曲线积分

合集下载

曲线积分的计算方法

曲线积分的计算方法

曲线积分的计算方法曲线积分是微积分中的重要概念,它在物理学、工程学和数学分析中有着广泛的应用。

曲线积分的计算方法有多种,下面我们将介绍其中的一些常见方法。

首先,我们来看一下曲线积分的定义。

曲线积分是对曲线上的函数进行积分运算,它描述了函数沿着曲线的变化情况。

曲线积分可以分为第一类曲线积分和第二类曲线积分,它们分别对应着不同的计算方法。

对于第一类曲线积分,也称为向量场沿曲线的积分,计算方法如下,假设曲线的参数方程为r(t)=(x(t),y(t)),函数为P(x,y)dx+Q(x,y)dy,其中P、Q是定义在曲线上的连续函数。

那么第一类曲线积分的计算公式为∫C Pdx+Qdy=∫[a,b](P(x(t)),Q(y(t)))·(x'(t),y'(t))dt,其中[a,b]是曲线的参数区间。

对于第二类曲线积分,也称为标量场沿曲线的积分,计算方法如下,假设曲线的参数方程为r(t)=(x(t),y(t)),函数为f(x,y),其中f是定义在曲线上的连续函数。

那么第二类曲线积分的计算公式为∫C f(x,y)ds=∫[a,b] f(x(t),y(t))·|r'(t)|dt,其中[a,b]是曲线的参数区间,|r'(t)|表示曲线在参数t处的切线长度。

除了以上介绍的基本计算方法外,还有一些特殊情况下的曲线积分计算方法,比如在极坐标系下的曲线积分、在三维空间中的曲线积分等。

这些方法在具体问题中有着重要的应用,需要根据具体情况进行灵活运用。

总之,曲线积分的计算方法是微积分中的重要内容,它涉及到向量场、标量场以及曲线的参数方程等多个概念。

掌握曲线积分的计算方法对于理解微积分的理论和应用具有重要意义,希望以上介绍能够对大家有所帮助。

高等数学第十章曲线积分

高等数学第十章曲线积分
y x
du PdxQd , (yx, y)G—单连域.
四、两类曲线积分之间的联系
L P d Q x d L (P y co Q sco )ds .s
其中, 为有向曲线弧L在点(x, y) 处的切向量的方向角.
五、对坐标的曲线积分的解题方法
解题方法流程图
I LPdxQdy
Yes
积分与路径无关
代入,从而简化被积函数,然后再计算;对于积分L 2xyds,
由于L关于 y轴对称, 函数 2xy关于 x为奇函数, 故有
L 2xyds0.
解:由奇偶对称性可知 L 2xyds 0, 所以
(2xy3x24y2)ds (2xy12)ds
L
L
2L xyds12Lds
01a2 1a2
注:由于被积函数 f(x, y)定义在曲线 L上, 故 x, y满足曲线L
(0t2);

1
d sx2y2d t 2 a(1co t)2s d,(t0t2)
1

2
I yd sa (1 co t)s 2 a (1 co t)2d st
L
0
4a2
2
s
in3
t
dt8a2
s
in3 ud
u
0
2
0
16a2
2sin3 udu
32
a2.
0
2
【例2】计算曲线积分 L x2 y2 ds,其中L为圆周 x2 y2 ax.
f (x, y)ds f[(t) ,(t)]2 (t) 2 (t)dt
L
(2)直角坐标:若L:y(x)(x0 xX);则
f (x, y)ds Xf[x,(x)]12(x)dx
L

曲线积分

曲线积分

根据对弧长的曲线积分的计算公式,得 1 3 1 2 2 3 yds 3t t 1dt t 1d t 2 1 =…… L 0 2 0
例 3 设空间曲线 L 为螺旋线 x a cos t ﹑ y a sin t ﹑
z bt 上相应于 t 从 0 到 2π 的一段,试计算曲线积分
பைடு நூலகம்

L
( x 2 y 2 z 2 )ds .
解: 根据对弧长的曲线积分的计算推广公式,得
(x
L
0
2
y z )ds
2 2
[(a cos t ) 2 (a sin t ) 2 (bt ) 2 ] (a sin t ) 2 (a cos t ) 2 b 2 dt
L
二、对弧长的曲线积分的计算
定理1 设 L 是光滑曲线,其参数方程为 x (t ) , ( t ), y (t ) , f ( x, y) 为定义在 L 上的连续函数,
则曲线积分 f ( x, y )ds ,并且
L

L
f ( x, y )ds f [ (t ), (t )] 2 (t ) 2 (t )dt

2 2 1 2 3 a b a t b t π a2 b2 (3a2 4π2b2 ) 3 0 3
2 2

例4 求 I 解

L
x2 y 2 ds, L : x2 y 2 2ax,(a 0).
(0 t 2π)
x a a cos t L: y a sin t
关;
4、 f ( x , y )ds = f [ ( t ), ( t )] 2 ( t ) 2 ( t ) dt

曲线积分

曲线积分
( C由C1 , C2 组成)
(2) C f ( x, y) ds C 1 f ( x, y) ds C 2 f ( x, y) ds
(3) C ds l ( l 曲线C 的长度)
机动 目录 上页 下页 返回 结束
3. 计算 • 对光滑曲线
2 2 f ( x , y ) d s ( t ) (t ) d t f [ (t ), (t )] C
1.引例: 曲线形物质的质量 假设曲线形细长物质在空间所占 弧段为AB , 其线密度为
B
Mk ( k ,k ) sk M k 1
计算此物质的质量.
n
采用 “大化小, 常代变, 近似求和, 求极限”
可得
M

A
k 1
机动
目录
上页
下页
返回
结束
2.定义 设 二元函数f(x,y)在可求长曲线C(A,B)有定义. 若通过对 曲线C 的任意分割T和局部的任意取点, 下列“乘积和式极限”
2 3 a 2 X 2 a 3
圆C的圆心 在原点, 故
X 0
机动 目录 上页 下页 返回 结束
例5. 计算
2 2 x y 其中C为球面
与平面 x z 1 的交线 . z2 9 2

1 2 1 2 1 2 (x 2) 4 y 1 解: C : , 化为参数方程 x z 1 x 2 cos 1 2 C : y 2 sin 0 2 z1 2 cos 2
2
I y C y ds.
2
(5) 曲线C的重心坐标
xds C x , C ds
yds C y . C ds
例1. 计算

