人教版数学九年级上册第一次月考试卷
人教版九年级上册数学《第一次月考》试卷(完美版)
人教版九年级上册数学《第一次月考》试卷(完美版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与 )A B C D 2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.在平面直角坐标系中,抛物线(5)(3)y x x =+-经过变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,在矩形ABCD 中,AB =10,4=AD ,点E 从点D 向C 以每秒1个单位长度的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从点C 向点D 以每秒2个单位长度的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .103B .4C .143D .163二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.因式分解:3269a a a -+=_________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.3.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、D6、B7、C8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、2(3)a a -3、-124、45、360°.6、5三、解答题(本大题共6小题,共72分)1、4x =2、(1) y=2x+1;(2)不在;(3)0.25.3、(1)略;(2) 52.4、(1)略;(2)2AC π=5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析.。
人教版九年级上册数学第一次月考试卷(带答案)
人教版九年级上册数学第一次月考试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-35.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:a 3-a =_____________.3.函数2y x =-中,自变量x 的取值范围是__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,24.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、B5、B6、D7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a-1)(a + 1)3、2x45、-36、8.三、解答题(本大题共6小题,共72分)1、x=32、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略;(2)2.4、(1)略(2)5 ,24 55、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
人教版九年级上册数学第一次月考试卷及答案
人教版九年级上册数学第一次月考试题一、单选题1.关于x 的方程ax 2﹣3x +2=0是一元二次方程,则a 满足的条件是( )A .a >0B .a ≠0C .a =1D .a ≥02.方程()20x x +=的根是( )A .2x =B .0x =C .120,2x x ==D .120,2x x ==- 3.用配方法解方程2610x x +-=时,原方程可变形为( )A .2(3)10x -=B .2(3)10x +=C .2(3)8x +=D .2(3)8x -= 4.抛物线y =x 2−2x +5的对称轴是( )A .直线x =2B .直线x =−1C .直线x =−2D .直线x =1 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =-- 6.已知点A (﹣2,a ),B (12,b ),C (52,c )都在二次函数y=﹣x 2+2x+3的图象上,那么a 、b 、c 的大小是( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a 7.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的大致图象为( )A .B .C .D . 8.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠59.用配方法解方程x 2﹣6x ﹣7=0,下列配方正确的是( )A .(x ﹣3)2=16B .(x +3)2=16C .(x ﹣3)2=7D .(x ﹣3)2=2 10.若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是( ) A .m = 3B .m >3C .m ≥ 3D .m ≤ 3二、填空题11.若抛物线2(2)32y a x x =-+-有最大值,则a 的取值范围是______________. 12.抛物线22(1)8y x =-+的顶点坐标是 ______________.13.二次函数228y x mx =++的图象顶点在x 轴上,则m 的值是_______________. 14.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 为4m 时,这时水面宽度AB 为______________.15.若二次函数2y ax bx c(a 0)=++<的图像经过(2,0),且其对称轴为直线x=-1,则当函数值y>0成立时,x 的取值范围是________.16.如图,菱形ABCD 的三个顶点在二次函数232(0)2y ax ax a =-+<的图象上,点A 、B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为____________.三、解答题17.解方程:2--=.x x231018.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年投入资金2880万元,则从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?19.如图,已知二次函数的顶点为(2,1-),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.20.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为1m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:在图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m )之间的函数关系式是221y x x =-++.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内? 21. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)22.甲、乙两名学生在同一小区居住,一天早晨,甲、乙两人同时从家出发去同一所学校上学.甲骑自行车匀速行驶.乙步行到公交站恰好乘上一辆公交车,公交车沿公路匀速行驶,公交车的速度分别是甲骑自行车速度和乙步行速度的2倍和5倍,下车后跑步赶到学校,两人同时到达学校(上、下车时间忽略不计).两人各自距家的路程y (m )与所用的时间x (min )之间的函数图象如图所示.(1)a= ,b= .(2)当乙学生乘公交车时,求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (3)如果乙学生到学校与甲学生相差1分钟,直接写出他跑步的速度.23.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,点M(不与A、B重合),从点A出发沿AB的速度向终点B运动.在运动过程中,过点M作MN⊥AB,交射线BC于点N,以线段MN为直角边作等腰直角三角形MNQ,且∠MNQ=90°(点B、Q 位于MN两侧).设△MNQ与△ABC重叠部分图形面积为S(cm2),点M的运动时间为t (s).(1)用含t的代数式表示线段MN的长,MN= .(2)当点N与点C重合时,t= .(3)求S与t之间的函数关系式.25.如图,已知抛物线y=ax2+32x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC 的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.参考答案1.B2.D3.B4.D5.D6.C7.B8.C9.A10.C11.2a >12.(1, 8)13.8±14.2015.42x -<<16.(2, 32). 17.1x =2x = . 18.该地投入异地安置资金的年平均增长率为50%.19.(1)2(2)1y x =--;(2)3ABC S =△.20.(1)最大高度是2米;(21时,才能使喷出的水流都落在水池内.21.主塔BD 的高约为86.9米.22.(1)400,2400;(2)4001600y x =-;(3)乙跑步的速度为100 m/min 或150 m/min .23.(1)y =−x +40(10≤x ≤16);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.24.(1);(2)1;(3)2221(01)27384(11)24344(2)4t t S x t t t x ⎧<<⎪⎪⎪=-+-≤<⎨⎪⎪-+≤<⎪⎩. 25.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4, 0),(5+0),(5,0).。
人教版数学九年级上册第一次月考数学试卷带答案解析
