四年级奥数-教师版-第五讲倒推法的应用题

合集下载

倒推法运算四年级奥数题及答案解析

倒推法运算四年级奥数题及答案解析

倒推法运算四年级奥数题及答案解析
奥数通过动手、动脑和智趣题的学习培养学生学习数学的兴趣,快来做做奥数题来锻炼自己吧!下面是为大家收集到的倒推法运算四年级奥数题及答案,供大家参考。

一次数学考试后,李军问于昆数学考试得多少分?于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。

”小朋友,你知道于昆得多少分吗?
方法一:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题。

如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56。

如何求出□中的数呢?我们可以从结果56出发倒推回去,因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98。

98是加10后得到的,加10以前是98-10=88。

88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解。

方法二:
{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:于昆这次数学考试成绩是96分。

通过以上例题说明,用倒推法解题时要注意:
①从结果出发,逐步向前一步一步推理;
②在向前推理的过程中,每一步运算都是原来运算的逆运算;
③列式时注意运算顺序,正确使用括号。

以上是查字典数学网为大家准备的倒推法运算四年级奥数题及答案,希望对大家有所帮助。

小学数学倒推法练习题

小学数学倒推法练习题

小学数学倒推法练习题对于小学生来说,学习数学是一个重要且有挑战性的任务。

其中,倒推法作为数学解题中常用的方法之一,可以帮助学生培养逻辑思维和解决问题的能力。

本文将提供一些小学数学倒推法练习题,帮助学生掌握和巩固倒推法的应用。

一、简单倒推法练习题1. 小英参加了一个拔河比赛,她站在第五个位置上。

如果她的队伍有11人,问小英所在队伍的前面还有几个人?解析:根据题意可知,小英所在队伍的前面有4个人。

因此,可以使用倒推法得到结果。

2. 小明乘坐地铁去动物园,他从第六站下车,并且在第十站上车。

如果小明乘坐了5站地铁,问他在动物园坐了几站?解析:小明乘坐地铁的总站数为10站,而他下车的站数为6站,因此,在动物园坐了4站。

二、数字运算倒推法练习题1. 有一些连续的整数,将其中的奇数全部相加,和是255。

问这些连续整数中一共有多少个奇数?解析:假设这些连续整数的首个奇数为x,那么第二个奇数为x+2,第三个奇数为x+4,以此类推。

由题意可知,若共有n个奇数,则它们的和为n * (x + (x + 2n - 2)) / 2 = 255。

化简方程可得n * (2x + 2n - 2) =510。

根据倒推法,我们可以从小到大依次尝试n的值,找到满足方程的整数解。

2. 一个三位数的数字由4、6、8组成,如果把这个三位数的百位数与个位数对调,得到一个新的三位数。

问这个新的三位数比原来的三位数多多少?解析:首先,根据题意可知这个三位数为468。

当把百位数与个位数对调后,得到一个新的三位数为864。

新的三位数比原来的三位数多864-468=396。

三、推理倒推法练习题1. 当小明放学后,他回家的路上看到了一只猫。

小猫的主人告诉小明,这只猫的年龄相当于人的7岁。

已知这只猫比小明的妈妈年龄大2岁,那么猫的年龄是多少岁?解析:根据题意可得,小明的妈妈年龄为7*2 + 2 = 16岁。

因此,这只猫的年龄也是16岁。

2. 甲、乙两人同时从相距60公里的A、B两地相向而行,相距4小时后,两人相遇在C地,甲到达B地时,乙到达A地。

倒推法练习题四年级

倒推法练习题四年级

倒推法练习题四年级倒推法是一种解题方法,通过从已知结果反向推导出问题的解决过程。

在数学中,倒推法常常被用来解决代数方程、几何问题等。

倒推法练习题在四年级数学中也有一定的难度,接下来我们将通过几个倒推法练习题来帮助四年级学生更好地理解和掌握这个解题方法。

练习题一:小明的奶奶今年80岁,小明今年8岁。

请问小明的奶奶是在小明出生多少年后69岁的?解题思路:根据已知条件,小明今年8岁,奶奶今年80岁,所以小明出生到今年的时间为8年。

我们需要倒推出奶奶在小明出生多少年后是69岁,即在奶奶目前年龄的基础上减去69岁即可。

解题步骤:80岁 - 69岁 = 11岁答案:小明的奶奶在小明出生11年后是69岁。

练习题二:某校举办运动会,第一天参与运动会的男生比女生多40人,第二天女生增加了15人,男生增加了25人,这时男生和女生的人数相等,请问第一天参加运动会的男生和女生各有多少人?解题思路:根据已知条件,第二天男生和女生的人数相等,即增加的人数相同,我们需要通过倒推法来确定第一天参加运动会的男生和女生的人数。

