z变换 离散系统分析实验报告

合集下载

实验6-离散时间系统的z域分析

实验6-离散时间系统的z域分析

实验6-离散时间系统的z域分析实验6 离散时间系统的z 域分析一、实验目的1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。

2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理1. Z 变换序列x(n)的z 变换定义为()()nn X z x n z+∞-=-∞=∑Z 反变换定义为11()()2n rx n X z z dz jπ-=⎰Ñ在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换:Z=ztrans(F) 求符号表达式F 的z 变换。

F=ilaplace(Z) 求符号表达式Z 的z 反变换。

2.离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换()()nn H z h n z+∞-=-∞=∑此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到()()/()H z Y z X z =由上式描述的离散时间系统的系统函数可以表示为101101()MM NN b b z b z H z a a z a z ----+++=+++……3.离散时间系统的零极点分析离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。

在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为:zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。

zplane(z,p) z,p 为零极点序列(列向量)。

系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性:①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

数字信号处理实验离散系统的Z域分析

数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。

∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。

3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

实验三离散系统地Z域分析报告

实验三离散系统地Z域分析报告

实验三、 离散系统的Z 域分析(一)实验要求1)学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义; 2)深入理解离散系统频率特性的对称性和周期性; 3)认识离散系统频率特性与系统参数之间的关系;4)通过阅读、修改并调试本实验系统所给源程序,加强计算机编程能力;(二)实验内容1、计算差分方程(1)用MATLAB 计算差分方程当输入序列为 时的输出结果。

MATLAB 程序如下: N=41;a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; h=filter(a,b,x); stem(k,h)xlabel('n');ylabel('h(n)')请给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。

(说明:y=filter(a,b,x),计算系统对输入信号向量x 的零状态响应输出信号向量y,x 与y 长度相等,其中a 和b 是∑∑-=-Mii Nii i n x b i n y a )()(所给差分方程的相量。

详见教材P25-27)2、用MATLAB 计算差分方程所对应的系统函数的FT 。

差分方程所对应的系统函数为:1231230.80.440.360.02()10.70.450.6z z z H z z z z -------++=+--其FT 为23230.80.440.360.02()10.70.450.6j j j j j j j e e e H ee e e ωωωωωωω--------++=+--用MATLAB 计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部')xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2); plot(w/pi,imag(h));grid title('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3); plot(w/pi,abs(h));grid title('幅度谱')xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4);plot(w/pi,angle(h));grid title('相位谱')xlabel('\omega/\pi');ylabel('弧度')(说明:freqz 为计算数字滤波器H(z)的频率响应函数。

信号实验离散系统的Z域分析

信号实验离散系统的Z域分析

信号实验离散系统的Z域分析上机实验8 离散系统的Z域分析⼀.实验⽬的1. 掌握离散时间信号的Z变换和Z逆变换的实现⽅法与编程思想。

2. 掌握系统频率响应函数幅频特性、相频特性和系统函数的零极点图的绘制⽅法。

3. 了解函数ztrans,iztrans,zplane,dimpulse,dstep和freqz的调⽤格式及作⽤。

4. 了解利⽤零极点图判断系统稳定性的原理。

⼆.实验原理离散系统的分析⽅法可分为时域解法和变换域解法两⼤类。

其中离散系统变换域解法只有⼀种。

即Z变换域解法。

Z变换域没有物理意义,它只是⼀种数学⼿段,之所以在离散系统的分析中引⼊Z变换的概念,就是要像在连续系统分析是引⼊拉⽒变换⼀样,简化分析⽅法和过程,为系统的分析研究提供⼀条新的途径。

