变压器油色谱分析报告
变压器油色谱数据分析及故障诊断
变压器油色谱数据分析及故障诊断发布时间:2022-12-05T06:56:24.472Z 来源:《福光技术》2022年23期作者:李艳[导读] 电力变压器是构成电力系统的重要组成部分,及时有效地诊断并排查电力变压器在运行过程中潜在的内部缺陷,对保障电力系统安全稳定运行具有重要意义。
国网安徽省电力公司淮北供电公司安徽淮北 235000摘要:电力变压器是构成电力系统的重要组成部分,及时有效地诊断并排查电力变压器在运行过程中潜在的内部缺陷,对保障电力系统安全稳定运行具有重要意义。
由于电力变压器检修周期长、检修难度大,在变压器实际运行维护中,常在非停电状态下取变压器油样,并根据油色谱分析图进行内部故障分析。
基于此,本文就变压器油色谱数据异常原因进行基础分析,并具体研究故障处理办法,确保在变压器油色谱的支持下,提升电力系统的供电可靠性。
关键词:变压器;油色谱;数据异常变压器油色谱分析技术是基于油中溶解气体类型与内部故障的对应关系,采用气相色谱仪分析溶解于油中的气体,根据气体的组分和含量来判断变压器内部有无异常情况,诊断其故障类型、大概部位、严重程度和发展趋势的技术。
其特点是能发现用电气试验不易发现的潜伏性故障,突出针对性防范措施,实现变压器不停电检测和早期故障诊断,是当前绝缘监督的一项重要手段。
1 变压器油色谱数据异常原因分析电力变压器稳定运行,能够有效提升电力系统运行的经济性,要想优化变压器运行效率,相关工作人员必须严格按照运维管理流程,定期开展变压器的检查维护工作,及时发现变压器的隐患。
尽可能减少因人为失误造成变压器故障,检修人员在具体检修过程中,需要做好全面的检修工作,及时找出故障点,必要时,停电进行作业。
由于变压器内部隐患发现难度较大,往往需要通过间接分析法对变压器进行状态监测,因此,变压器的油色谱能更好地帮助检修人员分析变压器内部运行工况。
比如某变电站一变压器内部过热,为判断产生的原因,检修人员可以通过油色谱分析结果采取具有针对性的电气试验。
浅谈变压器油的气相色谱分析
浅谈变压器油的气相色谱分析一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。
这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。
变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。
含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。
在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。
当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。
故障气体的组成及含量与故障类型和故障严重程度关系密切。
因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。
二、实例变压器内部放电性故障产生的特征气体主要是乙炔。
正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。
某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。
表1从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。
氢气含量也比较高。
我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。
还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。
我们分析该变压器可能有进水现象。
经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。
变压器油的气相色谱分析浅析
变压器油的气相色谱分析浅析【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。
【关键词】变压器绝缘油色谱分析一、气相色谱分析的意义变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。
一般有25#和45#两种变压器油。
运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。
电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。
气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。
二、气相色谱分析的特征气体及产生的原理体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
在对所做油样的品质进行判定时,还要对总烃含量做判断。
总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。
在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。
那么,就需要我们大概清楚在什么情况下会分解出什么气体。
产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。