解题步骤:设第一天参加运动会的男生数量为x,则女生数量为x - 40。

第二天男生增加了25人,女生增加了15人,所以第二天男生数量为x + 25,女生数量为x - 40 + 15。

根据题意可得:x + 25 = x - 40 + 15化简得:25 = -40 + 1525 = -25答案:根据上述计算,我们得到了一个矛盾的结论,即等式无解。

这说明题目中的题设有误或者存在其他意外情况,需要重新核对题目。

练习题三:玩具店搞促销活动,购买玩具可以获得积分,根据积分可以获得相应的折扣。

小明去购买了一款玩具,使用了自己的积分并支付了70元,折扣为总价的30%。

请问小明的积分原本有多少?解题思路:根据已知条件,小明支付了70元,折扣为总价的30%,我们需要通过倒推法来确定小明原本的积分数量。

解题步骤:设小明原本的积分数量为x,则小明需要支付的总价为70元 / (1 - 0.3) = 100元。

小学四年级倒推法

小学四年级倒推法

倒推法(还原法)解题例1、甲、乙、丙三个组共有图书90本,如果乙组向甲组借来3本后,又送给丙组5本,那么三个组的图书数刚好相等。

问:甲、乙、丙三个组原来各有图书多少本?试一试,做一做1、甲、乙两个车站共停了75辆汽车,如果从甲站开往乙站12辆,又从乙站开往甲站45辆,这时甲站停的汽车辆数就是乙站的2倍。

原来甲、乙两个车站各停了多少辆汽车?2、五个小朋友共有铅笔120支,甲给乙10支,给丁5支;乙给丙6支;丙给丁11支,给戊3支;丁给乙4支;戊给甲2支,给乙7支,这时五人铅笔的支数相等。

五个小朋友原来各有多少支铅笔?例3某村修一条公路,第一次修了它的一半多5米,第二次修了剩下公路的一半多4米,最后还剩下6米没修。

这条公路长多少米?试一试,做一做1、食堂有一袋大米,第一天吃去它的一半多4千克,第二天吃去的比剩下的一半少1千克,这时袋里还有大米19千克。

这袋大米原来有多少千克?2、明明用去他所带钱的一半买了一支铅笔,又用去余下钱的一半买了一块橡皮,最后剩下2角钱。

明明原来有多少钱?一支铅笔多少钱?3、有一筐苹果,把它们三等分后还剩2个苹果,取出其中的两份,将它们再三等分后还剩2个,然后又取出其中的两份,将它们又三等分之后还剩2个。

问:这筐苹果至少有多少个?试一试,做一做1、有一堆糖,把它们五等分后剩下1块,取出其中的四份,将其五等分后也剩1块,再取出其中三份,将其五等分后还是剩下1块。

这堆糖最少有多少块?2、有一筐篮球,每次拿出其中的一半,然后再放回1个,这样连续拿了3次,筐里的篮球还剩下4个。

原来筐里有多少个篮球?3、有砖26块,兄弟两人争着去挑,哥哥看弟弟挑得太多,就抢下弟弟的一半,弟弟不服,又从哥哥那儿抢走哥哥现有的一半,哥哥不肯,弟弟还给哥哥5块,这时哥哥比弟弟多挑2块。

问:弟弟最初挑了多少块?试一试,做一做两棵树上一共有小鸟35只,从第一棵树上飞到第二棵树上8只,又从第二棵树上飞走7只,这时第一棵树上的小鸟是第二棵树上的3倍。

四年级奥数-教师版-第5讲倒推法应用题

四年级奥数-教师版-第5讲倒推法应用题

第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。

倒推法运算四年级奥数题及答案解析

倒推法运算四年级奥数题及答案解析

倒推法运算四年级奥数题及答案解析
倒推法运算四年级奥数题及答案解析
奥数通过动手、动脑和智趣题的学习培养学生学习数学的兴趣,快来做做奥数题来锻炼自己吧!下面是为大家收集到的倒推法运算四年级奥数题及答案,供大家参考。