人教版数学九年级上册第一次月考试题一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2 8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.17.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.18.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2+x﹣1的图象与x轴有两个交点,可得△=12﹣4m×(﹣1)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2+x﹣1的图象与x轴有两个交点,则△=b2﹣4ac>0,△=12﹣4m×(﹣1)>0,∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0,故选C.【点评】本题考查了抛物线与x轴的交点,关键是熟记当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.2.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴【考点】抛物线与x轴的交点.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1【考点】二次函数的性质.【分析】观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.【解答】解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.【点评】此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.4.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质结合二次函数的解析式即可得出y1>y3>y2,此题得解.【解答】解:二次函数y=x2﹣6x+c的对称轴为x=3,∵a=1>0,∴当x=3时,y值最小,即y2最小.∵|﹣1﹣3|=4,|3+﹣3|=,4>,∴点y1>y3.∴y1>y3>y2.故选B.【点评】本题考查了二次函数的性质,根据二次函数的性质确定A、B、C三点纵坐标的大小是解题的关键.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.6.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.【点评】主要考查了求抛物线的顶点坐标的方法.7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2【考点】二次函数图象与几何变换.【分析】直接利用平移规律(左加右减,上加下减)求新抛物线的解析式.【解答】解:抛物线y=2x2向上、向左平移2个单位后的解析式为:y=2(x+2)2+2.故选:A.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1【考点】二次函数图象与几何变换.【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.【点评】根据画图可得到抛物线关于x轴对称的特点:二次项系数,一次项系数,常数项均互为相反数.二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】二次函数的三种形式.【分析】利用配方法操作整理,然后根据对应系数相等求出m、k,再相加即可.【解答】解:y=x2﹣2x﹣3,=(x2﹣2x+1)﹣1﹣3,=(x﹣1)2﹣4,所以,m=1,k=﹣4,所以,m+k=1+(﹣4)=﹣3.故答案为:﹣3.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为(0,1),与x轴的交点的坐标为(,0),(1,0).【考点】抛物线与x轴的交点.【分析】函数y=2x2﹣3x+1与y轴的交点坐标,即为x=0时,y的值.当x=0,y=1.故与y 轴的交点坐标为(0,1);x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根为x1=,x2=1,与x轴的交点的坐标为(,0),(1,0).【解答】解:把x=0代入函数可得y=1,故y轴的交点坐标为(0,1),把y=0代入函数可得x=或1,故与x轴的交点的坐标为(,0),(1,0).【点评】解答此题要明白函数y=2x2﹣3x+1与y轴的交点坐标即为x=0时y的值;x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根.13.请写出符合以下三个条件的一个函数的解析式y=﹣x+2,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.【考点】二次函数的性质;一次函数的性质.【分析】由题意设出函数的一般解析式,再根据①②③的条件确定函数的解析式.【解答】解:设函数的解析式为:y=kx+b,∵函数过点(3,1),∴3k+b=1…①∵当x>0时,y随x的增大而减小,∴k<0…②,又∵当自变量的值为2时,函数值小于2,当x=2时,函数y=2k+b<2…③由①②③知可以令b=2,可得k=﹣,此时2k+b=﹣+2<2,∴函数的解析式为:y=﹣x+2.答案为y=﹣x+2.【点评】此题是一道开放性题,主要考查一次函数的基本性质,函数的增减性及用待定系数法来确定函数的解析式.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.【解答】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是(﹣3,0),(1,0),∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.【点评】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题16.(12分)(2016秋•南昌校级月考)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】①因式分解法求解可得;②整理成一般式后,因式分解法求解可得;③因式分解法求解可得;④公式法求解可得.【解答】解:①(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;②原方程整理可得:x2﹣2x+1=0,∴(x﹣1)2=0,解得:x=1;③x(5﹣2x)=0,∴x=0或5﹣2x=0,解得x=0或x=;④∵a=1,b=6,c=﹣1,∴△=36+4=40>0,∴x==﹣3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.【考点】二次函数的三种形式.【分析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:①y=2x2+6x﹣12=2(x+)2﹣,则该抛物线的顶点坐标是(﹣,﹣),对称轴是x=﹣;②y=﹣0.5x2﹣3x+3=﹣(x+3)2+,则该抛物线的顶点坐标是(﹣3,),对称轴是x=﹣3.【点评】此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.18.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)直接利用配方法得出函数顶点式即可;(2)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(3)利用函数顶点式得出对称轴进而得出答案;(4)利用函数图象得出答案即可;(5)利用x=1以及x=4是求出函数值进而得出答案;(6)利用函数图象得出三角形面积即可.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8;(2)当y=0,则0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,故图象与x轴交点坐标为:(﹣1,0),(3,0),当x=0,y=﹣6,故图象与y轴交点坐标为:(0,﹣6),如图所示:;(3)当x<1时,y随x的增大而减少;(4)当x=1或﹣3时,y=0,当x<﹣1或x>3时,y>0,当﹣1<x<3时;y<0;(5)当0<x<4时,x=1时,y=﹣8,x=4时,y=10,故y的取值范围是:﹣8≤y<10;(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:×4×6=12.【点评】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.19.二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.【考点】二次函数综合题;解三元一次方程组;待定系数法求二次函数解析式.【分析】(1)根据开口方向可确定a的符号,由对称轴的符号,a的符号,结合起来可确定b的符号,看抛物线与y轴的交点可确定c的符号;(2)已知OA=3,解直角△OAB、△OAC可得B、C的坐标,设抛物线解析式的交点式,把A、B、C代入即可求解析式.【解答】解:(1)∵抛物线开口向上∴a>0又∵对称轴在y轴的左侧∴<0,∴b>0又∵抛物线交y轴的负半轴∴c<0(2)连接AB,AC∵在Rt△AOB中,∠ABO=45°∴∠OAB=45°,∴OB=OA∴B(﹣3,0)又∵在Rt△ACO中,∠ACO=60°∴OC=OAcot=60°=∴C(,0)设二次函数的解析式为y=ax2+bx+c(a≠0)由题意:∴所求二次函数的解析式为y=x2+(﹣1)x﹣3.【点评】本题考查了点的坐标求法,正确设抛物线解析式,求二次函数解析式的方法,需要学生熟练掌握.20.已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.【考点】抛物线与x轴的交点.【分析】(1)根据顶点A到y轴的距离为3,说明顶点A的横坐标为3或﹣3,根据公式﹣代入列式,求出m的值,分别代入解析式中,求出对应的顶点坐标A;也可以直接配方求得;(2)先计算抛物线与x轴的交点坐标,发现当m=﹣5时不符合题意,因此根据m=1时,对应的抛物线计算CD的长,求出点B的坐标.【解答】解:(1)由题意得:﹣=3或﹣3,∴m+2=3或m+2=﹣3,∴m=1或﹣5,当m=1时,抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18,∴顶点A的坐标为(3,﹣18);当m=﹣5时,抛物线C1:y=x2+6x+15=(x+3)2+6,∴顶点A的坐标为(﹣3,6);(2)设B(a,b),当抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18时,当y=0时,(x﹣3)2﹣18=0,x1=3+3,x2=3﹣3,∴CD=3+3+3﹣3=6,=6,∵S△BCD∴CD•|b|=6,∴×6•|b|=6,∴b=±2,当b=2时,x2﹣6x﹣9=2,解得:x=3±2,当b=﹣2时,x2﹣6x﹣9=﹣2,解得:x=7或﹣1,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2),当抛物线C1:y=x2+6x+15=(x+3)2+6时,当y=0时,(x+3)2+6=0,此方程无实数解,所以此时抛物线与x轴无交点,不符合题意,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2).【点评】本题是二次函数性质的应用,考查了抛物线与x轴的交点及顶点坐标,对于利用三角形面积求点的坐标问题,解题思路为:设出该点的坐标,根据面积列方程,求出未知数的值,再代入解析式中求另一坐标即可;同时要注意数形结合的思想的应用.