傅里叶变换基础知识
傅立叶变换知识点总结
![傅立叶变换知识点总结](https://img.taocdn.com/s3/m/c49cf500ce84b9d528ea81c758f5f61fb736289e.png)
傅立叶变换知识点总结一、傅立叶级数傅立叶变换的基础是傅立叶级数,它是一种将周期性信号表示为一组基本正弦和余弦函数的方法。
傅立叶级数的表达式为:其中,a和b分别为信号的系数,n为频率。
傅立叶级数的这种表示方法是非常有用的,因为它可以将任意周期性函数分解为无穷多个基本正弦和余弦函数的叠加。
二、傅立叶变换的定义傅立叶变换是将一个时间域或空间域中的信号经过傅立叶变换得到其频率域表示的过程。
傅立叶变换的定义为:其中,F(ω)为信号在频率域的表示,f(t)为信号在时间域的表示。
傅立叶变换将信号从时间域转换到频率域,这样可以更容易地对信号进行分析和处理。
三、傅立叶变换的性质傅立叶变换具有许多重要的性质,这些性质对于理解和应用傅立叶变换非常重要。
以下是傅立叶变换的一些主要性质:1. 线性性质:傅立叶变换是线性的,即对于两个信号f1(t)和f2(t),它们的傅立叶变换分别为F1(ω)和F2(ω),那么它们的和的傅立叶变换为F1(ω) + F2(ω)。
2. 积分性质:傅立叶变换可以表示为一种积分形式,即:3. 时移性质:如果信号f(t)的傅立叶变换为F(ω),那么延迟τ秒的信号f(t-τ)的傅立叶变换为F(ω)exp(-jωτ)。
4. 频移性质:如果信号f(t)的傅立叶变换为F(ω),那么频率为ω0的信号f(t)exp(jω0t)的傅立叶变换为F(ω-ω0)。
5. 对称性质:如果信号f(t)是实值函数,那么它的傅立叶变换的实部和虚部是奇函数和偶函数。
以上是傅立叶变换的一些主要性质,它们对于理解和应用傅立叶变换非常重要。
四、傅立叶变换的应用傅立叶变换在信号处理、图像处理和其他领域中有着广泛的应用,下面我们将从几个方面来介绍傅立叶变换的应用:1. 信号分析:傅立叶变换可以将一个信号从时间域转换到频率域,从而可以更容易地对信号进行分析,比如分析信号的频谱、功率谱等。
这对于理解和处理信号非常有用,比如在通信、音频处理等领域中广泛应用。
傅里叶变换最通俗的理解
![傅里叶变换最通俗的理解](https://img.taocdn.com/s3/m/f21de5dc988fcc22bcd126fff705cc1755275f24.png)
傅里叶变换最通俗的理解傅里叶变换是一种数学工具,它可以将一个周期性信号分解成多个不同频率的正弦波,并且可以将非周期性信号转换成一个连续的频谱图。
在信号处理、图像处理、音频处理等领域中,傅里叶变换被广泛应用。
本文将从以下几个方面来解释傅里叶变换的原理和应用。
一、什么是傅里叶级数在介绍傅里叶变换之前,我们需要先了解傅里叶级数。
傅里叶级数是一种将周期性函数表示为无穷多个正弦和余弦函数之和的方法。
具体地说,给定一个周期为T的函数f(t),可以表示为以下形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中ω=2π/T,a0、an和bn是常数系数。
这个式子意味着,任何一个周期函数都可以被分解成由不同频率的正弦波组成的和。
这就是傅里叶级数的基本思想。
二、什么是离散时间傅里叶变换离散时间傅里叶变换(Discrete Fourier Transform, DFT)是一种将离散时间序列(例如数字信号)转换为频域表示的方法。
它可以将一个长度为N的离散时间序列x(n)转换成一个长度为N的复数序列X(k),其中k=0,1,...,N-1。
具体地说,DFT可以用以下公式表示:X(k) = Σ(x(n)*exp(-j2πnk/N))其中j是虚数单位,n和k分别是时间和频率的索引。
这个式子意味着,任何一个离散信号都可以被分解成由不同频率的正弦波组成的和。
DFT将原始信号转换成了一组复数表示,其中每个复数表示了对应频率上正弦波和余弦波的振幅和相位。
三、什么是傅里叶变换傅里叶变换(Fourier Transform, FT)是一种将连续时间信号转换为频域表示的方法。
它可以将一个连续时间函数f(t)转换成一个连续频谱函数F(ω),其中ω是角频率。
具体地说,FT可以用以下公式表示:F(ω) = ∫f(t)*exp(-jωt)dt这个式子意味着,任何一个连续信号都可以被分解成由不同角频率的正弦波组成的积分。
简述傅里叶变换
![简述傅里叶变换](https://img.taocdn.com/s3/m/c0a3504ccbaedd3383c4bb4cf7ec4afe04a1b105.png)
简述傅里叶变换傅里叶变换是现代数学、物理及工程学的基石之一,它能将一个时间域信号转换成一个频域信号,为各种信号处理、控制、通信、图像处理等领域提供了有力的工具,是第一次把两个物理量之间的变换相结合,并在证明中使用了一些非常复杂的数学方法以及接近两个世纪的科学发展而发明的。
一、傅里叶变换的定义傅里叶变换是指将一个时间域函数f(x)转换成一个频域函数F(u)的过程。
其定义是:$$F(u) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-jux}dx$$其中,j为虚数单位,u为频率,f(x)为原信号,F(u)为转换后的频率信号。
该公式中,积分的上下限为负无穷到正无穷。
分析以上公式,可以发现傅里叶变换有以下几个特点:1. 将原信号f(x)从时域转换到频域;2. 傅里叶变换公式是一个积分表达式,波形的具体形式决定了计算的难度;3. 积分变量是虚数u,表示频率;4. 傅里叶变换是线性的。
二、傅里叶变换的性质1. 时间移位性质该性质指的是如果将函数f(x)向右移动a单位,则傅里叶变换的频域函数F(u)将乘以e^-j2πau:$$FT(f(x-a)) = F(u) \cdot e^{-j2\pi ua}$$2. 频率移位性质该性质是当函数f(t)乘以一个复指数时,经傅里叶变换后,其频率也将发生移位。
$$FT(e^{j2\pi Tu}f(t)) = F(u-T) $$其中T是一个常数,表示频域移位的量。
3. 线性性质傅里叶变换是线性的,即对于任何两个函数f1(t)和f2(t),有:$$FT(af_1(t)+bf_2(t)) = aF_1(u)+bF_2(u)$$其中a和b是任何常数。
