(人教a版)数学必修一课时训练:2.1.2(第1课时)指数函数的图象及性质(含答案)

合集下载

人教A版高中数学必修一练习:2.1.2 第1课时 指数函数的图象及性质(1)

人教A版高中数学必修一练习:2.1.2 第1课时 指数函数的图象及性质(1)

第二章 2.1 2.1.2 第1课时1.下列函数中指数函数的个数是( )①y =3x ;②y =x 3;③y =-3x ;④y =x x ;⑤y =(6a -3)x ⎝⎛⎭⎫a >12,且a ≠23. A .0B .1C .2D .3解析:只有①⑤是指数函数;②底数不是常数,故不是指数函数;③是-1与指数函数y =3x 的乘积;④中底数x 不是常数,它们都不符合指数函数的定义.答案:C2.函数y =2-x 的图象是( )解析:y =2-x =⎝⎛⎭⎫12x ,故选B.答案:B3.已知函数f (x )=⎝⎛⎭⎫12x +2,则f (1)与f (-1)的大小关系是( )A .f (1)>f (-1)B .f (1)<f (-1)C .f (1)=f (-1)D .不确定解析:∵f (x )=⎝⎛⎭⎫12x +2是减函数,∴f (1)<f (-1).答案:B4.函数y =(a -1)x 在R 上为减函数,则a 的取值范围是________.解析:函数y =(a -1)x 在R 上为减函数,则0<a -1<1,所以1<a <2.答案:(1,2)5.指数函数y =f (x )的图象经过点(π,e),则f (-π)=________.解析:设指数函数为y =a x (a >0,且a ≠1),则e =a π,∴f (-π)=a -π=(a π)-1=e -1=1e. 答案:1e6.已知⎝⎛⎭⎫12x >1,求x 的取值范围. 解:∵⎝⎛⎭⎫12x >1,∴⎝⎛⎭⎫12x >⎝⎛⎭⎫120. ∵y =⎝⎛⎭⎫12x 在R 上是减函数,∴x <0. 即x 的取值范围是(-∞,0).。

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
由图象可知值域是(0,1],递增区间是(-∞,0],递减区间 是[0,+∞).
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

人教新课标版数学高一人教A数学必修1作业 2-1-2-1指数函数的图象及性质

人教新课标版数学高一人教A数学必修1作业 2-1-2-1指数函数的图象及性质

课时作业(十六) 指数函数的图象及性质一、选择题1.函数f (x )=(a 2-3a +3)a x 是指数函数,则有( ) A .a =1或a =2 B .a =1 C .a =2D .a >0且a ≠1答案:C 解析:由a 2-3a +3=1,解得a =1或a =2,又由于a >0,且a ≠1,故a =2.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <4,f (x -1),x ≥4,那么f (5)的值为( )A .32B .16C .8D .64答案:C 解析:f (5)=f (5-1)=f (4)=f (4-1)=f (3)=23=8. 3.函数y =2x -12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数答案:A 解析:函数y =2x -12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x -12-x +1=12x -112x +1=1-2x1+2x =-f (x ),所以该函数是奇函数. 4.函数f (x )=a x -b 的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <0 答案:D5.若定义运算f (a *b )=⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b ,则函数f (3x *3-x )的值域是( )A .(0,1]B .[1,+∞)C .(0,+∞)D .(-∞,+∞)答案:A 解析:由定义可知,该函数是求a ,b 中较小的那一个,所以分别画出y =3x与y =3-x =⎝⎛⎭⎪⎫13x的图象,由图象很容易看出函数f (3x *3-x )的值域是(0,1].6.已知实数a ,b 满足等式2a =3b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中可能成立的关系式有( )A .①②③B .①②⑤C .①③⑤D .③④⑤答案:B7.设f (x )=⎝ ⎛⎭⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数答案:D 解析:函数f (x )的定义域R ,关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎫12|-x |=⎝⎛⎭⎪⎫12|x |=f (x ),所以f (x )是偶函数. 又f (x )=⎝ ⎛⎭⎪⎫12|x |=⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫12x,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数. 二、填空题8.函数y =a 2x +b +1(a >0,且a ≠1)的图象恒过定点(1,2),则b =________.答案:-2 解析:把点(1,2)代入,得2=a 2+b +1, ∴a 2+b =1恒成立,∴2+b =0,∴b =-2.9.设f (x )=⎩⎨⎧2x +32,x <0,2-x ,x ≥0,则f (x )≥12的解集是________.答案:⎣⎢⎡⎦⎥⎤-12,1 解析:当x <0时,2x +32≥12,x ≥-12,∴-12≤x <0; 当x ≥0时,2-x ≥12,即x ≤1,∴0≤x ≤1.综上,f (x )≥12的解集是⎣⎢⎡⎦⎥⎤-12,1.10.已知函数f (x )是指数函数,且f ⎝ ⎛⎭⎪⎫-32=525,则f (3)=________. 答案:125 解析:设f (x )=a x (a >0,且a ≠1),则由f ⎝ ⎛⎭⎪⎫-32=525,得a -32=525=5-32, ∴a =5,故f (x )=5x .从而f (3)=53=125.11.若f (x )=⎩⎨⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为________.答案:[4,8) 解析:因为f (x )是R 上的单调递增函数.所以⎩⎪⎨⎪⎧a >1,4-a 2>0,4-a 2+2≤a ,解得4≤a <8.故实数a 的取值范围为[4,8).三、解答题12.设0≤x ≤2,y =4x -12-3·2x +5,试求该函数的最值. 解:令t =2x ,∵0≤x ≤2,∴1≤t ≤4. 则y =22x -1-3·2x+5=12t 2-3t +5.化简,得y =12(t -3)2+12,t ∈[1,4],∴y =12(t -3)2+12在t ∈[1,3]上是减函数,在t ∈[3,4]上是增函数. ∴当t =3时,y min =12;当t =1时,y max =52. 故该函数的最大值为52,最小值为12. 13.已知函数f (x )=a x +b (a >0,a ≠1). (1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数解,求出m 的范围.解:(1)f (x )的图象过点(2,0),(0,-2),∴⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2, 解得a =3,b =-3.(2)由f (x )为减函数可知a 的取值范围为(0,1),又f (0)=1+b <0, ∴b 的取值范围为(-∞,-1).(3)由图①可知,y =|f (x )|的图象如图所示.由图象可知使|f (x )|=m 有且仅有一解的m 值为m =0或m ≥3. 尖子生题库14.已知函数f (x )=2x +a2x -1.(1)求函数的定义域;(2)当a 为何值时,f (x )为奇函数;(3)写出(2)中函数的单调区间,并用定义给出证明. 解:(1)由2x -1≠0,得x ≠0, ∴函数f (x )的定义域为{x |x ≠0}. (2)由于函数f (x )是奇函数, 所以对任意x ∈{x |x ≠0},有f (-x )=2-x +a 2-x -1=-a ·2x +12x -1=-f (x )=-2x +a2x -1,化简得(a -1)2x =a -1, ∴a =1. ∴当a =1时,f (x )是奇函数.(3)当a =1时,f (x )=2x +12x -1=22x -1+1的单调递减区间为(-∞,0)和(0,+∞).证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=22x 1-1-22x 2-1=2(2x 2-2x 1)(2x 1-1)(2x 2-1). ∵0<x 1<x 2, y =2x 在R 上单调递增, ∴2x 2>2x 1>1,∴2x 2-2x 1>0,2x 1-1>0,2x 2-1>0, ∴f (x 1)-f (x 2)>0,∴f (x )在(0,+∞)上单调递减.由于a =1时,f (x )在(-∞,0)∪(0,+∞)上是奇函数, 所以f (x )在(-∞,0)上也单调递减.综上,f (x )=2x +12x -1在(-∞,0)上单调递减,在(0,+∞)上单调递减.。

