油气井压力控制
油气井压力控制课件
采用先进的压力控制技术和算法,如 PID控制、模糊控制等,提高压力控 制的精度和响应速度。
压力控制安全风险与防范措施
安全风险
油气井压力控制不善可能导致井喷、 管线破裂等安全事故。
防范措施
加强压力监测和预警系统建设,制定 应急预案,定期进行安全培训和演练 ,提高员工安全意识和应对能力。
06 油气井压力控制 案例分析
压力传递原理在油气井压力控制中具 有指导意义,它可以帮助我们了解地 层中压力的传递规律,从而更好地进 行压力控制。
压力波动原理
压力波动原理是指油气井中的压力会随着生产的变化而波 动。
压力波动原理在油气井压力控制中具有指导意义,它可以 帮助我们了解油气井中的压力变化规律,从而更好地进行 压力控制。
03 油气井压力控制 设备与工具
提高采收率
降低生产成本
有效的压力控制可以减少不必要的增 产措施和修井作业,从而降低生产成 本。
通过合理的压力控制,可以优化采油 采气工艺,提高油气井的采收率。
压力控制的方法与技术
01
02
03
04
节流阀控制
通过调节节流阀的开度来控制 油气井的压力。
压井作业
通过压井液调整油气井的压力 ,保持压力稳定。
案例一:某油田的压力控制实践
总结词:成功应用
详细描述:某油田通过实施压力控制技术,有效降低了油气井的套压,提高了采 收率和产能。该案例中,油田采用了合适的井口压力控制设备,优化了生产参数 ,确保了压力控制的稳定性和可靠性。
案例二:某气田的压力控制优化方案
总结词:技术升级
详细描述:某气田面临压力控制方面的挑战,通过技术升级和改进,优化了压力控制方案。该案例中 ,气田采用了先进的压力控制技术和设备,提高了压力控制的精度和稳定性,从而提高了气田的产量 和效益。
第六章 油气井压力控制
第一节 井下的各种压力及其平衡
第二节 溢流及其检测 第三节 溢流的控制——关井和压井
概 述
油气井压力控制 —— 在石油钻井过程中对井眼内的地层压力进行控制。
井控的分类 (1)一级井控:利用钻井液,建立井内压力平衡。 (2)二级井控:发生溢流后,利用井口防喷器憋回压后压井,恢复井内 压力平衡。 (3)三级井控:井喷后的处理与压力控制。
Pb min Ph ΔPr ΔPsb Pp Ph PP ΔPsb
d p Sb
第一节 井下各种压力及其平衡
三、平衡与欠平衡压力钻井
2. 欠平衡压力钻井
(1)概念 在井底有效压力低于地层压力的条件下进行钻井作业。在井下,允许 地层流体进入井内;在井口,利用专门的井控装置对循环出井的流体进行 控制和处理。主要目的是及时发现和有效保护油气层,同时可显著提高钻 进速度。 (2)关键技术 1)地层孔隙压力和坍塌压力的准确预测 2)钻井液类型选择和密度等性能的控制 3)井口压力的控制及循环出井的流体的处理 4)起下钻过程的欠平衡 5)井底有效压力的计算与监测 6)井壁稳定 7)完井
(1)钻进中发生溢流 (2)起下钻杆时发生溢流 (3)起下钻铤时发生溢流 (4)空井发生溢流
关井”。推荐采用“半软关井”。
第三节 溢流的控制----关井与压井
三、关井立管压力的测定
1. “U”形管原理—井控基本原理
□ 关井情况下井内的压力平衡关系:
PPUMP
PS
P
Psp Phi Pp Pa Pha
S b 0.06 ~ 0.08 g / cm 3
2. 约束条件
Pb max Ph Pr Psg Pf Ph Pf Psg Pf ..........................(6 2a)
油气井压力控制
0.8 d
Q 0.2 1.8
Lp
pv
( dh d p )3 ( dh d p )1.8
Lc ( dh dc )3 ( dh dc )1.8
9.81103 a D
三、钻井工程设计方法-油气井压力控制
5. 波动压力
抽吸压力: Psb 9.81103 sb D,sb 0.036 ~ 0.08g / cm3
(四)重钻井液及加重剂储备
高压井储备的重钻井液密度比在用钻井液高0.2g/cm3以上,重钻井液 储备量不少于井简容积,加重剂储备量应能满足提高在用钻井液密度 0.3g/cm3以上的需要。
三、钻井工程设计方法-油气井压力控制
井控设计
(五)井控设计应用的标准
行业标准《钻井井控技术规程》是石油天然气钻井井控技术的主体标准,其 支撑标准主要有SY/T5964—2005《钻井井控装置组合配套、安装调试与维护》、 SY/T5087—2005《含硫化氢油气井安全钻井推荐作法》等。