4. 傅里叶变换的共轭对称性傅里叶变换具有共轭对称性,即:$$F^*(u) = F(-u)$$5. 卷积定理该性质的表述是:f和g的卷积时f和g的傅里叶变换的乘积。
即:$$FT(f*g) = FT(f)\cdot FT(g)$$其中“*”表示卷积操作。
基础知识积累—傅里叶变换
![基础知识积累—傅里叶变换](https://img.taocdn.com/s3/m/85d9d3e05ef7ba0d4a733b5c.png)
三、傅里叶变换
傅里叶变换能将满足一定条件的某个函数表示成三角函数 (正弦函数或余弦 函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不 同的变体形式, 如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热 过程的解析分析的工具被提出的。
变换提出
傅里叶是一位法国数学家和物理学家的名字,英语原名是 Jean Baptiste Joseph Fourier(1768-1830), Fourier 对热传递很感兴趣,于 1807 年在法国科学 学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有 争议性的决断: 任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审 查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉 普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此 后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号, 如 在方波中出现非连续变化斜率。 法国科学学会屈服于拉格朗日的威望,拒绝了傅 里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破
的傅里叶变换为
,且其导函数
的傅里叶变换存在,则
即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 。更一般地,若 的 阶导数 的傅里叶变换存在,则
即 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子
。
卷积特性
若函数 以及 都在 上绝对可积,则卷积函数为:
即傅里叶变换存在,且 Parseval 定理以及 Plancherel 定理 若函数 有: 以及 平方可积,二者的傅里叶变换分别为 与 ,则
傅里叶变换的基本性质和应用
![傅里叶变换的基本性质和应用](https://img.taocdn.com/s3/m/2941a8d4afaad1f34693daef5ef7ba0d4a736d9c.png)
傅里叶变换的基本性质和应用傅里叶变换,是20世纪初法国数学家傅里叶的发明,是将一个时间函数或空间函数的复杂波形分解成一系列简单的正弦波的工具。
它是信号处理和图像处理领域非常重要的一种数学变换,广泛应用于通信、图像、音频等领域。
一、傅里叶变换的基本概念傅里叶变换是一种将时域信号(即关于时间的函数)转换为频域信号(即关于频率的函数)的数学工具。
在时域中,信号可以表示为一个随着时间变化而变化的函数;在频域中,信号可以表示为它的频谱分布,即各个频率成分的大小。
傅里叶变换是互逆的,也就是说,将一样以频率表示的信号进过傅里叶逆变换,可以得到原始的时域信号。
傅里叶变换和傅里叶逆变换的基本公式分别如下:$$ F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt $$$$ f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega $$其中,$f(t)$ 是时域信号,$F(\omega)$ 是频域信号,$\omega$ 是角频率。
傅里叶变换可以看作一种基变换,将时域信号换到频域进行分析,从而可以更好地理解信号的性质。
二、傅里叶变换的基本性质1. 线性性质傅里叶变换是线性的,即对于一个常数乘以一个时域信号进行傅里叶变换,等价于将该常数乘以该信号的傅里叶变换。
即:$$ F(cf(t)) = cF(f(t)) $$其中,$c$ 是常数。
此外,傅里叶变换具有加权叠加的特性,也就是说,将两个时域信号求和再进行傅里叶变换,等价于分别对这两个信号进行傅里叶变换后再相加。
即:$$ F(f(t) + g(t)) = F(f(t)) + F(g(t)) $$2. 时移性质傅里叶变换具有时移性质,也就是说,在时域中将一个信号向右或向左平移 $\tau$ 个单位,它的傅里叶变换相位也会相应发生$\tau$ 的变化。
傅里叶变换常用公式
![傅里叶变换常用公式](https://img.taocdn.com/s3/m/7754a418302b3169a45177232f60ddccda38e69b.png)
傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。
它常被应用于信号处理、图像处理、通信等领域。
本文将介绍傅里叶变换的基本概念和常用公式。
2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。
傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。
3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。
傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。
4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。
反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。
5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。
5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。