高一数学人教版必修1课时作业2.1.2.1 指数函数的图象及性质 Word版含解析

高一数学人教版必修1课时作业2.1.2.1 指数函数的图象及性质 Word版含解析

基础过关.函数=+的图象是( )解析当=时,=,且函数单调递增,故选.答案.若函数()=(-)在上是指数函数,那么实数的取值范围是( ).(,)∪(,+∞) .(,).(,)∪(,+∞) .(,+∞)解析由题意得->且-≠,所以>且≠.答案.(·浙江求实高中期中)函数=+(>且≠)的图象必经过点( ).(,) .(,).(,) .(,)解析因为=的图象一定经过点(,),将=的图象向上平移个单位得到函数=+的图象,所以,函数=+的图象经过点(,).答案.函数=+的值域是.解析因为对于任意∈,都有>,所以+>,即函数=+的值域是(,+∞).答案(,+∞).已知函数=(-)是指数函数,且当<时,>,则实数的取值范围是.解析由题知函数=(-)是减函数,所以<-<,即<<.答案(,).求函数=的定义域.解要使函数有意义,则--≥,即-≥-.∵函数=是增函数,∴-≥-,即≥-.故所求函数的定义域为..已知函数()=-(≥)的图象经过点,其中>且≠.()求的值;()求函数=()(≥)的值域.解()∵()的图象过点,∴-=,则=.()由()知,()=,≥.由≥,得-≥-,于是<≤=,所以函数=()(≥)的值域为(,]..若=(-)(-)是指数函数,求函数()=的定义域与值域.解因为=(-)(-)是指数函数,所以解得=.所以()=由+≠,知()的定义域是{∈且≠-}.令=,则≠,所以>且≠,故()的值域为{>且≠}.能力提升.已知函数()=则=( ).- .-解析因为=-=-,所以=(-)=-=.答案.函数=-的图象( ).与=的图象关于轴对称.与=的图象关于坐标原点对称.与=-的图象关于轴对称.与=-的图象关于坐标原点对称解析=的图象与=-的图象关于轴对称,=-的图象与=-的图象关于原点对称.答案.(·浙江杭州西湖高中月考)已知集合={≤<},={≤<,∈},则∩=.解析由≤<得≤<,即={≤<},又={≤<,∈},所以∩={,,}.答案{,,}.方程-=有唯一实数解,则的取值范围是.。

【人教A版】高中数学必修1同步教学案必修1第二章《指数函数的图象及其性质》练习题(含答案)

【人教A版】高中数学必修1同步教学案必修1第二章《指数函数的图象及其性质》练习题(含答案)

第二章基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第1课时指数函数的图象及其性质A级基础巩固一、选择题1.以x为自变量的四个函数中,是指数函数的为()A.y=(e-1)x B.y=(1-e)xC.y=3x+1D.y=x22.函数y=2x-8的定义域为()A.(-∞,3) B.(-∞,3]C.(3,+∞) D.[3,+∞)3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)4.函数y=16-4x的值域是()A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)5.函数y=a x,y=x+a在同一坐标系中的图象可能是()二、填空题6.已知集合A={x|1≤2x<16},B={x|0≤x<3,x∈N},则A∩B =________.7.已知函数f (x )满足f (x )=⎩⎪⎨⎪⎧f (x +2),x <0,2x ,x ≥0,则f (-7.5)的值为________.8.函数y =a x (-2≤x ≤3)的最大值为2,则a =________.三、解答题9.求不等式a 4x +5>a 2x -1(a >0,且a ≠1)中x 的取值范围.10.若0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.B 级 能力提升1.若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤12,1B.⎝⎛⎦⎥⎤0,12 C .[0,1] D .(0,1]2.已知f (x )=a x +b 的图象如图所示,则f (3)=________.3.已知f (x )是定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数的解析式为f (x )=14x -a 2x (a ∈R). (1)试求a 的值;(2)写出f (x )在[0,1]上的解析式;(3)求f (x )在[0,1]上的最大值.参考答案第二章基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第1课时指数函数的图象及其性质A级基础巩固一、选择题1.以x为自变量的四个函数中,是指数函数的为()A.y=(e-1)x B.y=(1-e)xC.y=3x+1D.y=x2解析:由指数函数的定义可知选A.答案:A2.函数y=2x-8的定义域为()A.(-∞,3) B.(-∞,3]C.(3,+∞) D.[3,+∞)解析:由题意得2x-8≥0,所以2x≥23,解得x≥3,所以函数y =2x-8的定义域为[3,+∞).答案:D3.函数y=a x+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)解析:因为y=a x的图象一定经过点(0,1),将y=a x的图象向上平移1个单位得到函数y=a x+1的图象,所以,函数y=a x+1的图象经过点(0,2).答案:D4.函数y=16-4x的值域是()A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)解析:由题意知0≤16-4x<16,所以0≤16-4x<4.所以函数y=16-4x的值域为[0,4).答案:C5.函数y=a x,y=x+a在同一坐标系中的图象可能是()解析:函数y=x+a单调递增.由题意知a>0且a≠1.当0<a<1时,y=a x单调递减,直线y=x+a在y轴上的截距大于0且小于1;当a>1时,y=a x单调递增,直线y=x+a在y轴上的截距大于1.故选D.答案:D二、填空题6.已知集合A={x|1≤2x<16},B={x|0≤x<3,x∈N},则A∩B =________.解析:由1≤2x <16得0≤x <4,即A ={x |0≤x <4},又B ={x |0≤x <3,x ∈N},所以A ∩B ={0,1,2}.答案:{0,1,2}7.已知函数f (x )满足f (x )=⎩⎪⎨⎪⎧f (x +2),x <0,2x ,x ≥0,则f (-7.5)的值为________.解析:由题意,得f (-7.5)=f (-5.5)=f (-3.5)=f (-1.5)=f (0.5)=20.5= 2. 答案:28.函数y =a x (-2≤x ≤3)的最大值为2,则a =________. 解析:当0<a <1时,y =a x 在[-2,3]上是减函数,所以y max =a -2=2,得a =22; 当a >1时,y =a x 在[-2,3]上是增函数,所以y max =a 3=2,解得a =32.综上知a =22或32. 答案:22或32 三、解答题9.求不等式a 4x +5>a 2x -1(a >0,且a ≠1)中x 的取值范围. 解:对于a 4x +5>a 2x -1(a >0,且a ≠1),当a >1时,有4x +5>2x -1,解得x >-3;当0<a <1时,有4x +5<2x -1, 解得x <-3.故当a >1时,x 的取值范围为{x |x >-3};当0<a <1时,x 的取值范围为{x |x <-3}.10.若0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值. 解:y =4x -12-3·2x +5=12(2x )2-3·2x +5. 令2x=t ,则1≤t ≤4,y =12(t -3)2+12, 所以当t =3时,y min =12;当t =1时,y max =52. 故该函数的最大值为y max =52,最小值为y min =12. B 级 能力提升1.若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤12,1B.⎝ ⎛⎦⎥⎤0,12 C .[0,1] D .(0,1]解析:依题意-2a 2×(-1)≤1且a +1>1, 解得0<a ≤1.答案:D2.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:因为f (x )的图象过(0,-2),(2,0)且a >1,所以⎩⎨⎧-2=a 0+b ,0=a 2+b ,所以a =3,b =-3,所以f (x )=(3)x -3,f (3)=(3)3-3=33-3.答案:33-33.已知f (x )是定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数的解析式为f (x )=14x -a 2x (a ∈R). (1)试求a 的值;(2)写出f (x )在[0,1]上的解析式;(3)求f (x )在[0,1]上的最大值.解:(1)因为f (x )是定义在[-1,1]上的奇函数,所以f (0)=1-a =0,所以a =1.(2)设x ∈[0,1],则-x ∈[-1,0],所以f (x )=-f (-x )=-⎝ ⎛⎭⎪⎪⎫14-x -12-x =2x -4x . 即当x ∈[0,1]时,f (x )=2x -4x .(3)f (x )=2x -4x=-⎝ ⎛⎭⎪⎫2x -122+14, 其中2x ∈[1,2],所以当2x =1时,f (x )max =0.。