这种⽅法的数学描述为Z变换及其逆变换,这种⽅法称为离散信号与系统的Z域分析法。

三.实验内容:验证性试验1 Z变换确定信号f1(n)=n3U(n),f2(n)=cos(2n)U(n)的Z变换。

程序:%确定信号的Z变换syms n zf1=3^n;f1_z=ztrans(f1)f2=cos(2*n);f2_z=ztrans(f2)结果:f1_z =z/(z - 3)f2_z =(z*(z - cos(2)))/(z^2 - 2*cos(2)*z + 1)2 Z反变换已知离散LTI系统的激励函数为f(k)=(-1)^kU(k),单位序列响应h(k)=(1/3*(-1)^k+2/3*3^k)U(k),采⽤变换域分析法确定系统的零状态响应程序:syms k zf=(-1)^k;f_z=ztrans(f);h=1/3*(-1)^k+2/3*3^k;h_z=ztrans(h);yf_z=f_z*h_z;yf=iztrans(yf_z)结果:yf =(5*(-1)^n)/6 + 3^n/2 + ((-1)^n*(n - 1))/3计算1/((1+5*z^(-1))*(1-2*z^(-1))^2),|z|>5的反变换程序:num=[0,1];den=poly([-5,1,1]);[r,p,k]=residuez(num,den)结果:r =-0.1389 + 0.0000i-0.0278 - 0.0000i0.1667 + 0.0000ip =-5.0000 + 0.0000i1.0000 + 0.0000i1.0000 - 0.0000ik = []3采⽤MATLAB语⾔编程,绘制离散LTI系统函数的零极点图,并从零极点图判断系统的稳定性。

z变换实验报告

z变换实验报告

南昌大学实验报告(信号与系统)学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/6/1 实验成绩:Z变换、离散时间系统的Z域分析一、实验目的1、学会用matlab求解z变换与逆z变换。

2、学会离散系统零极点分布图的绘制,理解离散系统零极点分布图的含义。

3、求解离散系统的频率响应特性。

二、实验说明1、一离散系统的差分方程为y(n)-by(n-1)=x(n),若激励为x(n)=a n u(n),起始值y(-1)=0,求响应y(n)。

2、当H(s)极点位于z平面中各方框附近的位置,画出对应的h(n)波形填入方框中。

3、求系统差分方程为y(n)-1.1y(n-1)+0.7y(n-2)=x(n-1),的系统的频率响应特性。

三、实验内容1、syms n a b z%定义符号n a b zx=a^n; %定义激励信号X=ztrans(x); %计算激励信号的变换H=1/(1-b*z^(-1)); %写出系统z变换式Y=H*X; %计算输出的变换式y1=iztrans(Y); %计算输出时域表达式y=simplify(y1) %化简表达式2、pos=[26,19,18,17,24,27,13,11,9,23,28,7,4,1,22];figure,id=1; %生成新图框,子图id初始化为1for r=0.8:0.2:1.2 %极点的幅度依次为0.8,1.0,1.2for theta=0:pi/4:pi %极点的弧度依次为0,Π/4,Π/2,3Π/4,Πp=r*exp(j*theta);if theta~=0&theta~=pip=[p;p']; %如果极点不在实轴上添加一个共轭极点end[b a]=zp2tf([],p,1); %由零极点得到传递函数subplot(4,7,pos(id));[h,t]=impz(b,a,20); %计算20个点的单位样值响应stem(t,h,'k-','MarkerSize',5);%绘制单位样值响应id=id+1; %子图序号加1end%退出弧角循环end%退出幅度循环3、a=[1,-1.1,0.7];b=[0,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a) %绘制频率特性4、a=[1,-1.1,0.6];b=[0.6,-1.1,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a); %绘制频率响应n=[0:40]'; %生成时间点x1=sin(0.1*pi*n); %生成单频信号x2=0*n; %准备方波信号x2(mod(n,10)<5)=1; %生成周期为10的方波信号y1=filter(b,a,x1); %分别对两个信号滤波y2=filter(b,a,x2);figuresubplot(2,1,1),stem(n,x1); %绘制单频信号及其输出波形subplot(2,1,2),stem(n,y1);figuresubplot(2,1,1),stem(n,x2); %绘制方波信号及其输出波形subplot(2,1,2),stem(n,y2);四、实验结果1、y =(a^(1+n)-b^(1+n))/(a-b)2、输出波形如下3、输出波形如下:4、输出波形如下:五、实验总结通过本次实验的学习,对离散系统有了更多的了解,通过用matlab画出离散系统的零极点分布图,使我对离散系统的零极点分布与其对用的频响特性有了深刻的了解;同时对全通网络的相频失真有了进一步了解,幅度没有失真,但对不同的频率信号的相移不同,因此单频信号输入时,其输出信号的波形没有失真,只是整个波形发生了移位,但对于方波信号,由于其中包含了各种频率的信号,因此不同频率的信号相频失真不同,因此输出波形不再是方波。

