第四章 卡方检验
第四章 卡方检验
精选可编辑ppt
52
4.2.1.2 配对四格表资料的χ2检验
① DPS 在DPS中输入数据,选择数据,点击菜单分类
数据统计→四格表→四格表(2×2表)分析:
精选可编辑ppt
53
4.2.1.2 配对四格表资料的χ2检验
①配对D设P计S卡方=5.7857,p=0.0162<0.05,可以认为两种方法的检测结 立果是刻有得显著到差结异果的,:免疫荧光法的阳性检测率高。
② SPSS 弹出对话框,将组别选择到行,将效果选择到列:
精选可编辑ppt
49
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 点击统计量,弹出对话框,勾选卡方:
精选可编辑ppt
50
4.2.1.1 需要校正的四格表资料的χ2检验
②由 于S理PS论S值 小 于 5 , 因 此 要 看 校 正 的 卡 方 值 3 . 1 4 5 , 对 应 的 p 为
分离比3:1是有非常显著差异的。
精选可编辑ppt
10
4.1 适合度检验
④ SPSS 定义变量,输入数据,点击菜单数据→加 权个案,弹出对话框,选择加权个案,将 数量选择到频率变量下面:
精选可编辑ppt
11
4.1 适合度检验
④ SPSS 点击确定。再点击菜单分析→非参数检验 →旧对话框→卡方:
精选可编辑ppt
精选可编辑ppt
29
4.1 适合度检验
将计算理并论合并次了数理小论概于率5与的理组论与次数邻后近,组就可合以并用,Mi直nita到b、 次6数S是Q数统服大计从插二于件项5、分;D布同P的S解时。题合,并p=0实.94际31观>0.测05,次因数此与苹果理变论质 概率:
卡方检验医学统计学
卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
统计学卡方检验
根据分析结果,为患者提供个体化的干预措施,提高生存质量。
06
卡方检验注意事项及局限 性讨论
样本量要求及抽样方法选择
样本量要求
卡方检验对样本量有一定的要求,通常建议每个单元格的期望频数不小于5,以确保检验结果的稳定性和可靠性 。当样本量不足时,可能会导致检验效能降低,增加第二类错误的概率。
抽样方法选择
在进行卡方检验时,应选择合适的抽样方法。简单随机抽样是最常用的方法,但在某些情况下,如分层抽样或整 群抽样可能更适合。选择合适的抽样方法有助于提高检验的准确性和可靠性。
期望频数过低时处理策略
合并类别
当某个单元格的期望频数过低时,可以考虑 合并相邻的类别,以增加期望频数。合并类 别时应注意保持类别的逻辑性和实际意义。
适用范围及条件
适用范围
卡方检验适用于多个分类变量之间的独立性或相关性检验,如医学、社会科学等领域的调查研究。
条件
使用卡方检验需要满足一些前提条件,如样本量足够大、每个单元格的期望频数不宜过小等。此外, 对于有序分类变量或存在空单元格的情况,需要采用相应的处理方法或选择其他适合的统计方法。
02
卡方检验方法
统计学卡方检验
目录
• 卡方检验基本概念 • 卡方检验方法 • 数据准备与预处理 • 卡方检验实施步骤 • 卡方检验在医学领域应用举例 • 卡方检验注意事项及局限性讨论
01
卡方检验基本概念
定义与原理
01
02
定义
原理
卡方检验是一种基于卡方分布的假设检验方法,用于推断两个或多个 分类变量之间是否独立或相关。
确定分组界限
在确定分组界限时,可以采用等距分组、等频分组或 基于数据分布的分组方法。选择合适的分组界限有助 于保持各组之间的均衡性,减少信息损失。
分类变量资料的卡方检验
处理 复方哌唑嗪 复方降压片 安慰剂 合计
有效 35 20 7 62
无效 5 10 25 40
合计 40 30 32 102
有效率(%) 87.50 66.67 21.88 60.78
解:H0:三种处理方法的有效率相等; 全相等; =0.05。
H1:三种处理方法的有效率不
2 =102[352/(40 62) +202/(30 62)+ 72/(32 62)+ 52/(40 40)
五.条件不满足时的处理方法
增大样本例数使理论频数变大; 删去理论频数太小的行或列; 将理论频数过小的格子所在的行或列与性质相
近的邻行或邻列合并,使重新计算的理论频数 增大; 精确概率法。
例 某地防疫站用碘剂局部治疗219例地方性甲状腺肿,结果列 于下表,试分析年龄与疗效有无关联?