一次数学考试后,李军问于昆数学考试得多少分?于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56。

”小朋友,你知道于昆得多少分吗?
方法一:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题。

如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56。

如何求出□中的数呢?我们可以从结果56出发倒推回去,因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98。

98是加10后得到的,加10以前是98-10=88。

88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解。

方法二:。

四年级上册奥数知识点专讲第5课《倒推法的妙用》试题附答案

四年级上册奥数知识点专讲第5课《倒推法的妙用》试题附答案
小学四年级上册数学奥数知识点讲解第5课《倒推法的妙用》试题附答案
答案
四年级奥数上册:第五讲倒推法的妙用习题解答
---------------------赠予---------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
被你拥抱过,览了
被你默诵过,懂了
被你翻开又合起
被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世
---------------------谢谢喜欢--------------------
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷
和其中的一字一句幸遇只因这一次

四年级奥数-教师版-第五讲倒推法的应用题

四年级奥数-教师版-第五讲倒推法的应用题

第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。

奥数状元必读专家点拨四年级上册第5课《倒推法的妙用》试题附答案

奥数状元必读专家点拨四年级上册第5课《倒推法的妙用》试题附答案
-------------------------谢谢喜欢------------------------
状元必读专家点拨
小学四年级上册数学奥数知识点讲解第5课《倒推法的妙用》试题附答案
答案
四年级奥数上册:第五讲倒推法的妙用习题解答
-------------------------赠予------------------------
【学好奥数的几个小技巧】
第Байду номын сангаас种:记笔记。这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,记录老师讲课精华,练习书写能力,养成边听边写能力,这对于提高学习效率是非常有效的。
第二种:错题本。有些同学对知识点理解不清晰,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。
第三种:题目分类本。和错题本一样,专门记录自己做过的试题,并进行分类:一类是极其简单,自己一看就会的;一类是有一定难度,需要思考找到突破口的;一类是难度很大,需要综合运用很多知识并进行推理才能解答的。后两类都应该是我们的记录重点。
第四种:旧题新解。不时翻翻原来做过的试题,重点分析有没有新的解题思路和技巧。不断地增加思考有利于形成思考习惯,也有利于形成发散思维,开展多角度分析敏锐思路,随时利用新学知识去解决难题。
第五种:学习小组。定期地和小组成员分享好试题,好方法,好技巧,好经验,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。

例2 :小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁. 解析:{[(□ + 17)÷4]- 15}×10 = 100采用逆推法,易知老爷爷的年龄为(100÷10+15)×4-17=83(岁)【巩固】某数除以4,乘以5,再除以6,结果是615,求某数. 解析:{[(□÷4)×5]÷6}=615解:运用倒推法知这个数为615×6÷5×4=2952例3:马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?解析:马小虎错把减数个位上1看成7,使差减少7-1=6,而把十位上的7看成1,使差增加70-10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70-10)+(7-1)=57 答:正确的答案是57.【巩固】在计算一道减法题时,小马虎把被减数个位上的3看做8,把减数十位上的6看做9,结果得出的差是60.正确的结果是多少?解析:被减数个位上的3看做8,差就多加了5;减数十位上的6看做9,差就多减去30.要求出正确的差,就应该用60加上30,减去5. 解:8553060=-+。

例4:树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?解析:倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解. 解:①现在三棵树上各有鸟 多少只?48÷3=16(只) ②第一棵树上原有鸟只数. 16+8=24(只) ③第二棵树上原有鸟只数. 16+6-8=14(只) ④第三棵树上原有鸟只数.16-6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.【巩固】ABC三个小朋友共有玩具48个。

A给B8个玩具,而B又将6个玩具给C,这时三人的玩具数相等。

三人原来的玩具各有多少个?解析:从三人的玩具数相等入手分析,可得到每人的玩具数例5:篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?解析:依题意,画图进行分析.解:列综合算式:{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.【巩固】一桶油倒去一半后,再倒去剩下的一半,这时连桶还有16千克。

已知桶重5.5千克,那么原来这桶油连桶共重多少?解析:倒去两次后连桶有16千克,这16千克不仅有剩下的油的质量还有桶的质量,桶重5.5千克,易知剩下的油重16-5.5=10.5千克,利用倒推法得油重10.5×2×2=42千克。