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,元,∴当x=60时,P最大值=8000即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,﹣20×58+1600=440,∴当x=58时,y最小值=即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.22.已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?【考点】二次函数的应用.【分析】(1)根据二次函数性质可知该抛物线的对称轴x=﹣≤20,得出关于a的不等式,解之即可;(2)根据对称轴求出a,即可得二次函数解析式,将其配方成顶点式,根据函数取得最大值时即飞机滑行停止滑行,据此解答即可.【解答】解:(1)∵函数y=ax2+60x,在x>20时,y随x增大而减小,∴a<0且﹣≤20,解得:a≤﹣;(2)根据题意得:﹣=20,解得a=﹣,∴y=﹣x2+60x=﹣(x﹣20)2+600,则自变量x的范围为0≤x≤20,且飞机着陆后需滑行600米才能停下来.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质及顶点在具体问题中的实际意义是解题的关键.23.(14分)(2016秋•南昌校级月考)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,列出a和b 的二元一次方程组,求出a和b的值,进而求出点B的坐标,即可求出直线BC的解析式;(2)过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);=PQ•OB列出S关于x的二次函数,利用函数的性质求出面积求出PQ的长,利用S△PCB的最大值,进而求出点P的坐标;(3)首先求出EF的长,设N(x,﹣x2+3x+4),则M(x,﹣x+4),利用平行四边形对边平行且相等列出x的一元二次方程,解方程求出x的值即可.【解答】解:(1)由题意得,解得.∴抛物线的解析式:y=﹣x2+3x+4.(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,∴N3(,),综上所述,点N坐标为(,)或(,)或(,).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式,二次函数的性质、三角形面积的计算、平行四边形的判定等知识,解答(2)问关键是用x表示出PQ 的长,解答(3)问关键是求出EF的长,利用平行四边形对边平行且相等进行解答,此题有一定的难度.。
人教版九年级上册数学第一次月考考试卷(及参考答案)
人教版九年级上册数学第一次月考考试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539B .2539+C .18253+D .25318+二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是__________.2.分解因式:3x -x=__________.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、B6、A7、B8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x(x+1)(x-1)3、7或-14、12 5.5、x=26、24 5三、解答题(本大题共6小题,共72分)1、无解2、(1)证明见解析(2)1或23、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m1,2.4、(1)略;(2)AC.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
人教版九年级上册数学第一次月考试卷含答案
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
人教版九年级上册数学第一次月考试卷带答案
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a 的值是()A .2B .﹣2C .±2D .±42.用配方法解方程241x x =+,配方后得到的方程是()A .2(2)5x -=B .2(2)4x -=C .2(2)3x -=D .2(2)14x -=3.关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为()A .a≥0B .a <2C .a≥0且a≠1D .a≤2且a≠14.下列抛物线中,顶点坐标为()2,1的是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--5.抛物线231y x =--是由抛物线23(1)1y x =-++怎样平移得到的()A .左移1个单位上移2个单位B .右移1个单位上移2个单位C .左移1个单位下移2个单位D .右移1个单位下移2个单位6.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )间的关系为21(4)312y x =--+,由此可知铅球推出的距离是()A .2mB .8mC .10mD .127.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为()A .1-B .5-C .1或5-D .1-或5-8.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是()A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-=9.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A .10%B .15%C .20%D .25%10.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A .1B .2C .3D .4二、填空题11.当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.12.将二次函数()21132y x =++的图像沿x 轴对折后得到的图像解析式______.13.一元二次方程2280x x +-=的两根为12,x x ,则2112122x xx x x x ++=____________14.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是________.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.16.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH=12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是________cm .三、解答题17.解方程:(1)2230x x --=(2)23210x x +-=18.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.19.如图,利用一面墙(墙EF 最长可利用28米),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留2米宽的入口(如图中MN 所示,不用砌墙)用60米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为300平方米;能否围成430平方米的矩形花园?20.已知关于x 的一元二次方程2(1)0x a x a +++=.(1)求证:此方程总有两个实数根;a的值,并求此时方程的根.(2)如果此方程有两个不相等...的实数根,写出一个满足条件的21.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.22.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E 为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A ,点B 的坐标为(3,5)(1)求抛物线过点B 时顶点A 的坐标(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点25.已知点()1,0A 是抛物线2y ax bx m =++(,,a b m 为常数,0,0a m ≠<)与x 轴的一个交点.(1)当1,3a m ==-时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2?参考答案1.C 【分析】把x =4代入原方程得关于a 的一元一次方程,从而得解.【详解】把x =4代入方程223x x a -=可得16-12=2a ,解得a=±2,故选C .考点:一元二次方程的根.2.A 【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=5,即(x−2)2=5.故选A .【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.3.C 【分析】根据一元二次方程的定义及根与判别式的关系解答即可.【详解】∵一元二次方程()21210a x x -+-=有两个实数根,∴Δ=4+4(a-1)≥0且a-1≠0,解得:a≥0且a≠0,故选C.【点睛】本题考查一元二次方程的定义及根与判别式的关系:一元二次方程的二次项系数不能为0;方程有两个实数根,Δ≥0,没有实数根,Δ<0,熟练掌握相关知识是解题关键.4.B 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【详解】解:()2y x 21=++的顶点坐标是()2,1-,故选项A 不符合题意,()2y x 21=-+的顶点坐标是()2,1,故选项B 符合题意,()2y x 21=+-的顶点坐标是()2,1--,故选项C 不符合题意,()2y x 21=--的顶点坐标是()2,1-,故选项D 不符合题意,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.顶点式:y=a(x-h)²+k 抛物线的顶点P (h ,k ).5.D 【分析】根据二次函数()2y a x h k =-+的性质即可判断.【详解】抛物线()2311y x =-++经过右移1个单位下移2个单位,即()231112y x =-+-+-=231x --,故选D.