曲线积分基本概念

曲线积分基本概念

曲线积分基本概念曲线积分是微积分的一个重要概念,用于计算曲线上函数的积分值。

曲线积分可以帮助我们理解曲线上的物理量分布以及曲线所代表的实际问题。

一、曲线积分的定义曲线积分是将曲线划分为无限小的线段,然后计算每个线段上函数的值与线段长度的乘积,最后对所有线段的积分进行求和。

曲线积分可以分为第一类和第二类两种情况。

1. 第一类曲线积分第一类曲线积分是对曲线上的函数进行积分,计算的是函数在曲线上的沿曲线方向的积分值。

设曲线为C,函数为f(x,y),曲线C的参数方程为x(t), y(t),参数范围为[a, b],则第一类曲线积分的计算公式为:∮C f(x,y) ds = ∫[a,b] f(x(t),y(t)) ||r'(t)|| dt其中,ds表示曲线的弧长元素,r'(t)表示曲线的导数。

2. 第二类曲线积分第二类曲线积分是对曲线上的向量场进行积分,计算的是向量场沿曲线方向的积分值。

设曲线为C,向量场为F(x,y)=P(x,y)i+Q(x,y)j,曲线C的参数方程为x(t), y(t),参数范围为[a, b],则第二类曲线积分的计算公式为:∮C F(x,y) · dr =∫[a,b] [P(x(t),y(t)) x'(t) + Q(x(t),y(t)) y'(t)] dt其中,·表示向量的点乘运算,dr表示曲线的切向量元素,x'(t)和y'(t)表示曲线参数方程的导数。

二、曲线积分的应用曲线积分在物理和工程领域有着广泛的应用。

以下是几个常见的应用领域:1. 力学曲线积分可以用于计算物体在曲线路径上所受的力的功。

通过计算曲线上的力和位移的点积,可以求得沿曲线路径所做的功。

2. 电磁学在电磁学中,曲线积分可以用于计算沿闭合曲线的电场强度和磁场的环流。

根据所给的电场和磁场,可以计算出闭合曲线上的电场通量和磁场强度的环积分。

3. 流体力学曲线积分在流体力学中也有广泛应用。

曲线积分格林公式

曲线积分格林公式

曲线积分格林公式
曲线积分格林公式是一种计算曲线积分的公式,其中,曲线积分是指对某个函数在某一区间内的积分。

格林公式的具体形式如下:
∫f(x)dx = F(b) - F(a)
其中,∫f(x)dx表示某个函数f(x)在区间[a,b]内的积分,F(x)表示函数f(x)的反函数。

格林公式可以帮助我们快速计算某个函数在某一区间内的积分,因此在数学和工程学等领域中都有广泛的应用。

下面是一个使用曲线积分格林公式计算函数积分的例子:
假设有一个函数f(x) = x^2 + 1,我们要计算这个函数在区间[1,3]内的积分。

我们可以找到函数f(x)的反函数F(x) = √(x-1)。

根据格林公式,我们可以得到:
∫f(x)dx = F(3) - F(1) = √(3-1) -√(1-1) = √2 - 0 = √2。

因此,函数f(x)在区间[1,3]内的积分为√2。

这就是使用曲线积分格林公式计算函数积分的一个例子。

重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分一、曲线积分第一型曲线积分(对弧长)定义:设L 为平面上可求长度的曲线段,(,)f x y 为定义在L 上的函数。

对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段(1,2,,),i L i n = i L 的弧长记为,i s ∆ 分割T的细度为1max ,i i nT s ≤≤=∆ 在i L 上任取一点(,)(1,2,,).i i i n ξη= 若极限1lim(,)niiiT i f s ξη→=∆∑存在,则称此极限值为(,)f x y 在L 上的第一型曲线积分(对弧长的积分),记作(,)Lf x y ds ⎰。

若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似定义(,,)f x y z 在空间曲线L 上的第一型曲线积分,并且记为(,,)Lf x y z ds ⎰。

性质: 1. 若(,)(1,2,,)i Lf x y ds i k =⎰存在,(1,2,,)i c i k =为常数,则1(,)ki i Li c f x y ds =∑⎰也存在,且11(,)(,).kki i i i LLi i c f x y ds c f x y ds ===∑∑⎰⎰2. 若曲线段L 由曲线12,,k L L L 首尾相接而成,且(,)(1,2,,)i Lf x y ds i k =⎰都存在,则(,)Lf x y ds ⎰也存在,且1(,)(,).ikLL i f x y ds f x y ds ==∑⎰⎰3. 若(,)Lf x y ds ⎰与(,)Lg x y ds ⎰都存在,且在L 上(,)(,),f x y g x y ≤ 则(,)(,).LL f x y ds g x y ds ≤⎰⎰4. 若(,)Lf x y ds ⎰存在,则|(,)|Lf x y ds ⎰也存在,且|(,)||(,)|LLf x y ds f x y ds ≤⎰⎰。

5. 若(,)Lf x y ds ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)Lf x y ds ⎰=cs 。

《曲线积分》课件

《曲线积分》课件

换元法
总结词
换元法是通过引入新的变量替换原变量,将曲线积分转化为更容易计算的定积分的方法。
详细描述
换元法的基本思想是通过引入新的变量替换原变量,将曲线积分转化为定积分。通过选择合适的换元函数,可以 将曲线积分的积分路径转化为直线或简单的几何形状,从而简化计算过程。这种方法在处理复杂的曲线积分时非 常有效。
经济学中的应用
在经济学中,曲线积分可以用于研究商品价格变动对需求量 的影响,以及投资回报率等问题。
曲线积分的分类
第一型曲线积分
第一型曲线积分是计算函数在曲线上 的定积分,用于计算曲线下的面积和 长度等。
第二型曲线积分
第二型曲线积分是计算函数关于某个 变量的变差,用于计算速度和加速度 等物理量。
02
曲线积分背景
曲线积分是微积分学中的重要概 念,它与定积分、重积分等概念 有密切联系,是解决许多实际问 题的重要工具。
曲线积分的应用
1 2
3
物理学中的应用
曲线积分在物理学中有广泛的应用,如计算曲线运动的轨迹 长度、速度和加速度等。
工程学中的应用
在工程学中,曲线积分被广泛应用于计算各种曲线形状的物 体在运动过程中的物理量,如管道流速、机械零件的振动等 。
电场线的积分与电荷量
电场线的积分
电场线是描述电场分布的几何图形,电 场线的积分可以用来计算电场中的电荷 量。通过曲线积分的方法,可以计算出 电场线上各点的电场强度,从而得到整 个电场的电荷量分布。
VS
电荷量
电荷量是描述电场中电荷数量的物理量, 它表示电场中电荷的多少。在物理学中, 电荷量可以通过电场线的积分来计算,并 用于研究电场的性质和行为。
06
曲线积分的综合应用