人教A版高中数学必修1课时作业:作业22 2.1.2-1指数函数及其性质(第1课时) Word版含解析

人教A版高中数学必修1课时作业:作业22 2.1.2-1指数函数及其性质(第1课时) Word版含解析

课时作业(二十二)1.下列以x 为自变量的函数中,是指数函数的是( )A.y =(-5)xB.y =e x (e ≈2.718 28)C.y =-5xD.y =πx +2答案 B2.方程3x -1=19的解为( )A.2B.-2C.1D.-1答案 D3.如果对于正数a ,满足a 3>a 5,那么( ) A.a 2<a 3 B.a 0.1<a 0.2C.a -2<a -3D.a -0.1>a -0.2答案 C4.已知3x =10,则这样的x( )A.存在且只有一个B.存在且不只一个C.存在且x<2D.根本不存在答案 A5.若函数y =(p 2-1)x 在(-∞,+∞)上是增函数,则实数p 的取值范围是() A.|p|>1 B.|p|< 2 C.|p|> 2 D.1<|p|< 2答案 C6.下列函数中,在区间(-∞,+∞)上是减函数的是( )A.y =2xB.y =-(13)xC.y =3x +(13)xD.y =-3x答案 D7.右图中的曲线是指数函数的图像,已知a 的值分别取2,43,310,15,则相应于曲线C 1,C 2,C 3,C 4的a 依次为( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43, 2 答案 D8.(2015·山东,文)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a<b<c B.a<c<bC.b<a<cD.b<c<a答案 C9.下列各式正确的是( )A.1.30.1<1B.1.72.5>1.73C.0.3-0.1>1D.1.70.3<0.93.1答案 C10.设14<(14)b <(14)a <1,那么( )A.a a <a b <b aB.a a <b a <a bC.a b <a a <b aD.a b <b a <a a答案 C解析 由已知及函数y =(14)x 是R 上的减函数,得0<a<b<1.由y =a x (0<a<1)的单调性及a<b ,得a b <a a .由0<a<b<1知0<a b <1.∵(a b )a <(a b )0=1.∴a a <b a .故选C.也可采用特殊值法,如果a =13,b =12.11.在同一平面直角坐标系中,函数f(x)=ax 与g(x)=a x 的图像可能是( )答案 B12.(2014·重庆)下列函数为偶函数的是( )A.f(x)=x -1B.f(x)=x 2+xC.f(x)=2x -2-xD.f(x)=2x +2-x答案 D解析 根据偶函数定义f(-x)=f(x)代入验证即可.A 项,f(-x)=-x -1≠f(x);B 项,f(-x)=x 2-x ≠f(x);C 项,f(-x)=2-x -2x =-f(x),属于奇函数;D 项,f(-x)=2-x +2x =f(x),属于偶函数. 13.函数y =3x 与y =(13)x 的图像关于________对称. 答案 y 轴14.y =a x +2+3(a>0且a ≠1)恒过定点________. 答案 (-2,4)15.比较下列各组数的大小.(1)(-1.1)35,(-1.1)57; (2)1.9-π,1.9-3; (3)0.72-3,0.70.3; (4)0.60.4,0.40.6.答案 (1)(-1.1)35>(-1.1)57,(2)1.9-π<1.9-3, (3)0.72-3>0.70.3,(4)0.60.4>0.40.6.16.将下列各数从小到大排列起来:(用序号即可) ①(23)-13,②(35)12,③323,④(25)12,⑤(32)23, ⑥(56)0,⑦(-2)3,⑧(53)-13. 答案 (-2)3<(25)12<(35)12<(53)-13<(56)0<(23)-13<(32)23<323, 即⑦<④<②<⑧<⑥<①<⑤<③.。

(新课标同步辅导)高中数学 2.1.2第1课时 指数函数的图象及性质课时作业(含解析)新人教a版必修1

(新课标同步辅导)高中数学 2.1.2第1课时 指数函数的图象及性质课时作业(含解析)新人教a版必修1

课时作业(十三) 指数函数的图象及性质[学业水平层次]一、选择题1.函数y=2x-1的定义域是( )A.(-∞,0) B.(-∞,0]C.[0,+∞) D.(0,+∞)【解析】由2x-1≥0,得2x≥20,∴x≥0.【答案】 C2.函数f(x)=3x+1的值域为( )A.(-1,+∞) B.(1,+∞)C.(0,1) D.[1,+∞)【解析】∵3x>0,∴3x+1>1,即函数的值域是(1,+∞).【答案】 B3.(2014·重庆高考)下列函数为偶函数的是( )A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD .f (x )=2x +2-x【解析】 四个选项中函数的定义域均为R.对于选项A ,f (-x )=-x -1≠f (x ),且f (-x )≠-f (x ),故该函数为非奇非偶函数;对于选项B ,f (-x )=(-x )2-x =x 2-x ≠f (x ),且f (-x )≠-f (x ),故该函数为非奇非偶函数;对于选项C ,f (-x )=2-x -2x =-(2x -2-x )=-f (x ),故该函数为奇函数;对于选项D ,因为f (-x )=2-x +2x =2x +2-x=f (x ),故该函数为偶函数,故选D.【答案】 D4.(2014·安徽师大附中高一期中)函数y =2|x |的图象是( )【解析】 ∵y =2|x |=⎩⎪⎨⎪⎧2x (x ≥0),⎝ ⎛⎭⎪⎫12x (x <0),故选B. 【答案】 B二、填空题5.函数y =a x -3+3(a >0,且a ≠1)的图象过定点________.【解析】 因为指数函数y =a x (a >0,且a ≠1)的图象过定点(0,1),所以在函数y =ax -3+3中,令x -3=0,得x =3,此时y =1+3=4,即函数y =a x -3+3的图象过定点(3,4).【答案】 (3,4)6.函数y =(k +2)a x +2-b (a >0,且a ≠1)是指数函数,则k =________,b =________.【解析】 由题意可知⎩⎪⎨⎪⎧k +2=1,2-b =0,∴k =-1,b =2.【答案】 -1 27.已知函数f (x )=13x +1+a 为奇函数,则a 的值为________. 【解析】 ∵f (x )为奇函数,∴f (-x )+f (x )=0,即13-x +1+a +13x +1+a =0, ∴2a =-13x +1-13-x +1=-3x+13x +1=-1, ∴a =-12. 【答案】 a =-12三、解答题8.(2014·无锡高一检测)求函数f (x )=3-x -1的定义域、值域.【解】 因为f (x )=3-x -1=⎝ ⎛⎭⎪⎫13x -1,所以函数f (x )=3-x -1的定义域为R.由x ∈R 得⎝ ⎛⎭⎪⎫13x >0,所以⎝ ⎛⎭⎪⎫13x-1>-1, 所以函数f (x )=3-x-1的值域为(-1,+∞). 9.(2014·潍坊高一检测)设f (x )=3x ,g (x )=⎝ ⎛⎭⎪⎫13x. (1)在同一坐标系中作出f (x ),g (x )的图象.(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?【解】 (1)函数f (x ),g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝ ⎛⎭⎪⎫13-1=3,f (π)=3π,g (-π)=⎝ ⎛⎭⎪⎫13-π=3π, f (m )=3m ,g (-m )=⎝ ⎛⎭⎪⎫13-m =3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.[能力提升层次]1.设函数f (x )=⎩⎪⎨⎪⎧2x,x <0,g (x ),x >0.若f (x )是奇函数,则g (2)的值是( ) A .-14 B .-4 C.14D .4 【解析】 当x >0时,-x <0,∴f (-x )=2-x ,即-f (x )=⎝ ⎛⎭⎪⎫12x, ∴g (x )=f (x )=-⎝ ⎛⎭⎪⎫12x , 因此有g (2)=-⎝ ⎛⎭⎪⎫122=-14. 【答案】 A2.(2014·湖北教学合作体期末)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下图2­1­1所示,则函数g (x )=a x +b 的图象( )图2­1­1【解析】 由题图可知0<a <1,b <-1,则g (x )是一个减函数,可排除C ,D ;再根据g (0)=1+b <0,可排除B ,故选A.【答案】 A3.已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值等于________. 【解析】 由已知,得f (1)=2;又当x >0时,f (x )=2x>1,而f (a )+f (1)=0,∴f (a )=-2,且a <0,∴a +1=-2,解得a =-3.【答案】 -34.已知函数f (x )=a x +b (a >0,a ≠1).(1)若f (x )的图象如图2­1­2(1)所示,求a ,b 的值;(2)若f (x )的图象如图2­1­2(2)所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数解,求出m 的范围.(1) (2)图2­1­2【解】 (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,解得a =3,b =-3. (2)由f (x )为减函数可知a 的取值范围为(0,1), 又f (0)=1+b <0,∴b 的取值范围为(-∞,-1).(3)由图(1)可知y =|f (x )|的图象如图所示.由图可知使|f (x 1)|=m 有且仅有一解的m 值为m =0或m ≥3.。