行业标准SY/T6426—2005《钻井井控技术规程》经近两年的修订,终于在 2005年3月19日由国家发改委正式批准发布,本标准推迟发布的原因主要是罗家 16H井灾难性的含硫天然气井喷事故后,涉及油气井钻井井控标准中与井控安全相 关的一些参数和技术措施,经标准起草人和石油天然气行业的专家反复论证、酌 商、达成较统一的认识后才得以敲定。这些参数和技术措施既关系到井控安全, 也关系到生产成本和责任的落实,因而非常敏感、难以定夺,比如油气井井口距 周边公共设施和人口密集性、高危险性场所的距离、含硫天然气的界定、含硫油 气井应急撤离措施、油气层钻井作业时钻柱中是否安装止回阀等等。
油气井压力控制 关井压力恢复和读取时机分析
基金项目:国家自然科学基金项目(No.50076029)资助。
作者简介:李相方,男,1955年7月生,1981年毕业于石油大学,1992年获博士学位,现为石油大学(北京)教授、博士生导师,主要从事欠平衡钻井与油气井测试、天然气工程研究。
文章编号:0253Ο2697(2002)05Ο0110Ο03关井压力恢复和读取时机分析李相方 庄湘琦(石油大学石油天然气工程学院 北京昌平 102200)摘要:论述了关井后井底压力恢复原理;分析并描述了气体在环空滑脱上升与立压、套压变化的关系。
基于天然气藏渗流力学及达西定律,揭示了气侵溢流关井后立压和套压的恢复特征,给出了不同渗透率的油气藏关井压力读取时机及读取方法,为快速与准确获取地层压力提供了一条有效的途径。
关键词:关井;压力恢复;关井井底压力;关井地层压力;读取方法中图分类号:TE21 文献标识码:A随着我国海洋与西部等油田深层油气藏勘探与开发,近几年井控问题显得比较突出。
众所周知,溢流发生后,准确求取地层压力是安全井控的必要条件,而准确读取关井压力又是准确获取地层压力的必要条件。
几十年来,关于何时读取关井压力一直存在着误区。
从原理上讲,大家承认关井稳定所需时间与溢流种类、储量、地层渗透性及地层欠平衡压差等有关[1~6],但苦于给不出可操作的推荐时机,于是,有一些专家推荐关井10~15min 后读取立压与套压[1~3],另有一些专家推荐关井5~20min 后读取立压与套压[4~6]。
也有一些专家[7~8]提出了在压力恢复至稳定后再读取压力的观点,但这对于低渗透油气藏是难以做到的,同时识别圈闭压力也较困难。
研究表明[9~11],对于不同油气藏,溢流关井稳定所需时间的差别很大。
鉴于目前钻井现场普遍采取关井取压方式,准确读取关井压力对安全井控,尤其是对付高温高压油气藏井控与复杂地质条件下的井控有重要作用。
图1 关井期间流体“U ”型管原理图 Fig 11 U-shape tube theory of shut-in 1 关井后压力恢复原理因气侵是井控的难点,故笔者假设侵入流体为天然气,并且假设钻柱中未装钻具回压凡尔。
井控基本知识
井控基本知识1、井控:指对油气井压力的控制;分为初级井控、二级井控、三级井控。
2、初级井控(又称一级井控):仅用修井液液柱压力就能平衡地层压力的控制;此级井控状态的表现是:没有地层流体侵入井内,井涌量为零,自然也无溢流产生。
3、二级井控:是指仅靠井内修井液液柱压力不能控制住地层压力,井内压力失去平衡,此级井控状态的表现是:地层流体侵入井内,出现井涌,地面出现溢流,此时要依靠关闭地面井控设备建立的回压和井内液柱压力共同平衡地层压力,依靠井控技术排除气侵修井液,处理掉井涌,恢复井内压力平衡,使之重新达到初级井控状态。
4、三级井控:是指二级井控失败后,井涌量大且失去控制而发生的井喷(即:井喷失控),此时,要利用专门的设备和技术重新恢复对井的控制,使其达到二级井控状态,然后再进一步恢复到初级井控状态。
三级井控就是平常说的井喷抢险。
5、井喷失控:井喷发生后,无法用常规方法控制井口而出现敞喷的现象,井喷失控就是井下作业中恶性事故,在实际工作中必须予以杜绝。
6、井侵:井底压力小于地层压力时,地层流体(油、气、水)进入井筒的现象。
7、溢流:当井侵发生后,井口返出的修井液比泵入的量多,停泵后井口修井液有外溢的现象。
8、井涌:溢流进一步发展,钻井液或压井液涌出井口的现象。
9、井喷:地层流体(油、气、水)无控制地进入井内,使井内流体喷出井口。
10、软关井:发现溢流后,先打开放喷阀(套管闸门),然后关闭防喷器,再关节流阀。