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。

离散时间系统是指信号的取样点在时间上离散的系统。

而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。

Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。

Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。

通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。

系统的传递函数是指系统的输出与输入之间的关系。

在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。

通过Z变换可以对离散时间系统进行频域分析。

频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。

频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。

Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。

其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。

这个性质说明Z变换对线性系统是可加性的。

2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。

这个性质说明Z变换对系统的时移(时延)是敏感的。

3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种将离散时间信号转换为复平面上的函数的数学工具。

它在离散时间系统的分析和设计中起着重要的作用。

本文将介绍Z变换的定义、性质,以及如何利用Z变换分析离散时间系统。

1.Z变换的定义:Z变换可以将离散时间信号转换为复平面上的函数。

假设有一个离散时间信号x[n],经过Z变换得到的函数为X(z)。

其定义为:X(z)=Z{x[n]}=∑(x[n]*z^(-n))其中,z是复变量,n为离散时间点。

2.Z变换的性质:Z变换具有许多重要的性质,其中一些性质与连续时间傅里叶变换类似,另一些则是离散时间系统的特有性质。

(1)线性性质:如果x1[n]和x2[n]是离散时间信号,a和b是常数,则有:Z{a*x1[n]+b*x2[n]}=a*X1(z)+b*X2(z)(2)平移性质:如果x[n]的Z变换是X(z),那么x[n-m]的Z变换是z^(-m)*X(z)。

这意味着在离散时间域上的平移,在Z变换域上相当于乘以z的负幂次。

(3)初值定理和终值定理:如果x[n]的Z变换是X(z),则有:x[0] = lim(z->∞) X(z)x[-1] = lim(z->0) X(z)(4)共轭对称性:如果x[n]的Z变换是X(z),那么x*[n](x[n]的共轭)的Z变换是X*(z)(X(z)的共轭)。

(5)频率抽样定理:如果x(t)是带限信号,那么它的频谱可以通过对x[n]进行离散化来获得,即X(jω)=X(e^(jωT)),其中T是采样间隔。

3.离散时间系统的分析:利用Z变换,可以对离散时间系统进行分析和设计。

通常,我们可以将离散时间系统看作是一个线性差分方程,通过对该差分方程进行Z变换,可以得到系统的传输函数H(z)。

离散时间系统的输入输出关系可以表示为:Y(z)=H(z)*X(z)其中,Y(z)为输出信号,X(z)为输入信号,H(z)为系统的传输函数。

通过分析传输函数H(z),我们可以确定系统的稳定性、频率响应、相位特性等。

实验四 离散时间系统的z域分析

实验四 离散时间系统的z域分析

离散系统的频率响应(P276) 离散系统的频率响应(P276)
例7:已知某离散系统的系统函数为:
5 / 4(1 − z −1 ) H ( z) = , 画出其幅频和相频曲线(P281例) −1 1 − 1/ 4 z clear all; b=[5/4 -5/4]; a=[1 -1/4]; [h,w]=freqz(b,a,400,'whole'); hf=abs(h); hx=angle(h); figure(1),clf; subplot(2,1,1),plot(w,hf),title('幅频特性曲线') subplot(2,1,1),plot(w,hf),title('幅频特性曲线') subplot(2,1,2),plot(w,hx),title('相频特性曲线') subplot(2,1,2),plot(w,hx),title('相频特性曲线') 见shiyan4_5 figure(2) freqz(b,a,'whole')
的冲激响应时域波形
见shiyan4_4
结论( 结论(p328) )
离散系统单位序列响应h(n)的时域特性完全由系统函数 离散系统单位序列响应h(n)的时域特性完全由系统函数H(Z)的极点 的时域特性完全由系统函数H(Z)的极点 位置决定; 位置决定; 极点: 极点:
位于Z平面单位圆内的极点决定了h(n)随时间衰减的序列分量 位于Z平面单位圆内的极点决定了h(n)随时间衰减的序列分量; 随时间衰减的序列分量; 位于Z平面单位圆上的极点决定了h(n)的稳态序列分量 位于Z平面单位圆上的极点决定了h(n)的稳态序列分量; 的稳态序列分量; 位于Z平面单位圆外的极点决定了h(n)随时间增长的序列分量; 位于Z平面单位圆外的极点决定了h(n)随时间增长的序列分量; 随时间增长的序列分量 H(Z) 的实极点决定了h(n)的按指数规律变化的序列分量; 的实极点决定了h(n)的按指数规律变化的序列分量 的按指数规律变化的序列分量; H(Z) 的共轭极点决定了h(n)的按指数规律振荡的序列分量; 的共轭极点决定了h(n)的按指数规律振荡的序列分量 的按指数规律振荡的序列分量;