人教A版数学必修一§2.1.2(1)指数函数及其性质(课时练).docx

人教A版数学必修一§2.1.2(1)指数函数及其性质(课时练).docx

§2.1.2(1)指数函数及其性质(课时练)一.选择题:1、函数)1,0(41≠>+=-a a a y x 的图象恒过定点P ,则定点P 的坐标为·················() 、A )5,1( 、B )4,1( 、C )4,0( 、D )0,4(2、函数271312-=-x y 的定义域是················································() 、A ),2(+∞- 、B ),1[+∞- 、C ]1,(--∞ 、D )2,(-∞3、已知1,10-<<<b a ,则函数b a y x +=的图象必定不过····························() 、A 第一象限 、B 第二象限 、C 第三象限 、D 第四象限4、若函数)1,0(1≠>-+=a a b a y x 的图象过第二、三、四象限,则一定有·············() 、A 0,10><<b a 、B 0,1>>b a 、C 0,10<<<b a 、D 0,1<>b a5、设函数⎪⎩⎪⎨⎧≥+<=2,322,2)(x x x x x f x ,若1)(0>x f ,则0x 的取值范围是·····················()、A ),3()2,0(+∞ 、B ),3(+∞ 、C ),2()1,0(+∞ 、D )2,0(二.填空题:6、函数21232x x y --=的定义域为 ;函数2231()2x x y -+=的值域为7、若618.03=a,Z k k k a ∈+∈],1,[,则k 的值是____________.8、直线a y 2=与函数)1,0(1≠>-=a a a y x 图象有两个公共点,则a 范围是______.三.简答题9、若函数)1,0(122≠>-+=a a a a y x x 在区间]1,1[-上的最大值是14,求实数a 的值. 提示:对实数a 进行分类讨论.10、若函数1212)(---⋅=x x a a x f 为奇函数. (1)求函数的定义域; (2)确定实数a 的值;(3)求函数的值域; (4)讨论函数的单调性.提示:利用x2),0(+∞∈,即可求出函数的值域.§2.1.2(1)指数函数及其性质一、选择题:1.A2.B3.A4.C5.A二、填空题:6. 略7. 略8. 略三、解答题:9.略10. 略。

人教A版高中数学第一册(必修1)课时作业:第一课时 指数函数及其图象和性质练习题

人教A版高中数学第一册(必修1)课时作业:第一课时 指数函数及其图象和性质练习题

4.2 指数函数4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 第一课时 指数函数及其图象和性质基础达标一、选择题1.函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( ) A.4 B.1或3 C.3D.1『解 析』由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,得a =3,故选C.『答 案』 C2.已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限『解 析』 ∵0<a <1,b <-1,∴y =a x 的图象过第一、第二象限,经过(0,1),且y =a x 是单调减函数. y =a x +b 的图象可看成是把y =a x 的图象向下平移-b (-b >1)个单位得到的,故函数y =a x +b 的图象经过第二、第三、第四象限,不经过第一象限,故选A. 『答 案』 A3.函数y =8-23-x (x ≥0)的值域是( ) A.『0,8) B.(0,8) C.『0,8』D.(0,8』『解 析』 ∵x ≥0,∴-x ≤0,∴3-x ≤3,∴0<23-x ≤23=8,∴0≤8-23-x <8,∴函数y =8-23-x 的值域为『0,8). 『答 案』 A4.函数y =2x +1的图象是( )『解 析』 当x =0时,y =2,且函数单调递增,故选A. 『答 案』 A5.已知某种细菌在培养过程中,每20 min 繁殖一次,经过一次繁殖1个细菌变成2个,经过3 h ,这种细菌由1个可繁殖成( ) A.511个 B.512个 C.1 023个D.1 024个『解 析』 因为3 h =(9×20)min ,所以这种细菌由1个可繁殖成29=512(个). 『答 案』 B 二、填空题6.若指数函数f (x )=(a -1)x 是R 上的减函数,则a 的取值范围是________. 『解 析』 由题意得0<a -1<1,则1<a <2. 『答 案』 (1,2)7.若函数y =⎝ ⎛⎭⎪⎫12x在『-2,-1』上的最大值为m ,最小值为n ,则m +n =________.『解 析』 由指数函数y =⎝ ⎛⎭⎪⎫12x的图象可知在x =-1处取最小值为2,在x =-2处取最大值为4.∴m +n =6. 『答 案』 68.若函数f (x )=a x -2+1(其中a >0,且a ≠1)的图象经过定点P (m ,n ),则m n =________. 『解 析』 令x -2=0,得x =2,此时f (x )=a 0+1=2,所以f (x )恒过定点(2,2),所以m =2,n =2,m n =1. 『答 案』 1 三、解答题9.已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174.求a ,b 的值.解 由题意得⎩⎪⎨⎪⎧52=2+2a +b,174=22+22a +b ,即⎩⎪⎨⎪⎧2-1=2a +b ,2-2=22a +b ,所以⎩⎪⎨⎪⎧a +b =-1,2a +b =-2,解得⎩⎪⎨⎪⎧a =-1,b =0.10.有一种树栽植5年后可成材.在栽植后5年内,该种树的产量年增长率为20%,如果不砍伐,从第6年到第10年,该种树的产量年增长率为10%,现有两种砍伐方案:甲方案:栽植5年后不砍伐,等到10年后砍伐. 乙方案:栽植5年后砍伐重栽,然后过5年再砍伐一次. 请计算后回答:10年内哪一个方案可以得到较多的木材?解 设该种树的最初栽植量为a ,甲方案在10年后的木材产量为y 1=a (1+20%)5(1+10%)5=a (1.2×1.1)5≈4.01a . 乙方案在10年后的木材产量为 y 2=2a (1+20%)5=2a ·1.25≈4.98a . y 1-y 2=4.01a -4.98a <0, 因此,乙方案能获得更多的木材.能力提升11.已知函数f (x )=⎩⎪⎨⎪⎧1-x -12,x >0,2x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19等于( )A.4B.14C.-4D.-14『解 析』 ∵f ⎝ ⎛⎭⎪⎫19=1-⎝ ⎛⎭⎪⎫19-12=1-3=-2,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=2-2=14. 『答 案』 B12.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x.(1)在同一平面直角坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?解 (1)函数f (x ),g (x )的图象如图所示: (2)f (1)=31=3,g (-1)=⎝ ⎛⎭⎪⎫13-1=3;f (π)=3π,g (-π)=⎝ ⎛⎭⎪⎫13-π=3π;f (m )=3m ,g (-m )=⎝ ⎛⎭⎪⎫13-m=3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.创新猜想13.(多选题)函数y =a x -1a (a >0,a ≠1)的图象可能是( )『解 析』 当a >1时,1a ∈(0,1),因此x =0时,0<y =1-1a <1,且y =a x -1a 在R 上单调递增,故C 符合;当0<a <1时, 1a >1,因此x =0时,y <0,且y =a x -1a 在R 上单调递减,故D 符合.故选CD. 『答 案』 CD14.(多空题)已知函数f (x )为指数函数且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________,f (f (-1))=________.『解 析』 设f (x )=a x (a >0且a ≠1), ∴a -32=39=3-32,∴a =3, ∴f (x )=3x ,∴f (-2)=19,f (-1)=13,f (f (-1))=f ⎝ ⎛⎭⎪⎫13=313=33.『答 案』 1933。