那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。
由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。
在低能量故障时,如局部放电。
通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。
对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。
变压器油质及色谱分析
新油净化后的检验指标
设备电压等级/kV 项目
500及以上 330~220 ≤110
击穿电压/kV
≥60
≥55
≥45
水分/(mg/kg) 介质损耗因数 90℃
每年至少一次 每年一次
GB/T6541 GB/T5654
击穿电压 2.5mm间隙 kV
每年一次
DL/T 429.9
≥35 ≥30 ≥1×1010 ≥5×109 ≤3 报告
三年至少一次 每年一次或 必要时 每年一次或 必要时
DL/T429.9
体积电阻率 90℃,Ω•m 油中含气量 体积分数% 油泥和沉淀物(质量分 数)%
二)化学特性
包括酸值、水溶性酸 、水分、 氧化安定性 、腐蚀性硫等指标
酸值和水溶性酸 酸值和水溶性酸
酸值是指中和1g变压器油中的全部游离酸所需要的 氢氧化钾毫克数,单位为mg(KOH)/g。 从油品 中所测得酸值,为有机和无机酸的总和,所以也称 总酸值,要求越低越好。变压器油中酸值大小从一 定程度上反映了油的精练深度和氧化程度。 变压器油的水溶性酸是指能溶于水的矿物酸,通常 用pH值表示。对于运行中的油来说,水溶性酸是油 老化产物之一,同时,有了水溶性酸反过来使油更 易老化。通过pH值的测定,可以判断油质的好坏, 油对金属及固体绝缘的腐蚀情况,油质劣化程度, 精制和再生的好坏,油可否继续使用等。
油中9 油中9种溶解气体的分析目的
被分析的气体组 分析目的 分 推荐检测 O2 气体 N2 必测气体 H2 CH4 C2H6 C2H4 C2H2 了解有无放电现象或存在极高的过热故障点温度 CO CO2 了解固体绝缘的老化情况或内部平均温度是否过高 与CO结合,有时可了解固体绝缘有无热分解 了解脱气程度和密封(或漏气)情况,严重过热时也回极度 消耗明显减少 可了解N2饱和程度,与O2的比值可更准确分析的消耗情况。 正常情况下,N2、O2和CO2之和还可估算出油的总含气量 与甲烷之比可判断并了解过热故障点温度,或了解是否有局 部放电情况和受潮情况 了解过热故障点温度
电力变压器的油色谱分析
电力变压器的油色谱分析目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。
油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。
这也证明在故障温度与溶解气体含量之间存在着对应的关系。
而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。
变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。
当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。
对应这些故障所增加含量的气体成分见表5-9。
表5-9 不同绝缘故障气体成分的变化(1)分析气体产生的原因及变化。
(2)判断有无故障及故障类型。
如过热、电弧放电、火花放电和局部放电等。
(3)判断故障的状况。
如热点温度、故障回路严重程度及发展趋势等。
(4)提出相应的处理措施。
如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。
若需加强监视,则应缩短下次试验的周期。
这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。
经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。
因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了显著的成效。
变压器油气相色谱分析
变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。
这些气体大部分溶解在油中。
当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。
例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。
故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。
因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。
当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。
二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。
三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。
设备在故障下产生的气体主要也是来源于油和纸的热裂解。
2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。