地方性甲状腺肿患者的年龄与疗效的关系
病人分型
阳性数
阴性数
合计
活动型
1(2.4) 14(12.6) 15
稳定型
3(1.6) 7(8.4)
10
卡方检验
计数资料:又称为定性资料或无序分类变量资料,也称 名义变量资料,是将观察单位按某种属性或类别分组计 数,分别汇总各组观察单位数后而得到的资料,其变量 值是定性的,表现为互不相容的属性或类别。
计量资料:又称定量资料或数值变量资料,为观测每个 观察单位某项指标的大小而获得的资料。其变量值是定 量的,表现为数值大小,一般有度量衡单位(cm、mmhg、 次/分、单位等)。
2
(2 1)(2 1) 1
3. 确定P值,作出统计推断
查2界值表,得2 0.005,1=7.88, 2 > 2 0.005,1,P <0.005,按 = 0.05水准,拒绝H0 ,接受H1,差 异有统计学意义,可以认为两组的显效率不等
四格表资料2检验的条件
例:为比较西药与中药治疗慢性支气管炎的疗效,某医师将符合 研究标准的110例慢性支气管炎患者随机分为两组(两组具有可比 性),西药组86例,中药组24例。服药一个疗程后,观察患者的 疗效,结果见下表。根据显效率,该医师认为中西药治疗慢性支 气管炎的疗效有差别,中药组的疗效好于西药组
表1 中西药治疗慢性支气管炎的显效率
等级资料:将观察单位按某种属性或某个标志分组,然 后清点各观察单位个数得来。具有等级顺序。(-、+、++、 +++;治愈、好转、无效、死亡)
独立样本:一般情况下,比较两个(类)人之间的差异 就是独立样本。(实验组、控制组)
配对样本:1. 一个人的不同部位进行测试。2.前测后测 的情况属于相关样本(同一人先后测试a、b两种药物)。 3. 两个匹配样本的比较。(测试两人智力,控制语文成 绩相等)
组别 西药组 中药组 合 计 治疗人数 86 24 110 显效人数 35 18 53 显效率(%) 40.70 75.00 48.18
医学统计学-卡方检验
卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
《卡方检验》课件
制作交叉表
确定交叉表的行列变量
根据研究目的和内容,选择合适的行列变量,构建交叉表。
制作交叉表
将分组后的数据按照行列变量制作成交叉表,以便于进行卡 方检验。
计算理论频数
确定期望频数
根据交叉表中的数据,结合各组 的概率计算期望频数。
计算理论频数
根据期望频数和实际频数计算理 论频数,为后续的卡方检验提供 依据。
计算卡方值
计算卡方值
使用卡方检验的公式计算卡方值,该 值反映了实际频数与理论频数的差异 程度。
自由度的确定
在计算卡方值时,需要确定自由度, 自由度通常为行数与列数的减一。
显著性水平的确定
选择显著性水平
显著性水平是衡量卡方值是否显著的指标,通常选择0.05或0.01作为显著性水 平。
判断显著性
根据卡方值和自由度,结合显著性水平判断卡方检验的结果是否显著,从而得 出结论。
3.84、6.63等),可以确定观测频数与期望频数之间的差异是否具有统
计学显著性。
02
卡方检验的步骤
收集数据
确定研究目的
制定调查问卷或收集程序
在开始收集数据之前,需要明确研究 的目的和假设,以便有针对性地收集 相关数据。
根据研究目的和内容,制定合适的调 查问卷或建立数据收集程序,确保数 据的完整性和准确性。
详细描述
例如,在市场调研中,我们可以通过卡方检验来分析不同年龄段、性别、职业等 人群对于某产品的态度或购买意愿是否有显著差异,从而为产品定位和营销策略 提供依据。
实际案例二:医学研究中的应用
总结词
在医学研究中,卡方检验常用于病例 对照研究和队列研究中的分类变量关 联性分析。
详细描述
例如,在病例对照研究中,我们可以 通过卡方检验来比较病例组和对照组 在某些基因型、生活方式或暴露因素 上的分布是否有统计学差异,从而探 讨病因或危险因素。
医学统计学 4、卡方检验
地区 Eskdale Annandale 合计
A型 33 54 87
B型 6 14 20
O型 56 52 108
AB 型 5 5 10
合计
100 125 225
Page
22
练习题(作业)
见word文档
Page
23
Page
24
Thank you!