02-Z变换及离散时间系统分析-电脑阅读版

02-Z变换及离散时间系统分析-电脑阅读版

4
第二讲
z变换的定义
一个离散序列
x(n)的z变换(双边)定义为
n
X ( z ) ZT [ x(n )]


x(n) z n
其中z为复变量,以其实部为横坐标,虚部为纵坐标构成的
平面为 z 平面。常用ZT[x(n)]表示对序列x(n)的z变换。
单边
z 变换:

单边
z 变换只是对单边序列(n≥0部分)进行变换的z变换, 其定义为
r lim n an
n
r < 1 级数收敛 r > 1 级数发散
2016年9月21日星期三
11
上海交通大学 机械系统与振动国家重点实验室
第二讲
z变换的收敛域
4种典型序列的收敛域讨论
有限长序列 右边序列 左边序列 双边序列
0
Im[ z]
R
R Re[ z]
收敛域分别是以 R , R 为半径的两个圆组成的环状域,R , R 称收敛半径, R 可以大到无穷大, R 小到0
en0 u (n)
X ( z)
1 z 1 z 2 z e0 2 z e 0 z sinh 0 2 ; z 2 z cosh 0 1
z max( e0 , e 0 )
上海交通大学 机械系统与振动国家重点实验室
2016年9月21日星期三
27
第二讲
n


x ( n) z n
x(n ) IZT [ X ( z )]
实质:求X(z)幂级数展开式
z反变换的求解方法:


围线积分法(留数法)
部分分式法 长除法
2016年9月21日星期三

离散信号与系统的Z变换分析

离散信号与系统的Z变换分析

一.实验目的1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令二.实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④[]4()(1)()(5)f k k k k k εε=---2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。

①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。

三.程序及仿真分析2(1)syms k zFz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/2*charfcn[0](k)+1/2*(-2)^k+1(2)syms k zFz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)(3)syms k zFz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)(4)syms k zFz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k3.(1)A=[1 7/6 1/3];B=[4 0 4];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')(2) A=[1 0 0.81];B=[1 0 -1];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线'4.A=[1 -1.2 0.35];B=[1 0.25 0];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')四.实验总结。

信号与系统 实验报告 实验六 离散信号与系统的Z变换分析报告

信号与系统 实验报告 实验六 离散信号与系统的Z变换分析报告

实验六 离散信号与系统的Z 变换分析学院 班级 学号一、 实验目的1.熟悉离散信号Z 变换的原理及性质2.熟悉常见信号的Z 变换3.了解正/反Z 变换的MATLAB 实现方法4.了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系5.了解利用MATLAB 实现离散系统的频率特性分析的方法二、 实验原理1. 正/反Z 变换Z 变换分析法是分析离散时间信号与系统的重要手段。

如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为:()()*()()*()Ts s k f t f t t f t t kT δδδ∞=-∞==-∑理想抽样信号()f t δ的双边拉普拉斯变换F (s)为:()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞---∞=-∞=-∞⎡⎤=-=⎢⎥⎣⎦∑∑⎰ 若令()()s f kT f k = ,sTs z e =,那么()f t δ的双边拉普拉斯变换F (s)为:()()()sTs k z e k F s f k z F z δ∞-==-∞==∑则离散信号f (k )的Z 变换定义为:()()k k F z f k z ∞-=-∞=∑从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F (s)之间存在以下关系:()()sTs z e F s F z δ==同理,可以推出离散信号f (k )的Z 变换F(z)和它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为()()j Ts z e F j F z ωδω==如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z变换的定义为: 11()()2k f k F z z dz j π-=⎰Ñ 其中,C 为包围1()k F z z -的所有极点的闭合积分路线。

z变换 离散系统分析实验报告

z变换 离散系统分析实验报告

南昌大学实验报告(信号与系统)学生姓名: 学号 专业班级:实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012、5、24 实验成绩:MATLAB 基础上机训练一八一、实验项目名称: z 变换及离散时间系统的Z 域分析二、实验目的:(1)掌握利用MA TLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MA TLAB 实现方法三、实验原理1)离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;2)离散系统零极点图及零极点分析1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