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记

曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。

下面对曲线积分和曲面积分进行总结和拓展。

一、曲线积分曲线积分是对曲线上的函数进行积分运算。

根据曲线的参数方程给出曲线积分的计算公式。

曲线积分分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。

它主要应用于测量曲线长度、质量等问题。

2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。

它主要应用于计算曲线上的力的做功、电流的环路积分等问题。

二、曲面积分曲面积分是对曲面上的函数进行积分运算。

曲面积分也有两类:第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。

它主要应用于计算场的通量、质量通量等问题。

2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。

它主要应用于计算磁通量、电通量等问题。

曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。

对于一些简单的曲线和曲面,也可以通过直接计算来求解。

此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。

这些概念可以帮助我们理解和计算曲线和曲面上的积分值。

总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。

通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。

掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。

高数下第十一章曲线积分与曲面积分

高数下第十一章曲线积分与曲面积分

L:yx2,x从 0变1,到
原式 1(2xx2x22x)dx 0
4 1 x3dx 1. 0
整理课件
y x2
B(1,1)
A(1,0)
23
(2) 化为y的 对积. 分 L:xy2,y从 0变1到 ,
原式 1(2y2y2yy4)dy 0 5 1 y4dx1. 0
( 3 ) 原式 OA2xydxx2dy AB2xydxx2dy
解 记 L所 围 成 的 闭 区 域 为 D,
令 Px2yy2, Qx2 xy2, 则 当 x2y20时 ,有 Q x(x y22 yx22)2 P y.
整理课件
37
y
(1) 当(0,0)D时,
L
xdy ydx
D
由格林公式知 L x2 y2 0 o
x
(2) 当 (0,0) D 时 ,
作 位 于 D 内 圆 周 l:x 2 y 2 r2 , y L
xydx xydx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 4 .
1
5
整理课件
B(1,1)
y2 x
A(1,1)
20
例2 计算y2dx,其中 L为 L
(1)半径为 a、圆心为原点、针按方逆向时绕行 的上半圆 ; 周 (2)从点A(a,0)沿x轴到点 B(a,0)的直线. 段
解 (1) L: x y a ascions,
整理课件
28
练习题:
1、 xydx,其中L 为圆周( x a)2 y 2 a 2 (a 0)及 L x 轴所围成的在第一象限内的区域的整个边界(按
逆时针方向绕行);
2、
(x
L
y)dx ( x x2 y2

曲线积分极坐标公式

曲线积分极坐标公式

曲线积分极坐标公式
曲线积分极坐标公式是数学中的一个重要概念,它是描述曲线上某个向量场沿着曲线的积分值的公式。

在极坐标系下,曲线积分的计算可以更加简便,因为极坐标系下的曲线方程更加简单,而且极坐标系下的向量场也更加容易处理。

在极坐标系下,曲线积分的公式可以表示为:
∫C F(r,θ)·ds = ∫a^b F(r(θ),θ)·r'(θ) dθ
其中,C表示曲线,F(r,θ)表示向量场,r(θ)表示曲线在极坐标系下的参数方程,s表示曲线上的弧长,a和b分别表示曲线的起点和终点。

这个公式的意义是,将曲线C分成许多小段,每一小段的长度为ds,然后将每一小段上的向量场F(r,θ)与ds做点积,最后将所有小段的点积相加,就得到了整个曲线上的积分值。

这个公式的应用非常广泛,例如在物理学中,可以用它来计算电场或磁场沿着曲线的积分值;在工程学中,可以用它来计算流体沿着曲线的流量;在计算机图形学中,可以用它来计算曲线上的曲率等等。