【点睛】此题主要考查抛物线顶点式()2y a x h k =-+的特点,熟知顶点式的性质特点是解题的关键.6.C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】由题意可得y=0时,()214312x --+=0,解得:()24x -=36,即x 1=10,x 2=-2(舍去),所以铅球推出的距离是10m .故选C .7.B 【分析】先确定该抛物线的对称轴,再根据12121,<<-<x x y y 得到a <0,然后再根据112x -≤≤时,1y 最小值是6列出关于a 的一元二次方程并求解即可.【详解】解:∵2231y ax ax a =-++∴2239124y a x a a ⎛⎫=--++ ⎪⎝⎭,即该抛物线的对称轴为x=32∵121x x <<-时,12y y <∴a <0∵x=32在112x -≤≤范围内,∴当x=32时有最大值,x=-1时有最小值∴()()221311=6---++ a a a 整理得2450a a +-=,解得a=1(舍去)或a=-5故答案为B .【点睛】本题考查了二次函数图像的性质,掌握根据二次函数图像的性质求最值是解答本题的关键.8.D 【解析】A.涨价后每件玩具的售价是()30x +元,正确;B.涨价后每天少售出玩具的数量是10x 件,正确;C.涨价后每天销售玩具的数量是()30010x -件,正确;D.可列方程为:()()30300103750x x +-=,错误,应为(30+x-20)(300-10x)=3750,故选D.9.C 【分析】设平均每月的增长率为x ,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【详解】设平均每月的增长率为x ,根据题意得:200(1+x )2=288,(1+x )2=1.44,x 1=0.2=20%,x 2=-2.2(舍去),所以,平均每月的增长率为20%.故选C .【点睛】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a ,每次增长的百分率为x ,则第一次增长后为a (1+x );第二次增长后为a (1+x )2,即原数×(1+增长百分率)2=后来数.10.C 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .11.10【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决.【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10,故答案为:10.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.12.()21y x 312=-+-【分析】根据关于x 轴对称的点的坐标特点进行解答即可.【详解】解:∵关于x 轴对称的点横坐标不变,纵坐标互为相反数,∴函数()21132y x =++的图象沿x 轴对折,得到的图象的解析式为-()21132y x =++,即()21312y x =-+-;故答案为:()21312y x =-+-.【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴对称的点的坐标特点,即关于x 轴对称的点横坐标不变,纵坐标互为相反数.13.372-【分析】根据根与系数的关系表示出12x x +和12x x 即可;【详解】∵2280x x +-=,∴1a =,2b =,8c =-,∴12=-2b x x a +=-,12==-8c x x a,∴2221211212121222+++=+x x x x x x x x x x x x ,=()21212121222+-+x x x x x x x x ,=()()()2228372882--⨯-+⨯-=--.故答案为372-.【点睛】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键.14.12和13【分析】设这个输入的数为x ,根据题意可得6x 2-4x+1=x ,整理成一般式后利用因式分解法求解可得.【详解】解:设这个输入的数为x ,根据题意可得6x 2﹣4x+1=x ,即6x 2﹣5x+1=0,∴(2x ﹣1)(3x ﹣1)=0,则2x ﹣1=0或3x ﹣1=0,解得:x=12或x=13,故答案为:12和13.【点睛】本题考查了因式分解法解一元二次方程,根据题意列出关于x 的方程和熟练掌握解一元二次方程的基本方法是解题的关键.15.11【分析】设每轮传染中平均一人传染x 人,那么经过第一轮传染后有x 人被感染,那么经过两轮传染后有x (x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x 人,由题意得,2+2x+(2+2x )x=288,解得:x 1=11,x 2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.16.【分析】根据题意得出各点坐标,进而利用待定系数法求抛物线解析式进而分析求解.【详解】解:如图,以GH 所在的直线为x 轴,GH 的垂直平分线所在的直线为y 轴建立平面直角坐标系,喷口B 为抛物线的顶点,B ,D ,H 所在的直线是抛物线的对称轴,∵GH=12,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,∴点G (-6,0),点H (6,0),BH=16,∴点B (6,16),点Q (9,15.5)∵a=118-设函数解析式为()22112y x 616x x 1418183=--+=-++当y=0时,()21x 616018--+=解之:12x 6x 6=+=-(舍去)∴洗手液落在台面的位置距DH 的水平距离为66+-=.故答案为:.【点睛】本题考查二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.17.(1)1213x x =-=,;(2)11x =-,213x =【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)2230x x --=()()130x x +-=∴x+1=0或x-3=0∴121,3x x =-=(2)23210x x +-=()()1310x x +-=∴x+1=0或3x-1=0∴11x =-,213x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)抛物线解析式为y=x 2+4x+3,一次函数解析式为y=﹣x ﹣1;(2)由图象可知,满足(x+2)2+m≥kx+b 的x 的取值范围为x ≤﹣4或x≥﹣1.【分析】(1)先利用待定系数法求出m ,再根据对称性求出点B 坐标,然后利用待定系数法求出一次函数解析式;(2)根据二次函数的图象在一次函数图象的上面即可写出自变量x的取值范围.【详解】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标为(0,3),∵抛物线的对称轴是直线x=﹣2,且B、C关于对称轴对称,∴点B坐标为(﹣4,3),∵y=kx+b经过点A、B,∴43k bk b-+=⎧⎨-+=⎩,解得11kb=-⎧⎨=-⎩,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.【点睛】本题考查二次函数与不等式、待定系数法求函数的解析式等知识,解答的关键是灵活运用待定系数法确定函数的解析式,能充分利用函数的图象根据条件确定自变量的取值范围. 19.12米,能围成430平方米的矩形花园【分析】根据可以砌60m长的墙的材料,即总长度是60m,BC=xm,则AB=12(60-x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【详解】解:设矩形花园BC的长为x米,则其宽为12(60-x+2)米,依题意列方程得:12(60-x+2)x=300,x 2-62x+600=0,解这个方程得:x 1=12,x 2=50,∵28<50,∴x 2=50(不合题意,舍去),∴x=12.12(60-x+2)x=430,x 2-62x+860=0,解这个方程得:x 1x 2,当>28,不符合题意,舍去;当<28,符合题意,∴能围成430平方米的矩形花园。
人教版2024-2025学年九年级数学上册第一次月考(第二十一章至第二十三章)(解析版)
九年级上册数学第一次月考(考试范围:第二十一章至第二十三章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 在下面用数学家名字命名图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查中心对称图形与轴对称图形的识别,轴对称图形指的是延某条直线折叠,两边的图形能够完全重合;将图形旋转180°,能够与原图形重合的图形叫做中心对称图形,掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义逐一判断即可.【详解】解:AB .不是中心对称图形,是轴对称图形,不符合题意;C .既不是中心对称图形,也不是轴对称图形,不符合题意;D .既是中心对称图形,又是轴对称图形,符合题意;故选:D .2. 方程23x x =的解为( )A. 120x x == B. 123x x == C. 123x x ==− D. 10x =,23x =【答案】D【解析】 【分析】本题考查了因式分解法解一元二次方程,根据因式分解法计算即可得出答案.【详解】解:∵23x x =,∴230x x −=,的∴()30x x −=, ∴0x =或30x −=,解得:10x =,23x =,故选:D .3. 抛物线 ()2213y x =−−向左平移2个单位,再向上平移5个单位,所得的抛物线的解析式为( )A. ()2212y x =++B. ()2212y x =−+C. ()2212y x =+−D. ()2212y x =−− 【答案】A【解析】【分析】根据函数图像平移法则“左加右减、上加下减”,将题中文字描述转化为数学符号即可解决问题.【详解】∵抛物线()2213y x =−−向左平移2个单位,再向上平移5个单位,∴所得的抛物线的解析式为()221235y x =−+−+,即()2212y x =++故选:A【点睛】熟练掌握函数图像平移法则“左加右减、上加下减”是解决问题的关键.4. 用配方法解一元二次方程2870x x −+=,方程可变形为( )A. 2(4)9x +=B. 2(4)9x −=C. 2(8)16x −=D. 2(8)57x +=【答案】B【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x +7=0,x 2-8x =-7,x 2-8x +16=-7+16,(x -4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.5. 