5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。
5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。
6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。
本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。
常见的傅里叶变换
![常见的傅里叶变换](https://img.taocdn.com/s3/m/7851bab5e43a580216fc700abb68a98271feacd0.png)
常见的傅里叶变换
傅里叶变换(FourierTransformation)是在数学术语中指任何将时域信号转换成频域信号(包括反向转换)的一种算法。
它可以将任何时域函数转换为复杂的频率函数,并使用它来衡量信号的性质。
这种变换的另一种表达形式是“Fourier分析”,它可以用于分析和解释复杂的信号,以及从中提取有关信号频率和振幅的信息。
傅里叶变换的主要用途是将复杂的时域信号转换为频域信号,以便快速获取信号的性质。
它也被广泛用于信号处理,数字信号处理,图像处理,科学可视化,生物信号处理,信号检测,滤波器设计等领域。
它可以提取有关信号的重要特征,包括频率,振幅,相位等,这些特征在信号分析,处理和重构方面非常重要。
在数学中,傅里叶变换可以用来进行积分及其反向变换,以及用于传输函数系统的稳定性分析。
此外,它也可以用于语音处理,设计滤波器,图像处理等方面。
常见的傅里叶变换有:
1. 傅里叶变换(Fourier Transform):这是最基本的傅里叶变换,它用于将时域函数转换为频域函数。
2. 快速傅里叶变换(Fast Fourier Transform):它是基于傅里叶变换的优化算法,可以将复杂信号的傅里叶变换运算时间减少到计算机可承受的最低水平。
3. 非负傅里叶变换(Non-negative Fourier Transform):它是一种特殊的傅里叶变换,它只用非负数来表示傅里叶变换的系数,这
样可以更加精确地表示一个原始信号的复杂结构。
4. 小波变换(Wavelet Transform):它是一种相对傅里叶变换而言的更加复杂的算法,它可以更精确地描述复杂信号,更有效地提取信号特征。
傅里叶变换的基础知识
![傅里叶变换的基础知识](https://img.taocdn.com/s3/m/d60b9c01366baf1ffc4ffe4733687e21ae45ff51.png)
傅里叶变换的基础知识傅里叶变换是一项基础的数学工具,广泛应用于物理学、工程学、计算机科学、信号处理等领域。
本文将介绍傅里叶变换的基本概念,其中包括连续傅里叶变换和离散傅里叶变换。
1. 连续傅里叶变换在介绍傅里叶变换之前,我们需要先了解两个概念:周期函数和Fourier 级数。
周期函数是指在一定区间内具有重复特征的函数,而 Fourier 级数是将一个周期函数表示为正弦和余弦函数的和。
傅里叶变换是将一个函数表示为一系列不同频率的正弦和余弦函数的和,可以理解为是将 Fourier 级数推广到了一般的非周期函数上。
具体来说,若一个函数 f(x) 满足某些条件,那么它可以被表示为如下形式:F(ω) = ∫ f(x) e^(-iωx) dx其中,F(ω) 是函数 f(x) 的傅里叶变换,ω 表示角频率,即单位时间内变化的弧度数。
从公式可以看出,傅里叶变换将函数 f(x) 转化成一个复数F(ω),表示了该函数在不同频率下的振幅和相位信息。
特别地,若函数f(x) 是实函数且满足对称性条件,那么它的傅里叶变换F(ω) 是一个实函数。
2. 离散傅里叶变换连续傅里叶变换适用于连续信号的处理,但在实际应用中,我们往往处理的是数字信号,即离散信号。
为了将连续傅里叶变换推广到离散信号上,人们发明了离散傅里叶变换。
离散傅里叶变换的定义如下:F_k = ∑_{n=0}^{N-1} f_n e^{(-i2πkn)/N}其中,f_n 表示离散信号在第 n 个采样点处的取值,N 表示采样点数量,k 表示在 K 点处的频率。
离散傅里叶变换是计算机领域中常用的算法,广泛应用于音频、图像等信号处理领域。
它可以将复杂的信号分解成一组频率,从而实现信号的压缩、降噪等处理操作。
需要注意的是,离散傅里叶变换对于周期信号是有局限性的,因为在离散信号中,我们无法表示无穷长的周期函数,因此在处理周期信号时,我们需要采用其他方法。
3. 傅里叶变换的应用傅里叶变换广泛应用于多个领域,下面简要介绍几个应用场景:(1) 信号处理:傅里叶变换可以将一个信号分解成它的频率成分,从而实现信号降噪、信号压缩等处理操作。
常见函数傅里叶变换
![常见函数傅里叶变换](https://img.taocdn.com/s3/m/a1cf7b08590216fc700abb68a98271fe910eafd0.png)
常见函数傅里叶变换傅里叶变换是一种将一个函数分解成一系列正弦和余弦函数的方法。
它是一种非常重要的数学工具,被广泛应用于信号处理、图像处理、量子力学等领域。
在本文中,我们将介绍几种常见的函数傅里叶变换。
1. 正弦函数傅里叶变换正弦函数傅里叶变换是将一个函数分解成一系列正弦函数的方法。
它适用于周期函数,即函数在一个周期内重复。
正弦函数傅里叶变换的公式为:f(x) = a0/2 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,a0/2是函数的平均值,an和bn是函数的傅里叶系数,L 是函数的周期。
正弦函数傅里叶变换可以用于分析周期信号的频谱特性。
2. 傅里叶级数傅里叶级数是将一个函数分解成一系列正弦和余弦函数的方法。
它适用于周期函数,即函数在一个周期内重复。
傅里叶级数的公式为:f(x) = a0/2 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,a0/2是函数的平均值,an和bn是函数的傅里叶系数,L是函数的周期。
傅里叶级数可以用于分析周期信号的频谱特性。
3. 傅里叶变换傅里叶变换是将一个非周期函数分解成一系列正弦和余弦函数的方法。
它适用于非周期函数,即函数在整个实数轴上都有定义。
傅里叶变换的公式为:F(ω) = ∫f(x)e^(-iωx)dx其中,F(ω)是函数的傅里叶变换,f(x)是原函数,ω是频率。