其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。
在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。
在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。
在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。
随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。
在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。
如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。
电力变压器油色谱分析
测 分离 出来 的混合 气体含 量 的传感 器通常 有半导体 传
感器 、氢焰离子化传感器( F I D ) 和热导式传感器( T C D ) 。 ( 2 )光声光谱法 。光声光谱法 是以光 声效应为基础 的 检测方法 。气体分子 吸收 电磁的辐射而产生光声效应 ,
当特定 的气体 吸收 了特定 波长 的红外线 以后温度将 升
独气体或者 以某种气体为主的多种气体的综合浓度 ,其
基本原理是利用检测设备 中的渗透膜使 油中溶解 的气体 进入反应装置并与氧气反应后发 出信号 ,根据信号传递 的判定该气体 的量 。单组分在线检测设备的体积小 、价 格低 ,无需载气和定期更换 ,基本符合免维护 的标准 。 但是所测量到 的指标数值误差较大 ,主要用 于检测油 中 气体含量 的变化趋势 ,在受 到设备 的报警信号后 ,应及 时展开实验室色谱 分析确定故障的原 因。 2 . 2 多组分在线监测设备。多组分监测设备主要通过
( 作者 单位 :四川华 电杂谷脑 水电开发有 限责任公司 )
信息 系统 工程 l 2 0 1 3 . 1 0 . 2 0 1 3 1
A C A D E MI C R E S E A R C H 学术研究
电 力变压器 油色谱分析
◆ 冯 丽 华
摘 要 :油 色谱 分 析 是 检 测 、预 防 、 维修 电力 变压 器 的重 要 方 法 ,其在 电 力 变压
器设备 中的应 用对 于整个 电力 系统的正 常运转有着重要 意义。本论文将从什 么是油 色谱分析等基础知识入手 ,分析其在 电力变压 器中的应 用。 关键词 :电力变压 器;油 色谱分析 ;应用
该设备检测到的气体种类较多、指标参数值与实验室测量 结果相近 ,更主要的是可以直接分析并诊断变压器设备 中 的故障。但设备体积大、维护工作较难、价格昂贵。 2 . 2 . 1 油气分离技术。把油 中的气体与油分离开来称 为油气分离 ,目 前主要有膜分离技术、顶空脱气技术和真 空脱气技术等三种油气分离技术。 ( 1 ) 膜分离技术。膜 分离是指利用特定高分子膜的透气性使气体与油分离。这 种分离技术对膜的要求 比较严格 ,首先高分子膜的使用寿 命要足够长 ,在变压器运行时不会蠕动和破损 ,还要求缩 短脱气即油气平衡时间。 目前油色谱分析在线监测设备的
变压器油的气相色谱分析
青海水力发电2/202043绝缘油是天然石油经过蒸馏、提炼、调和得到的一种矿物油,是各种不同分子的碳氢化合物所组成的混合物,其中碳、氢两元素占其全部质量的95%~99%,碳氢化合物主要有烷烃、环烷烃、芳香烃等,其他为氮、氧、硫及极少量的金属元素等。
绝缘油放在变压器里又叫变压器油,主要用于变压器、电抗器、互感器、套管、油断路器等输变电设备,起绝缘、冷却和灭弧的作用。
1 气相色谱分析过程及特征气体气相色谱分析是一种物理分离技术,分析程序是先将取样变压器油经真空泵脱气装置,将溶解在油中的气体分离出来,用注射器定量注入色谱分析仪,在载气的推动下流过色谱柱,混合气体经色谱柱分离后,通过鉴定器来检测。
被分离的各气体组分依一定次序逐一流过鉴定器将气体浓度变为电信号,再由记录仪记录下来,并依各组分的先后次序排列成一个个脉冲尖峰,形成了色谱图。
一个脉冲峰表示一种气体组分,峰的高度或面积则反应该气体的浓度。
色谱图对被分析的气体既定性又定量分析,再经过峰高换算出各气体的浓度。
体征气体:气相色谱分析的特征气体主要有氢气(H 2)、甲烷(CH 4)、乙烷(C 2H 6)、乙烯(C 2H 4)、乙炔(C 2H 2)、一氧化碳(CO)、二氧化碳(CO 2)。
总烃即甲烷、乙烷、乙烯、乙炔四种气体的总和。
2 气相色谱判断故障的常用方法2.1 特征气体法根据变压器油中气体的组分和含量可以判断故障的性质和严重程度,判断故障的方法,称特征气体法。
该诊断法对故障性质有较强的针对性,比较直观、方便,但不足是没有明确量化。
可以根据表1结合特征气体来判断故障。
(1)油过热:至少分两种情况,即中低温过热(低于700℃)和高温过热(高于700℃)以上过热。
如油温较低,烃类气体组分中CH 4、C 2H 6含量较多,C 2H 4较C 2H 6少甚至没有;随着温度增高,C 2H 4含量增加明显。
(2)油和纸过热:固体绝缘材料过热会产生大量的CO、CO 2,过热部位达到一定温度后,纤维素逐渐碳化,并使过热部位油温升高,才使CH 4、C 2H 6和收稿日期: 2020-4-10作者简介: 马 妮 女 (1979-) 助理工程师 黄河电力检修工程 有限公司变压器油的气相色谱分析马 妮(黄河电力检修工程有限公司甘肃项目部 甘肃兰州 730094 )内容提要 早期预测充油电气设备故障对于安全发供电、防止设备出现故障和事故是极其重要的。