如图,将OAB ∆绕O 点逆时针旋转60 得到OCD ∆,若4OA =,35AOB ∠= ,则下列结论不一定正确的是( )A. 60BDO ∠=°B. 25BOC ∠=°C. 4OC =D. //CD OA【答案】D【解析】 【分析】由题意△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,可判断C 正确;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【详解】∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确;则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确;故选:D .【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质. 6. 已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A. ac >0B. b >0C. a +c <0D. a +b +c =0【答案】D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a −<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a −=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 7. 已知关于x 的一元二次方程x 2+(2m +1)x +m ﹣1=0的两个根分别是x 1,x 2,且满足x 12+x 22=3,则m 的值是( )A. 0B. ﹣2C. 0 或﹣12D. ﹣2或0【答案】C【解析】 【分析】根据根与系数的关系得到()1221x x m ++=-,121x x m =-,再由()22212121223x x x x x x ++=-=,然后整体代入即可得到关于m 方程,解方程即可得到m 的值.【详解】解:∵方程()22110x m x m +++-=的两个根分别是x 1,x 2,∴()1212211x x m x x m ++=-,=-, ∵22123x x +=,即()2121223x x x x +-=, ∴()()221213m m +---=, 解得m =0或m =﹣12, ∵方程()22110x m x m +++-=的两个根, ∴()()222141450m m m ∆++≥=--=, ∴m 为任意实数,方程均有实数根,当m =0, 5∆=>0;当 m =﹣12,6∆=>0 ∴m =0或m =﹣12均符合题意. 故选:C . 【点睛】本题考查根与系数的关系,将根与系数的关系与代数式变形相结合是解题的关键.8. 如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用抛物线2142y x x =−刻画,斜坡可以用直线12y x =刻画.下列结论错误的是( )A. 小球落地点与点O 的水平距离为7mB. 当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3mC. 小球与点O 的水平距离超过4m 时呈下降趋势D. 小球与斜坡的距离的最大值为49m 8【答案】B【解析】【分析】本题考查了二次函数的性质,令211422x x x −=,解得10x =,27x =,即可判断A ;把7.5y =代入2142y x x =−得2147.52x x −=,求解即可判断B ;将抛物线解析式化为顶点式即可判断C ;设抛物线上一点A 的坐标为21,42a a a−,作AB x ⊥轴交直线12y x =于B ,则1,2B a a ,表示出AB ,结合二次函数的性质即可判断D ,熟练掌握二次函数的性质是解此题的关键. 【详解】解:令211422x x x −=,解得10x =,27x =, ∴小球落地点与点O 的水平距离为7m ,故A 正确,不符合题意; 把7.5y =代入2142y x x =−得2147.52x x −=, 解得:13x =,25x =,∴当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3m 或5m ,故B 错误,符合题意; ∵()221144822y x x x =−=−−+, ∴抛物线的对称轴为直线4x =, ∵102−<, ∴当4x >时,y 随x 的增大而减小,∴小球与点O 的水平距离超过4m 时呈下降趋势,故C 正确,不符合题意;设抛物线上一点A 的坐标为21,42a a a−, 作AB x ⊥轴交直线12y x =于B ,则1,2B a a, , ∴2221117174942222228AB a a a a a a =−−=−+=−−+ , ∵102−<,∴当72a =时,AB 有最大值,最大值为498, ∴小球与斜坡的距离的最大值为49m 8,故D 正确,不符合题意; 故选:B . 9. 如图,抛物线2=23y x x −−与y 轴交于点A ,与x 轴的负半轴交于点B ,点M 是对称轴上的一个动点,连接AM ,BM ,则AM BM +的最小值为( )A. 2B.C.D.【答案】D【解析】 【分析】设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,根据解析式求得,A C 的坐标,根据轴对称的性质得出MB MC =,继而得出AM BM +取得最小值,最小值为AC 的长,勾股定理即可求解.【详解】解:如图所示,设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,∵2=23y x x −−,令0y =,即2230x x −−=,解得:121,3x x =−=, ∴()3,0C ,令0x =,解得=3y −,∴()0,3A −,∵点M 是对称轴上的一个动点,∴MB MC =,∵AM BM AM CM AC +=+≥∴当,,A M C 三点共线时,AM BM +取得最小值,最小值为AC 的长,故选:D .【点睛】本题考查了根据二次函数对称性求线段和的最值,掌握二次函数对称性是解题的关键. 10. 如图,在OAB ∆中,顶点(0,0)O ,(3,4)A −,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (3,10)−C. (10,3)−)D. (3,10)−【答案】D【解析】 【分析】先求出6AB =,再利用正方形的性质确定(3,10)D −,由于704172=×+,所以第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【详解】解:(3,4)A − ,(3,4)B ,336AB ∴=+=,四边形ABCD 为正方形,6AD AB ∴==,(3,10)D ∴−,704172=×+ ,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,10)−.故选D .【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分)11. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______. 【答案】1−【解析】【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【详解】解:由题意知:212m +=且10m −≠,解得1m =−,故答案为:1−.12. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则这个位置是_______.【答案】③【解析】【分析】如果一个图形绕着某一点旋转180°后,能够与原来的图形完全重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义和性质思考判断即可.【详解】当放置在①位置时,构成的图形不是中心对称图形,∴①不符合题意;当放置在②位置时,构成的图形不是中心对称图形,∴②不符合题意当放置在③位置时,构成的图形是中心对称图形,∴③符合题意当放置在④位置时,构成的图形不是中心对称图形,∴④不符合题意故答案为:③.【点睛】本题考查了拼图中的中心对称图形,熟练掌握中心对称图形的定义和性质是解题的关键. 13. 抛物线()2223,=−−+y x ,当03x ≤≤时,y 的最小值与最大值的和是________.【答案】2−【解析】【分析】本题主要考查了二次函数的最值问题,先根据解析式得到抛物线顶点坐标为(2,3),且抛物线开口向下,则y 的最大值为32x =,再根据自变量的取值范围推出当0x =时,函数有最小值,据此求出最小值即可得到答案.【详解】解:∵抛物线解析式为()2223,y x =−−+∴抛物线顶点坐标为(2,3),且抛物线开口向下,∴y 的最大值为3,离对称轴越远,函数值越小,且对称轴为直线2x =,∵2032−>−,∴当03x ≤≤时,当0x =时,函数有最小值,最小值为()220235y =−−+=−,∴y 的最小值与最大值的和是532−+=−,故答案为:2−.14. 《念奴娇·赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物. 而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”则这位风流人物去世的年龄为_____岁.【答案】36【解析】【分析】本题考查了由实际问题抽象出一元二次方程,根据“十位恰小个位三,个位平方与寿符”以及10×十位数字+个位数字=个位数字的平方,据此列方程可得答案,找准等量关系,正确列出一元二次方程是解题的关键.【详解】解:设这位风流人物去世的年龄十位数字为x ,则个位数字为3x +,则根据题意:()()21033x x x ++=+,整理得:2560x x −+=,解得12x =,23x =,由题意,而立之年督东吴,则2x =舍去,∴这位风流人物去世的年龄为36岁,故答案为:36.15. 函数222y x ax =−−在12x −≤≤有最大值6,则实数a 的值是______.【答案】1−或72【解析】【分析】先求出二次函数的对称轴为x a =,再分1a ≤−,1a 2−<<和2a ≥三种情况,分别利用二次函数的性质求解即可得. 【详解】二次函数222y x ax =−−的对称轴为22a x a −=−=, 由题意,分以下三种情况:(1)当1a ≤−时,在12x −≤≤内,y 随x 的增大而增大, 则当2x =时,y 取得最大值,最大值为224224a a −−=−,因此有246a −=,解得1a =−,符合题设;(2)当1a 2−<<时,在12x −≤≤内,当1x a −≤≤时,y 随x 的增大而减小;当2a x <≤时,y 随x 的增大而 增大, 则当1x =−或2x =时,y 取得最大值,因此有1226a +−=或22426a −−=, 解得72a =或1a =−(均不符题设,舍去); (3)当2a ≥时,在12x −≤≤内,y 随x 的增大而减小,则当1x =−时,y 取得最大值,最大值为12221a a +−−,因此有216a −=,解得72a =,符合题设; 综上,1a =−或72a =, 故答案为:1−或72. 【点睛】本题考查了二次函数的图象与性质,依据题意,正确分三种情况讨论是解题关键.