25
Page 12
Page
13
结合此例,SPSS演示配对设计2检验
例2 设有132份食品标本,把每份标本一分为二,分 别用两种检验方法作沙门菌检验,检验结果如表2所 示,试比较两种检验方法的阳性结果是否有差别? 表2 两种检验方法检验结果比较
乙法 甲法 + 合计 + 80 31 111 10 11 21 合计 90 42 132
合计
假设检验步骤: (1)建立检验假设,确定检验水准
H0:B=C,即A、B两种方法的总体检出率相同
H1:B≠C,即A、B两种方法的总体检出率不同 α=0.05 (2)计算检验统计量2值
当 b+c≥40,
2
b c
bc
2
当 b+c<40,
2
b c 1
bc
2
例3 用三种不同治疗方法治疗慢性支气管炎的疗效 如表3所示,试比较三种治疗方法治疗慢性支气管炎 的疗效。 表3 三种不同治疗方法治疗慢性支气管炎的疗效
组别 A药 B药 C药 合计 有效 35 20 7 62 无效 5 10 25 40 合计 40 30 32 102
Page 19
(五)Fisher确切概率法
表1 两种药物治疗消化道溃疡4周后疗效
多元统计-卡方检验
现假定控制翅膀长度和身体颜色的两对基因是相互
独立的,且都是显隐性关系,则四种类型的果蝇
其比例应当是 9:3:3:1
现需验证这次试验的结果是否符合这一分离比例
首先求:1477 + 493 + 446 + 143 = 2559
2559 9 16 1439.44
2559 3 479.81 16 2559 1 159.94 16
在遗传学中,我们研究某一性状是否受一对等位基
因的控制,该性状在后代的分离比例是否符合某 种规律 例1 孟德尔的豌豆花试验(红花 705 朵、白花 224朵):这一分离是否符合他自己提出的 3:1
的分离比例的假设?
如果这一 3:1 的理论比例是正确的,那么这一试
验所出现的红花和白花的理论比例应当是:
p 0.05
接受无效假设,即这三部分资料的实际观测值符合 9:3:3 的理论比例 再检查余下的aabb与这三部分之和是否符合1:15
前三部分之和(理论值):240
2 2
aabb:16
250 240 0.5 | 6 16 | 0.5 2 c 240 16 2 0.376 5.641 6.017 0.05,1 3.841 p 0.05
需作校正性的χ
首先求:
2
检验:
1810.5×3 = 5431.5
2
1738 + 5504 = 7242
5504 5431.5 0.5 5431.5
2
7242÷4 = 1810.5
1810.5 2 3.818 0.05 3.84 |1738 1810.5 | 0.5
显然,前面三个分值较小,因此先取前三部分的比 2 例作 检验: 154+43+53=250
卡方检验详述
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
“医学统计课件-卡方检验”
卡方检验中的显著性水平和p 值
显著性水平和p值是判断卡方检验结果是否显著的重要指标。我们将解释它们 的概念和计算方法,并讨论常用的显著性水平选择。
卡方检验的优缺点
卡方检验是一种简单有效的统计方法,但也有其局限性。我们将讨论卡方检 验的优点和不足之处,以及与其他统计方法的比较。
单样本卡方检验的原理和步骤
单样本卡方检验用于比较一个分类变量的观察频数与期望频数之间的差异。 我们将介绍其原理、计算方法和实际操作步骤。
独立性卡方检验的原理和步骤
独立性卡方检验用于判断两个分类变量之间是否存在相关性。我们将详细解 释它的原理、计算方法,并提供一个实际案例进行分析。
适合度卡方检验的原理和步骤
卡方检验的实际应用案例
通过实际案例,我们将展示卡方检验在医学和流行病学研究中的应用。这些 案例将帮助您更好地理解卡方检件——卡方 检验”
卡方检验是一种常用的统计方法,用于比较两个或多个分类变量之间的差异。 本课件将详细介绍卡方检验的原理、步骤、应用和优缺点,以及在医学研究 和流行病学中的实际案例。
卡方检验的分类及适用范围
卡方检验可以分为单样本卡方检验、独立性卡方检验和适合度卡方检验。每 种检验方法适用的情况略有不同,我们将详细探讨它们的应用领域和限制。
医学统计学课件卡方检验
队列研究中的卡方检验
总结词
在队列研究中,卡方检验用于比较不同暴露 水平或不同分组在某个分类变量上的分布差 异,以评估暴露因素与疾病发生之间的关系 。
详细描述
队列研究是一种前瞻性研究方法,按照暴露 因素的不同将参与者分为不同的组,追踪各 组的疾病发生情况。通过卡方检验,可以比 较不同暴露水平或不同分组在分类变量上的 分布差异,如分析不同饮食习惯的人群中患
