小学数学全面落实三维目标

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学全面落实三维目标

思索汤春燕老师执教的《平行四边形的面积》

织里实验小学沈霞

教案实录如下:

一:比较活动,渗透思想。

师示一平行四边形的图片:认识这图片吗?说说你对平行四边形的理解?

生:平行四边形有无数条高。

师:如把这一边作为底,高在哪里?

生:平行四边形对边相等,而且互相平行。

生:平行四边形不是轴对成图形。

师:对,它不是轴对成图形,但它是另一种对称图形,以后学下去你们就知道了。师:刚才同学说到高有无数条。老师就以这一边为底,画一条高。这一节课我们就来学习平行四边形的面积。

二:大胆猜想:平行四边形的面积与什么有关?

1、师:汤老师为你提供数据:底30厘米,邻边20厘米,高15厘米。请你用你的方法计算它的面积。

(生试)

交流:据学生回答适时板书

生1 :30×15=450平方厘米(底×高)

生2:15×15=225平方厘米(高×高)

生3:我把它分成了2个三角形,分别求出2个三角形的面积,再加起来就可以了。

生4: 30×20=600平方厘米(底×邻边)

师:还有吗?(无人再举手)终于没了。怎么一个平行四边形面积出现这么多方法,这么多答案到底哪个是对的?赞成第一种的请举手……

(学生形成两种意见,底×高与底×邻边)

2、辩论说服

师:汤老师不做裁判,你们分成两方,用你的理由说服对方。

(辩论开始……)

师:当真理偏离轨道时,汤老师要站出来了。

观察课件(一个平行四边形的变化:底不边,邻边不变,面积随着运动而变化)师:仔细观察,什么变了,什么不变?所以它的面积与什么有关?与什么无关?师:所以我们可以擦掉了底×邻边,是吧?否定一种并不说明剩下的是正确的,用你的理由说明平行四边形的面积等于底乘高。

生:把它剪成另一张同样大小的高,变成长方形。长方形的长就相当于平行四边形的底,长方形的宽相当于平行四边形的高。

师:这种方法在数学中相当的重要——转化。那平行四边形转化成长方形,什么变了,什么没变?……在数学中称为“等积变形”(板书)。

3、动手验证。

疑问:是不是所有的平行四边形都能转化成长方形呢?

动手后看屏幕,同桌讨论三个问题1:你为什么要沿着平行四边形的高剪?2:把平行四边形转化成长方形,什么变了,什么没变?3:长方形与转化前的平行四边形有什么关系?

展示学生作品,学生粘贴大小不同的图形。展示完后回答三个问题。

师:虽这四张不能代表所有的平行四边形,那你能否推断所有的平行四边形都能转化成长方形?

生:能!

师:那什么样的情况下能转化成正方形呢?

4、总结公式:S=ah。

师:我们通过猜想、验证、辩论总算得出了平行四边形的面积了。要求平行四边形的面积必须要知道什么?

三、练习巩固,应用拓展

1.这是一块平地,请你计算它的面积。……

2.这是山西省的地图,要求它的面积,怎么求?(近似于平行四边形)提供数据:底550㎡,高300㎡。……

3.一个平行四边形,它的面积是12平方分米,请你算一算,它的底和高分别是多少?

据学生回答板书……

小结:我们可以联想到:积不变,一个因数扩大多少倍,另一个因数就要缩小多少倍。

四、总结:学了之后,有什么收获呢?(课题添加——计算)

……

思索汤老师的三维目标落实情况:

本课含有以下教学内容:(1)平行四边形面积公式的推导。(2)平行四边形面积公式的应用。首先,这两个教学内容显然直接对应了本课的知识技能目标。但仅仅看到这一点是不够的,因为教材中还蕴涵着丰富的发展性目标因素,即在推导公式的时候,如果不是由教师包办,而是让学生在教师的引导下去亲历知识的形成过程,就能有效地培养他们的实践能力和合作意识,并得到数学思想方法的熏陶和积极的情感体验。

因此,汤老师本课的教学目标确定为:

1、使学生初步掌握平行四边形的计算方法,能用平行四边形的面积公式进行计算。

2、通过经历平行四边形面积公式的推导过程,培养学生的合作意识、操作实践能力和抽象概括能力,并初步感知平移、转化的数学思想方法。

3、使学生通过学习活动获得成功体验,提高学习数学的兴趣,增强学好数学的信心。

在以上的教学目标中:第1条属于知识技能目标,它含有“理解并记住平行四边形的面积公式”和“会用公式进行计算”这两个具体的目标。第2、3条则体现了数学思考、解决问题、情感与态度等过程性目标。

显然,此教学目标体现了三维目标的整合。在教学过程时,汤老师把握住了以下几个要点:

1、进入探求新知的环节后,先让学生大胆猜想平行四边形面积。再通过教师的引导,明确转化的方向。

2、动手实践,完成转化。让学生通过剪、移、拼等操作活动,完成平行四边形到长方形的转化。(转化的关键)

3、引导学生通过比较分析和辩论,得出平行四边形面积的计算公式,同时启发学生去感悟平移和转化的数学思想方法。(进一步落实数学思考目标)

4、保证课堂练习的质量和时间,以使学生牢记和熟用公式。同时,教师要根据课堂交流和作业反馈信息,对知识技能目标的达成度进行量化检测。(落实知识技能目标、解决问题的目标)

学生通过亲历这个过程,不仅能够牢固掌握并熟练运用S=ah这个公式,而且对平移和转化的数学思想方法有了初步体验,在数学思维和学习方法上进行了一次有效的积累,感受了成功的快乐,增强了学习的兴趣和信心。在这样的教学中,知识技能目标与过程目标都得到了落实,而且各个目标之间在功能上形成了一种相互促进的关系,而这正是实施新课程的目的所在。

相关文档
最新文档