三、解答题(本大题共8个小题,共75分)16. 解一元二次方程:(1)210150x x −+=(2)()()124x x −+=.【答案】(1)15x =+,25x =(2)13x =−,22x =【解析】【分析】本题考查了解一元二次方程,熟练掌握配方法和因式分解法是解此题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【小问1详解】解:∵210150x x −+=,∴21015x x −=−,∴210252515x x −+=−,∴()2510x −=,∴5x −=,∴15x =,25x =;【小问2详解】 解:∵()()124x x −+=, ∴2224x x x +−−=,∴260x x +−=,∴()()320x x +−=, ∴30x +=或20x −=,∴13x =−,22x =.17. 若关于x 的一元二次方程2420x x a −++=有两个不相等的实数根.(1)求a 的取值范围;(2)求当a 为正整数时方程的根.【答案】(1)a 的取值范围为2a <(2)若a 为正整数时,方程的根为1和3【解析】【分析】本题考查了根的判别式,解一元一次不等式和解一元二次方程,能根据根的判别式和已知得出不等式是解题的关键.(1)根据判别式即可求出答案;(2)根据a 的范围可知,代入原方程后根据一元二次方程的解法即可求出答案.【小问1详解】解:∵关于x 的一元二次方程2420x x a −++=有两个不相等的实数根,∴()()22Δ444120b ac a =−=−−××+>,解得:2a <,∴a 的取值范围为2a <.【小问2详解】解:∵a 为正整数,∴1a =,∴原方程2430x x −+=, 即()()130x x −−=, 解得:11x =,23x =,∴若a 为正整数时,方程的根为1和3.18. 在正方形网格中建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,A 的坐标是(4,4),请回答下列问题:为(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标【答案】(1)图形见解析,A1(4,-2)(2)图形见解析,A2(-4,-4)(3)图形见解析,M(0,-3)【解析】【分析】(1)根据网格结构找出点A、B、C向下平移6个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A、B、C关于原点对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据中心对称的定义判断,对称中心是各个对应点连线的交点.【详解】(1) 如图,△A1B1C1即为所求,点A的对应点A1的坐标:(4,-2)(2)如图,△A2B2C2即为所求,点A2的坐标(-4,-4)(3)如图,△A1B1C1与△A2B2C2关于点M成中心对称,M (0,-3).【点睛】本题考查作图,旋转变换,平移变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19. 如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【答案】(1)2119y x =−+ (2)这辆货运卡车能通过该隧道【解析】【分析】(1)抛物线的解析式为()20y ax bx c a ++≠,把()()()303001,,,D ,C ,E −代入计算即可; (2)把 4.5y =时代入(1)的解析式,求出x 的值即可求出结论.【小问1详解】解:根据题意得:()()()303001,,,D ,C ,E −,设抛物线的解析式为()20y ax bx c a ++≠, 把()()()303001,,,D ,C ,E −代入()20y ax bx c a ++≠ 得:193109310c a b a b = ++=−+=解得1901a b c =− = =, ∴抛物线的解析式为2119y x =−+; 【小问2详解】这辆货运卡车能通过该隧道,理由如下: 在2119y x =−+中,令45405..y =−=得: 210519.x =−+,解得:x =±,()28.49m x ∴=≈, 8493.> ,∴这辆货运卡车能通过该隧道.【点睛】本题考查了二次函数的应用,解题的关键是求出二次函数的解析式.20. 解决问题:邓州公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,经市场预测,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【答案】(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个.【解析】【分析】(1)设该品牌头盔销售量的月增长率为x ,根据“该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同”列一元二次方程求解即可;(2)设该品牌头盔的实际售价为y 元/个,根据月销售利润=每个头盔的利润×月销售量,即可得出关于y 的一元二次方程,解之即可求出答案.【小问1详解】解:设该品牌头盔销售量月增长率为x ,由题意得:()25001750x +=, 解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该品牌头盔销售量月增长率为20%;【小问2详解】解:设该品牌头盔的实际售价应定为y 元/个,由题意得:()()30600104010000y y −−−=, 整理得:213040000y y −+=,解得:150y =,280y =,∵尽可能让顾客得到实惠,∴50y =,答:该品牌头盔的实际售价应定为50元/个.【点睛】本题考查了列一元二次方程解决实际问题,解题关键是准确理解题意,找出等量关系且熟练掌握解一元二次方程的方法.21. 已知二次函数 2y x bx c =++中,函数y 与自变量x 的部分对应值如下表: x 0 1 2 3 4y 5 2 1 2 5(1)求该二次函数的关系式.的的(2)当x 为何值时,y 有最小值? 最小值是多少?(3)若()1,A m y ,()2,B c y 两点都在该函数的图象上,当12y y <时,求m 的取值范围.【答案】(1)245y x x =−+(2)当2x =时,y 有最小值,最小值为1(3)15m −<<【解析】【分析】本题考查了待定系数法求二次函数解析式、二次函数最值、二次函数的对称性,熟练掌握以上知识点并灵活运用是解此题的关键.(1)利用待定系数法计算即可得出答案;(2)将二次函数解析式化为顶点式即可得出答案;(3)由(1)得出()25,B y ,将二次函数解析式化为顶点式即可得出抛物线的对称轴为直线2x =,抛物线开口向上,得出()25,B y 关于直线2x =对称的点的坐标为()21,y −,即可得解.【小问1详解】解:∵二次函数2y x bx c =++的图象经过点()0,5,()1,2,∴512c b c = ++=, 解得:54c b = =−, ∴该二次函数的关系式是245y x x =−+;【小问2详解】解:∵()224521y x x x −=+=−+,∴当2x =时,y 有最小值,最小值为1;【小问3详解】解:由(1)可得:5c =,即()25,B y ,∵()224521y x x x −=+=−+,∴抛物线的对称轴为直线2x =,抛物线开口向上,∴()25,B y 关于直线2x =对称的点的坐标为()21,y −,∵()1,A m y ,()2,B c y 两点都在该函数的图象上,12y y <,∴15m −<<.22. 如图,抛物线2y x mx =+与直线y x b =−+交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>−+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标x 的取值范围.【答案】(1)2m =−,2b =(2)点B 的坐标为()1,3−,不等式2x mx x b +>−+的解集为1x <−或2x >(3)12x −≤<或3x =【解析】【分析】本题考查了待定系数法求函数解析式、二次函数与一次函数交点问题,熟练掌握以上知识点并灵活运用,采用分类讨论与数形结合的思想是解此题的关键.(1)利用待定系数法计算即可得解;(2)由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+,联立222y x y x x =−+ =−,求出点B 的坐标为()1,3−,再结合图象即可得出答案;(3)分类求解确定MN 的位置,进而求解.【小问1详解】解:将()2,0A 代入抛物线表达式2y x mx =+可得420m +=, 解得:2m =−,将()2,0A 代入直线y x b =−+可得:20b −+=, 解得:2b =;【小问2详解】解:由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+, 联立222y x y x x =−+ =−, 解得13x y =− = 或20x y = =, ∴点B 的坐标为()1,3−,从图象看,不等式2x mx x b +>−+的解集为1x <−或2x >;小问3详解】解:如图:当点M 在线段AB 上时(不含A 点),线段MN 与抛物线只有一个公共点,∵M ,N 的距离为3,而A 、B 的水平距离是3,故此时只有一个交点,即12x −≤<, 如图,当线段MN P 时,线段MN 与抛物线只有一个公共点,∵()22211y x x x =−=−−, ∴抛物线的顶点()1,1P −, 在2y x =−+中,当1y =−时,21x −+=−,解得3x =; 综上所述,12x −≤<或3x =.23. 在等腰直角三角形ABC 和等腰直角三角形EBF 中,90ACB BEF ∠=∠=°,连接AF ,M 是AF 的中点,连接CM ,EM .【(1)观察猜想:图1中,线段CM 与EM 的数量关系是 ,位置关系是 .(2)探究证明:把EBF △绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,P 为平面内一动点,且2AP =,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.