高中数学必修1全册课时训练含答案

高中数学必修1全册课时训练含答案

人教A版高中数学必修1 全册课时训练目录1.1.1(第1课时)集合的含义1.1.1(第2课时)集合的表示1.1.2集合间的基本关系1.1.3(第1课时)并集、交集1.1.3(第2课时)补集及综合应用1.2.1(第1课时)函数的概念1.2.1(第2课时)函数概念的综合应用1.2.2(第1课时)函数的表示法1.2.2(第2课时)分段函数及映射1.3.1(第1课时)函数的单调性1.3.1(第2课时)函数的最大值、最小值1.3.2(第1课时)函数奇偶性的概念1.3.2(第2课时)函数奇偶性的应用集合与函数的概念-单元评估试题2.1.1(第1课时)根式2.1.1(第2课时)指数幂及运算2.1.2(第1课时)指数函数的图象及性质2.1.2(第2课时)指数函数及其性质的应用2.2.1(第1课时)对数2.2.1(第2课时)对数的运算2.2.2(第1课时)对数函数的图象及性质2.2.2(第2课时)对数函数及其性质的应用2.3幂函数基本初等函数-单元评估试题3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2.1几类不同增长的函数模型3.2.2(第1课时)一次函数、二次函数应用举例3.2.2(第2课时)指数型、对数型函数的应用举例函数的应用-单元评估试题第1-3章-全册综合质量评估试卷课时提升卷(一)集合的含义(45分钟 100分)一、选择题(每小题6分,共30分)1.下列各项中,不能组成集合的是( )A.所有的正整数B.等于2的数C.接近于0的数D.不等于0的偶数2.(2013·冀州高一检测)若集合M中的三个元素a,b,c是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.已知集合M具有性质:若a∈M,则2a∈M,现已知-1∈M,则下列元素一定是M中的元素的是( )A.1B.0C.-2D.24.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是( )A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D.a可取除去0和3以外的所有实数5.下列四种说法中正确的个数是( )①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合.A.0B.1C.2D.3二、填空题(每小题8分,共24分)6.(2013·天津高一检测)设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为.7.(2013·济宁高一检测)若集合P含有两个元素1,2,集合Q含有两个元素1,a2,且P,Q相等,则a= .8.若a,b∈R,且a≠0,b≠0,则+的可能取值所组成的集合中元素的个数为.三、解答题(9题,10题14分,11题18分)9.集合A的元素由kx2-3x+2=0的解构成,其中k∈R,若A中的元素只有一个,求k的值.10.数集M满足条件,若a∈M,则∈M(a≠±1且a≠0),已知3∈M,试把由此确定的集合M的元素全部求出来.11.(能力挑战题)设P,Q为两个数集, P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.答案解析1.【解析】选C.怎样才是接近于0的数没有统一的标准,即不满足集合元素的确定性,故选C.2.【解析】选D.由集合元素的互异性可知,a,b,c三个数一定全不相等,故△ABC一定不是等腰三角形.3.【解析】选C.∵-1∈M,∴2×(-1)∈M,即-2∈M.4.【解析】选D.由集合元素的互异性可知,2a≠a2-a,解得a≠0且a≠3,故选D.5.【解析】选A.①中最小数应为0;②中a=0时,- a∈N;③中a+b的最小值应为0;④中“小的正数”不确定.因此①②③④均不对.6.【解析】∵-3∈A,∴-3=2x-5或-3=x2-4x.①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元素的互异性,故x≠1;②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元素的互异性.综上可知x=3.答案:37.【解析】由于P,Q相等,故a2=2,从而a=±.答案:±8.【解题指南】对a,b的取值情况分三种情况讨论求值,即同正,一正一负和同负,以确定集合中的元素,同时注意集合元素的互异性.【解析】当a>0,b>0时,+=2;当ab<0时,+=0;当a<0,b<0时,+=-2.所以集合中的元素为2,0,-2.即集合中元素的个数为3.答案:39.【解析】由题知A中元素即方程kx2-3x+2=0(k∈R)的解,若k=0,则x=,知A中有一个元素,符合题意;若k≠0,则方程为一元二次方程.当Δ=9-8k=0即k=时,kx2-3x+2=0有两个相等的实数解,此时A中有一个元素.综上所述,k=0或.10.【解析】∵a=3∈M,∴==-2∈M,∴=-∈M,∴=∈M,∴=3∈M.再把3代入将重复上面的运算过程,由集合中元素的互异性可知M中含有元素3,-2,-,.【拓展提升】集合中元素互异性的应用集合中的元素是互异的,它通常被用作检验所求未知数的值是否符合题意.只要组成两个集合的元素是一样的,这两个集合就是相等的,与两个集合中元素的排列顺序无关.11.【解析】∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11,共8个.课时提升卷(二)集合的表示(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·临沂高一检测)设集合M={x∈R|x≤3},a=2,则( )A.a∉MB.a∈MC.{a}∈MD.{a}∉M2.集合{x∈N*|x-3<2}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}4.下列集合的表示法正确的是( )A.第二、四象限内的点集可表示为{(x,y)|xy≤0,x∈R,y∈R}B.不等式x-1<4的解集为{x<5}C.整数集可表示为{全体整数}D.实数集可表示为R5.设x=,y=3+π,集合M={m|m=a+b,a∈Q,b∈Q},那么x,y与集合M的关系是( )A.x∈M,y∈MB.x∈M,y∉MC.x∉M,y∈MD. x∉M,y∉M二、填空题(每小题8分,共24分)6.设A={4,a},B={2,ab},若A=B,则a+b= .7.已知集合A={x|∈N,x∈N},则用列举法表示为.8.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A且a∈B,则a 为.三、解答题(9题,10题14分,11题18分)9.用适当的方法表示下列集合:(1)所有被3整除的整数.(2)满足方程x=|x|的所有x的值构成的集合B.10.下面三个集合:A={x|y=x2+1}; B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?11.(能力挑战题)集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},a∈P,b ∈M,设c=a+b,则c与集合M有什么关系?答案解析1.【解析】选B.(2)2-(3)2=24-27<0,故2<3.所以a∈M.2.【解析】选B.集合中元素满足x<5且x∈N*,所以集合的元素有1,2,3,4.3.【解析】选D.A是列举法,B,C是描述法,而D表示该集合含有一个元素,即“x=0”.4.【解析】选D.选项A中应是xy<0;选项B的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x;选项C的“{ }”与“全体”意思重复.5.【解析】选B.∵x==--.y=3+π中π是无理数,而集合M中,b ∈Q,得x∈M,y M.6.【解析】两个集合相等,则两集合的元素完全相同,则有a=2,ab=4,将a=2代入ab=4,得b=2.∴a+b=4.答案:47.【解题指南】结合条件,可按x的取值分别讨论求解.【解析】根据题意,5-x应该是12的正因数,故其可能的取值为1,2,3,4,6,12,从而可得到对应x的值为4,3,2,1,-1,-7.因为x∈N,所以x 的值为4,3,2,1.答案:{1,2,3,4}8.【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).答案:(2,5)9.【解析】(1){x|x=3n,n∈Z}.(2)B={x|x=|x|,x∈R}.【变式备选】集合A={x2,3x+2,5y3-x},B={周长为20cm的三角形},C={x|x-3<2,x∈Q},D={(x,y) |y=x2-x-1}.其中用描述法表示的集合个数为( ) A.1 B.2 C.3 D.4【解析】选C.集合A为列举法表示集合,集合B,C,D均为描述法表示集合,其中B选项省略了代表元素和竖线.10.【解析】(1)在A,B,C三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A的代表元素是x,满足y=x2+1,故A={x|y=x2+1}=R.集合B的代表元素是y,满足y=x2+1,所以y≥1,故B={y|y=x2+1}={y|y≥1}.集合C的代表元素是(x,y),满足条件y=x2+1,即表示满足y=x2+1的实数对(x,y);也可认为是满足条件y=x2+1的坐标平面上的点.【拓展提升】三种集合语言的优点及应用集合语言包括符号语言、图形语言和自然语言三种.(1)符号语言比较简洁、严谨且内涵丰富有利于推理计算.(2)图形语言能够引起直观的视觉感受,便于理清关系,有利于直观地表达概念、定理的本质及相互关系,使得抽象的思维关系明朗化. (3)自然语言往往比较生动,能将问题研究对象的含义更加明白地叙述出来.集合的三种语言之间相互转化,在解决集合问题时,一般是将符号语言转化为图形语言、自然语言,这样有助于弄清集合是由哪些元素构成的,有助于提高分析问题和解决问题的能力.11.【解析】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.课时提升卷(三)集合间的基本关系(45分钟 100分)一、选择题(每小题6分,共30分)1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0=∅2.(2013·宝鸡高一检测)如果M={x|x+1>0},则( )A.∅∈MB.0MC.{0}∈MD.{0}⊆M3.(2013·长沙高一检测)已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个4.设A={a,b},B={x|x∈A},则( )A.B∈AB.B AC.A∈BD.A=B5.(2013·潍坊高一检测)设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2二、填空题(每小题8分,共24分)6.(2013·汕头高一检测)已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m= .7.已知集合A={x|x<3},集合B={x|x<m},且A B,则实数m满足的条件是.8.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P 的关系为.三、解答题(9题,10题14分,11题18分)9.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,求a,b的值.10.已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围.(2)若B⊆A,求a的取值范围.11.(能力挑战题)已知A={x||x-a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B?若存在,求出对应的a的值;若不存在,说明理由.答案解析1.【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.【解析】选D.M={x|x+1>0}={x|x>-1},∴{0}⊆M.3.【解析】选C.