实验 Z变换、零极点分析报告

实验 Z变换、零极点分析报告

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+z z z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H ΛΛ (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

实验二离散系统的Z域分析

实验二离散系统的Z域分析

一、实验目的1)学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义;2)深入理解离散系统频率特性的对称性和周期性;3)认识离散系统频率特性与系统参数之间的关系;4)通过阅读、修改并调试本实验系统所给源程序,加强计算机编程能力;二、实验原理及方法及实验内容1、实验原理及方法1)离散信号的z变换和逆z变换序列f(k) (k为整数)的双边z变换定义为∑∞-∞=-=kkz kfzF)()(MATLAB的符号数学工具箱(Symbolic Math Tools)提供了计算z正变换的函数ztrans和计算逆z变换的函数iztrans。

其调用形式为:F=ztrans(f) %求符号函数f的z变换,返回函数的自变量为z;F=ztrans(f,w) %求符号函数f的z变换,返回函数的自变量为w;F=ztrans(f,k,w) %对自变量为k的符号函数f求z变换,返回函数的自变量为w。

f=iztrans(F) %对自变量为z的符号函数F求逆z变换,返回函数的自变量为n;f=iztrans(F,k) %对自变量为z的符号函数F求逆z变换,返回函数的自变量为k;f=iztrans(F,w,k) %对自变量为w的符号函数F求逆z变换,返回函数的自变量为k。

kkf-=2)(,求其z变换。

解:在命令窗口中输入如下命令,即可完成f(k)的z变换>> syms k>> f=sym('2^(-k)'); %定义序列k k f -=2)( >> F=ztrans(f) %求z 变换运行结果为:F =2*z/(2*z-1) ,即122)(-=z zz F23)(2++=z z zz H ,求其冲激响应h (k )。

解:运行如下M 文件,syms k zH=sym('z/(z^2+3*z+2)');h=iztrans(H,k) %求逆z 变换运行结果为:h =(-1)^k-(-2)^k ,即)(])2()1[()(k u k h k k ---= 对象函数F 求逆z 变换,还可以利用函数residuez( )对象函数作部分分式展开,然后按部分分式展开法求得原函数。

基于Z变换的离散系统分析

基于Z变换的离散系统分析

数字信号处理课程设计题目:基于Z变换的离散系统分析学院:信息工程学院专业:通信工程班级:学号:姓名:指导教师:目录摘要 (1)第一章背景 (3)1.1 背景知识 (3)1.2 软件介绍 (3)1.3 MATLAB软件功能简介 (4)第二章设计目的及要求 (6)2.1 设计目的 (6)2.2 设计要求 (6)第三章设计原理 (7)3.1 Z变换的定义 (7)3.2 Z变换的定义....................................... 错误!未定义书签。

3.3 几种不同特性的序列的介绍 (8)3.4 频率响应函数与系统函数的定义 (10)3.5 系统函数的零极点分析 (10)3.6 离散时间LTI系统的频率特性分析 (11)3.7 系统函数的极点分布与系统因果性、稳定性的关系 (12)第四章设计过程与结果分析 (14)收获与体会 (20)参考文献 (21)摘要离散时间系统是将一个序列变换成另一序列的系统,它有多种类型,其中线性时不变离散时间系统是最基本、最重要的系统.Z变换是离散信号与系统分析的重要方法和工具,是对离散序列进行的一种数学变换。

它在离散时间系统中的地位,如同拉普拉斯变换在连续时间系统中的地位。

离散时间信号的变换已成为分析线性时不变离散时间系统问题的重要工具。

在数字信号处理、计算机控制系统等领域有广泛的应用。

Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高。

将Matlab引入到线性时不变离散时间系统的Z域分析,通过运用Matlab的LST对象和符号运算功能分析离散系统的有关问题,给出相应的计算程序和运算结果,在运用图形分析功能,将结果用图形表示出来,从而是离散系统的分析得到直观可视化效果。