卡方检验与相关性分析的区别
卡方检验主要用于比较实际观测频数与期望频数之间的差异,而相关性分析则用于研究 两个或多个变量之间的关联程度。
卡方检验与相关性分析的联系
在某些情况下,卡方检验的结果可以为相关性分析提供参考,帮助了解变量之间的关联 程度。
05
卡方检验的应用实例
病例对照研究中的卡方检验
总结词
02
公式
卡方检验的公式为 $chi^{2} = sum frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$,
其中 $O_{ij}$ 表示实际观测频数,$E_{ij}$ 表示期望频数。
03
适用范围
卡方检验适用于两个分类变量的比较,可以用于分析病例对照研究、队
列研究等类型的研究。
卡方检验的用途
如比较不同年龄组、性别组等人群中某种疾病的患病率。
卡方检验的基本假设
每个单元格中的期望 频数应该大于5。
卡方检验对于样本量 较小的情况可能不适 用。
观察频数与期望频数 应该服从相同的概率 分布。
02
卡方检验的步骤
收集数据
01
02
03
确定研究目的
在开始卡方检验之前,需 要明确研究的目的和假设 ,以便有针对性地收集数 据。
统计学中的卡方检验方法
统计学中的卡方检验方法卡方检验是一种常用的统计方法,用于确定两个变量之间是否存在相关性。
它基于比较观察值与期望值之间的差异,通过计算卡方值来评估这种差异是否具有统计显著性。
本文将介绍卡方检验的原理、应用场景以及如何进行计算。
1. 原理卡方检验是基于频数表进行的统计推断方法。
它假设观察到的数据符合某种理论分布,然后计算观察值与理论值之间的差异程度。
卡方检验的原假设为无关性假设,即两个变量之间不存在相关性。
若观察到的卡方值大于一定的临界值,就可以拒绝原假设,认为两个变量之间存在相关性。
2. 应用场景卡方检验广泛应用于多个领域,包括医学、社会学、市场调研等。
以下是一些常见的应用场景:(1)医学研究:用于判断某种治疗方法对疾病的疗效是否显著,或者某种食物是否与某种疾病的发生相关。
(2)市场调研:用于分析消费者的购买偏好与不同产品之间的关联性。
(3)教育研究:用于研究学生的性别与不同学科成绩之间是否存在相关性。
(4)调查研究:用于分析样本调查结果与总体情况之间的差异。
3. 计算方法卡方检验的计算过程包括以下几个步骤:(1)建立假设:首先,我们需要明确研究的假设,包括原假设和备择假设。
(2)制作频数表:将观察到的数据按照行和列分组,形成一个频数表。
表中的值表示观察到的频数。
(3)计算期望值:根据无关性假设,计算期望频数,评估观察值与期望值之间的差异。
(4)计算卡方值:利用计算公式,将观察频数和期望频数代入,得到卡方值。
(5)确定显著性水平:根据显著性水平和自由度,查找卡方分布表,找到对应的临界值。
(6)比较卡方值和临界值:如果卡方值大于临界值,拒绝原假设,认为两个变量之间存在相关性;如果卡方值小于临界值,则无法拒绝原假设,即认为两个变量之间不存在相关性。
总结:卡方检验是一种简单而有效的统计方法,用于分析两个变量之间的相关性。
它的应用领域广泛,可以在医学、社会学、市场调研等领域中发挥重要作用。
通过计算卡方值和比较临界值,我们可以推断两个变量之间是否存在相关性。
医学统计学卡方检验
计算期望频数
2
根据独立性假设,计算预期的频数。
3
计算卡方值
根据观察频数和期望频数,计算卡方值。
判断显著性
4
根据卡方值和自由度,判断结果是否显著。
卡方检验的计算方法
卡方检验的计算方法主要包括计算卡方值、计算自由度以及查找临界值。 计算卡方值:
1. 计算每个组别的观察频数和期望频数之差的平方。 2. 将所有差的平方相加,得到卡方值。 计算自由度: • 自由度 = (行数 - 1) * (列数 - 1) 查找临界值:
卡方检验的应用范围和特点
卡方检验广泛应用于医学研究中,例如研究疾病与风险因素之间的关联性。 卡方检验的特点包括:
非参数检验
不依赖于总体的任何参数假设。
适用性广泛
可用于分析两个或释。
卡方检验的步骤
1
收集数据
收集观察到的数据,例如不同组别的频数。
根据自由度和显著性水平,在卡方分布表中查找对应的临界值。
案例分析:卡方检验在医学统计学中的应用
临床研究
通过卡方检验分析患者病情与治疗 效果之间是否存在关联性。
遗传研究
运用卡方检验检测基因型与表型之 间的关联性。
公共卫生
分析卡方检验数据以确定风险因素 与疾病之间的关联性。
结论和总结