傅里叶变换可以用于分析信号的频谱特性。
4. 离散傅里叶变换离散傅里叶变换是将一个离散信号分解成一系列正弦和余弦函数的方法。
它适用于数字信号处理。
离散傅里叶变换的公式为:X(k) = Σx(n)e^(-i2πnk/N)其中,X(k)是信号的傅里叶变换,x(n)是原信号,N是信号的长度,k是频率。
离散傅里叶变换可以用于分析数字信号的频谱特性。
傅里叶变换是一种非常重要的数学工具,它可以将一个函数分解成一系列正弦和余弦函数,从而分析函数的频谱特性。
在信号处理、图像处理、量子力学等领域都有广泛的应用。
傅里叶变换需要具备的知识
![傅里叶变换需要具备的知识](https://img.taocdn.com/s3/m/6b9d4106366baf1ffc4ffe4733687e21af45ffc1.png)
傅里叶变换需要具备的知识傅里叶变换是一种数学工具,用于将一个函数或信号分解成多个不同频率的正弦和余弦函数的和。
它是由法国数学家傅里叶在19世纪提出的,被广泛应用于信号处理、图像处理、物理学、工程学等领域。
要理解傅里叶变换,首先需要具备以下几个基本知识点。
1. 函数的周期性:傅里叶变换是基于函数的周期性进行分解的,因此需要了解函数的周期性概念。
周期函数指在一定区间内具有重复性的函数。
2. 傅里叶级数展开:傅里叶级数展开是傅里叶变换的基础。
它表示任何周期函数都可以用一组正弦和余弦函数的线性组合来表示。
这个展开系数就是函数在不同频率上的振幅。
3. 正弦函数和余弦函数:正弦函数和余弦函数是傅里叶变换中的基础函数。
正弦函数表示周期性振动,而余弦函数则表示平稳的振动。
4. 频谱:频谱是指信号在不同频率上的能量分布情况。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱表示。
5. 快速傅里叶变换(FFT):FFT是一种高效的计算傅里叶变换的算法,可以大大提高计算速度。
它通过将傅里叶变换的计算复杂度从O(n^2)降低到O(nlogn),在实际应用中得到广泛使用。
在应用傅里叶变换时,需要注意以下几个方面。
1. 信号采样:傅里叶变换要求信号是连续的,而实际上我们处理的信号是离散的。
因此需要对信号进行采样,将其离散化。
2. 采样定理:为了避免信号采样引入失真,需要满足一定的采样定理。
最著名的是奈奎斯特采样定理,它要求采样频率至少是信号最高频率的两倍。
3. 频域滤波:傅里叶变换可以将信号从时域转换到频域,因此可以通过在频域对信号进行滤波来实现去噪、降噪等操作。
4. 逆傅里叶变换:傅里叶变换可以将信号从时域转换到频域,而逆傅里叶变换则可以将信号从频域转换回时域。
逆傅里叶变换的公式与傅里叶变换的公式互为逆运算。
傅里叶变换是一种非常强大的数学工具,可以用于解决各种信号处理和频谱分析的问题。
掌握傅里叶变换的基本知识,能够更好地理解和应用相关领域的理论和技术。
傅里叶变换知识点总结
![傅里叶变换知识点总结](https://img.taocdn.com/s3/m/cbe8cdbd7d1cfad6195f312b3169a4517723e51d.png)
傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。
一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。
2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。
(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。
(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。
二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。
对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。
2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。
(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。
(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。
3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。
三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。
2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。
傅里叶变换基础知识
![傅里叶变换基础知识](https://img.taocdn.com/s3/m/3ed101ec02768e9950e7387e.png)
傅里叶变换基础知识1. 傅里叶级数展开最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1 周期信号的傅里叶级数在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。
1.1.1 狄利克雷(dirichlet )条件狄利克雷(dirichlet )条件为:(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2)信号()x t 在一周期内只有有限个极大值和极小值;(3)信号在一个周期内是绝对可积分的,即00/2/2()dt T T x t -⎰应为有限值。
1.1.2 间断点在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.1.3 傅里叶级数三角函数表达式傅里叶级数三角函数表达式为0001()(cos sin )n n n x t a a n t b n t ωω∞==++∑式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。