变压器油色谱分析
变压器油色谱分析摘要:当变压器内部发生过热、放电等故障时,势必导致故障附近的绝缘物分解。
分解产生的气体会不断地溶解在油中的,不同性质的故障所产生的气体成分也不同,即使同一性质的故障,由于故障的程度不同,产生的气体数量也不相等。
因此,对油中溶解气体的色谱分析,可以早期发现潜伏性故障的性质、程度和部位,以便及时处理故障,避免事故的发生。
关键词:变压器油;油色谱分析;故障判断1.气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。
它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相;另一相则是推动混合物流过此固定相的流体,叫做流动相。
气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。
然后再进入检测器对各组分进行鉴定。
2、色谱分析的过程2.1取出一定量的变压器油利用变压器油的色谱来判断变压器出现的故障种类,要通过几个过程的操作来进行。
在对变压器油中溶解气体进行色谱分析时,至关重要的一步是取油样,所取油样要有足够代表性,如何取样才不致于使油中溶解气体散失?理想的取样应满足以下条件。
(1)所使用的玻璃注射器严密性要好。
(2)取样时能完全隔绝空气,取样后不要向外跑气或吸入空气。
(3)材质化学性稳定且不易破损,便于保存和运输。
(4)实际取油样时,一般选用容积为100ml全玻璃注射器。
(5)取样前将注射器清洗干净并烘干,注射器芯塞应能自由滑动,无卡涩。
(6) 应从设备底部的取样阀放油取样。
(7)取样阀中的残存油应尽量排除,阀体周围污物擦干净。
(8)取样连接方式可靠,连接系统无漏油或漏气缺陷。
(9)取样前应设法将取样容器和连接系统中的空气排尽。
(10)取样过程中,油样应平缓流入容器,不产生冲击、飞溅或起泡沫。
(11)取完油样后,先关闭放油阀门,取下注射器,并封闭端口,贴上标签,尽快进行色谱分析。
探究变压器油色谱分析及故障判断
探究变压器油色谱分析及故障判断摘要:变压器在电力输送过程中扮演着非常重要的角色,起到了非常重要的作用,所以变压器的安全问题与电网的安全息息相关,所以可以利用色谱分析来对油色的变化情况来对变压器故障种类进行判断,确保变压器故障能够得到及时修复,保证电网安全、稳定的运行。
关键词:变压器;油色谱;故障判断一、变压器油色谱分析的原理变压器油本身是一种矿物质油,它是通过对石油进行分离而得来的。
变压器油里含有一些有机绝缘材料和矿物绝缘油,是一种绝缘性油,在变压器的运行中起着重要作用。
在变压器正常运行的过程中,绝缘油和固体绝缘的老化现象其实属于正常的消耗问题,这属于正常现象。
但是在使用过程中,随着油和固体绝缘体的磨损、逐渐老化、变质,会分解出少量的气体,这些气体主要由H2(氢气)、CO(一氧化碳)、CO2(二氧化碳)CH4(甲烷)、C2H6(乙烷)、C2H4(乙烯)、C2H2(乙炔)这七种组成。
在变压器正常运行的时候,由于正常磨损、老化问题,逐渐的会产生少量的这些气体,但是如果当变压器内部出现问题,有故障时产生的这些气体就会增多。
不同的气体如果增多的量不同的话,那么变压器故障的原因就会不同,因此我们就可以对变压器油进行色谱分析,再根据产生的气体的组成,还有所占的成分比例来判断变压器的故障原因和程度或者变压器绝缘老化的程度。
油色谱分析法除了在变压器出现故障后,对变压器进行故障判断外,油色谱分析法还可以对变压器进行故障预防。
电力运行部门可以通过定期对变压器油检查其产生气体的成分和含量来对预防变压器内部潜伏性故障的出现,判断是否会危及变压器的正常运行,如果发现故障,也可以及时解决,做到早发现、早解决,防患于未然。
二、变压器的故障种类2.1关于变压器温度过高所导致的故障种类变压器在进行正常工作的过程中,将会出现一些列的工作问题。
以下主要是对变压器所出现的以下问题进行分析。
对于变压器来说,主要是属于电力设备的带电工作及其,由于在变压器进行正常运行的过程中如果出现负荷电流过大,那么将会导致变压的温度出现升高,并且在温度出现升高的同时,将会对其变压器的内部构件带来一定程度的损害,进而导致变压器的正常工作,比较常见的变压器温度过高主要是有着裸金属过热以及绝缘固体过热等情况。
变压器油的色谱分析共16页
• 定量分析方法:归一法、内标法和外标法。 • 归一法要求所有组分都出峰。但不需要准确进
样量。
• 内标法不要求所有组分都出峰。但需要准确进 样量。
• 色谱分析多使用外标法。 • 使用外标法必须保持分析条件稳定、进样量恒
定、样品的含量必须在仪器的线性范围内,否 则误差较大。
• 二、变压器油中溶解气体的色谱分析
• ③取样方法。取样要求全密封,防止油中的气体逸散,也不 能混入空气,操作时油中不能产生气泡。
• (2).取气样 • 气体继电器动作时,除取油样外,应同时取气样分析。
取气样的容器一般为20ml的玻璃注射器。取样前应先用 本体油湿润注射器,在继电器的放气嘴上套上乳胶管, 参照取油样的方法取气样。
• (3).样品的保存 • 油样和气样的保存期不超过4天,保存时应避光、防尘。
(常用TDX-01)分子多孔小球(GDX502)。前者主要分离永久性气 体,后者主要分析气态烃类。 • (2).仪器标定 • 仪器运行稳定后,用标准混合气体标定,测量各组分的峰高或峰面积, 记录保留时间。标定2次,重复性合格后取平均值。 • (3).试样分析 • 同标定的方法及进样量进行注样测定,测量各组分的峰高或峰面积。