卡方检验是一种强大的统计工具,可用于分析变量之间的关联性。 通过掌握卡方检验的原理、应用和计算方法,我们能更好地理解数据背后的 关系,并做出有针对性的决策。
医学统计学卡方检验
卡方检验是一种常用的统计方法,主要用于比较观察到的数据与期望值之间 是否存在显著差异。
卡方检验的原理和假设
卡方检验基于观察到的频数与期望频数之间的差异,用于判断变量之间是否存在关联性。 卡方检验的假设为:
卡方检验
假设检验方法
01 基本原理
03 检验方法 05 代码实现
目录
02 步骤 04 资料检验
卡方检验,是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括两个率或两个构成比 比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
基本原理
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程 度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡 方值就为0,表明理论值完全符合。
卡方检验要求:最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据 不符合要求,就要应用校正卡方。
谢谢观看
注意:卡方检验针对分类变量。
步骤
(1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5, 而区间个数k不要太大也不要太小。 (3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和 f1+f2+...+fk等于样本容量n。 (4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi 就是落入第i个小区间Ai的样本值的理论频数(理论值)。
检验方法
(医统)卡方检验
2
观测值的自由度(vi>2),Si为第i组观测值的标 准差 2 • 拒绝原假设的条件为: 2 ,
F检验
• 检验两组观测值的方差的齐性 • 原假设: 2 2
1 2
• 检验统计量:
2 2 2 S1 F 2 2 ~ F( 1 , 2 ) 1 S2
• 拒绝条件: F F /2 (1, 2 )或F F1 /2 (1, 2 )
2.拟合优度检验
• B.表征实验分布,即用卡方统计量检验实验分布 是否服从某一理论分布(正态、二项等) • 步骤:1.将总体X的取值范围分成k个互不重迭的 小区间 • 2.计算落入第i个小区间的样本值的观测频数 • 3. 根据所假设的理论分布, 算出总体X的值落入每 个小区间的概率p,于是np就是落入该区间的样本 值的理论频数 • 4.计算卡方统计量 • 5.与临界值进行比较,进行决策
χ2 检验 数据资料 总体 检验对象
离散型资料 总体分布是未知的
连续型资料假设检验
连续型资料 正态分布 对总体参数或几个总体 参数之差
不是对总体参数的检 验,而是对总体分布 的假设检验
三、χ2 检验的用途
适合性检验
是指对样本的理论数先通过一定的理
论分布推算出来,然后用实际观测值与理论
数相比较,从而得出实际观测值与理论数之
理论值(E)
696.75 232.25 929
O-E
+8.25 -8.25 0
由于差数之和正负相消,并不能反映实 际观测值与理论值相差的大小。
为了避免正、负相抵消的问题,可将实际 观测值与理论值的差数平方后再相加,也就是 计算:
∑(O-E)2
O--实际观察的频数 E--无效假设下的期望频数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 适合度检验
④ SPSS 点击确定。再点击菜单分析→非参数检验 →旧对话框→卡方:
4.1 适合度检验
④ SPSS
弹出对话框,将数量选择到检验变量列表中,在 期望值下面选择值,按比例从小到大分别输入1, 添加,3,添加:
4.1 适合度检验
④ SPSS
点击确定,即可得到结果:
4.1 适合度检验
② SPSS 点击继续,返回上级对话框,点击确定,得到结果:
df=1时,需要看连续校正的卡方值,为23.174,对应的p值为0.000, 小于0.01表明两种人群的气管炎患病率有非常显著的差异。
4.2.1.1 需要校正的四格表资料的χ2检验
例 某医师欲比较胞磷胆碱与神经节苷酯治疗脑 血管疾病的疗效,将78例脑血管疾病患者随机分 为两组,结果见表。问两种药物治疗脑血管疾病 的有效率是否相等?