【答案】(1)CM EM =,CM EM ⊥(2)成立,证明见解析(3)BD 的最小值为1−,最大值为1+【解析】【分析】(1)由直角三角形的性质得出12CM AM AF ==,12EM AM AF ==,从而得出CM EM =,由等边对等角得出MAC MCA ∠=∠,MAE MEA ∠=∠,由三角形外角的定义及性质得出2EMC BAC ∠=∠,最后再由等腰直角三角形的性质即可得出答案; (2)延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,证明()SAS ACB GCB ≌,得出AB BG =,45BAC BGC ∠=∠=°,同理可得:BH BF =,90∠=°FBH ,证明HBA FBG ≌,得出AH FG =,HAB FGB ∠=∠,由三角形中位线定理可得12EM AH =,EM AH ∥,12CM FG =,CM FG ∥,得出EM CM =,由平行线的性质得出EMF HAF ∠=∠,MCA FGA ∠=∠,求出FMC FAC FGA ∠=∠+∠,即可得解; (3)连接AC ,BC ,由题意得出4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,由等腰直角三角形的性质得出AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =,结合AB AK BK AB AK −≤≤+,得出当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,当点K 在BA 的延长线上时,BK 取得最大值,即BD 取得最大值,即可得解.【小问1详解】解:∵90BEF ∠=°,∴18090AEF BEF ∠=°−∠=°,∵90ACB ∠=°,M 是AF 的中点, ∴12CM AM AF ==,12EM AM AF ==, ∴CM EM =,MAC MCA ∠=∠,MAE MEA ∠=∠,∴222EMC EMF CMF MAE MAC BAC ∠=∠+∠=∠+∠=∠,∵三角形ABC 是等腰直角三角形,∴45BAC ∠=°,∴90EMC ∠=°,即CM EM ⊥;故答案为:CM EM =;CM EM ⊥【小问2详解】解:成立,证明如下:如图,延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,∵90ACB ∠=°,∴91800BCG A ACB CB ∠=−°=∠°∠=,∵CG AC =,BC BC =,∴()SAS ACB GCB ≌,∴AB BG =,45BAC BGC ∠=∠=°,∴18090ABG BAC BGC ∠=°−∠−∠=°,同理可得:BH BF =,90∠=°FBH ,∴HBA ABF FBG ABF ∠+∠=∠+∠,即HBA FBG ∠=∠,∴HBA FBG ≌,∴AH FG =,HAB FGB ∠=∠,∵EH EF =,M 是AF 的中点,CG AC =,∴EM 是AFH 的中位线,CM 是AFG 的中位线, ∴12EM AH =,EM AH ∥,12CM FG =,CM FG ∥, ∴EM CM =,EMF HAF ∠=∠,MCA FGA ∠=∠, ∴FMC FAC MCA FAC FGA ∠=∠+∠=∠+∠,∴90EMC EMF FMC HAF FAC FGA BAC BGC ∠=∠+∠=∠+∠+∠=∠+∠=°,即CM EM ⊥;【小问3详解】解:如图,连接AC ,BC ,,∵点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,∴4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,∵AK PK =,90AKP ∠=°,∴AP =,∴AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =, ∵AB AK BK AB AK −≤≤+,∴当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,此时4BK ==−;1BD当点K在BA的延长线上时,BK取得最大值,即BD取得最大值,此时4BK=,=+;1BD综上所述,BD的最小值为1+.−,最大值为1【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形外角的定义及性质、坐标与图形、三角形中位线定理等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.。
2024-2025学年人教版九年级数学上册第一次月考测试题
2024-2025学年人教版九年级数学上册第一次月考测试题一、单选题1.下列方程是一元二次方程的是( )A .2560x xy +-=B .240x x -=C .2310x -=D . 220x +=2.下列函数解析式中,是二次函数的是( )A .21y x =-B .2221y x x =-+C .2y ax bx c =++D .21y x x=+ 3.若关于x 的方程()24102a a x x -++=-是一元二次方程,则a 的取值为( ) A .0 B .4C .4-D .4± 4.一元二次方程()()2323x x -=-的根是( )A .2B .3C .3或5D .3或2 5.若关于x 的一元二次方程的两根为11x =、22x =,则这个方程是( ) A .2620x x +-=B .2320x x -+=C .2230x x -+=D .2320x x ++=6.二次函数21y x =+的图象大致是( ) A . B .C .D .7.若11,2A y ⎛⎫- ⎪⎝⎭,()21,B y ,()32,C y 三点都在二次函数()21y x =--的图象上,则1y ,2y ,3y 的大小关系为( )A .132y y y <<B .123y y y <<C .231y y y <<D .321y y y << 8.定义运算:221m n m n m =--☆.例如:2424224123=⨯-⨯-=☆,则方程10x =☆的根的情况为A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根9.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或910.在同一坐标系中,二次函数2y ax b =+的图象与一次函数y bx a =+的图象可能是( )A .B .C .D .二、填空题11.将方程()25231x x x -=+化为一般式,其结果是12.将二次函数21y x =+图像向下平移5个单位长度,平移后的解析式为.13.当31x -≤≤时,二次函数221y x =-+中y 的取值范围是.14.已知a ,b 是实数,且满足()()22222340a b a b +++-=,22 a b +=. 15.已知抛物线()2y a x h =-与()223y x =-+的图象形状相同,但开口方向不同,顶点坐标是()1,0的抛物线解析式是.三、解答题16.解方程(1)()22316x +=;(2)2430x x --=.(3)2314x x -=.(4)()()2454x x +=+.17.小明同学解一元二次方程x 2﹣6x ﹣1=0的过程如图所示.解:x 2﹣6x =1 …① x 2﹣6x +9=1 …②(x ﹣3)2=1 …③x ﹣3=±1 …④x 1=4,x 2=2 …⑤(1)小明解方程的方法是 .(A )直接开平方法 (B )因式分解法 (C )配方法 (D )公式法他的求解过程从第 步开始出现错误.(2)解这个方程.18.已知关于x 的一元二次方程26210x x m -+-=有1x ,2x 两个实数根(1)若11x =,求2x 及m 的值;(2)若120x x -=,求m 的值,并求1x ,2x 的值.19.已知关于x 的一元二次方程()21230x k x k -++-=.(1)求证:无论k 为何值,该方程总有两个不等实根.(2)当Rt ABC △的斜边a b 和c 恰好是这个方程的两个根,求k 的值. 20.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?21.如图,要利用一面足够长的墙为一边,其余三边用总长37m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1米的门,能够建生态园的场地垂直于墙的一边长不超过4米(围栏宽忽略不计).(1)每个生态园的面积为45平方米,求每个生态园的边长;(2)每个生态园的面积能否达到72平方米?请说明理由.22.ABC V 中,905cm 6cm B AB BC ∠=︒==,,,点P 从点A 开始沿边AB 向终点B 以1/scm 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/s cm 的速度移动,如果点P 、Q 分别从点A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ = ________,PB = ________(用含t 的代数式表示);(2)是否存在t 的值,使得PBQ V 的面积等于24cm ?若存在,请求出此时t 的值;若不存在,请说明理由.23.如图,已知点()2,4A -在抛物线()20y ax a =≠上,过点A 且平行于x 轴的直线交抛物线于点B .(1)求a 的值和点B 的坐标;(2)若点P 是抛物线上一点,当以点A ,B ,P 为顶点构成的ABP V 的面积为2时,求点P 的坐标.。
人教版九年级上册数学第一次月考考试卷及答案【完整版】
人教版九年级上册数学第一次月考考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<2.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-33.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两不相等实数根 B .有两相等实数根 C .无实数根D .不能确定4.已知一个多边形的内角和等于900º,则这个多边形是( ) A .五边形B .六边形C .七边形D .八边形5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-6.若2x y +=-,则222x y xy ++的值为( ) A .2-B .2C .4-D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.因式分解:x 3﹣4x=_______. 3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC =__________度.5.如图,点A ,B 是反比例函数y=kx(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中21x =.3.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、C5、D6、D7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x(x+2)(x﹣2)3、x1≥-且x0≠4、455、5.6、454353 x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x=-2.3、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),4、(1)略;(2)4.95、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)120件;(2)150元.。