11、硬关井:发现溢流后,立即关闭防喷器。
12、井喷失控的危害:①打乱全面的正常生产、工作秩序,影响全局生产。
②极易引起火灾和地层坍塌,造成机毁人亡、油气井报废等严重事故,带来巨大的经济损失。
③使修井事故复杂化。
④严重伤害油气层、破坏地下油气资源。
⑤油气无控制喷出地面进入空中,造成环境污染,影响周围人民的生命财产。
⑥在国际、国内造成不良的社会影响,对企业的生存与发展极为不利。
13、井喷失控的原因:1)井控意识不强,违章操作。
井控培训知识2
Hale Waihona Puke 二、井喷造成的危害人员伤害和经济损失
“12·23”特大井喷责任事故导致243人 被高浓度的硫化氢天然气夺去生命,4000多 人受伤,造成直接经济损失达6432.31万元的 严重后果。 1990年10月11日的王15-33井井 喷事故造成直接经济损失368万元。
(1)钻遇气层:在钻开气层的过程中,随着岩石的破碎,岩石孔 隙中的天然气被释放出来而侵入钻井液。
(2)背景气:连续少量地进入井内的天然气被称为原始天然气 (或背景天然气),原始天然气通常来自低渗透性岩层,如页岩。 但是在压力极不平衡的情况下,某些流体可以从井壁周围流入井内。 原始天然气的增加表示地层压力的增加或者表示钻井液静液压力的 减少。
设备损坏
造成的危害
人员伤害和经济损失 打乱正常生产生活秩序 油气资源受到严重破坏
造成环境污染 酿成火灾 设备损坏
油气井报废
1984年印度尼西亚PSJ-A探井因井喷 报废。
1997年新疆玛扎4井井喷,导致井眼 报废。
2003年中4-72井井喷导致该井报废。
1985年至今,据不完全统计国内陆地 发生井喷失控事故56起,造成直接经济损 失23561万元,直接时间损失41854小时, 死亡266人,受伤4047人。
造成的危害
人员伤害和经济损失 打乱正常生产生活秩序 油气资源受到严重破坏
造成环境污染 酿成火灾
1984年9月1日,位于印度尼西亚西爪哇的 帕西加里笛的PSJ-A探井井喷,几秒中后着 火,钻机在10分钟内烧毁,当时的火焰高达 130米,在方圆300米内的噪音为100分贝。 美国Delta钻井公司承钻的SCB1井发生井喷 和引起着火,随之井喷失控,部分钻杆从防 喷器中喷出。
井控应知应会
井控应知应会1.井控:油气井压力控制的简称。
2.油气侵:井底压力大于地层压力时,岩屑中的流体(油、气、水)侵入钻井液的现象。
3.溢流:地层压力大于井底压力,地层流体向井内流动,停泵后,井口钻井液自动外溢的现象。
4.井涌:地层流体侵入井内,引起流体增加溢出井口的现象(未超过转盘面)。
5.井喷:地层流体喷过转盘面称为井喷。
6.井喷失控:井喷发生后,无法用常规方法控制井口而出项敞喷的现象。
7.进平衡压力钻井:在井底压力稍大于地层压力情况下,在保持最小井底压力情况下钻进的钻井方法。
8.石油天然气总公司对地层压力当量钻井液密度附加值的规定:油水井为0.05~0.10g/cm;气井为:0.07~0.15g/cm 。
9.什么是赞成的曾压力?异常压力?异常低压?的曾有利梯度在0.0098~0.10486Mpa/m为正常地层压力,地层压力梯度大于0.010486 Mpa/m为异常高压。
压力梯度小于0.0098 Mpa/m为异常低压。
10.井喷多发生在哪种钻井作业中?为什么?起钻时一般每起出几柱钻具需灌一次泥浆?井喷多发生在起钻作业中,起钻时产生抽吸压力回使井底压力降低,起钻时不及时灌满钻井液也会使井底压力降低,故井喷多发生在起钻作业中,起钻时每起钻作业中,起钻时每起出2—3柱钻杆需灌一次泥浆,每起一柱钻铤需灌一次泥浆。
11.常规法压井主要有哪几种方法?各有什么特点?司钻法和工程师法,司钻法压井时间长,套压高,但排溢流及时,计算简单;工程师法压井时间短,套压低,但是需等待加重,计算复杂。
12.钻井液静也压力:井内钻井液柱重量产生的压力。
13.井底压力:地面和井内各种压力作用在井底的总压力。
14.井控的三个阶段:一级控井:以合理的钻井液密度,满足近平衡压力钻井的要求,防止发生溢流实现安全生产的井控工艺。
二级井控:指及早发现溢流,迅速实现对井口的控制,用压井工艺重建井内压力平衡的井控工艺。
三级井空:指井喷失控后,重新恢复对井的控制。
井控技术
Pb=Pm+Pbp+Pmr+Psw(送钻) (3)起钻时: Pb=Pm-Psb-Pdp (4)下钻时: Pb=Pm+Psw (5)划眼时: Pb=Pm+Psw(划眼送钻) +Pbp