4.1 适合度检验
④ SPSS 定义变量,输入数据,点击菜单数据→
加权个案,弹出对话框,选择加权个案, 将数量选择到频率变量下面,点击确定。 再点击菜单分析→非参数检验→旧对话框 →卡方,弹出对话框,将数量选择到检验 变量列表中,在期望值下面选择值,按比 例从小到大分别添加1,3,32×2表)分析:
4.2.1.3 四格表资料的Fisher确切概率法
① DPS 立刻得到结果:
4.2.1.3 四格表资料的Fisher确切概率法
② SPSS 定义变量,输入数据,点击菜单数据→加权个案,弹
出对话框,选择加权个案,将数量选择到频率变量下面, 点击确定。点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 在DPS中输入数据,选择数据,点击菜单分类
数据统计→四格表→四格表(2×2表)分析:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 立刻得到结果:
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 立刻得到结果:
由于理论值小于5,因此要看校正的卡方值3.1448,对应 的p为0.07617>0.05,尚不能认为两种药物治疗脑血管疾 病的有效率不等。
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 定义变量,输入数据,点击菜单数据→加权个
案,弹出对话框:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 弹出对话框,将组别选择到行,将效果选择到列:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 点击统计量,弹出对话框,勾选卡方:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS
点击继续,返回上级对话框,点击确定,得到结果:
由于理论值小于5,因此要看校正的卡方值3.145,对应的p为 0.076>0.05,尚不能认为两种药物治疗脑血管疾病的有效率不等。
例4.2 孟德尔用豌豆的两对性状进行杂交试 验,黄色圆滑种子与绿色皱缩种子的豌豆 杂交后,F2 分离情况为:黄圆315粒,黄 皱101粒,绿圆108粒,绿皱32粒,共556 粒,问结果是否符合理论比9:3:3:1?
4.1 适合度检验
① Minitab 输入数据,点击菜单统计→表格→卡方
拟合优度检验(单变量):
4.1 适合度检验
① Minitab 弹出对话框,将实际选择到观测计数后
面,豌豆性状选择到类别名称(可选)后 面。检验下面选择按历史计数制定的比率, 下拉条选择输入列,将理论选择到按历史 计数制定的比率后面:
4.1 适合度检验
① Minitab 点击确定,即可得到结果:
卡方值为0.470024,p=0.925>0.05,表明 实际分离比与理论比无显著的差异。
4.2.1.3 四格表资料的Fisher确切概率法
适用条件为n<40或T<1或p≈α。
例 某医师为研究乙肝免疫球蛋白预防胎儿宫内 感染HBV的效果,将33例HBsAg阳性孕妇随机分 为预防注射组和非预防组,结果见表。问两组新 生儿的HBV总体感染率有无差别?
4.2.1.3 四格表资料的Fisher确切概率法
① DPS 在DPS中输入数据,选择数据,点击菜单分类
4.2.1.2 配对四格表资料的χ2检验
① DPS 立刻得到结果:
配对设计卡方=5.7857,p=0.0162<0.05,可以认为两种方法的检测结 果是有显著差异的,免疫荧光法的阳性检测率高。
4.2.1.2 配对四格表资料的χ2检验
② SPSS 定义变量乳胶凝集、免疫荧光、数量,输入数
据:
4.2.1.2 配对四格表资料的χ2检验
4.2.1 2×2列联表(四格表资料)的独立性检验 4.2.1.1 需要校正的四格表资料的χ2检验 例4.4 现随机抽取吸烟人群与不吸烟人群,检查 是否患有气管炎,结果如下表所示:
试检验两种人群患病比例有无显著差异?