关键词:离散时间系统;Z变换;MatlabAbstractDiscrete time system is a sequence of transform into another sequence of system, it has a variety of types, in which the linear time-invariant discrete-time system is the most basic, most important system.Z transform is a discrete signal and system analysis is an important method and tool, is a discrete sequence of a mathematical transformation. It is in discrete time system in the position, as Laplasse transform in continuous time system status. Discrete time signal transformation has become the analysis of linear time invariant discrete time systems are important tools. In digital signal processing, computer control systems are widely used in the field of.The Matlab language is widely used in engineering calculation and the numerical analysis in the field of advanced language, Matlab powerful, easy programming, high efficiency. The Matlab is introduced to linear time-invariant discrete time system Z domain analysis, through the use of Matlab LST objects and symbolic computation of discrete system function analysis of related issues, the corresponding calculation program and results of operations, in the use of graphical analysis function, the results using the graph expresses, from but discrete system analysis is intuitive visual effects.Keywords: Discrete time system; Z transform; Matlab第一章背景1.1背景知识数字信号处理(Digital Signal Processing,简称DSP)是一门设计许多学科而又广泛应用于许多领域的新兴学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学实验报告(信号与系统)学生姓名: 学号 专业班级:实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012、5、24 实验成绩:MATLAB 基础上机训练一八一、实验项目名称: z 变换及离散时间系统的Z 域分析二、实验目的:(1)掌握利用MA TLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MA TLAB 实现方法三、实验原理1)离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;2)离散系统零极点图及零极点分析1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

多项式根的MA TLAB 命令举例如下:A=[1 3/4 1/8]; P=roots(A) 运行结果为: P =-0.5000 -0.2500需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。

这两种方式在构造多项式系数向量时稍有不同。

(1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如34322()3221z zH z z z z z +=++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。

(2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。

如11212()11124z H z z z ---+=++其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。

用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。

下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。

function ljdt(A,B)% The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量 q=q'; %将零点列向量转置为行向量 x=max(abs([p q 1])); %确定纵坐标范围 x=x+0.1; y=x; %确定横坐标范围 clf hold onaxis([-x x -y y]) %确定坐标轴显示范围 w=0:pi/300:2*pi; t=exp(i*w); plot(t) %画单位园 axis('square')plot([-x x],[0 0]) %画横坐标轴 plot([0 0],[-y y]) %画纵坐标轴 text(0.1,x,'jIm[z]') text(y,1/10,'Re[z]')plot(real(p),imag(p),'x') %画极点 plot(real(q),imag(q),'o') %画零点 title('pole-zero diagram for discrete system') %标注标题 hold off2.离散系统零极点分析(1)离散系统零极点分布与系统稳定性《信号与系统》课程已讲到离散系统稳定的条件为:● 时域条件:离散系统稳定的充要条件为()n h n ∞=-∞<∞∑,即系统单位样值响应绝对可和;● Z 域条件:离散系统稳定的充要条件为系统函数()H z 的所有极点均位于Z 平面的单位圆内。

对于三阶以下的低阶系统,可以利用求根公式求出系统函数的极点,从而判断系统的稳定性,但对于高阶系统,手工求解则显得十分困难,这时可以利用MA TLAB 来实现。

实现方法是调用前述的函数ljdt()绘出系统的零极点图,然后根据极点的位置判断系统的稳定性。

(2)零极点分布与系统单位样值时域特性的关系从《信号与系统》课程中已经得知,离散系统的系统函数()H z 与单位样值响应()h n 是一对Z 变换对;因而,()H z 必然包含了()h n 的固有特性。

离散系统的系统函数可以写成11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-4)若系统的N 个极点均为单极点,可将()H z 进行部分分式展开为:1()Ni i ik zH z z p ==-∑(8-5) 由Z 逆变换得:1()()()Nn ii i h n kp u n ==∑ (8-6)从式(8-5)和(8-6)可以看出离散系统单位样值响应()h n 的时域特性完全由系统函数()H z 的极点位置决定。

从《信号与系统》的学习中已经得出如下规律:● ()H z 位于Z 平面单位圆内的极点决定了()h n 随时间衰减的信号分量; ● ()H z 位于Z 平面单位圆上的一阶极点决定了()h n 的稳定信号分量;●()H z 位于Z 平面单位圆外的极点或单位圆上高于一阶的极点决定了()h n 的随时间增长的信号分量;3)离散系统频率特性分析1.离散系统的频率响应()j H e ω对于某因果稳定离散系统,如果激励序列为正弦序列:0()sin()()x n A n u n ω=则,根据《信号与系统》课程给出的结果有,系统的稳态响应为:()()sin[()]()j ss y n A H e n u n ωωϕω=+()()()()j j j j z e H e H z H e e ωωωϕω===定义离散系统的频率响应为其中,()j H e ω——称为离散系统的幅频特性;()ϕω——称为离散系统的相频特性;()j H e ω是以2π为周期的周期函数,只要分析()j H e ω在ωπ≤范围内的情况,便可分析出系统的整个频率特性。