(6)发生溢流关井时
Pb=Pmd+Pd=Pma+Pa
平衡钻井----以钻进时的井底压力等于地层压 力, 近平衡钻井----以起钻石的井地压力等于地层 压力条件下的钻井。 欠平衡钻井----以钻井时的井底压力小于井底 压力,允许地层流体进入井内的钻井。 八、钻井液密度的确定 钻井液密度的大小应满足平衡地层压力和不压 漏地层两个条件,实现近平衡钻井,所以钻井 密度是以起钻时的井底压力等于地层压力设计 出钻井液密度的。
5、井喷失控:井喷发生后,无法用常规的方 法控制井口而出现敞喷的现象。
四、井喷的危害
1、打乱正常开发秩序,影响全局生产。 2、使钻井事故复杂化(喷、塌、卡)。 3、引起火灾,地层坍塌,造成污染。 4、伤害油气层 ,破坏地下油气资源。 5、造成机毁人亡,油气井报废,带来巨大的 经济损失。 6、涉及面广,造成不良的国际国内影响。
六、环空流动阻力
Pbp
1、定义:循环时钻井液沿环空上返时, 产生的使井底压力增加的力,叫环空流 动阻力。 2、影响环空流动阻力的因素 (1)钻井液环空上返速度;
(2)环空间隙; (3)井深和钻井液性能(密度、粘度)。
七、井底压力
Pb
1、定义:指地面和井内各种压力,作用在 井底的总压力称为井底压力。 2、井内主要包括的力:钻井液静液柱压力; 环空流动阻力;抽吸压力;激动压力;地层压 力。 3、在不同钻井作业中的井底压力的变化。 (1)静止状态
二
、
井控基本知识
井控基本知识1、井控是指对油气井压力的控制,包括初级井控、二级井控和三级井控三个阶段。
2、初级井控(或称一级井控),仅需通过修井液液柱压力来平衡地层压力。
其特征表现为无地层流体进入井内,井中无涌出物,因而不会产生溢流现象,此阶段井下安全稳定。
3、二级井控定义为仅通过井内修井液液柱压力无法控制地层压力的状况,地层流体进入井内引发井涌,并在地面形成溢流;此时需关闭地面井控设备以建立回压,结合井内液柱压力共同平衡地层压力,采用井控技术处理气侵修井液,消除井涌,恢复井内压力平衡,最终达到初级井控状态。
4、三级井控:是指二级井控失败后,井涌量大且失去控制而发生的井喷(即:井喷失控),此时,要利用专门的设备和技术重新恢复对井的控制,使其达到二级井控状态,然后再进一步恢复到初级井控状态。
三级井控就是平常说的井喷抢险。
5、井喷失控:井喷发生后,无法用常规方法控制井口而出现敞喷的现象,井喷失控就是井下作业中恶性事故,在实际工作中必须予以杜绝。
6、井侵:井底压力小于地层压力时,地层流体(油、气、水)进入井筒的现象。
7、溢流:当井侵发生后,井口返出的修井液比泵入的量多,停泵后井口修井液有外溢的现象。
8、井涌是溢流进一步发展的现象,表现为钻井液或压井液从井口喷出。
9、井喷:地层流体(油、气、水)无控制地进入井内,使井内流体喷出井口。
10、软关井:发现溢流后,先打开放喷阀(套管闸门),然后关闭防喷器,再关节流阀。
11、硬关井:发现溢流后,立即关闭防喷器。
12、井喷失控的危害:①打乱全面的正常生产、工作秩序,影响全局生产。
②极易引起火灾和地层坍塌,造成机毁人亡、油气井报废等严重事故,带来巨大的经济损失。
③使修井事故复杂化。
④严重伤害油气层、破坏地下油气资源。
⑤油气无控制喷出地面进入空中,造成环境污染,影响周围人民的生命财产。
⑥在国际、国内造成不良的社会影响,对企业的生存与发展极为不利。
13、井喷失控的原因:1. 井口未装防喷器;2.无法及时发现溢流或处理不当;3.井控设备安装、试压不合格或存在问题;4.井口老化,出现刺漏;5.空井时间长,无人监控井口和采油树;6.洗井不彻底。
钻井工程6油气井压力控制
安全钻井的压力平衡条件: pp phe pf
phe pp , 地层流体侵入井眼;
phe= pp ,
平衡压力钻井;
phe pf , 压裂地层,发生井漏;
phe pb pf ,过平衡压力钻井;
phe pp , 地层流体有控制地进入井眼,欠平衡压力钻井。
一、油气井压力控制的基本概念
井控技术:主要是及时发现溢流并在保证井底压力略高于地 层压力的条件下,有效地排除溢流(即是说,怎样用泥浆柱 压力平衡地层压力;当平衡被破坏,又怎样恢复平衡)。包 括井控工艺和井控装置技术。 溢流:井下关系失去平衡,表现为地层压力大于井底压力时 ,地层流体进入井筒的现象。 井涌:是井喷的一种轻微表现形式,指井内钻井液涌出喇叭 口或转盘面上的情形,是溢流发展到一定程度的表现形式。 井喷: 地层流体(油、气、水)无控制的流入井筒并喷出地 面,通常指井内流体喷至转盘面以上一定高度或通过放喷管 线放喷的情形。或从高压层无控制的流入低压层的现象。