需要注意的是,极坐标系下的曲线积分公式只适用于平面曲线,而不适用于空间曲线。

此外,如果曲线C是闭合曲线,即起点和终点
重合,那么曲线积分的值可能会受到曲线方向的影响,因此需要特别注意。

曲线积分极坐标公式是数学中的一个重要概念,它可以用来描述曲线上某个向量场沿着曲线的积分值。

在极坐标系下,曲线积分的计算更加简便,因为极坐标系下的曲线方程更加简单,而且极坐标系下的向量场也更加容易处理。

十一章曲线积分与曲面积分

十一章曲线积分与曲面积分

- -第十一章 曲线积分与曲面积分一 、内容提要(一)曲线积分1.第一类曲线积分(对弧长)(1)定义:设),(y x f 是光滑曲线L 上的有界函数,把L 分成n 段,设i 段的弧长为i s ∆(最长者记{}i s ∆=max λ),在其上任取一点),(i i ηξ,则),(y x f 在L 上的第一类(对弧长)曲线积分为 ∑⎰=>-∆=ni i i i Ls f ds y x f 1),(lim ),(ηξλ.(2) 几何意义与物理意义几何意义是柱面面积,该柱面以L 为准线、其母线平行于z 轴、介于平面0=z 和曲面),(y x f z =之间的部分(图10.1). 物理意义是线密度为),(y x f 的物质曲线L 的质量. (3)计算方法 : 即“定限、代入”两步法第一步(定限):写出L 的方程及自变量的变化范围,用不等式表示,例如 βα≤≤t ,并且一定有βα<.第二步(代入):计算出弧长的微分式ds .将L 的方程和ds 一并代人曲线积分公式,即转变为定积分.共有三种形式: 参数式 L : ⎩⎨⎧≤≤==,),(),(βαψϕt t y t x ds t t ds 22))(())((ψϕ'+'=⎰⎰'+'=Ldt t t t t f ds y x f βαψϕψϕ22))(())(())(),((),(;直角坐标 把L :)()(b x a x y ≤≤=ψ看做曲线参数表达式⎩⎨⎧==)(x y xx ψ可以得到如下公式:⎰⎰'+=Lb adx x x x f ds y x f 2))((1))(,(),(ψψ;极坐标 L :,),(βθαθ≤≤=r r θθθd r r ds 22))(()('+=,⎰⎰'+=Ld r r r r f ds y x f βαθθθθθθθ22))(()()sin )(,cos )((),(.2.第二类曲线积分(对坐标)(1)定义 : 设),(y x P 和),(y x Q 是有向光滑曲线L 上的有界函数,把L 分成n 段,设第i段的- -分点为),(i i i y x M ,在弧 ⋂-i i M M 1上任取一点),(i i ηξ,设1--=∆i i i x x x , 1--=∆i i i y y y ,则),(y x P 在L 上对坐标x 的曲线积分是⎰∑=>-∆=Lni i i i x P dx y x P 1),(lim ),(ηξλ;而),(y x Q 在L 上对坐标y 的曲线积分是⎰∑=>-∆=Lni iiiyQ dy y x Q 1),(lim ),(ηξλ;在应用上往往表现为两者的和:⎰⎰⎰+=+LLLdy y x Q dx y x P dyy x Q dx y x P ),(),(),(),((记为).(2)物理意义第二类曲线积分的物理意义是变力j y x Q i y x P F),(),(+=沿有向曲线L 移动所作的功,即⎰⋅=Lr d F W⎰+=L dy y x Q dx y x P ),(),(.其中 j dy i dx r d+= .由微分三角形知ds dy dx r d =+=22,向量r d在切线上.(4)计算方法直接计算 即“定向、代入”两步法. 第一步(定向):写出L 的方程及自变量的变化范围,α和β分别对应L 的起点(下限)和终点(上限).即变量“t 由α向β”积分.与第一类曲线积分不同,在这里可能出现βα>的情况.第二步(代入):把L 的方程及dy dx ,代入被积分式中,即变为定积分,α和β分别是下限和上限.例如, (定向)L :⎩⎨⎧==βαψϕ向由t t y t x ),(),(.(代入)⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),((([.间接计算 主要使用两个重要定理.格林定理 设:① D 是由分段光滑曲线L 围成,L 的方向为正;② ),(y x P 和),(y x Q 在D 上具有一阶连续偏导数.则⎰⎰⎰=⎪⎪⎭⎫⎝⎛∂∂-∂∂=+L D dxdy y P x Q Qdy Pdx dxdy QP y x D⎰⎰∂∂∂∂. 注意 : 如果D 是单连通域,则L 逆时针方向为正.如果D 是复连通域,则 L 的外周界逆时针方向为正,而内周界顺针方向为正.如果L 的方向为负,那么在使用格林时时一定要补加一个负号.与路径无关定理 设:① D 是单连通域,有向曲线L ∈D ;② ),(y x P 和),(y x Q 在D 中有- -连续的偏导数.则⎰+LQdy Pdx 与路径无关<=>yPx Q ∂∂=∂∂ 对于一个第二类曲线积分计算题,如果不宜直接计算或直接计算较繁,就需要计算yPx Q ∂∂∂∂和,依不同情况,或使用格林定理或改变积分路径.(5)曲线积分与全微分的关系设D 是单连通域;P 和Q 具有连续偏导数.则在D 中存在),(y x u 使yPx Q Qdy Pdx du ∂∂=∂∂⇔+= .其计算公式是 ⎰⎰⎰+=+=xx yy y x y x dy y x Q dx y x P dy y x Q dx y x P y x u 000),(),(),(),(),(0),(),(⎰⎰+=y y x x dx y x P dy y x Q 0),(),(0. 3.两类曲线积分之间的转换设曲线了L :)(),(t y t x ψϕ==.在曲线上L 任一点的切向量是=t {)(),(t t ψϕ''},容易求出单位切向量{}ααsin ,cos 0=t,由微分三角形知ααsin ,cos ds dy ds dx ==.将这两式代入第二类曲线积分中得⎰⎰+=+LLds Q P Qdy Pdx ]sin cos [αα如用向量表示,{}{}{}{}ds t ds ds dy dx r d y x r Q P A 0sin ,cos ,,,,, =====αα,于是ds t A r d A LL⎰⎰⋅=⋅0(此式在三维空间也正确).4.常用计算技巧代人技巧 若计算⎰Lds y x f ,),(而L 的方程恰是a y x f =),(,则⎰⎰==LLal ads ds y x f ),((l 是l 的长度).注意: 这种代入技巧在两类曲线积分和两类曲面积分中都适用.但是绝不可以用在重积分上.例如,设D 是由222a y x =+围成的区域,则下面的“代入”是错误的:⎰⎰⎰=+DDdxdy a dxdy y x 222)( 错误的原因是在D 的内部222a y x <+.利用奇偶对称性 第一类曲线积分的奇偶对称性与二重积分类似.设L 关于y 轴对称,则- -⎰⎰⎪⎩⎪⎨⎧=LL x y x f x y x f ds y x f 为偶函数,关于当为奇函数,关于当),(2),(,0),(1其中1L 是L 在y 轴右边的部分.若L 关于x 对称,则有结果类似. 第二类曲线积分的奇偶对称性与第一类曲线积分相反.设L 关于y 轴对称,(1L 是L 在y 轴右边的部分)则⎰⎰⎪⎩⎪⎨⎧=LL x Q x Q dy y x Q 为偶函数。

曲线积分定义

曲线积分定义

曲线积分定义
嘿,朋友们!今天咱来聊聊曲线积分这玩意儿。

你说啥是曲线积分呀?咱打个比方,就好比你沿着一条弯弯曲曲的小路跑步,你跑过的路程就是一种积分。

但这可不是简单的直线距离哦,是沿着那弯弯绕绕的曲线来算的。

想象一下,你在一个迷宫里走,每一步都有它的意义和价值。

曲线积分就是要把这些点点滴滴都加起来,算出个总数来。

这可不像我们平时算个数那么简单,这里面的门道可多着呢!
比如说,你要考虑这条曲线的形状,它是像小蛇一样扭来扭去呢,还是像直线一样直直的。

不同的形状,那积分可就不一样啦!这就好像你去爬山,走平缓的路和走陡峭的路,花费的力气能一样吗?
而且啊,曲线积分还分好几种呢!有对弧长的积分,这就像是统计你在曲线上走了多长的路;还有对坐标的积分,这就更复杂一点啦,就好像不仅要知道走了多远,还要知道在每个地方的具体位置。

你说这曲线积分有啥用呢?用处可大啦!比如在物理学里,计算一些沿着曲线运动的物体的能量啊、功啊什么的,可都离不开它。

再比如在工程学里,设计那些弯弯绕绕的管道、线路什么的,也得靠曲线积分来帮忙呢!
咱再回过头来想想,这曲线积分不就是生活中的一种缩影吗?我们的人生不也是一条弯弯曲曲的曲线嘛,每一个经历、每一个选择都是这条曲线上的一个点。