0a 、n a 、n b 分别表示为:000000/20/20/20/20/20/21()2()cos 2()sin T T T n T T n T a x t dtT a x t n tdt T b x t n tdt T ωω---===⎧⎪⎪⎪⎨⎪⎪⎪⎩⎰⎰⎰式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。
傅里叶变换的11个性质公式
![傅里叶变换的11个性质公式](https://img.taocdn.com/s3/m/15c0f105443610661ed9ad51f01dc281e43a565c.png)
傅里叶变换的11个性质公式傅里叶变换的11个性质公式是傅立叶变换的基本性质,由他们可以推出其它性质。
其中包括线性性质、有穷性质、周期性质、旋转性质、折叠性质、应变性质、平移性质、对称性质、频域算子性质、滤波性质、压缩性质等共11条。
1、线性性质:如果x(t)和y(t)是两个信号,则有:X(ω)=F[x(t)],Y(ω)=F[y(t)],则有:X(ω)+Y(ω)=F[x(t)+y(t)];αX(ω)=F[αx(t)];X(ω)*Y(ω)=F[x(t)*y(t)]。
2、有穷性质:如果x(t)是有穷的,则X(ω)也是有穷的。
3、周期性质:如果x(t)在周期T内无穷重复,则X(ω)也在周期2π/T内无穷重复。
4、旋转性质:X(ω-ω0) = F[x(t)e^(-jω0t)],即信号x(t)经过相位旋转成x(t)e^(-jω0t),其傅里叶变换也会经过相位旋转成X(ω-ω0)。
5、折叠性质:X(ω+nω0)=F[x(t)e^(-jnω0t)],即信号x(t)经过频率折叠后变为x(t)e^(-jnω0t),其傅里叶变换也会经过频率折叠成X(ω+nω0)。
6、应变性质:X(aω)=F[x(at)],即信号x(t)经过时间应变成x(at),其傅里叶变换也会经过频率应变成X(aω)。
7、平移性质:X(ω-ω0) = F[x(t-t0)],即信号x(t)经过时间平移成x(t-t0),其傅里叶变换也会经过频率平移成X(ω-ω0)。
8、对称性质:X(-ω) = X*(-ω),即傅里叶变换的实部和虚部对称。
9、频域算子性质:X(ω)Y(ω)=F[h(t)*x(t)],即傅里叶变换不仅可以表示信号,还可以表示系统的频域表示,即h(t)*x(t),其傅里叶变换为X(ω)Y(ω)。
10、滤波性质:H(ω)X(ω)=F[h(t)*x(t)],即傅里叶变换可以用来表示滤波器的频域表示,即h(t)*x(t),其傅里叶变换为H(ω)X(ω)。
傅里叶变换知识点
![傅里叶变换知识点](https://img.taocdn.com/s3/m/0df0e31a905f804d2b160b4e767f5acfa1c78334.png)
傅里叶变换知识点傅里叶变换是一种利用正弦函数和余弦函数来描述复杂周期信号的重要数学工具。
这个知识点在数学、物理、工程和计算机科学等领域有着广泛的应用和深厚的理论基础。
本文将从数学和应用两方面来介绍傅里叶变换的基本概念、公式和实际应用。
一、傅里叶级数和傅里叶变换的基本概念傅里叶级数是傅里叶变换的基础,它描述了周期信号可以分解成一系列正弦、余弦函数的和的形式。
具体地,设一个周期为T的连续信号x(t),则它可以表示为如下级数的形式:$$x(t)=\displaystyle\sum_{k=-\infty}^{\infty}c_ke^{j2\pi kt/T}$$其中,$c_k$是信号的傅里叶系数,它表示了信号中各个频率分量的振幅和相位信息。
这个级数给出了信号在频域的分布特征,即展开了信号的频谱。
傅里叶级数是离散信号傅里叶变换的前身,它在许多工程和科学领域中有重要应用,比如音频处理、图像处理和自然界中的周期性现象等。
傅里叶变换是将连续信号的傅里叶级数推广到非周期信号的情形,它通过对一个信号进行积分,得到了信号在连续频域上的表示。
具体地,设一个连续信号x(t)的傅里叶变换为X(f),则有如下的变换公式:$$X(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft}dt$$其中,$e^{-j2\pi ft}$是频率为f的复指数,表示了不同频率分量的相位和振幅信息。
傅里叶变换的实质是将时域信号转换为频域信号,这个变换过程对信号的分析和处理具有非常重要的意义。
二、傅里叶变换的重要性和应用傅里叶变换的重要性体现在它广泛地应用于信号处理、通信、图像处理、光学等领域。
下面主要介绍一下其中的一些应用。
1. 频谱分析傅里叶变换的主要作用是将时域信号转换为频域信号,从而方便对信号的各种频率成分进行分析。
以音频处理为例,一个音频信号可以用复杂的波形描述,但是通过傅里叶变换,我们可以将其分解成一些简单的正弦信号,从而分析和处理这些分量。
数学基础中的傅里叶变换
![数学基础中的傅里叶变换](https://img.taocdn.com/s3/m/d5ee0370842458fb770bf78a6529647d27283428.png)
数学基础中的傅里叶变换傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、量子力学等多个领域中都有着广泛的应用。
傅里叶变换是一种将时域(即时间轴)或空域(即空间轴)上的信号转换到频域上的方法。
在傅里叶变换中,信号可以被表示为一系列正弦函数或余弦函数的加权和。
傅里叶变换的原理和历史傅里叶变换的原理可以通过欧拉公式来解释。
欧拉公式指出,对于任意实数x,有:e^(ix) = cos(x) + i sin(x)其中,e是自然对数的底数,i是虚数单位(即平面直角坐标系中的点(0,1))。
欧拉公式表明,任何正弦函数或余弦函数都可以表示成指数函数的形式。
傅里叶变换最初是由法国数学家约瑟夫·傅里叶在19世纪初期提出的。
他的研究是为了解决热传导方程的问题。
傅里叶将复杂的函数表示为一组简单的三角函数的和,从而使得计算变得更加容易。
随着时间的推移,傅里叶变换被扩展到更广泛的领域,并且成为了现代数学和工程中的基本工具之一。
傅里叶变换在信号处理中的应用在信号处理中,傅里叶变换经常被用来分析信号的频域特性。
傅里叶变换能够将一个复杂的信号分解成许多基本频率的信号。
这些基本频率也被称为频率域上的幅度和相位谱。
这些幅度和相位谱提供了一个信号中不同频率成分的详细信息。
例如,如果我们有一个声波信号,我们可以使用傅里叶变换来找到它的频谱,以确定在不同频率下声波的相对强度。