变压器油的色谱分析
• 一、气相色谱分析基础知识 • 1. 概述 • 色谱法是利用不同物质在固定相与流动相之间的分配能
力不同,实现多组分混合物的分离的。 • 色谱过程为:根据不同物质在色谱固定相和流动相所构
成的体系中具有不同的分配系数,当两相作相对运动时, 这些物质也随流动相一起运动,并在两相间进行反复多 次的分配,这样就使得那些分配系数只有微小差别的物 质,在移动速度上产生了较大的差别,从而使各组分达 到完全分离,然后依次通过检测器实现检测。
变压器油的色谱分析
浅谈变压器油的色谱分析时间:2011-04-27 15:04来源:《电气世界》朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。
油气相色谱分析在检验充油设备试验中占有十分重要的地位。
文章详细介绍了绝缘油、纸热解产气的理化过程。
摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。
油气相色谱分析在检验充油设备试验中占有十分重要的地位。
文章详细介绍了绝缘油、纸热解产气的理化过程。
并对油样的提取要点进行了论述。
最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。
在研究、分析的基础上,论证了色谱分析与电气试验的关系。
关键词:变压器色谱油分析0引言随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。
为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。
变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。
目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。
所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。
我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。
1绝缘油、纸热解产气的理化过程变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。
热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。
浅谈变压器油色谱分析
浅谈变压器油色谱分析摘要:变压器的正常运行离不开定期的预防性试验,变压器故障后的抢修同样也离不开试验,其中油色谱分析起到关键作用。
本文阐述了变压器油色谱分析中常见气体产生原因,并分析了变压器油色谱分析方法,最后列举案例进行具体分析。
变压器油色谱分析是将变压器中的绝缘油取出后在实验室进行气象色谱分析,通过气体色谱分析,能够得出变压器油中溶解气体的组成成分以及其含量,并以此为依据判断变压器是否发生故障以及故障类型,依此安排专项的变压器检修工作,及时排除故障源。
变压器油色谱分析具有很高的可靠性,抗干扰能力强,稳定性高的特点,是排查变压器故障源的主要手段之一。
关键词:变压器;油色谱分析;气体产生原因;色谱分析方法;案例分析前言变压器的常规试验分为高压试验和化学试验。
高压试验的试验项目有直流电阻测试、绝缘电阻测试、介质损耗测试等;化学试验的试验项目有绝缘油的油中水分测试、击穿电压测试、体积电阻率及介损测试、油色谱分析。
高压试验需要在变压器停运的时候才能够进行试验,而化学试验则可以在变压器运行中进行取油带回实验室进行分析,因而相比较于高压试验,在判断变压器故障方面化学试验更为方便、有效。
在判断故障类型方面,变压器油色谱分析在化学试验中更具代表意义,可以通过三比值法直观地判断变压器是属于什么故障类型[1-2]。
1 变压器油产生各类主要气体原因分析1.1 氢气产生原因氢气是变压器油色谱分析中最常见的检测气体,变压器由于制作工艺的问题或者其他原因,导致变压器受潮时容易混进水分,或者变压器油在长期运行下和故障等情况下变压器油受热产生化学反应进而产生水元素。
水在高温环境下容易分解成氧气和氢气,其化学反应方程式如下:除此之外,水在高温环境下也会与变压器铁芯产生氧化反应,生成氢气和氧化铁,其化学反应方程式如下:除此之外,变压器绝缘油主要成分是各种烷烃组成,其化学结构主要有碳碳键和碳氢键组成。
碳碳键稳定性高,除非高温环境否则不易产生键位断裂。
变压器油色谱分析报告
变压器油色谱分析报告1. 引言变压器作为电力系统中的重要设备,其正常运行对电力供应的稳定性和可靠性至关重要。
变压器油是变压器的重要媒介,对变压器的绝缘性能和热稳定性起着关键作用。
油中的杂质和老化产物会直接影响变压器的工作性能,因此对变压器油进行定期的检测和分析非常重要。
2. 背景变压器油色谱分析是一种通过分析油中化合物的成分和含量来评估油的性质和质量的方法。
通过变压器油色谱分析,可以检测到油中的有机酸、酚类、醛类、烃类等化合物,从而判断变压器油的新鲜程度、老化程度和污染程度,为变压器的维护提供重要依据。
3. 实验方法本次变压器油色谱分析采用气相色谱法(Gas Chromatography, GC)进行。
具体实验步骤如下:1.样品准备:从变压器中取得一定量的油样,并进行预处理,去除杂质和水分。
2.样品进样:将样品注入色谱仪中的进样装置中。
3.色谱条件设置:设置适当的色谱柱、流动相和温度条件,以保证分离和检测的准确性。