我们要把这些点都串起来,才能看到我们人生的全貌呀!
所以啊,可别小瞧了这曲线积分,它虽然看起来复杂,但是一旦你搞懂了它,就会发现它就像一把钥匙,可以打开好多知识的大门呢!那还等啥呢,赶紧去好好研究研究曲线积分吧,让它为你的学习和生活增添更多的精彩!
总之,曲线积分就是这么个神奇又有趣的东西,它让我们看到了数学的魅力和力量,也让我们更加懂得如何去理解和探索这个丰富多彩的世界。

曲线积分的计算

曲线积分的计算

曲线积分的计算曲线积分是微积分中的一个重要概念,用于计算沿曲线的函数的积分。

在本文中,我们将介绍曲线积分的概念、计算方法以及一些常见的应用。

一、什么是曲线积分曲线积分是指沿曲线对一个函数进行积分的过程。

它在物理学、工程学和计算机图形学等领域中都有广泛的应用。

二、曲线积分的类型曲线积分分为第一类曲线积分和第二类曲线积分。

第一类曲线积分是沿曲线对一个标量场进行积分,常用符号为∮f(s)ds。

第二类曲线积分是沿曲线对一个向量场进行积分,常用符号为∮F⋅dr。

三、第一类曲线积分的计算计算第一类曲线积分的方法有很多,其中一种常见的方法是参数化曲线。

设曲线C的参数方程为x = x(t)、y = y(t),则曲线积分的计算步骤如下:1. 根据参数方程求得曲线C的切线向量r'(t);2. 计算函数f(x, y)在曲线上的取值f(x(t), y(t));3. 将r'(t)与f(x(t), y(t))相乘,得到积分被积函数;4. 确定积分的上下限,并按照常规积分的方法进行计算。

四、第二类曲线积分的计算对于第二类曲线积分,常用的计算方法有格林公式和斯托克斯定理。

格林公式适用于平面内的有向曲线,而斯托克斯定理适用于有向曲面的边界曲线。

1. 格林公式的计算设曲线C的参数方程为x = x(t)、y = y(t),向量场为F = P(x, y)i +Q(x, y)j。

则曲线积分的计算步骤如下:1. 根据参数方程求得曲线C的切线向量r'(t);2. 将向量场F与r'(t)进行点积运算,得到积分被积函数;3. 确定积分的上下限,并按照常规积分的方法进行计算。

2. 斯托克斯定理的计算对于有向曲面S的边界曲线C,设有向曲面的法向量为n,向量场为F = P i + Q j + R k。

则曲线积分的计算步骤如下:1. 计算曲线C的方向与曲面S的法向量的点积,得到积分被积函数;2. 确定积分的上下限,并按照常规积分的方法进行计算。

定积分与曲线积分的区别与联系

定积分与曲线积分的区别与联系

定积分与曲线积分的区别与联系
x
定积分与曲线积分的区别与联系
定积分和曲线积分是数学中研究几何问题的有效方法,它们之间有很大的区别和联系。

定积分的定义为:定积分是求函数关于某一变量的积分,也就是求某一变量的增量和函数值乘积的累积和。

定积分利用变量取值进行求积分,其结果表现为一个定值,它可以用来求函数在某个区间上的积分值。

曲线积分的定义为:曲线积分是求曲线上某一点到某一点的函数值的积分。

曲线积分是求一个曲线上某一点到某一点的函数值的积分,它可以求出曲线在某一段区间上的积分值。

定积分与曲线积分有着诸多不同之处,首先,定积分是求给定变量x的增量和函数值乘积的累积和,而曲线积分是求曲线上某一点到某一点的函数值的积分。

其次,定积分的结果是一个定值,而曲线积分的结果是曲线在某一段区间上的积分值。

最后,定积分求的是变量的积分,而曲线积分求的是曲线上的积分。

定积分与曲线积分也有着诸多关系,首先,定积分和曲线积分均属于数学中的积分计算,它们的主要目的是求函数的积分值。

其次,定积分和曲线积分可以相互结合使用,如果某个函数先用定积分分段计算后,再用曲线积分计算,则可以取得更精确的结果。

最后,定积分和曲线积分都可以用于解决复杂的几何问题。

总之,定积分和曲线积分都是数学中研究几何问题的有效方法,它们之间有着千丝万缕的联系,在求解复杂的几何问题时,它们可以相辅相成,取得更为准确的结果。

曲线积分

曲线积分
λ →0
i =1
n
3.曲线积分的定义 定义 设L是xoy平面内以A、B为端点的光滑曲线,函
数 f (x, y)L上有界。在L上任意插入一个点列
A = M 0 , M 1,
,Mn = B
把L分成n个小段,设第i个小段 M i − 1 M i 的弧长为∆s, 在 M i − 1 M i 上任取一点(ξi, ηi),(i=1,2, …,),
y A B o Mi x Mi-1
由此得到小弧段质量的近似值:
∆Mi ≈ ρ (ξi ,ηi )∆si ,
由此得到小弧段质量的近似值:
M ≈
∑ ρ (ξ , η ) ∆ s ,
i =1 i i i
n
以λ表示n个小弧段的最大长度,在上式取λ→0时的极 限,则有
M = lim ∑ ρ (ξ i ,ηi ) ∆si .
A = Sh.
Mi-1
其中:S为曲线的弧长。若h(x,y)不是常量,则考虑用分 割的方法求之。 在曲线L上插入n个分点,M0, M1,…,Mn-1, Mn。在小 弧段 M i −1M i 上取点(ξi, ηi),并用h(ξi , ηi)作为相应小柱 z 面的高度,从而得到小柱面的面积 的近似值
∆Ai ≈ h(ξi ,ηi )∆si ,
第二类曲线积分的概念
1.定向曲线及其切向量 在第一节中,讨论的是对弧长的曲线积分,这是一种 无方向的曲线积分。例如曲线的弧长、转动惯量等等, 均与方向无关。在这一节中,我们讨论与“方向”有关的 曲线积分。
给定一条曲线,并规定了走向,如此曲线称为定向曲 线。当起点为A,终点为B,一般用 Γ = AB 表示 该曲线 弧。 若曲线 Γ = AB 由参数方程给出:
y = y ( x)

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结

曲线积分曲面积分公式总结曲线积分是在曲线上计算函数的积分,通常用来计算沿曲线的弧长、质量、电流等物理量。

曲线积分的公式为:1.第一类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),函数为f(x, y, z),则第一类曲线积分的公式为:∫[C] f(x, y, z) ds = ∫[a,b] f(r(t)) ||r'(t)|| dt其中,ds表示弧长元素,||r'(t)||表示曲线的切向量的模。