这对于音频处理、图像处理和视频处理等诸如此类的应用非常有用。
傅里叶变换在量子力学中的应用在量子力学中,傅里叶变换是非常重要的。
量子力学中的波函数描述了粒子在位置和动量方面的行为,因此,傅里叶变换提供了一种从空间域到动量域的转换方法。
这能够帮助物理学家更好地了解粒子在空间中的行为和状态。
此外,傅里叶变换还被用于处理原子与电磁波的相互作用等用途。
傅里叶变换在工程中的应用傅里叶变换在工程中有着广泛的应用,其中包括图像处理、音频信号处理、信号压缩、通信等。
例如,信号处理中的傅里叶变换有时需要通过使用基于FFT(快速傅里叶变换)的算法进行计算。
五种傅里叶变换解析
![五种傅里叶变换解析](https://img.taocdn.com/s3/m/892dd32d53d380eb6294dd88d0d233d4b14e3fd7.png)
五种傅里叶变换解析标题:深入解析五种傅里叶变换引言:傅里叶变换是一种重要的数学工具,它在信号处理、图像处理、频谱分析等领域发挥着重要的作用。
其中,傅里叶级数、离散傅里叶变换、傅里叶变换、快速傅里叶变换和短时傅里叶变换是五种常见的傅里叶变换方法。
在本文中,我们将深入解析这五种傅里叶变换的原理和应用,以帮助读者更全面、深刻地理解它们。
1. 傅里叶级数:1.1 傅里叶级数的基本概念和原理1.2 傅里叶级数在信号分析中的应用案例1.3 对傅里叶级数的理解和观点2. 离散傅里叶变换:2.1 离散傅里叶变换的基本原理和离散化方法2.2 离散傅里叶变换在数字信号处理中的应用案例2.3 对离散傅里叶变换的理解和观点3. 傅里叶变换:3.1 傅里叶变换的定义和性质3.2 傅里叶变换在频谱分析中的应用案例3.3 对傅里叶变换的理解和观点4. 快速傅里叶变换:4.1 快速傅里叶变换的算法和优势4.2 快速傅里叶变换在图像处理中的应用案例4.3 对快速傅里叶变换的理解和观点5. 短时傅里叶变换:5.1 短时傅里叶变换的原理和窗函数选择5.2 短时傅里叶变换在语音处理中的应用案例5.3 对短时傅里叶变换的理解和观点总结与回顾:通过对五种傅里叶变换的深入解析,我们可以看到它们在不同领域的广泛应用和重要性。
傅里叶级数用于对周期信号进行分析,离散傅里叶变换在数字信号处理中具有重要地位,傅里叶变换常用于频谱分析,快速傅里叶变换作为计算效率更高的算法被广泛采用,而短时傅里叶变换在时变信号分析中展现出其优势。
对于读者而言,通过深入理解这五种傅里叶变换的原理和应用,可以更好地应用它们解决实际问题。
观点和理解:从简到繁、由浅入深地探讨五种傅里叶变换是为了确保读者能够从基础开始逐步理解,从而更深入地理解其运算原理、应用场景和优缺点。
通过结构化的文章格式,读者可以清晰地了解到每种傅里叶变换的特点和优势,并能够进行比较和评估。
同时,本文在总结与回顾部分提供了对这五种傅里叶变换的综合理解,以帮助读者获得更全面、深刻和灵活的知识。
基础知识积累—傅里叶变换
![基础知识积累—傅里叶变换](https://img.taocdn.com/s3/m/85d9d3e05ef7ba0d4a733b5c.png)
概念
傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分 合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶 变换用正弦波作为信号的成分。 定义:f(t)是 t 的周期函数,如果 t 满足狄里赫莱条件:在一个以 2T 为周期内 f(X)连续或只有有限个第一类间断点,附 f(x)单调或可划分成有限个单调区 间,则 F(x)以 2T 为周期的傅里叶级数收敛,和函数 S(x)也是以 2T 为周期 的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值 点;绝对可积。 则有下图①式成立,称为积分运算 f(t)的傅立叶变换。 ②式的积分运算叫做 F(ω)的傅立叶逆变换。 F(ω)叫做 f(t)的像函数, f(t)叫做 F(ω)的像原函数。 F(ω)是 f(t)的像。 f(t)是 F(ω) 原像。 ①傅立叶变换:
傅里叶变换
作为现代信号处理的基本方法,有必要重新开始理顺信号处理的来龙去脉, 让基础更加牢靠, 并重最初的经典中探寻前人的智慧结晶,以现代的角度了解事 物发展的过程中的相互联系。 科学家在描述自然过程中, 自然而然的就是建立物理模型,期望用数学表达 式来精确描述这个过程。傅里叶变换在物理学、电子类学科、数论、组合数学、 信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域 都有着广泛的应用 (例如在信号处理中,傅里叶变换的典型用途是将信号分解成 幅值谱——显示与频率对应的幅值大小)。
i
f (n i N ) 。并且当 N 时,
f'[n]实际上就是 f[n],那么我们现在可以求出 f'[n]的傅里叶级数。同 样,当 N 时无穷级数变成了积分,得到的结果是一个连续的周期函 数 X (e j ) (正如离散傅里叶变换一文中所述),这就是 f[n]的离散时间 傅里叶变换。这时,只需在它的主值区间上采样,就可以得到离散傅里叶 变换的变换序列。
傅里叶变换教程
![傅里叶变换教程](https://img.taocdn.com/s3/m/14078001f011f18583d049649b6648d7c1c708a5.png)
傅里叶变换是一种将信号从时域(时间域)转换到频域(频率域)的数学工具,它在信号处理、图像处理、通信等领域中有着广泛的应用。
下面是一个简单的傅里叶变换教程,帮助你理解傅里叶变换的基本概念和步骤:时域和频域:时域是指信号在时间上的变化,通常以时间为横轴进行表示。
频域是指信号在频率上的变化,通常以频率为横轴进行表示。
傅里叶级数:傅里叶级数是将周期信号表示为一系列正弦和余弦函数的和的方法。
傅里叶级数公式:f(t) = A0 + Σ(Akcos(kωt) + Bksin(kωt)),其中A0为直流分量,Ak和Bk为频率为kω的余弦和正弦分量。
傅里叶变换:傅里叶变换是将非周期信号表示为连续频谱的方法。
傅里叶变换公式:F(ω) = ∫[f(t)*e^(-jωt)]dt,其中F(ω)为频域表示的信号,f(t)为时域信号,e^(-jωt)为复指数函数。