由题意知,x=-2或2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.4.【解析】选D.因为集合B中的元素x∈A,所以x=a或x=b,所以B={a,b},因此A=B.5.【解析】选D.∵A⊆B,∴a≥26.【解析】∵B⊆A,∴m2=2m-1,∴m=1.答案:17.【解析】将数集A标在数轴上,如图所示,要满足A B,表示数m的点必须在表示3的点的右边,故m>3.答案: m>38.【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.答案:M=P9.【解析】由B⊆A知,B中的所有元素都属于集合A,又B≠ ,故集合B有三种情形:B={-1}或B={1}或B={-1,1}.当B={-1}时,B={x|x2+2x+1=0},故a=-1,b=1;当B={1}时,B={x|x2-2x+1=0},故a=b=1;当B={-1,1}时,B={x|x2-1=0},故a=0,b=-1.综上所述,a,b的值为或或10.【解题指南】利用数轴分析法求解.【解析】(1)若A B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.11.【解析】不存在.要使对任意的实数b都有A⊆B,所以1,2是A中的元素,又∵A={a-4,a+4},∴或这两个方程组均无解,故这样的实数a不存在.课时提升卷(四)并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(2013·衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C 之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M ∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(2013·本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(2013·德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B=∅,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(2012·新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(2013·清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(2013·西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A ∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.4.【解析】选B.∵A∩B= ,∴结合数轴分析可知应满足的条件是p≥1. 【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0, 解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷(五)补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则ð(A∪B)=( )UA.{1,4}B.{1,5}C.{2,4}D.{2,5}2.已知全集U=R,集合A={x|-1≤x≤2},B={x|x<1},则A∩(ðB)=( )RA.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.ðB⊆UðA B.(UðA)∪(UðB)=UUC.A∩ðB=∅ D.B∩UðA=∅U4.设全集U(U≠∅)和集合M,N,P,且M=UðN,N=UðP,则M与P的关系是( )A.M=ðP B.M=PUC.M PD.M P5.(2013·广州高一检测)如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(ðA∩B)∩C B.(IðB∪A)∩CIC.(A∩B)∩ðC D.(A∩IðB)∩CI二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A∩(ðB)= .N7.已知全集为R,集合M={x∈R|-2<x<2},P={x|x≥a},并且M⊆ðP,则Ra的取值范围是.8.设集合A,B都是U={1,2,3,4}的子集,已知(ðA)∩(UðB)={2},(UðA)U∩B={1},且A∩B=∅,则A= .三、解答题(9题,10题14分,11题18分)9.(2013·济南高一检测)已知全集U=R,集合A={x|1≤x≤2},若B∪ðA=R,RB∩ðA={x|0<x<1或2<x<3},求集合B.R10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且AðB,求a的取值范R围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(ðA)∩B=∅,求m的值.U答案解析1.【解析】选C.由题知U={1,2,3,4,5},A∪B={1,3,5},故ð(A∪B)={2,4}.U2.【解析】选D.∵B={x|x<1},∴ðB={x|x≥1},R∴A∩ðB={x|1≤x≤2}.R3.【解析】选D.逐一进行验证.ðB={1,2,4,6,7},UðA={2,4, 6},显然UðAU⊆ðB,显然A,B错误;A∩UðB={1,7},故C错误,所以只有D正确.U4.【解析】选B.利用补集的性质:M=ðN=Uð(UðP)=P,所以M=P.U【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A是B相对于全集U 的补集,那么,集合B也是A相对于全集U的补集.同时A与B没有公共元素,且它们的并集正好是全集,即A∪B=U,A∩B= .5.【解析】选D.由图可知阴影部分是A的元素,且是C的元素,但不属于B,故所表示的集合是(A∩ðB)∩C.I6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴ðB={1,2,4,5,7,8,…}.N∴A∩ðB={1,5,7}.N答案:{1,5,7}7.【解析】M={x|-2<x<2},ðP={x|x<a}.R∵M⊆ðP,∴由数轴知a≥2.R答案:a≥28.【解析】根据题意画出Venn图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x≤2},∴ðA={x|x<1或x>2}.R又B∪ðA=R,A∪RðA=R,可得A⊆B.R而B∩ðA={x|0<x<1或2<x<3},R∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用AðB,对A=∅与A≠∅进行R分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题. 【解析】ðB={x|x≤1或x≥2}≠∅,R∵AðB.R∴分A=∅和A≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a≥2.(2)若A≠∅,则有或∴a≤1.综上所述,a≤1或a≥2.11.【解题指南】本题中的集合A,B均是一元二次方程的解集,其中集合B中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(ðA)∩B=∅对集合A,B的关系进行转化.U【解析】A={-2,-1},由(ðA)∩B=∅,得B⊆A,U∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且ðA⊆RðB,R求实数a的取值集合.【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又ðA⊆RðB,R∴B⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3; 当B= 时,有a=0,∴实数a的取值集合为{0,2,3}.课时提升卷(六)函数的概念(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U=R,集合A=[3,7),B=(2,10),则ð(A∩B)=( )RA.[3,7)B.(-∞,3)∪[7,+∞)C.(-∞,2)∪[10,+∞)D.2.(2013·西安高一检测)下列式子中不能表示函数y=f(x)的是( )A.x=y2+1B.y=2x2+1C.x-2y=6D.x=3.(2013·红河州高一检测)四个函数:(1)y=x+1.(2)y=x3.(3)y=x2-1.(4)y=.其中定义域相同的函数有( )A.(1),(2)和(3)B.(1)和(2)C.(2)和(3)D.(2),(3)和(4)4.下列集合A到集合B的对应f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值5.(2013·盘锦高一检测)函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=( )A.[-2,+∞)B.[-2,2)C.(-2,2)D.(-∞,2)二、填空题(每小题8分,共24分)6.若[a,3a-1]为一确定区间,则a的取值范围是.7.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.8.函数f(x)定义在区间[-2,3]上,则y=f(x)的图象与直线x=a的交点个数为.三、解答题(9题,10题14分,11题18分)9.(2013·烟台高一检测)求下列函数的定义域.(1)y=+.(2)y=.10.已知函数f(x)=,(1)求f(x)的定义域.(2)若f(a)=2,求a的值.(3)求证:f()=-f(x).11.(能力挑战题)已知函数y=(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.答案解析1.【解析】选B.∵A∩B=[3,7),∴ð(A∩B)=(-∞,3)∪[7,+∞).R2.【解析】选A.一个x对应的y值不唯一.3.【解析】选A.(1),(2)和(3)的定义域都是R,(4)的定义域是{x∈R|x≠0}.4.【解析】选A.按照函数定义,选项B中,集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.【解析】选B.由题意得M=(-∞,2),N=[-2,+∞),所以M∩N=(-∞,2)∩[-2,+∞)=[-2,2).6.【解析】由题意3a-1>a,则a>.答案:(,+∞)【误区警示】本题易忽略区间概念而得出3a-1≥a,则a≥的错误.7.【解析】观察函数图象可知f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]【举一反三】本题中求与x的两个值对应的y值的范围.【解析】由函数图象可知y值的范围是[2,4].8.【解题指南】根据函数的定义,对应定义域中的任意一个自变量x 都有唯一的函数值与之对应.利用此知识可以结合函数图象分析. 【解析】当a∈[-2,3]时,由函数定义知,y=f(x)的图象与直线x=a只有一个交点;当a [-2,3]时,y=f(x)的图象与直线x=a没有交点.答案:0或19.【解析】(1)由已知得∴函数的定义域为[-,].(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞).10.【解析】(1)要使函数f(x)=有意义,只需1-x2≠0,解得x≠±1,所以函数的定义域为{x|x≠±1}.(2)因为f(x)=,且f(a)=2,所以f(a)==2,即a2=,解得a=±.(3)由已知得f()==,-f(x)=-=,∴f()=-f(x).11.【解题指南】由题意得,(-∞,1]是函数y=的定义域的子集. 【解析】函数y=(a<0且a为常数).∵ax+1≥0,a<0,∴x≤-,即函数的定义域为(-∞,-].∵函数在区间(-∞,1]上有意义,∴(-∞,1] (-∞,-],∴-≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).关闭Word文档返回原板块。