2.用MA TLAB 实现离散系统的频率特性分析方法 (1)直接法设某因果稳定系统的系统函数()H z ,则系统的频响特性为:()()()()j j j j z e H e H z H e e ωωωϕω===MATLAB 提供了专门用于求离散系统频响特性的函数freqz(),调用freqz()的格式有以下两种: ● [H,w]=freqz(B,A,N)B 和A 分别为离散系统的系统函数分子、分母多项式的系数向量,N 为正整数,返回量H 则包含了离散系统频响()j H e ω在0~π范围内N 个频率等分点的值,向量w 则包含0~π范围内N 个频率等分点。

调用中若N 默认,默认值为512。

● [H,w]=freqz(B,A,N,’whole ’)该调用格式将计算离散系统在0~2π范围内N 个频率等分点的频率响应()j H e ω的值。

因此,可以先调用freqz()函数计算系统的频率响应,然后利用abs()和angle()函数及plot()函数,即可绘制出系统在0~π或0~2π范围内的频响曲线。

2)几何矢量法利用几何矢量求解示意图如图8-4所示。

jj j j j e q B eψω-=ij j i ie p Ae θω-= 有:1212()1()()1()()M N Mj jj j j j N j ii B eH e H e e Ae ψψψωωϕωθθθ+++=+++===∏∏则系统的幅频特性和相频特性分别为:11()Mjj j N ii BH e Aω===∏∏ (8-7)11()M Nj i j i ϕωψθ===-∑∑ (8-8)根据式(8-7)和(8-8),利用MATLAB 来求解频率响应的过程如下: ● 根据系统函数()H z 定义分子、分母多项式系数向量B 和A ;● 调用前述的ljdt()函数求出()H z 的零极点,并绘出零极点图; ● 定义Z 平面单位圆上的k 个频率分点;● 求出()H z 所有的零点和极点到这些等分点的距离; ● 求出()H z 所有的零点和极点到这些等分点矢量的相角;● 根据式(8-7)和(8-8)求出系统的()j H e ω和()ϕω;● 绘制指定范围内系统的幅频曲线和相频曲线;下面是实现上述过程的实用函数dplxy()。

有四个参数:k 为用户定义的频率等分点数目;B 和A 分别为系统函数分子、分母多项式系数向量;r 为程序绘制的频率特性曲线的频率范围(0~r π⨯)。

function dplxy(k,r,A,B)%The function to draw the frequency response of discrete system p=roots(A); %求极点 q=roots(B); %求零点 figure(1) ljdt(A,B) %画零极点图 w=0:r*pi/k:r*pi; y=exp(i*w); %定义单位圆上的k 个频率等分点 N=length(p); %求极点个数 M=length(q); %求零点个数 yp=ones(N,1)*y; %定义行数为极点个数的单位圆向量 yq=ones(M,1)*y; %定义行数为零点个数的单位圆向量 vp=yp-p*ones(1,k+1); %定义极点到单位圆上各点的向量 vq=yq-q*ones(1,k+1); %定义零点到单位圆上各点的向量 Ai=abs(vp); %求出极点到单位圆上各点的向量的模 Bj=abs(vq); %求出零点到单位圆上各点的向量的模 Ci=angle(vp); %求出极点到单位圆上各点的向量的相角 Dj=angle(vq); %求出零点到单位圆上各点的向量的相角 fai=sum(Dj,1)-sum(Ci,1); %求系统相频响应 H=prod(Bj,1)./prod(Ai,1); %求系统幅频响应 figure(2)plot(w,H); %绘制幅频特性曲线 title('离散系统幅频特性曲线') xlabel('角频率') ylabel('幅度') figure(3)plot(w,fai) title('离散系统的相频特性曲线') xlabel('角频率') ylabel('相位')四、实验说明:例1:绘制如下系统函数的零极点(1)32323510()375z z zH z z z z -+=-+- (2)11210.5()31148z H z z z ----=++例2:系统函数如例1所示,判断两个系统的稳定性例3:已知如下系统的系统函数()H z ,试用MATLAB 分析系统单位样值响应()h n 的时域特性。

相关文档
最新文档