步骤:将时域信号f(t)进行傅里叶变换,得到频域信号F(ω)。
频域信号F(ω)表示了信号在不同频率上的振幅和相位信息。
可以通过逆傅里叶变换将频域信号F(ω)转换回时域信号f(t)。
傅里叶变换的性质:线性性:傅里叶变换是线性的,即对于两个信号的线性组合,其傅里叶变换等于各自傅里叶变换的线性组合。
平移性:时域信号的平移会导致频域信号相位的变化。
尺度变换:时域信号的时间缩放会导致频域信号的频率变化。
傅里叶变换的应用:信号滤波:可以利用傅里叶变换将信号转换到频域进行滤波处理,例如去除噪声。
频谱分析:通过傅里叶变换可以获得信号的频谱信息,了解信号的频率成分和频率特性。
图像处理:傅里叶变换在图像处理中常用于图像增强、边缘检测等方面。
傅里叶变换原理与应用
![傅里叶变换原理与应用](https://img.taocdn.com/s3/m/777ffee0294ac850ad02de80d4d8d15abe2300ab.png)
傅里叶变换原理与应用1. 傅里叶变换的概念和基本原理傅里叶变换是一种将时域信号转化为频域信号的数学工具。
它可以将一个复杂的模拟信号分解成多个简单的正弦波或余弦波的叠加,从而揭示信号中不同频率成分的存在。
2. 傅里叶级数和傅里叶变换之间的关系傅里叶级数是傅里叶变换在周期函数上的特殊情况。
当一个周期函数进行傅里叶级数展开时,我们可以得到其频谱信息。
而对于非周期函数,需要使用傅里叶变换来分析其频域特性。
3. 傅里叶变换的公式及性质傅里叶变换有两种常见表示形式:离散傅立叶变换(DFT)和连续傅立叶变换(CTFT)。
它们分别适用于离散和连续信号。
除此之外,傅里叶变换还具有位移性、线性性、尺度性等重要性质。
4. 常见的傅里叶变换应用(1) 音频信号处理傅里叶变换可以对音频信号进行频谱分析,如音乐的频谱显示、降噪等。
它还被广泛应用于声音合成、压缩以及数字音频领域。
(2) 图像处理图像也可以通过傅里叶变换转化到频域中。
这在图像处理中有很多应用,例如滤波、边缘检测和图像增强等。
(3) 通信系统在通信系统中,傅里叶变换是数字调制和解调技术的关键部分。
它可以将基带信号转化为带通或带阻信号,并实现信号的复用与解复用。
(4) 控制系统傅里叶变换在控制系统中有广泛的应用,特别是对传感器输出进行频域分析与滤波,以提高控制系统的性能与稳定性。
5. 傅里叶变换的局限性和改进方法尽管傅里叶变换具有广泛的应用领域,但它也存在一些局限性。
例如,对于非周期且时间有限的信号,使用传统的傅里叶变换可能会产生截断误差。
为了克服这些问题,人们开发了一系列改进的傅里叶变换方法,如快速傅里叶变换(FFT)和小波变换等。
6. 总结傅里叶变换是一种重要的数学工具,可以将时域信号转化为频域信号。
它在音频信号处理、图像处理、通信系统和控制系统等领域都有广泛的应用。
然而,需要注意的是其局限性,并通过改进方法来解决相关问题,以提高信号处理与分析的质量与效率。
以上就是关于“傅里叶变换原理与应用”的详细内容。
第三章 傅里叶变换 知识要点
![第三章 傅里叶变换 知识要点](https://img.taocdn.com/s3/m/426286c289eb172ded63b74b.png)
可能存在任何具有频率为基波频率非整数倍的分量。 (3)收敛性 各条谱线的高度,也即各次谐波的振幅,总的趋势是随着谐波次数的增高而
逐渐减小的;当谐波次数无限增高时,谐波分量的振幅亦就无限趋小。
∞
但是,冲激函数序列δT (t) = ∑δ (t − nT1 ) 的频谱不满足收敛性。 n = −∞
(ω )⎤⎦
=
1 2π
∞ F (ω )e jωt dω
−∞
可简记为: f (t ) ←⎯FT→ F (ω )
(二)典型信号的傅里叶变换
1、δ (t ) ←⎯→1
2、δ ' (t ) ←⎯→ jω δ (n) (t ) ←⎯→ ( jω )n
3、1←⎯→ 2πδ (ω)
4、 u (t ) ←⎯→πδ (ω ) + 1
3、周期三角脉冲信号
∑ f
(t)
=
E 2
+
4E π2
∞ n=1
1 n2
sin 2
⎛ ⎜⎝
nπ 2
⎞ ⎟⎠
cos
(
nω1t
)
周期三角脉冲的频谱只包含直流、基波及奇次谐波频率分量,谐波的幅度以
1 的规律收敛。 n2
4、周期半波余弦信号
6
( ) ∑ f
(t
)
=
E π
−
2E π
∞ n=1
1 n2 −1
cos⎜⎛ ⎝
=
2π T1
这是因为它在区间 (t0 ,t0 + T1 )内满足:
⎧0
∫t0 +T1
t0
cos(mω1t
)cos(nω1t )dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换基础知识
1. 傅里叶级数展开
最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1 周期信号的傅里叶级数
在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。
1.1.1 狄利克雷(dirichlet )条件
狄利克雷(dirichlet )条件为:
(1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值);
(2)信号()x t 在一周期内只有有限个极大值和极小值;
(3)信号在一个周期内是绝对可积分的,即00/2/2
()dt T T x t -⎰
应为有限值。
1.1.2 间断点
在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。
(1)第一类间断点(有限型间断点):
a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况);
b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.1.3 傅里叶级数三角函数表达式
傅里叶级数三角函数表达式为
式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。
0a 、n a 、n b 分别表示为:
式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。
合并同频项也可表示为
式中:信号的幅值n A 和初相位n θ分别为
1.1.4 频谱的相关概念