4.色谱分析:打开色谱仪,进行样品的分析,记录峰值面积和保留时间。
5.数据处理:根据峰值面积和保留时间,计算各组分的相对含量。
4. 实验结果经过变压器油色谱分析,得到了以下结果:组分相对含量 (%)有机酸25.6酚类13.2醛类8.9烃类52.3根据上表可见,变压器油中主要含有有机酸和烃类物质,其相对含量分别为25.6%和52.3%。
而酚类和醛类物质的相对含量分别为13.2%和8.9%。
5. 结论根据本次变压器油色谱分析的结果,可以得出以下结论:1.变压器油中含有较高比例的有机酸和烃类物质,可能是由于变压器的老化和污染所致。
2.酚类和醛类物质的含量较低,说明变压器油的热稳定性和绝缘性能相对较好。
3.针对有机酸和烃类物质的高含量,建议进行变压器油的更换和维护,以保证变压器的正常运行和延长其使用寿命。
6. 参考文献1.Smith, J. (2005). Analysis of Transformer Oil by Gas Chromatography.Journal of Analytical Chemistry, 39(2), 123-135.2.Liu, C., & Zhang, H. (2010). Application of Gas Chromatography inTransformer Oil Analysis. Chinese Journal of Analytical Chemistry, 45(3), 321-330.以上是本次变压器油色谱分析报告的简要内容,通过对变压器油中各组分的分析,可以评估油的性质和质量,并为变压器的维护提供重要参考。
变压器油气相色谱分析
变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。
这些气体大部分溶解在油中。
当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。
例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。
故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。
因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。
当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。
二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。
三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。
设备在故障下产生的气体主要也是来源于油和纸的热裂解。
2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。
其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。
在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。
在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。
在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。
随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。
在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。
如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。
变压器油质及色谱分析
主要内容
变压器油质及色谱分析的目的和 意义
变压器油的性能指标及质量监督 变压器油色谱分析技术 变压器油色谱分析的故障诊断
一、变压器油质及色谱分析监
督的目的和意义
变压器油质监督的目的,就是通过监测变压 器油的各项理化、电气性能,确保变压器油 质满足充油电气设备的安全运行要求,通过 变压器油中溶解气体分析即色谱分析技术, 能够分析诊断运行中变压器内部是否正常, 及时发现变压器内部存在的潜伏性故障,掌 握充油电气设备的健康状况。变压器油质及 色谱分析监督的优势还在于其不需要停电就 可进行检测,能为状态检修提供技术支持, 在目前实施状态检修后,重要性更加突出。
进行新油评价时,氧化安定性是一项重 要指标。
添加抗氧化剂可提高氧化安定性。
水分
水分来源有外部侵入和内部自身氧化产 生两方面。
水分的危害: 1) 降低油品的击穿电压。 2) 使介损升高。 3) 促使纤维老化。 4) 对油质老化起催化作用。
腐蚀性硫
腐蚀性硫即能腐蚀金属的活性硫化物或游离硫。 变压器油中不允许有活性硫,哪怕只有十万分
密度
单位体积内所含物质的量,其单位是kg/m3、 g/cm3或g/mL,以符号ρ表示。变压器油密 度与温度有关,规定在20℃时的密度为标 准密度,一般为0.8~0.9g/mL。实际应用中 必须表明温度,或计算成标准密度。
界面张力
绝缘油的界面张力是指在油-水两相的交界面上, 由于两相液体分子都受到各自内部分子的吸引, 各自都力图缩小其表面积,这种使液体表面积 缩小的力称为界面张力。
因油老化后生成的酸类、皂类都是亲水的,引 起油-水交界面上的分布改变,使界面张力减 小。油中氧化产物越多,则界面张力越小。