第三节 地层流体侵入控制----关井与压井
控制溢流主要包括两个步骤:
1、阻止地层流体继续侵入井眼——关井 2、用具有合适密度的钻井液将受污染的钻井液循环出井 眼,重新建立地层与井眼系统的压力平衡——压井。
关井:
利用井口防喷器将井口关闭,井口防喷器产生的回压与环空泥 浆液柱压力之和平衡地层压力,阻止地层流体的继续侵入。
在溢流速度不高或者井口装置承压能力较高的情况下,可使用 “硬关井”,否则,应选择“软关井”或“半软关井”。 推荐采用“半软关井”。
(三)关井步骤(以半软关井为例)
1、钻进时发生井涌
(1)立即停止钻进,发出报警信号,停转盘、停泵; (2)上提方钻杆到钻杆接头露出转盘面; (3)适当打开节流阀; (4)关防喷器— 先关环型、再关闸板; (5)关节流阀,试关井,注意套压不能超过极限套压; (6)及时向队长和钻井技术人员报告; (7)认真记录关井立压、关井套压和泥浆池增量。
油气井压力的控制
第五章 第一节 地层压力及其预测
因为0.0547vpe/n的值总 是小于1,所以lg (0.0547vpe/n)的绝对 值与vpe成反比。因此, d指数与vpe成反比。
在正常压力条件下,随着深度加大,vpe下降,d指 数增大,且d与D之间呈一条正常趋势线。在压力过渡 带和异常高压地层,由于地层欠压实和井底压差减小, vpe加大,d指数下降,通过其与正常趋势线偏离值的大
这种方法一般用在钻井施工前的初步预测。
第五章 第一节 地层压力及其预测
(2) 声波测井法
1)
声波传播速度主要是孔隙度和岩性的函数。
如果岩性为泥页岩时,则声波测井主要反映孔隙度的变
化。
在正常压力地层中,
随深度增大,地层压实
程度增强,孔隙度下降,
则声波传播速度加快, 传播时间减少。深度D 与传播时间Δtn的对数 之间呈一条正常趋势线。
正常压力段深度De的 σe易于求出:
第五章 第一节 地层压力及其预测
由于深度Da处的σa=σe,则a点处的地层压力计算式为
Δto,C——正常压实趋势线的截距和斜率 (3)
电阻率测井法的预测原理:在正常压力地层中,随 深度增大,地层压实程度加大,孔隙度减小,导电流体 也减少,页岩电阻率加大。在一定的地区,页岩电阻率 (对数)与井深之间存在一条正常趋势线;在异常压力地 层中,由于地层欠压实,孔隙度增大,地层流体多,地 温高,页岩电阻率向着低于正常电阻率的一侧偏离正常
第五章 第一节 地层压力及其预测
d指数法的前提之一是保持钻井液密度不变,但这 在生产中难以达到,尤其在进入压力过渡带后,为了安 全起见,需增加钻井液密度,这样,d指数便随之升高, 影响了它的正常显示。为了消除此影响,于是提出了修 正的d指数,即dc指数法,表达式为
精品课程钻井与完井工程-课件05井控
(1)计算环空流速;
(2)流态判别 幂律流体
Re 1
01
201n0(Dd)nV2nm
K(2n1)n
3n
塑性流体
Re
10(Dd)Vm s[180(0D0sVd)]
幂律流体,当Re(3470-1370n)时,为紊流。
塑性流体,当Re2000时,为紊流。
第二节 井内波动压力预测方法
二、波动压力计算 (3)计算波动压力Psw
Qs
(d2
4
di2)VP
环空平均流速
Qi:进入运动管柱内的液 体流量, m3/s
d:运动管柱的外径,m
di:运动管柱内径,m
V1D d2 h2 ddi22VP(D 4h2Q i d2)
Vp:运动管柱的速度,m/s Dh:井眼直径,m
Qi是一个未知数,需要进行迭代计算
井控——波动压力计算
计算环空流速
波动压力计算例题
解 2.钻头水眼未堵,即运动管柱为开口管。
JJ 1 2 J 2 2 J 3 22 12 2 12 3 2.4 m 1 m 起钻时环空钻井液流速:
V c 0 .6 0 (2.5 1 1 2 .9 8 7 2 1 .8 2 7 2 .1 2 2 4 .124 0 .4)8=1.54m/s
略高于地层压力的条件下,有效地排除溢流的技术 。具体措施包括:
如何用钻井液的液柱压力平衡地层压力? 当平衡被破坏,又怎样恢复井内压力平衡?