2.第二类曲线积分:设曲线为C,参数方程为r(t) = (x(t), y(t), z(t)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲线积分的公式为:∫[C] F(x, y, z) · dr = ∫[a,b] F(r(t)) · r'(t) dt其中,·表示向量的点乘,dr表示位移向量,r'(t)表示曲线的切向量。

曲面积分是在曲面上计算函数的积分,通常用来计算流量、电通量等物理量。

曲面积分的公式为:1.第一类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),函数为f(x, y, z),则第一类曲面积分的公式为:∬[S] f(x, y, z) dS = ∬[D] f(r(u, v)) ||ru × rv|| du dv其中,dS表示面积元素,||ru × rv||表示曲面的法向量的模。

2.第二类曲面积分:设曲面为S,参数方程为r(u, v) = (x(u,v), y(u,v), z(u,v)),向量场为F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),则第二类曲面积分的公式为:∬[S] F(x, y, z) · dS = ∬[D] F(r(u, v)) · (ru × rv)du dv其中,·表示向量的点乘,dS表示面积元素,ru和rv分别表示曲面参数u和v方向的偏导数。

曲线积分的计算法

曲线积分的计算法

曲线积分的计算法曲线积分第一类( 对弧长)第二类( 对坐标)转化定积分(1) 选择积分变量用参数方程用直角坐标方程用极坐标方程(2) 确定积分上下限第一类: 下小上大第二类: 下始上终对弧长曲线积分的计算定理)()()()](),([),(,],[)(),()(),(),(,),(22dt t t t t f ds y x f t t tt yt x L L y x f L且上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意:;.1一定要小于上限定积分的下限.,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形.)(:)1(b x a x y L .)(1)](,[),(2dx x x x f dsy x f baL .)(:)2(d ycy x L .)(1]),([),(2dy y y y f dsy x f dcL1. 基本方法).(,sin ,cos :,象限第椭圆求t b y t a x L xyds IL解dtt b t a t b t a I2220)cos ()sin (sin cos dtt b t a tt ab222220cossincos sin abduu baab 222)cos sin (2222t b ta u 令.)(3)(22b ab ab a ab 例2.)2,1()2,1(,4:,2一段到从其中求x y L yds ILxy42解dyy y I222)2(1.0例3)2(.,sin ,cos :,的一段其中求kza y a x xyzds I 解dk ak a 222sin cos2I.21222k aka例4.0,,22222zyxa z y x ds x I为圆周其中求解由对称性, 知.222ds z dsy ds x dsz yxI)(31222故例1对坐标的曲线积分的计算,),(),(,0)()(,)(),(,),(,),(),(,),(),,(22存在则曲线积分且续导数一阶连为端点的闭区间上具有及在以运动到终点沿的起点从点时到变单调地由当参数的参数方程为续上有定义且连在曲线弧设Ldy y x Q dxy x P t t t t B L A L y x M t t yt x L L y x Q y x P dtt t t Q t t t P dy y x Q dx y x P L)}()](),([)()](),([{),(),(且特殊情形.)(:)1(b a x x y y L ,终点为起点为.)}()](,[)](,[{dx x y x y x Q x y x P Qdy PdxbaL 则.)(:)2(d c y y x x L ,终点为起点为.]}),([)(]),([{dy y y x Q y x y y x P QdyPdxdcL则例5 计算,d d )2(Ly x x y a 其中L 为摆线,)sin (t t a x )cos 1(t a y上对应t 从0 到2的一段弧.提示: yx xy ad d )2()cos 1(t a tt a d )cos 1(tt a t ta d sin )sin (tt t a d sin 2π202d sin t t t a原式π202sin cos tt t a 2π2adsa32.323a ),2(球面大圆周长ds a,d z z y x 其中由平面y = z 截球面22yx,12所得z从z 轴正向看沿逆时针方向.提示:因在上有,1222yx故:txcos tysin 21)π20(t sin 21tz原式=tt t d sincos π2022221tt t d 2π22221)cos 1(cos 42π21432π21216π2曲面积分的计算法1. 基本方法曲面积分第一类( 对面积) 第二类( 对坐标)转化二重积分(2) 积分元素投影第一类: 始终非负第二类: 有向投影(3) 确定二重积分域例 6计算(1) 选择积分变量—代入曲面方程—把曲面积分域投影到相关坐标面定理:设有光滑曲面yx D y x y x z z),(),,(:f (x, y, z ) 在上连续, 则曲面积分Sz y x f d ),,(存在, 且有Sz y x f d ),,(yx Dy x f ),,(),(y x z yx y x z y x z y x d d ),(),(122例7计算ds z y x)(, 其中为平面5zy 被柱面2522yx所截得的部分.解积分曲面:y z5,dxdyz z dSy x221dxdy2)1(1,2dxdy dsz yx)(故xyDdxdyy y x )5(2投影域:}25|),{(22yx y x DxyxyD dxdyx)5(2rdrr d520)cos 5(2.2125对坐标的曲面积分计算:一投、二代、三定号例8.计算曲面积分,d d y x xyz 其中为球面2x122z y 122zy外侧在第一和第五卦限部分. 解:把分为上下两部分2211:yxz 2221:yxz 对面积的曲面积分的计算法例91d d yx z y x 0,01:),(22yxy x Dy x yx dydz x z)(2dsx zcos )(2dxdy x z cos cos )(2有上在曲面,.11cos,1cos2222yxy x xdxdy z x x z zdxdy dydz x z ]))([()(22xyD dxdyy xx x y x )}(21)(])(41{[2222xyDdxdyy xx)](21[222222220)21cos(rdrr r d.8yx z y x d d 2d d yx z y x yxD yx y x y x d d 1222221cossin2r r yx Dd d r r 20d2sin rrr d 1213152计算zdxdydydzx z)(2,其中Σ是旋转抛物面)(2122yxz介于平面z 及2z之间的部分的下侧.