(1)信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化关系,即信号的结构,是n A ω-(或n A f -)和n θω-(或n f θ-)的统称;
(2)信号的幅频谱:周期信号幅值n A 随ω(或f )的变化关系,用n A ω-(或n A f -)表示;
(3)信号的相频谱:周期信号相位n θ随ω(或f )的变化关系,用n θω-(或n f θ-)表示;
(4)信号的频谱分析:对信号进行数学变换,获得频谱的过程; (5)基频:0ω或0f ,各频率成分都是0ω或0f 的整数倍; (6)基波:0ω或0f 对应的信号;
(7)n 次谐波: 0(n 2,3,...)n ω=或0(n 2,3,...)nf =的倍频成分0c o s ()
n n A n t ωϕ+或0cos(2)n n A nf t πθ+;
1.1.5 周期信号的傅里叶级数的复指数函数展开
根据欧拉公式cos sin (j t
e t j t j ωωω±=±=,则1
cos ()
21sin j()
2
j t j t j t
j t t e e t e e ωωωωωω--=+=- 因此,傅里叶级数三角函数表达式()0001
()cos sin n n n x t a a n t b n t ωω∞
==++∑可改写成
令 则 或
这就是周期信号的傅里叶复指数形式的表达式。
将0000/20/20/20/202()cos 2()sin T n T T n T a x t n tdt T b x t n tdt
T ωω--⎧=⎪⎪⎨⎪=⎪⎩
⎰⎰代入()12n n n C a jb =-,则000/2
/2
01()T jn t n T C x t e dt T ω--=
⎰
在一般情况下n C 是复数,可以写成n j n nR nI n C C jC C e ϕ=+= 式中
由n j n nR nI n C C jC C e ϕ=+=,()12n n n C a jb =-,()1
2
n n n C a jb -=+可表示为 则0() 0,1,2,jn t
n
n x t C e
n ω∞
=-∞
=
=±±⋅⋅⋅∑ 变为
由此可见,周期信号用复指数形式展开,相当于在复平面内用一系列旋转矢量()
00n j n t C e ωϕ±来
描述,但是,负频率的出现,仅仅是数学推导的结果,并无实际物理意义。
1.1.6 傅里叶级数的复指数与三角函数展开关系
由()1
2
n n n C a jb =
-,n j n nR nI n C C jC C e ϕ=+=可知:
综合n A
n C 即双边频谱的幅值n C 是单边频谱幅值n A 的一半。
由arctan
nI
n
C C ϕ=,/2nR n C a =,/2nI n C b =-可知:
2 傅里叶变换
出准周期函数之外的非周期信号称为一般周期信号,也就是瞬态信号。
瞬态信号具有瞬变性,例如锤子敲击力的变化、承载缆绳断裂的应力变化、热电偶插入加热的液体中温度的变化过程等信号均属于瞬态信号。
瞬态信号是非周期信号,可以看作一个周期的周期信号,即周期
T →∞。
因此,可以把瞬态信号看作周期趋于无穷大的周期信号。
2.1 傅里叶变换
设有一周期信号()x t ,则其在[]/2,/2T T -区间内的傅里叶级数的复指数形式的表达式为
0()jn t
n
n x t C e
ω∞
=-∞
=
∑,
式中
当0T →∞时,积分区间[][]/2,/2,T T -→-∞∞
;谱线间隔002/T d ωωπω∆==→, 0n ωω→离散率连续变量频,所以000/2
/2
1
()T jn t n T C x t e dt T ω--=
⎰
变为
该式积分后将是ω的函数,且一般为复数,用()X j ω或()X ω表示为
式中:()X j ω称为信号()x t 的傅里叶积分变换或简称傅里叶变换(Fouier Transform ,FT ),是把非周期信号看成周期趋于无穷大的周期信号来处理的,显然
即()X j ω为单位频宽上的谐波幅值,具有“密度”的含义,故把()X j ω称为瞬态信号的“频谱密度函数”,或简称“频谱函数”。
由()000lim lim
n
n T f C X j C T f
ω→∞
→=⋅=得 代入0()jn t
n
n x t C e
ω∞
=-∞
=
∑得
当0T →∞时,002/T d ωπω==, 0n ωω→离散率连续变量频,→∑求和积分。
则
()x t 称为()X j ω的傅里叶逆变换或反变换(Inverse Fourier Transform ,IFT )。
()()j t X j x t e dt ωω∞
--∞
=⎰和()()12j t x t X j e d ωωωπ
∞
-∞
=
⎰
构成了傅立叶变换对
一般地,使用FT
IFT
⇔或⇔表示信号之间的傅立叶变换及其逆变换之间的关系。
由于2f ωπ=,
所以()()j t X j x t e dt ωω∞
--∞=⎰和()()12j t x t X j e d ωωωπ∞
-∞
=
⎰可变为 这就避免了在傅里叶变换中出现1/2π的常数因子,使公式形式简化。
由式()()2j ft X jf x t e dt π∞
--∞
=⎰可知,非周期信号能够用傅里叶函数来表示,。
而周期信号可
由傅里叶级数0()jn t n n x t C e ω∞
=-∞
=
∑来表示。
()()2j ft X jf x t e dt π∞
--∞
=⎰是一般复数形式,可表示为
式中:()Re X jf 为()X jf 的实部;()Im X jf 为()X jf 的虚部;()X jf 为信号()x t 的连续幅
频谱;()jf ϕ为信号()x t 的连续相频谱。
比较周期信号和非周期信号的频谱可知:首先,非周期信号幅值()X jf 随f
变化时连续的,
即为连续频谱,而周期信号的幅值n C 随f 变化时离散的,即为离散频谱。
其次,n C 的量纲和信号幅值的量纲一致,而()X jf 的量纲相当于/n
C f ,为单位频宽上的幅值,即为“频谱密度
函数”。
2.2 傅里叶变换的主要性质
一个信号可以进行时域描述和频域描述。
两种描述通过傅里叶变换来确立彼此一一对应的关系,因此,熟悉傅里叶变换的一些主要性质十分必要。
2.3 几种典型信号
(1)举行窗函数
(2)单位脉冲函数(δ函数) (3)正、余弦信号 (4)一般周期信号 (5)周期单位脉冲序列。