概述
二、井控技术的基本内容
1.研究对象和目的: (1)客观对象:地层 地层压力和地层破裂压力是造成井喷的客观条
件,研究方法是预测。 (2)主观对象:控制方法 如何发现和控制液流 (3)研究目的 a.揭示各种压力关系 b.阐述控制方法
第四章 油气井压力控制
(1-5)
地下各种压力之间的关系
( Po 、 Pp 和σ之间的关系) Po = (孔隙流体的重力+ 基岩重力 )/ 面积
Po =
Pp
+
σ
由上式可知,上覆岩层压力由基岩和孔隙流体共同 承担。 Po 一定, σ减小, Pp 增大。 当σ→0时, Pp → Po 。 不管任何原因使基岩应力下降,都会导致孔隙 压力增大.
地层沉降压实保持平衡 的 条件: • 上复岩层沉积的速度 • 地层的渗透率 • 地层孔隙减小的速度 • 孔隙流体排出的能力
4、异常高压的成因 异常高压的形成是多种因素综合作用的结果,这些因素与地质 作用、构造作用和沉积速度等有关。对于沉积岩地层的异常高压, 目前世界上公认的成因是由于沉积物的快速沉降,压实不均匀造成 的。 沉积物的快速沉降,压实不均匀 在稳定沉积过程中,若保持平衡的任意条件受到影响,正常的 沉积平衡就被破坏。如沉积速度很快,岩石颗粒没有足够的时间去 排列,孔隙内流体的排出受到限制,基岩无法增加它的颗粒与颗粒 之间的压力,即无法增加它对上覆岩层的支撑能力。由于上覆岩层 继续沉积,负荷增加,而下面基岩的支撑能力没有增加,孔隙中的 流体必然开始部分地支撑本来应有岩石颗粒所支撑的那部分上覆岩 层压力,从而导致了异常高压。
得其深度的地层压力,即
pp=0.00981 Gp×H
式中:pp - 地层压力,MPa; Gp - 地层压力梯度当量密度,g/cm3 H - 井深,m。
当 量 密 度 g/cm3
△t-△tn
(二)地层压力监测 常用的方法有 dc指数法 σ法 页岩密度法 标准化钻速法 ………. dc指数法 dc指数法的实质是机械钻速法。它是利用泥页岩压实的规律和压差对 钻速的影响来计算地层压力的。 在正常压实的地层,若保持钻进措施不变,随着井深的增加,岩石 强度变大,机械钻速会逐渐减小。进入异常高压层,由于地层孔隙度变 大,岩石强度变小,机械钻速会增大,所以利用机械钻速的变化可以预 测高压地层。 (补充 压差=井底压力—地层压力 △P = Pb - PP 式中 Pb — 井底压力; PP — 地层孔隙压力。 井底压差大容易产生压持效应。 压持效应:在在钻进过程中,井内始终存在压差,在该压差作用下,井 底岩屑难以离开井底,造成钻头重复破碎的现象。)
井控十概念
井控十概念
1、井控:实施油气井压力控制的简称。
2、井侵:当底层压力大于井底压力时,地层孔隙中的流体(油、气、水)将侵入井内,通
常称为井喷。
3、溢流:当井底压力小于地层压力时,井口返出液量大于泵入液量或停泵后井液自动外溢
的现象称为溢流。
4、井涌:溢流进一步发展,井液涌出井口的现象称为井涌。
5、井喷:当井底压力远小于底层压力时,地层流体大量涌入井筒并喷出地面的现象称为井
喷。
6、井喷失控:井喷发生后,无法用常规方法控制井口而出现井口敞喷的现象称为井喷失控。
7、一级井喷:指以合理的井液密度平衡地层孔隙压力,没有地层流体侵入井内、无溢流产
生的井控技术。
(又称主井控)
8、二级井控:溢流或井喷后通过及时关晶或压井重建井底压力平衡的井控技术。
9、三级井控:井喷失控后,重新恢复对井口的控制的井控技术。
10、井控中的三早:早发现、早关井、早处理。
七关井法
1、发
2、停
3、开
4、抢
5、关
6、关
7、看
井喷处理八步走
1、逐级上报,启动井喷抢险应急预案。
2、防止着火,用消防水枪向油气柱及井口周围大量喷水。
同时做好储水、供水工作。
3、对含硫等有可能对周围人群和环境造成较大危害的井可以按规定进行点火处理。
4、成立现场抢险组,制定抢险方案。
5、划分安全区,撤离危险区人员。
6、清除井口周围及抢险道路上的障碍物,充分暴露井口。
7、灭火。
8、设计、抢装新的井口装置组合。
钻井工程6油气井压力预测与控制
pob= 0.00981[(l-ф)ρma+ фρf ] h
式中 pob ——上覆岩层压力,MPa h ——地质柱状剖面垂直高度,m ф——岩石的孔隙度,% ρma ——岩石基质的密度,g/cm3 ρf ——岩石孔隙中流体的密度,g/cm3 岩石密度与孔隙度的大小和埋藏的深度有关。
实际上:
pob 0.00981 b (h)dh