解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线积分知识点讲稿一.对弧长的曲线积分:1.引例 :设L 是质量分布不均匀的构件,密度为f(x,y),则弧M i-1M i 的质量△M i =f(ξi , ηi )△s iM=i ni i i s f ∆∑=→),(lim1ηξλ2.弧长曲线积分的定义: 设L 为OXY 平面内的一条光滑曲线弧,端点为A,B,函数f(x,y)在L 上有界,在L 上任意插入一系列点),(,),,(),,(111222111---⋯n n n y x M y x M y x M ,并取B M A M n ==,0,把L 分成n 个小段,令第i 个小弧段的长度为△s i ,又),(i i ηξ为第i 个小弧段上的任意一点,作乘积i i i s f ∆),(ηξ(i=1,2,3,…,n),并对i 求和i ni i i s f ∆∑=),(1ηξ,如果当各个小弧段的长度的最大值λ→0时,这个和式的极限存在,则称此极限值为函数f(x,y)在曲线弧L 上对弧长的曲线积分或第一类曲线积分,记为⎰Lds y x f ),(,即⎰Lds y x f ),(=i ni i i s f ∆∑=→),(lim1ηξλ其中f(x,y)叫做被积函数,L 叫做积分弧段. 3.对弧长曲线积分的性质: (1). =±⎰Lds y x g y x f )],(),([⎰Lds y x f ),(⎰±Lds y x g ),((2). ⎰Lds y x kf ),(=⎰Lds y x f k ),((3).⎰Lds y x f ),(=⎰1),(L ds y x f +)(),(212L L L ds y x f L +=⎰(4). 变换L 的起点和终点,对弧长的曲线积分的值不变(但一般取下限<上限). (5).⎰=LL ds其中L 表示曲线的弧长,也可看作如下三种情况的推广.a b dxba-=⎰, [b-a]的长度,D dxdyD=⎰⎰ D 的面积,Ω=⎰⎰⎰ΩdxdydzΩ的体积.Y二.对弧长的曲线积分的计算法设f(x,y)在曲线弧L 上有定义且连续 (1).L 是参数方程 ⎩⎨⎧==)()(t y t x ψϕ (α≤t ≤β)φ(t),ψ(t)有一阶连续导数 并且0)()(22≠'+'t t ψϕ 22)()(y x s ∆+∆≈∆ 又∵dt t t dt t x )()()(ϕϕϕ'≈-+=∆ , dt t t dt t y )()()(ψψψ'≈-+=∆∴△s 的近似值即弧长元素d s 为222222))(())(()()(dt t dt t dy dx ds ψϕ'+'=+==dt t t )()(22ψϕ'+'∴⎰Lds y x f ),(=])(),([⎰βαψϕt t f dt t t )()(22ψϕ'+'(2).曲线L 的方程 : ⎩⎨⎧≤≤==)(,)(b x a x y y x x 则⎰Lds y x f ),(=⎰bax y x f )](,[dx x y )(12'+(3). 曲线L 的方程 ⎩⎨⎧≤≤==)(,)(d y c yy y x x 则⎰Lds y x f ),(=⎰dcy y x f ]),([dy y x )(12'+(4).曲线Γ为空间曲线其方程为: ⎪⎩⎪⎨⎧≤≤===)(,)()()(βαωψϕt t z t y t x 则⎰Γds z y x f ),,(=⎰βαωψϕ)](),(),([t t t f dt t t t )()()(222ωψϕ'+'+'★(5)曲线方程是极坐标形式 L: r=r(θ), θ0≤θ≤θ1 ⎩⎨⎧==θθθθs i n )(c o s)(r y r x (θ0≤θ≤θ1) 则θθθθθθθθθd r r r r f ds y x f L⎰⎰'+=1)()(]sin )(,cos )([),(22计算对弧长的曲线积分 : 1.⎰+Lds y x )2(,其中L 为连接两点(2,0),(0,3)的直线段解: AB:132=+y x ,即x y 233-=∴2131,232='+-='y y X0 A(2,0)⎰⎰⎰+=-+=+220)321(213213)2332()2(dx x dx x x ds y x L=2137)341(21322=+x x 2. ∮L(x 2+y 2)n ds,其中L 为圆周 x=acost, y=asint (0≤t ≤2π)解: adt dt y x ds t a y t a x ='+'=='-='22,cos ,sin∮L(x 2+y 2)n ds=1220222])sin ()cos [(+=+⎰n n aadt t a t a ππ3. I=∮L(x 2+y 2+5)n ds= 12π , 其中L 为x 2+y 2=1的圆周.4. I=∮L(4x 2+5y 2-16)ds= 4K , 其中L 为椭圆14522=+yx,周长为K.5. ds eyx L22∮+,其中L 为圆周x 2+y 2 =a 2, 直线x y 3=及X 轴在第一象限内所围成的扇形的整个边界.解 直线OA L 1 : x y 3=, 扇形2 :x=acost,y=asint (0≤t ≤π/3)X 轴 : L 3 y=0 , L=L 1+L 2+L 3 I=ds eyx L22∮+=⎰+122L yx ds e+⎰+222L yx ds e+⎰+322L yx ds e∵dx dx ds y L 2)3(1,3:21=+==' , t a y t a x L cos ,sin :2='-='a d t dt y x ds ='+'=22 , dx ds y L ==',0:3 ∴ I=dx e dt e a dx e axaa x⎰⎰⎰++03222π=a xaa xet ae e 030202)()(++π=2)32(-+ae aπ6.⎰Γyzds x 2,其中四个点为 A(0,0,0),B(0,0,2),C(1,0,2),D(1,3,2), Γ为折线ABCD解: AB,BC,CD 是直线写成参数(一次)式直线方程: AB: x=0,y=0,z=t (0→2)BC: x=1,y=0,z=2 CD: x=1, y=t (0→3),z=2⎰Γy z d s x 2=⎰AByzds x 2+⎰BCyzds x 2+⎰CDyzds x 2=0+0+⎰CDyzds x2=dt t ⎰++31002=9 X7.求心形线r=a(1+cos θ) 的长度(a>0)解: θθθcos 2cos )]cos 1([222222a a a a r ++=+=θθ222sin )(a r =' ∴ds=θθθθd a d r r 2cos2)(22='+ X]2c o s 2c o s [22c o s 22020⎰⎰⎰-==ππππθθθθθθd d a d a ds L∮=a a 8]2sin22sin 2[220=-ππθθ一.对坐标的曲线积分的概念与性质:1.引例 :变力沿曲线所作的功设质点受力为 F(x,y)=p(x,y)i+Q(x,y)j j y i x M M i i i i )()(1∆+∆=-i i i i i M M F w 1),(-≈∆ηξi i i i i i i y Q x P w ∆+∆≈∆),(),(ηξηξ X]),(),([i i i i i i niniiy Q x P wW ∆+∆≈∆=∑∑ηξηξ]),(),([limi i i i i i niy Q x P W ∆+∆=∑→ηξηξλ2.