人教A版高中数学必修1课时练习指数函数的概念图象与性质

人教A版高中数学必修1课时练习指数函数的概念图象与性质

课时练习(二十五) 指数函数的概念、图象与性质(建议用时:60分钟)[合格基础练]一、选择题1.若函数y =(a 2-4a +4)a x是指数函数,则a 的值是( ) A .4 B .1或3 C .3D .1C [由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.]2.函数y =⎝ ⎛⎭⎪⎫12x(x ≥8)的值域是( ) A .RB.⎝ ⎛⎦⎥⎤0,1256C.⎝⎛⎦⎥⎤-∞,1256 D.⎣⎢⎡⎭⎪⎫1256,+∞B [因为y =⎝ ⎛⎭⎪⎫12x在[8,+∞)上单调递减,所以0<⎝ ⎛⎭⎪⎫12x≤⎝ ⎛⎭⎪⎫128=1256.]3.函数y =2x-1的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞)D .(0,+∞)C [由2x-1≥0得2x≥1,即x ≥0,∴函数的定义域为[0,+∞),选C.] 4.当a >0,且a ≠1时,函数f (x )=a x +1-1的图象一定过点( )A .(0,1)B .(0,-1)C .(-1,0)D .(1,0)C [∵f (-1)=a-1+1-1=a 0-1=0,∴函数必过点(-1,0).]5.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )A B C DA [当a >1时,函数f (x )=a x单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A.]二、填空题6.函数f (x )=3x -1的定义域为________.[1,+∞) [由x -1≥0得x ≥1,所以函数f (x )=3x -1的定义域为[1,+∞).] 7.已知函数f (x )=a x+b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________.7 [由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝ ⎛⎭⎪⎫12x +3,所以f (-2)=⎝ ⎛⎭⎪⎫12-2+3=4+3=7.]8.若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数f (x )的值域是________.(-1,0)∪(0,1) [由x <0,得0<2x<1;由x >0, ∴-x <0,0<2-x<1, ∴-1<-2-x<0.∴函数f (x )的值域为(-1,0)∪(0,1).] 三、解答题 9.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝ ⎛⎭⎪⎫2,12,其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解] (1)因为函数图象经过点⎝ ⎛⎭⎪⎫2,12, 所以a2-1=12,则a =12. (2)由(1)知函数为f (x )=⎝ ⎛⎭⎪⎫12x -1(x ≥0),由x ≥0,得x -1≥-1.于是0<⎝ ⎛⎭⎪⎫12x -1≤⎝ ⎛⎭⎪⎫12-1=2, 所以函数的值域为(0,2].10.已知f (x )=9x-2×3x+4,x ∈[-1,2]. (1)设t =3x,x ∈[-1,2],求t 的最大值与最小值; (2)求f (x )的最大值与最小值.[解] (1)设t =3x ,∵x ∈[-1,2],函数t =3x在[-1,2]上是增函数,故有13≤t ≤9,故t 的最大值为9,t 的最小值为13.(2)由f (x )=9x-2×3x+4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.[等级过关练]1.函数y =a-|x |(0<a <1)的图象是( )A B C DA [y =a-|x |=⎝ ⎛⎭⎪⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a >1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.]2.若a >1,-1<b <0,则函数y =a x+b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限A [∵a >1,且-1<b <0,故其图象如图所示.]3.已知函数y =⎝ ⎛⎭⎪⎫13x在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.12 [∵y =⎝ ⎛⎭⎪⎫13x在R 上为减函数,∴m =⎝ ⎛⎭⎪⎫13-1=3,n =⎝ ⎛⎭⎪⎫13-2=9,故m +n =12.] 4.函数f (x )=3x 3x +1的值域是________.(0,1) [函数y =f (x )=3x3x +1,即有3x =-y y -1,由于3x>0,则-y y -1>0,解得0<y <1,值域为(0,1).]5.已知函数f (x )=a x+b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围.[解] (1)由f (x )为减函数可知a 的取值范围为(0,1), 又f (0)=1+b <0,所以b 的取值范围为(-∞,-1). (2)由图②可知,y =|f (x )|的图象如图所示.由图象可知使|f(x)|=m有且仅有一解的m值为m=0或m≥3.。