地震层速度1:沙1井在地 震测线Z01ZIG236上的投影 位于CDP4715点,该层速度是 从该测线上靠近的速度谱
CDP9610-Trace4805点的迭
加速度计算出的。 地震层速度2:该井在地震
2000
深度 (m)
3000
测线Z01ZIG668上的投影位
煤夹层
于CDP1880点,该层速度是从 该测线上靠近的速度谱 CDP3850-Trace1925点的迭 加速度计算出的。 地震层速度与声波测井层速 度变化趋势大致相同。
上世纪60年代以来,油气井压力预测与控制倍
受重视,原因是井喷失控不但影响正常油气勘探与
开发,还会造成重大的经济损失和人身伤亡。
目前,世界各石油公司发展了一整套油气井压 力预测与控制新技术:在钻井之前,根据三压力剖
面科学地选择钻井液密度,合理地设计一口井的套
管程序,为实现平衡压力钻井提供保障;在钻井过
0.0 0
均方根速度 (m/s) 2000 4000 6000
1.0
1.0
1.0
1.0
1.0
2.0
2.0
2.0
2.0
2.0
双程反射时间 (s)
双程反射时间 (s)
双程反射时间 (s)
双程反射时间 (s)
3.0
第6章油气井压力控制
1、关井方式
(1)硬关井
发现溢流后,在节流阀未打开的情况下关闭防喷器。 关井时间短,可以尽快阻止地层流体侵入。
易产生水击、易损坏井口装置或压漏薄弱地层;
适用于井涌速度不高、井口装置承压能力高的情况。
16
(2)软关井
发现并涌后,先打开节流阀,再关闭防喷器,然后再关闭 节流阀。 关井时间长,地层流体侵入量多。 适用于井涌速度较高、井口装置承压能力较低、裸眼井段 有薄弱地层的情况。
出后形成雾状流体,冲洗井底和携带岩屑。
主要优点:不易着火和爆炸;有少量地层水进入井眼也能 有效携带岩屑。
(3)泡沫钻井
主要特点:采用稳定泡沫作为循环介质进行钻井。稳定泡
沫由气体(氮气或co2)、液体和表面活性剂配制。
主要优点:密度低,粘度和切力高,携岩能力强。来自8(4)充气钻井
主要特点:在钻井液中掺入气体,从而降低钻井液密度。充气 钻井液密度可控制在0.45 ~1.20g/cm3范围内。 主要优点:密度可调范围大;能消除空气钻井可能引起的井下 爆炸;较一次性的泡沫钻井经济;可用于易出水地层。
23
循环法:
关井后等待套压相对稳定,记录下套压pa; 启动泵,以压井泵速泵入钻井液,同时调节节流阀 保持套压不变,记录此时立管压力psp´; 停泵,关闭节流阀;
计算关井立管压力: psp= psp´- pci
适用于已知压井泵速和相应循环压耗pci的情况。
24
3、关井套压的最大允许值
14
第三节
溢流的控制----压井
控制溢流主要包括两个步骤:
阻止地层流体继续侵入井眼----关井;
用具有合适密度的钻井液将受污染的钻井液循
环出井眼,重新建立地层与井眼系统的压力平 衡----压井。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章主要内容:
井眼与地层压力系统 欠平衡压力钻井 井涌的原因、征兆与检测方法 发生井喷的失控的原因 关井方式与关井程序 侵入流体性质的判别 压井—恢进行控制。
井控的基本要求: 1、有效地控制地层压力,防止井喷。 2、防止井漏、井塌和缩径等复杂情况的发生 3、有效的保护油气层
(4)欠平衡钻井方式( 欠平衡产生条件) 1、流钻:常规钻井液密度,边喷边钻 2、气体钻井:人工诱导产生欠平衡, 包括:(1)空气钻井; (2)雾化钻井; (3)泡沫钻井; (4)充气钻井。
第二节 溢流的侵入及其检测
一、有关溢流和井喷的概念 溢流(又称为井涌、静侵): 地层流体(油、气、水 )侵入井内,井口返出的钻井液
量大于泵入量,或停泵后钻井液从井口自动外溢的现象。 井喷:地层流体失去控制地喷出地面。
二、地层流体侵入井内的原因 1、地层压力掌握不准,使设计的钻井液密度偏低 2、地层流体(油、气、水)侵入,使钻井液密度降低 3、起钻未按规定灌泥浆,或井漏井内液面降低 4、起钻速度过快,引起抽过大,地层流体侵入井内 5、停止循环时,环空循环压降消失,使井底压力减小。 统计表明,近70% 的井涌或井喷发生在起钻(起完钻)
气井: P = 3.5~5.0 Mpa
= 0.05~ 0.1
= 0.07~0.15
三、平衡与欠平衡压力钻井
1、平衡压力钻井 (1)概念:
在有效的控制地层压力和维持井壁稳定的前提下, 尽可能降低钻井液密度,使钻井液液柱压力刚好等于 或略大于地层压力,达到解放钻速和保护油气层的目 的,这种钻井方法称为平衡压力钻井。