4.2.1.1 需要校正的四格表资料的χ2检验
本例资料经整理成四格表形式,即有两个 处理组,每个处理组的例数由发生数和未 发生数两部分组成。表内有
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 点击菜单分析→描述统计→交叉表:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 弹出对话框,将人群选择到行,将病况选择到列:
4.2.1.1 需要校正的四格表资料的χ2检验
② SPSS 点击统计量,弹出对话框,勾选卡方:
4.2.1.1 需要校正的四格表资料的χ2检验
4.1 适合度检验
② 6SQ统计插件 输入数据,第一列为分类,这里为豌豆
性状;第二列为实际的观测值;第三列为 理论比率,要小数形式。选择数据,点击 菜单6SQ统计→表格→卡方拟合优度检验 (单变量):
4.1 适合度检验
弹出对话框,无需修改设置:
4.1 适合度检验
点击确定,即可得到结果:
卡方值为0.4700,p=0.925>0.05,表明观 测值的分离比与理论比无显著的差异。
② SPSS 点击菜单数据→加权个案,弹出对话框:
4.2.1.2 配对四格表资料的χ2检验
② SPSS 将数量选择到频数变量中,点击确定。点击菜单 分析→描述统计→交叉表:
4.2.1.2 配对四格表资料的χ2检验
② SPSS 弹出对话框,将乳胶凝集选择到行,将免疫荧光 选择到列:
4.2.1.2 配对四格表资料的χ2检验
第四章 卡方检验
卡方(χ2)检验主要有三种类型:
第一是适合性检验,比较观测值与理论值 是否符合;
第二是独立性检验,比较两个或两个以上 的因子相互之间是独立还是相互有影响。
4.1 适合度检验
例4.1 有一鲤鱼遗传试验,以红色和青灰色 杂交,其F2代获得不同分离尾数,问观测 值是否符合孟德尔3:1遗传定律?
p fx 0 8 115 2 20 310 4 5 5 2 0.1917
nN
10 60
4.1 适合度检验
利用Excel函数BINOMDIST(i,n,p,0)计算二 项分布的理论概率:
4.1 适合度检验
将理论概率乘以苹果总箱数(N=60),得 到理论次数:
4.2.1.1 需要校正的四格表资料的χ2检验
① 当n≥40且所有T≥5时,用一般卡方检验。若所 得P≈α,改用确切概率法(Fisher’s Exact Test); ② df=1或当n≥40但有1≤T<5时,用校正卡方; ③ 当 n<40 或 有 T < 1 时 , 改 用 确 切 概 率 法 (Fisher’s Exact Test)
4.1 适合度检验
将理论次数小于5的组与邻近组合并,直到 次数大于5;同时合并实际观测次数与理论 概率:
计算并合并了理论概率与理论次数后,就可以用Minitab、 6SQ统计插件、DPS解题,p=0.9431>0.05,因此苹果变质 数是服从二项分布的。
4.2 独立性检验
又叫列联表(contigency table)χ2检验,它 是研究两个或两个以上因子彼此之间是独 立还是相互影响的一类统计方法。
4.1 适合度检验
③ DPS (1)输入数据与选择数据,点击菜单分类 数据统计→模型拟合优度检验:
4.1 适合度检验
③ DPS 立刻得到结果:
结果中卡方值为0.4700(即Pearson卡方值,对 应的p值为0.9254,大于0.05,说明实际观测值 与孟德尔理论分离比9:3:3:1无显著差异。
4.1 适合度检验
① Minitab 输入数据,点击菜单统计→表格→卡方
拟合优度检验(单变量):
4.1 适合度检验
① Minitab 弹出对话框,将实际选择到观测计数后面, 颜色选择到类别名称(可选)后面。检验 下面选择按历史计数制定的比率,下拉条 选择输入列,将理论选择到按历史计数制 定的比率后面:
④ SPSS 点击确定,即可得到结果:
4.1 适合度检验
例 4.3 某批苹果进行保存实验,共60箱, 每箱10个,实验结束后检查每箱苹果的变 质情况,结果如下表,试检验苹果的变质 数是否服从二项分布?
4.1 适合度检验
设每个苹果变质的平均概率为p,变质数x 服测从值二的项平分均布 数,p 即估x计~B:(10,p)。p根据实际观
四个基本数据,故称四格表资料。
4.2.1.1 需要校正的四格表资料的χ2检验
① DPS 输入数据与选择数据,点击菜单分类数
据统计→四格表→四格表(2×2表)分析:
4.2.1.1 需要校正的四格表资料的χ2检验 立刻得到结果:
结果中给出了理论值,以及一般卡方值、校正卡方值、 似然比卡方值与Williams校正G值。关于列联表χ2检验时, 何种情况下需要校正要参考理论值(T)、自由度(df) 和四格表的总例数(n)。