坐标曲线积分的定义:设L 为OXY 平面内从点A 到点B 的一条有向光滑曲线弧,,函数P(x,y),Q(x,y)在上有界,在L 上沿L 的方向任意插入一系列点),(,),,(),,(111222111---⋯n n n y x M y x M y x M ,,把L 分成n 个有向小弧段,M i-1M i (i=1,2,…; B M A M n ==,0)令△x i =x i -x i-1,△y i =y i -y i-1,点),(i i ηξ为M i-1M i 上的任意一点,如果当各小弧段长度的最大值λ→0时,i ni i i x P ∆∑=),(1ηξ,这个和式的极限存在,则称此极限值为函数P(x,y)在有向曲线弧L 上对坐标x 的曲线积分,记为⎰Ldx y x P ),(,类似地,如果i ni i iy Q ∆∑=→),(lim1ηξλ总存在,则称此极限为函数Q(x,y)在有向曲线弧L 上对坐标y 的曲线积分,记为⎰Ldy y x Q ),(即⎰Ldx y x P ),(=i ni iix P ∆∑=→),(lim 10ηξλ⎰Ldy y x Q ),(=i ni i iy Q ∆∑=→),(lim 1ηξλ其中P(x,y),Q(x,y)叫做被积函数,L 叫做积分弧段,此两个积分也称为第二类曲线积分在书写上常把两者合并:⎰Ldx y x P ),(+⎰L dy y x Q ),(= dy y x Q dx y x P L),(),(+⎰3.坐标曲线积分的性质:(1).如果有向弧 L=L 1+L 2 , 则dy y x Q dx y x P L),(),(+⎰=dy y x Q dx y x P L ),(),(1+⎰+dyy x Q dx y x P L ),(),(2+⎰(2).设L 是有向曲线弧段,-L 是与L 方向相反的有向曲线弧段,则dy y x Q dx y x P L),(),(+⎰-=-dy y x Q dx y x P L),(),(+⎰◣注意◥1.对坐标曲线积分,必须注意曲线L 的方向,化到定积分时,下限α对应于L 的起点,上限β对应于L 的终点,α不一定小于β. 2.对弧长曲线积分,化到定积分时,虽然α→β,β→α弧长不改变,但下限α一定要小于上限β 二. 对坐标的曲线积分的计算方法设 P(x,y),Q(x,y)在有向曲线弧L 上有定义且连续 1.曲线 L : 参数方程⎩⎨⎧≠'+'==0)()(,)()(22t t t y t x ψϕψϕ , (α≤t ≤β) 则dy y x Q dx y x P L),(),(+⎰={}dtt t t Q t t t P ⎰'+'βαψψϕϕψϕ)()](),([)()](),([(2. 曲线Γ为空间曲线其方程为: ⎪⎩⎪⎨⎧≤≤===)(,)()()(βαωψϕt t z t y t x 则dz z y x R dyz y x Q dx z y x P L),,().,(),,(++⎰=dt t t t t R t t t t Q t t t t P )}()](),(),([)()]().(),([)()](),(),([{ωωψϕψωψϕϕωψϕβα'+'+'⎰3. 曲线 L : 函数方程⎪⎩⎪⎨⎧≤≤==b x a x x x y y ,)( ,则dy y x Q dx y x P L),(),(+⎰={}dxx y x y x Q x y x P ba⎰'+)()](,[)](,[4. 曲线 L : 函数方程⎪⎩⎪⎨⎧≤≤==d x c yy y x x ,)( ,则dy y x Q dx y x P L),(),(+⎰={}dy y y x Q y x y y x P dc⎰+']),([)(]),([三.计算坐标曲线积分 1.dy x y dx y x L)()(-++⎰ 其中L 是y 2=x 上从点(1,1)到点(9,3)解:用 x=x(y) , 1≤y ≤3 ,x ’(y)=2y ,dx=2ydy∴dy x y dx y x L)()(-++⎰=⎰-++3122)](2)[(dy y y y y y=3158)213121()2(313123423=++=++⎰y y y dy y y y2.dy x y dx y x L)()(-++⎰ 其中L 是先沿着直线从点A(1,1)到点B(1,3)而后再沿直线到点C(4,3)解: 直线⎪⎩⎪⎨⎧==∴≡→==∴≡→dx dx dy y x BC dydy dx x y AB 03;)41(:01;)31(:dy x y dx y x L)()(-++⎰=dy x y dx y x AB)()(-++⎰+dy x y dx y x BC)()(-++⎰=⎰-ABdy x y )(+⎰+BCdx y x )(=⎰⎰++-4131)3()1(dx x dy y=237)3(21)1(21412312=++-x y3. 22)()(∮y x dy y x dx y x L+--+ ,其中 L: x 2+y 2=a 2逆时针方向 解:设 x=acost ,y=asint ,则 dx=-asint ,dy=acost ,0≤t ≤2π ∴22)()(∮yx dyy x dx y x L+--+=⎰---+π20222]cos )sin (cos )sin )(sin (cos [adtt t t a t t t a=ππ220-=-⎰dt4.dz y x ydy xdx)1(-+++⎰Γ其中Γ是从点A(1,1,1)到点B(3,4,5)的一段直线解: 空间直线AB 的方程 :413121-=-=-z y x ,其参数式为dtdz t z dt dy t y dtdx t x 4,413,312,21=+==+==+= 当 x=1 ,t=0 ; x=3 , t=1∴dz y x ydy xdx )1(-+++⎰Γ=⎰-+++++++10)]13121(4)31(3)21(2[dt t t t t=251)2339()339(121=+=+⎰t t dt t【格林公式】dy y x Q dx y x P dxdy yP xQ LD),(),()(+=∂∂-∂∂⎰⎰∮(D 为单连通区域)1. =+xdy ydx L∮ 0 .2. I=dy y xy dx y x x L)()(3223∮++- 其中 L: x 2+y 2=32逆时针方向 解: 232223,,,y x Q y xy Q xyp y x x P =∂∂+=-=∂∂-=∴ I=⎰⎰+Ddxdy y x )(22=281)41(230430220ππθπ==⎰⎰r rdr r d3.⎰-Lydx x dy xy 22, L:由A(1,0) 沿着y=21x -到B(-1,0)的圆弧解: 设=r L L+BA (即形成单连通区域 D)2222,,,y xQ xy Q xyP y x P =∂∂=-=∂∂-= X⎰-rL y d x x dy xy 22=⎰-Lydx x dy xy 22=⎰⎰+Ddxdy y x )(22=πθπ41][012=⎰⎰d rdr r而因为022=-⎰BAydx x dy xy (y=0) ∴422π=-⎰Lydx x dy xy。

相关文档
最新文档