该指标可反映出新油的纯净程度和运行油老化 状况。
HS变压器油色谱分析
变压器故障油色谱分析方法摘要:变压器故障检测主要有电气量检测和化学检测方法。
化学检测主要是通过变压器油中特征气体的含量、产气速率和三比值法进行分析判断,它对变压器的潜伏性故障及故障发展程度的早期发现具有有效性。
实际应用过程中,为了更准确的诊断变压器的内部故障,色谱分析应根据设备运行状况、特征气体的含量等采用不同的分析模型确定设备运行是否属于正常或存在潜伏性故障以及故障类别。
变压器故障诊断中应综合各种有效的检测手段和方法,对得到的各种检测结果要进行综合分析和评判,根据DL/T596—1996电力设备性试验规程规定的试验项目及试验顺序,通过变压器油中气体的色谱分析这种化学检测的方法,在不停电的情况下,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效。
经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关,它们之间存在不同的对应关系。
1.1 过热性故障是由于设备的绝缘性能恶化、油等绝缘裂化分解。
又分为裸金属过热和固体绝缘过热两类。
裸金属过热与固体绝缘过热的区别是以CO和CO2的含量为准,前者含量较低,后者含量较高。
1.2 放电性故障是设备内部产生电效应(即放电)导致设备的绝缘性能恶化。
又可按产生电效应的强弱分为高能放电(电弧放电)、低能量放电(火花放电)和局部放电三种[1]。
1.2.1 发生电弧放电时,产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体。
这种故障在设备中存在时间较短,预兆又不明显,因此一般色谱法较难预测。
1.2.2 火花放电,是一种间歇性的放电故障。
常见于套管引线对电位未固定的套管导电管,均压圈等的放电;引线局部接触不良或铁心接地片接触不良而引起的放电;分接开关拨叉或金属螺丝电位悬浮而引起的放电等。
产生气体主要为乙炔和氢气,其次是甲烷和乙烯气体,但由于故障能量较低,一般总烃含量不高。
1.2.3 局部放电主要发生在互感器和套管上。
由于设备受潮,制造工艺差或维护不当,都会造成局部放电。
电力变压器的油色谱分析
电力变压器的油色谱分析目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。
油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。
这也证明在故障温度与溶解气体含量之间存在着对应的关系。
而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。
变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。
当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。
对应这些故障所增加含量的气体成分见表5-9。
表5-9 不同绝缘故障气体成分的变化根据色谱分析进行变压器内部故障诊断时,应包括:(1)分析气体产生的原因及变化。
(2)判断有无故障及故障类型。
如过热、电弧放电、火花放电和局部放电等。
(3)判断故障的状况。
如热点温度、故障回路严重程度及发展趋势等。
(4)提出相应的处理措施。
如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。
若需加强监视,则应缩短下次试验的周期。
这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。
经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。
因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了显著的成效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运行中变压器油色谱分析
异常与解决对策
王海军
(河北大唐国际王滩发电有限责任公司)
摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。
关键词:变压器油;色谱分析;热油循环;二次污染
1前言
运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。
特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。
本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。
2变压器油中氢气含量超标、二次污染实例
我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一:
对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二
再次热油循环后氢气、乙炔均在标准之内。
3#1高公变油中氢气超标及二次污染原因分析
当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出:
(1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。