人教A版数学必修一§2.1.2(1)指数函数及其性质(课时练)

人教A版数学必修一§2.1.2(1)指数函数及其性质(课时练)

高中数学学习材料金戈铁骑整理制作§2.1.2(1)指数函数及其性质(课时练)一.选择题:1、函数)1,0(41≠>+=-a a a y x 的图象恒过定点P ,则定点P 的坐标为·················() 、A )5,1( 、B )4,1( 、C )4,0( 、D )0,4(2、函数271312-=-x y 的定义域是················································() 、A ),2(+∞- 、B ),1[+∞- 、C ]1,(--∞ 、D )2,(-∞3、已知1,10-<<<b a ,则函数b a y x +=的图象必定不过····························() 、A 第一象限 、B 第二象限 、C 第三象限 、D 第四象限4、若函数)1,0(1≠>-+=a a b a y x 的图象过第二、三、四象限,则一定有·············() 、A 0,10><<b a 、B 0,1>>b a 、C 0,10<<<b a 、D 0,1<>b a5、设函数⎪⎩⎪⎨⎧≥+<=2,322,2)(x x x x x f x ,若1)(0>xf ,则0x 的取值范围是·····················()、A ),3()2,0(+∞ 、B ),3(+∞ 、C ),2()1,0(+∞ 、D )2,0(二.填空题:6、函数21232x x y --=的定义域为 ;函数2231()2x x y -+=的值域为7、若618.03=a ,Z k k k a ∈+∈],1,[,则k 的值是____________.8、直线a y 2=与函数)1,0(1≠>-=a a a y x 图象有两个公共点,则a 范围是______.三.简答题9、若函数)1,0(122≠>-+=a a a a y x x 在区间]1,1[-上的最大值是14,求实数a 的值. 提示:对实数a 进行分类讨论.10、若函数1212)(---⋅=x x a a x f 为奇函数. (1)求函数的定义域; (2)确定实数a 的值;(3)求函数的值域; (4)讨论函数的单调性.提示:利用x2),0(+∞∈,即可求出函数的值域.§2.1.2(1)指数函数及其性质一、选择题:1.A2.B3.A4.C5.A二、填空题:6. 略7. 略8. 略三、解答题:9.略10. 略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升卷(十六)
指数函数的图象及性质
(45分钟 100分)
一、选择题(每小题6分,共30分)
1.若函数y=(2a-3)x是指数函数,则a的取值范围是( )
A.a>
B.a>,且a≠2
C.a<
D.a≠2
2.指数函数y=f(x)的图象经过点(-2,),那么f(4)·f(2)等于( )
A.8
B.16
C.32
D.64
3.(2013·黄冈高一检测)已知集合M={y|y=-x2+2,x∈R},集合
M)∩N=( )
N={y|y=2x,0≤x≤2},则(
R
A.[1,2]
B.(2,4]
C.[1,2)
D.[2,4)
4.当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是( )
A.a>2
B.1<a<2
C.a>1
D.a∈R
5.(2012·四川高考)函数y=a x-(a>0,a≠1)的图象可能是( )
二、填空题(每小题8分,共24分)
6.已知函数f(x)=则f(2)+f(-2)= .
7.(2012·山东高考改编)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x2在[0,+∞)上是增函数,则a= .
8.(2013·长沙高一检测)关于下列说法:
(1)若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1}.
(2)若函数y=的定义域是{x|x≥2},则它的值域是{y|y≤}.
(3)若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|0<x≤2}.
其中不正确的说法的序号是.
三、解答题(9题,10题14分,11题18分)
9.已知函数f(x)=a x+b(a>0,且a≠1).若f(x)的图象如图所示,求a,b 的值.
10.(2013·长春高一检测)已知函数f(x)=a x-1(x≥0)的图象经过点(2,),其中a>0且a≠1.
(1)求a的值.
(2)求函数y=f(x)(x≥0)的值域.
11.(能力挑战题)已知函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=.
(1)求a的值.
(2)证明f(x)+f(1-x)=1.
(3)求f()+f()+f()+…+f()的值.
答案解析
1.【解析】选B.由题意得2a-3>0,且2a-3≠1,
所以a>,且a≠2.
2.【解析】选D.设f(x)=a x(a>0且a≠1),
由已知得=a-2,a2=4,
所以a=2,
于是f(x)=2x,
所以f(4)·f(2)=24·22=26=64.
3.【解析】选B.由题可知M=(-∞,2],N=[1,4],

R M=(2,+∞),(
R
M)∩N=(2,4].
【变式备选】若集合M={y|y=2-x},P={y|y=},则M∩P等于( ) A.{y|y>1} B.{y|y≥1}
C.{y|y>0}
D.{y|y≥0}
【解析】选C.y=2-x的值域为{y|y>0},y=的值域为{y|y≥0},因此,其交集为{y|y>0}.故选C.
4.【解题指南】结合指数函数的图象,若x>0时,(a-1)x<1恒成立,则必有0<a-1<1,进而求解.
【解析】选B.∵x>0时,(a-1)x<1恒成立,∴0<a-1<1,∴1<a<2.
5.【解析】选D.当a>1时,y=a x-在R上为增函数,且与y轴的交点为(0,1-),又0<1-<1,故排除A,B.
当0<a<1时,y=a x-在R上为减函数,且与y轴的交点为(0,1-),又1-<0,故选D.
6.【解析】f(2)+f(-2)=22+3-2=.
答案:
【举一反三】若对于本题中的函数f(x),有f(a)=16,试求a的值.【解析】当a≤1时,f(a)=3a≤3<16,
故a>1,此时有f(a)=2a=16,所以a=4.
7.【解析】当a>1时,有a2=4,a-1=m,此时a=2,m=,此时g(x)=-x2在[0,+∞)上是减函数,不合题意.若0<a<1,则a-1=4,a2=m,故a=,m=,检验知
符合题意.
答案:
8.【解题指南】解答本题一方面要注意利用函数的单调性由定义域求值域,由值域求定义域;另一方面要注意结合函数的图象,弄清楚函数值与自变量的关系.
【解析】(1)不正确.由x≤0得0<2x≤20=1,值域是{y|0<y≤1}.
(2)不正确.由x≥2得0<≤,值域是{y|0<y≤}.
(3)不正确.由2x≤4=22得x≤2,所以若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|x≤2}.
答案:(1)(2)(3)
9.【解析】由图象得,点(2,0),(0,-2)在函数f(x)的图象上,所以
解得
10.【解析】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(2,),
∴=a2-1,∴a=.
(2)由(1)知f(x)=()x-1=2·()x,
∵x≥0,
∴0<()x≤()0=1,
∴0<2·()x≤2,
∴函数y=f(x)(x≥0)的值域为(0,2].
11.【解析】(1)函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,
∴a+a2=20,得a=4或a=-5(舍去).
(2)由(1)知f(x)=,
∴f(x)+f(1-x)=+
=+
=+
=+=1.
(3)由(2)知f()+f()=1,
f()+f()=1,…,
f()+f()=1,
∴f()+f()+f()+…+f()
=++…+=1+1+…+1=1 006.
关闭Word文档返回原板块。

希望对大家有所帮助,多谢您的浏览!。

相关文档
最新文档