膜运输一、跨膜运输方式细胞质膜是选择性透性膜,是能调控物质进出的精致装臵。
除脂溶性分子和不带电荷的小分子能以简单扩散方式过膜之外,水溶性分子和离子都是不能自行穿越脂双层的。
几乎所有的有机小分子和带电荷的无机离子都需要由膜转运蛋白来跨膜转运。
总之,跨膜的物质运输方式有:被动运transport 胞能量,顺浓度梯1、简单扩散 小分子物质(水、尿素、甘油、葡萄糖、O 2、N 2等)能自由扩散过膜,不须膜蛋白协助 2、协助扩散小分子及离子在膜转运蛋白协助下,会增快跨膜转运速率 (1)葡萄糖、氨基酸、乳糖、核糖等由载体蛋白选择性结合转运过膜 (2)离子由通道蛋白选择性开启离子通道转运 主动运输active transport (消耗细胞能量,运输方向是逆浓度梯度或逆电化学梯度) 1、主动运输:靠离子泵(钠钾泵、钙泵)或质子泵(H +泵)直接消耗细胞的ATP 进行运输。
2、协同运输:待运物质在载体蛋白上与某种离子伴跨膜转运,由钠钾泵(或H +泵)所维持的离子浓度梯度所驱动,∴是间接消耗细胞内的ATP 。
⑴同向转运:例如肠上皮细胞摄取葡萄糖、氨基酸需伴Na +过膜;而细菌吸收乳糖是伴H +过膜。
⑵反向转运:动物细胞靠Na +-H +交换载体,由Na +驱动H +反向输出胞外,以调节细胞内 pH 值。
吞排作用 胞吞作用胞吐作用(消耗细胞能量,将大分子和颗粒物泡来跨膜运输) 1、吞噬作用:吞食大的颗粒物质2、胞饮作用:吞饮液态物质(微胞饮作用)3、跨细胞转运: 由胞吞和胞吐相结合,组成穿胞吞排物质转运方式,其过程中不涉及溶酶体消化。
例如母体中的抗体由血液穿过上皮细胞进入乳汁,而婴儿肠上皮细胞再将母乳中的抗体摄入其血液。
二、各类跨膜运输的特点(一)被动运输1、简单扩散:由小分子自行热运动,顺浓度梯度过膜,其通透性主要取决于分子的大小和极性,凡带电荷的离子皆不能简单扩散;2、协助扩散:由膜转运蛋白促使被动运输的转运速率增快,可分为两种类型:①载体蛋白与其特定溶质分子相结合来转运;②离子通道蛋白能对离子选择转运。
细胞生物学 5.第五章 物质的跨膜运输与信号转导
图5-1 不同物质透过人工脂双层的能力
图5-6 钾电位门通道
图5-13 吞噬作用图5-14胞饮作用
图5-15外排作用
图5-19化学通信的类型
图5-21细胞间隙连接
图5-23 鸟苷酸环化酶
图5-24 NO的作用机制三、膜表面受体介导的信号转导
图5-25 膜表面受体主要有三类
图5-26 离子通道型受体
5-29 G蛋白耦联型受体为7次跨膜蛋白
图5-30 腺苷酸环化酶
Protein Kinase A,PKA):由两个催化亚基和两个调节亚基,在没有cAMP时,以钝化复合体形式存在。
调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放
图5-31 蛋白激酶A
图5-33 Gs调节模型
cAMP信号途径的反应速度不同,在肌肉细胞
启动糖原降解为葡糖1-磷酸(图5-34),而抑制糖原的合成。
在某些分泌细
图5-34 cAMP信号与糖原降解图5-35 cAMP信号与基因表达
图5-38 IP3和DG的作用
与内质网上的IP3配体门钙通道结合,开启钙通道,使胞内
图5-39 Ca2+信号的消除
图5-41 受体酪氨酸激酶的二聚化和自磷酸化
图5-44 IRS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞的跨膜信号转导
1、跨膜信号转导或跨膜信号传递的共性
各种外界信号(物理、生物、化学等信号)
↓
膜蛋白构型变化
↓
信号传递到膜内
↓
靶细胞功能变化(如电变化)
2、跨膜信号转导的方式有3种:①离子通道介导
②G蛋白耦联介导
③酶耦联受体介导
3、受体
定义:能与激素、神经递质、药物或细胞内的信号分子结合并引起其功能的改变的生物大分子分类:部位——胞膜、胞浆、胞核受体
配基——胆碱能、肾上腺素能、多巴胺能受体
结构——离子通道、G蛋白、酶、转录调控受体
特征: ①高度特异性
②饱和性
③竞争抑制
④亲和力
⑤可逆性
⑥高效性
功能:①识别与结合
②传递信息
一、由离子通道介导的跨膜信号传导
(一)、化学门控通道——配体门控通道
定义:当膜外特定的化学信号(配体)与膜上的受体结合后通道就开放,因而称为化学门控通道或配体门控通道,也称为通道型受体
分布:神经元突触后膜,肌细胞终板膜受体—化学信号结合位点-促离子型受体
转到途径:
化学信号膜通道蛋白
↘↙
通道蛋白变构
↓
通道开放
↓
离子异化扩散
↓
完成跨膜信号传导
↓
产生效应
(二)、电压门控通道
分布在除突触后膜和终板膜以外的细胞膜
(三)、机械门控通道
定义:感受机械刺激引发细胞功能改变的通道结构
二、由G蛋白耦联受体介导的跨膜信号转导
1、G蛋白耦联受体是一种与细胞内侧G蛋白的激活有关的独立受体蛋白质分子
2、G蛋白是鸟苷酸结合蛋白:G蛋白未被激活时,他与一个分子的GDP结合,G蛋白的激活
很短暂
3、G蛋白效应器,:催化生成第二信使的酶和离子通道
4、蛋白激酶:丝氨酸∕苏氨酸激酶可是底物蛋白的丝氨酸或苏氨酸残基磷酸化,
包括:蛋白激酶A、蛋白激酶G、蛋白激酶C
5、几条主要跨膜信号转导途径
①受体-G蛋白-AC信号转导途径
Gs A TP→cAMP↑
﹢↗↘﹢﹢↗↘
配体+受体AC PKA
﹢↘↗﹣﹣↘↗
Gi ATP→cAMP↑
②受体-G蛋白-PLC信号转导途径
IP3+IP3受体→内质网或肌浆网释放Ga+
PLC ↗
PIL2→→→
Gi﹨Gp ↘
DG→→受体。