(2)技术关键: 1)地层孔隙压力和破裂压力的准确预测 2)钻井液类型选择和密度等性能的控制 3)井口压力控制和循环出井流体的处理 4)起下钻过程的欠平衡 5)井底有效压力的计算与监测 6)井壁稳定 7)完井
(3)欠平衡钻井适用的储层: 1、高渗透固结砂岩和碳酸岩油气藏 2、裂缝性油气藏 3、致密性(低孔低渗)油气藏 4、压力衰竭的低压油气藏
过程中。
三、气侵的特点
1、气侵的途径与方式 • 岩石孔隙内的气体随钻碎的岩屑进入井内钻井液 • 气层中的气体由于浓度差通过泥饼向井内扩散 • 当井底压力小于地层压力时,气层中的气体大量
流入或深入井内
2、气侵的特点及危害 (1)侵入井内的气体由井底向井口运移,体积逐渐
膨胀,越接近地面,膨胀越快,因此,在地面看起来气 侵很严重的钻井液,在井底只有少量气体侵入。
平衡压力钻井;
pb p f ,
压裂地层,发生井漏;
pp pb p f , 过平衡压力钻井,
pb pp ,
地层流体有控制入井眼,欠平衡压力钻井
二、井眼—地层系统压力基本关系
Pb min Ph Psb Pp max Ph Pp P
d p
P —安全附加压力;
—安全附加密度; 油井: P = 1.5~3.5 Mpa
(4)在井口关闭的情况下,气体在滑脱上升中保持体 积不变,因此,其压力亦保持不变,此情况下,井口 和井底压力都会逐渐增加,当气体达到井口时,井口 承受的压力为地层压力,井底的压力为2倍地层压力, 此情况下可能压漏地层,发生井下井喷。
因此,在井内气体上升过程中,应逐渐有效控制 地放压,使套压小于允许套压。
第一节 井眼—地层系统的压力平衡
一、井眼内的各种压力
1、 地层孔隙压力
Pp 9.81*103 p D
2、地层破裂压力
Pf 9.81*103 f D
3、钻井液静液柱压力 4、环空循环压降 5、井内波动压力
Ph 9.81*103 d D
Pa
抽吸压力: Psb 9.81*103 sbD, sb 0.036 ~ 0.08g / cm3 激动压力: Psg 9.81*103 sg D, sg 0.024 ~ 0.1g / cm3
3、 H2S 的危害
H2S 属剧毒性气体,对人体有极强的损害和设备有较强 的腐蚀性,在含 H2S 地层进行施工作业时,为了确保人 身和设备的安全,井控要求具有一定的特殊性 。
(1)H2S 的物理化学性质 硫化氢是一种无色、剧毒、强酸性气体。低浓度的硫
化氢有臭蛋味,其相对密度为 1.176 ,硫化氢燃点 250 摄氏 度,燃烧时呈蓝色火焰,产生有毒的二氧化硫,硫化氢与 空气混合,浓度达4.3%~46%时就形成一种爆炸性混合物。
(2)技术关键: 地层压力的准确预测
合理钻井液密度的确定
2、欠平衡压力钻井
(1)概念:
所谓欠平衡压力钻井,即在钻井过程中允许地层流体进 入井内,循环出井,并在地面得到控制。
在井底有效压力低于地层 压力的条件下进行钻井作业。 在井下,允许地层流体进入井内,在井口,利用专门的井控 装置对循环出的流体进行控制和处理,这样可及时发现和有 效的保护油气层,同时可显著提高钻进速度。
井控的技术内容: 1、地层压力的预测和监测 2、钻井液密度的控制 3、合理井身结构的设计 4、防喷器装置的配置 5、溢流后的正确处理
• 起钻抽吸,起钻过程中不及时灌泥浆。 • 起完钻后空井时间过长; • 未及时发现溢流,或发现溢流后处理措施不当; • 井口未安装防喷器,或承压能力太低; • 防喷器及管汇安装不符合要求 • 井身结构设计不合理 • 对浅气层缺乏足够的认识 • 地层压力预测不准,泥浆密度偏低 • 在发生井漏后,没有预防可能发生的井喷 • 思想麻痹,违章操作。
井底有效压力: 正常钻进时: 起钻时: 下钻时:
pb ph pa pb ph psb pb ph psg
最大井底压力:
pbmax ph pa psg
最小井底压力:
pbmin ph psb
安全钻井的压力平衡条件: p p pb p f
pb pp ,
地层流体侵入井眼;
pb pp ,
(2)一般情况下,气体侵入钻井液呈分散状态,井 底泥桨液柱压力的降低是非常有限的,只要及时有效的 除气,就能有效的避免井喷。
(3)当井底气体形成气柱时, 随着气柱的 上升(滑脱上升或 循环上升),在井口未关闭的情 况下,环境压力降低,体积膨胀
变大,替代的钻井液液量越来越 多,使井底压力大大降低,更多 的气体以更快的速度侵入井内, 最终导致井喷。