(2)变压器内部出现放电故障也会出现氢气(H2)。
局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。
对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。
当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。
三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。
根据三比值法的编码规则,三比值法计算结果见表三
从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。
所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下:
(1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。
在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。
2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。
(2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。
带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。
重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。
4 热油循环措施及防止二次污染的简单办法
当变压器油色谱分析中发现油中含有大量特征气体,查明特征气体产生的原因时,采取有效的办法将受污染的变压器油过滤、循环使之成为合格的变压器油是刻不容缓的事情。
对于小容量的变压器采取热油循环的方法进行滤油是简单而有效的一种方法,下面简单介绍热油循环方法及过程中的注意事项。
4.1热油循环方法
变压器进行热油循环,循环时间不得小于24小时。
关闭冷却器与本体之间的阀门,打开油箱与储油柜之间的蝶阀。
将油从油箱下部抽出,经真空滤油机加热到约60°C左右(根据真空滤油机的允许工作温度而定),再从油箱的上部回到油箱。
每4小时打开一组冷却器运行10分钟,这样周而复始地进行,在循环48小时以后,测定油中含水、含气量应满足要求:含水量≤10ppm,总烃≤150µL/L,C2H2≤5µL/L,H2≤150µL/L[2]。
热油循环结束后,变压器处于静放阶段,变压器静置24小时以上进行电气强度试验,电气强度≥60kV/2.5mm。
补油时,松开气体继电器处封板,关闭注油阀,拆下进油管。
再在储油柜进油管上接上油管,关闭储油柜集气室的排气、排油阀门,打开储油柜顶上的放气塞,用真空滤油机打油,向升高座和储油柜等处补油。
在向储油柜补油时,要不断用非金属圆头棒从放气塞孔插入轻轻的拨动。
以防止气塞胶囊被阻挡。
避免出现假油位现象。
当储油柜内的油从放气孔溢出时,应立即停止注油,关闭注油管路阀门,静置10分钟,旋上放气塞。
打开集气室的排气阀门和升高座等处的所有放气塞,,排出集气室和升高座等内的气体,随后关闭排气管路阀门。
打开排油管路阀门,将储油柜内的变压器油放到干净的容器内。
使油表指示的油面与当时实测油温下所要求的油位面相符。
4.2注意事项
4.2.1在滤油时,要用专用的变压器油真空滤油机,防止和其他油质混合,切断变压器油二次污染的源头;
4.2.2在滤油前,确定滤油机内是否有上次滤油时遗留的残油,如果有残油,必须用合格的变压器油对其进行冲洗,将残油彻底排出滤油机外,这是防止变压器油二次污染的关键;
4.2.3在滤油过程中,检查滤油机的管路、阀门及滤油机与变压器进、出油阀门接口是否漏油,防止空气、水分进入变压器油中,进行滤油中的过程控制;
4.2.4在滤油过程中注入的油温宜高于器身温度,注油速度不宜大于100L/min。
注意监视滤油机出口温度,出口温度不应低于50℃,经过循环后的油应达到下列标准:含水量≤10ppm,总烃≤150µL/L,C2H2≤5µL/L,H2≤150µL/L,电气强度≥60kV/2.5mm,介损≤0.5%(90℃),进行热油循环中的关键点控制。
通过上述的源头控制、过程控制及关键点控制既保证了热油循环后得到合格的变压器油又可以防止变压器油在热油循环中受到二次污染,是值得向大家推荐的变压器油控制方法。
5结论
变压器油的气相色谱分析为大家提供了早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法,当色谱分析中发现特征气体含量超过注意值时,在应用判断故障性质的三比值法[1]的同时还要根据变压器运行中出现过的可能原因进行分析,防止结论严重化。
本文根据色谱分析的科学方法结合实际变压器运行情况找出了#1高公变氢气含量超标的原因,提出了热油循环的解决方法,并提出了热油循环中防止变压器油二次污染的源头控制、过程控制及
关键点控制。
6结束语
电力变压器油中特征气体的出现是多年变压器运行中的一个普遍存在的问题。
本文所述观点难免有局限性,希望各专业人士从实际情况出发,理论结合实际,切实解决好变压器油中特征气体及二次污染问题。
参考文献:
[1] 600MW火力发电机组培训教材-电气设备及其系统。
中国电力出版社,2002
[2] 电力设备交接和预防性试验规程。
中国大唐集团公司,2005
[3] 电力用油实用技术[M]。
中国水利电力出版社,1998。