故这桶油连桶重42+5.5=47.5千克。

解:(16-5.5)×2×2+5.5=47.5(千克)例6:“六 一”儿童节,小明和小培从妈妈那儿分得一些糖,妈妈把糖分成相同的两份给他们,多的一个给自己留下了.小明在路上遇着自己的两个朋友,他把自己的糖分成三份,每人一份,多的两颗分别送给了两个朋友.过了一会儿,又遇上两个小朋友,他同样分给他们糖,多的两颗分给了他们,后来,他又遇上了两个朋友,分完糖之后,小明发现自己只剩下一颗糖了,请问妈妈原来有多少糖?解析:最后一次分糖前小明有糖3+2=5颗;倒数第二次分糖前小明有糖5×3+2=17颗;倒数第三次分糖前小明有糖17×3+2=53颗;妈妈原来有糖53×2+1=107颗.【巩固】A 、B 、C 三个小朋友共有玩具48个。

A 给B8个玩具,而B 又将6个玩具给C ,这时三人的玩具数相等。

三人原来的玩具各有多少个?解析:从三人的玩具数相等入手分析,可得到每人的玩具数为16348=÷(个)。

然后再看每人的玩具数是怎样得到的,最后用倒推法就使问题解决了。

解:16348=÷C :10616=-(个) B :148616=-+(个) A :24816=+(个)例7:甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?解析:解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克. 解:①甲乙两桶油共剩多少千克?15×2-14=16(千克) ②乙桶油剩多少千克?16÷(3+1)=4(千克) ③甲桶油剩多少千克?4×3=12(千克) 用倒推法画图如下:④从甲桶卖出油多少千克?15-11=4(千克) ⑤从乙桶卖出油多少千克?15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.【巩固】甲乙丙三人共有图书120本,乙向甲借3本书后,又送给丙5本,结果三个人的数量相等。

甲乙丙原来各有多少本书?解析:从三人数量相等入手:403120=÷(本);再根据已知往回逆推,得解。

解:403120=÷(本) 甲:43340=+(本)乙:425340=+-(本) 丙:35540=-(本)课后练习1、一个数除以18,乘4,加上6039,等于6139,这个数是多少?解析:由于原来的计算为“61396039418?=+⨯÷”,根据运算顺序,用倒推法思考:这个数不加上6039时是多少,这个数不乘4时时多少,这个数不除以18时是多少,从6139入手,依次倒推,就可以求出这个数是多少。

解:184)60396139(⨯÷-184100⨯÷=1825⨯=450=2、小明在做加法题时,把一个加数个位上的6写成9,十位上的6写成0,结果得到错误的得数584,正确得数应该是多少?解析:个位上的6看做9,和就多了3;十位上的6看做0,和就少加了60.要求出正确的和,就应该用60加上3. 解:641360584=-+3、几个数相加时,把一个加数个位上的0写成9,把十位上的9写成6;另一个加数百位上少写3,这时得到的和是1395.那么原来几个数的和是多少?解析:应为是相加的,所以多加的要减去,少加的要加上。

并且要知道,在各位少几就是几个;在十位少几,就是少几十;在百位少几,就是少几百。

解:17169303001395=-++4、从第一堆糖中拿一半放入第二堆,拿35粒放入第三堆,再拿出剩下中的一半放入第四堆,最后又吃掉第一堆中的2粒,这时第一堆中还有48粒,第一堆原有糖多少粒?解析:从吃了第一堆中的2粒,还有48粒入手,倒推出第一堆原有的糖的粒数。

解:最后一堆没吃2粒前没放第四堆前没放第三堆前没放第二堆前4850248=+ 100250=⨯ 13535100=+ 2702135=⨯算式:2702]352)248[(=⨯+⨯+(粒)5、三筐苹果共有90千克,如果从甲筐取出15千克放入乙筐,从乙筐取出20千克放入丙筐,从丙筐取出17千克放入甲筐,这时三筐苹果就同样重了。

甲乙丙原来各有苹果多少千克?解析:如图;先考虑已经平分,则可知每筐有:30390=÷解:30390=÷(个) 甲:32171530=+-(个) 乙:25201530=-+(个) 丙:33172030=-+(个)6、三年级三个班共有学生156人,若从三(1)班调5人到三(2)班,从三(2)班调8人到三(3)班,再从三(3)班调4人到三(1)班,这时每个班的人数正好相同。

三个班原来各有学生多少人?甲 乙 丙 -15 +15 +20 +17-20-17解析:如图; 解:156÷3=52(人)三(1)班:52-4+5=53(人) 三(2)班:52+8-5=55(人) 三(3)班:52+4-8=48(人)7、有砖26块,兄弟二人争着去挑。

相关文档
最新文档