人教版九年级上册数学第一次月考试卷含答案
人教版九年级上册数学第一次月考试题一、单选题1.已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .42.如图5,已知抛物线的对称轴为,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为A .(2,3)B .(3,2)C .(3,3)D .(4,3)3.方程21(2)04m x -+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 4.二次函数()20y ax bx c a =++≠的图象如图,给出下列四个结论:①240b ac ->;②420a b c -+<;③20a b -=;④()21am bm a b m +<-≠-,其中正确结论的个数是( )A .4个B .3个C .2个D .1个5.下列方程是一元二次方程的一般形式的是( )A .2(1)16x -=B .23(2)27x -=C .2530x x -=D 228x +=6.若抛物线y=ax 2+bx+c 如图所示,下列四个结论:①abc <0;②b ﹣2a <0;③a ﹣b+c <0;④b 2﹣4ac >0.其中正确结论的个数是( )A .1B .2C .3D .47.已知2510x x ++=,则1x x +的值为( ) A .5 B .1 C .-5 D .-18.已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A .B .C .D . 9.对于任意实数x ,多项式223x x -+的值是一个( )A .正数B .负数C .非负数D .不能确定 10.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为xcm 的小正方形,然后把四边折起来,作成底面为2ycm 的无盖的长方体盒子,则y 与(05)x x <<的关系式为( ) A .()()1020y x x =--B .210204y x =⨯-C .()()102202y x x =--D .22004y x =+11.一人乘雪橇沿坡度为1S (米)与时间t (秒)之间的关系为S=10t+2t 2,若滑动时间为4秒,则他下降的垂直高度为( )A .72米B .36米 C.米 D. 12.一边靠墙(墙长7m ),另三边用14m 的木栏围成一个长方形,面积为220m ,这个长方形场地的长为( )A .10m 或5mB .5mC .4mD .2m13.用配方法解方程223x x -=时,原方程应变形为( )A .2(1)2x += B .2(1)2x -= C .2(1)4x += D .2(1)4x -=14.已知抛物线2(0)y kx k =>与直线()0y ax b a =+≠有两个公共点,它们的横坐标分别为1x 、2x ,又有直线y ax b =+与x 轴的交点坐标为()3,0x ,则1x 、2x 、3x 满足的关系式是( )A .123x x x +=B .123111x x x += C .12312x x x x x += D .122313x x x x x x +=二、填空题15.若24AB AB +=,则AB =________.16.把抛物线24y x x =+改写成2()y a x h k =++的形式为________.17.若代数式2(4)x -与代数式()94x -的值相等,则x =________.18.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B(m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是________.19.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:________.20.关于x的一元二次方程2620x x k-+=有两个不相等的实数根,则实数k的取值范围是________.21.观察下列各图中小球的摆放规律,若第n个图中小球的个数为y,则y与n的函数关系式为________22.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1m).三、解答题23.已知a、b、c均为有理数,判定关于x的方程22-+=-是不ax x c b31是一元二次方程?如果是,请写出二次项系数、一次项系数及常数项;如果不是,请说明理由.24.如图,把一张长15cm,宽12cm的矩形硬纸板的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为xcm.()1请用含x的代数式表示长方体盒子的底面积;()2当剪去的小正方形的边长为多少时,其底面积是2130cm?()3试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.25.已知函数()229123y k x kx =-++是关于x 的二次函数,求不等式141123k k -+≥-的解集.26.已知函数223y x x =--的图象,根据图象回答下列问题.() 1当x 取何值时0y =.() 2方程2230x x --=的解是什么?() 3当x 取何值时,0y <?当x 取何值时,0y >?() 4不等式2230x x --<的解集是什么?27.如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案1.D2.D3.B4.B5.C6.C7.C8.C9.A10.C11.B12.B13.D14.B15 16.2(2)4y x =+-17.4或5-18.(-2,0)19.232y x x =- 20.92k < 21.21y n n =-+22.,16.523.方程为一元二次方程,二次项系数、一次项系数及常数项分别是:a (3-+,1c b -+.24.(1)()()2152122x x cm --;(2)当剪去的小正方形的边长为1cm 时,其底面积是2130cm ;(3)当剪去的小正方形的边长为278cm 时,长方体盒子的侧面积有最大值27298cm . 25.15k ≤且13k ≠-. 26.() 1当1x =-或3时,0y =;()12?1x =-,23x =;()3?13x -<<当时,0y <, 当1x <-或3x >时,0y >;()4?13x -<<. 27.(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是18.。
人教版九年级上册数学第一次月考试卷及答案【完整】
人教版九年级上册数学第一次月考试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或3 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .610.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D 10二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2ab a -=_______.3.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次 3次 4次及以上 人数 7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a =______,b =______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、A5、B6、D7、C8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、a (b +1)(b ﹣1).3、7或-14、8.5、40°6、25三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k ≤58;(2)k=﹣1.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2-. 4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
人教版九年级数学上学期第一次月考试卷(含答案)
人教版九年级数学上学期第一次月考试卷(含答案)一、选择题(本大题共有10小题,每小题3分,共30分)1.如果a为任意实数,下列各式中一定有意义的是…………………………………………()A.aB.a2C.a21D.a212.下列各式中,属于最简二次根式的是…………………………………………………………()A.某2y2B.某y1C.12D.1某23.下列方程,是一元二次方程的是………………………………………………………………()22①3某某20②2某3某y40③某21某4④某20⑤某230某3A.①②B.①②④⑤C.①③④D.①④⑤4.若某3某某,则某的取值范围是……………………………………………………()3某A.某<3B.某3C.0某<3D.某05.方程(某3)(某3)的根为………………………………………………………………()A.3B.4C.4或3D.4或36.用配方法解方程某28某70,则配方正确的是……………………………………………()A.某49B.某49C.某816D.某8577.关于某的一元二次方程(a1)某某a10的一个根为0,则a的值为……………()A.1B.-1C.1或-1D.22222222128.三角形两边长分别是8和6,第三边长是一元二次方程某16某600的一个实数根,则该三角形的面积是……………………………………………………………………………………()A.24B.48C.24或85D.859.下列二次根式中,与3是同类二次根式的是………………………………………………()2310.某农场的粮食产量在两年内从2800吨增加到3090吨,若设平均每年增产的百分率为某,则所列的方程为…………………………………………………………………………………………()A.18B.12C.6D.A.28001某3090;B.1某290;二、填空题(本大题共有10小题,每小题3分,共30分)11.某10某(某).12.在直角坐标系内,点P(5,5)到原点的距离为.13.若a23,b2,且ab0,则ab.14.10在两个连续整数a和b之间,且a10b,那么a、b的值分别是.15.已知一元二次方程某+3某+m=0的一个根为-1,则另一个根为__________.16.某矩形的长为a,宽为b,且(a+b)(a+b+2)=8,则a+b的值为_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学第一次月考试题(全卷满分:150分,完成时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.如果a 为任意实数, 下列各式中一定有意义的是( )2.下列各式中,属于最简二次根式的是( ) A.22y x + B.xy xC.12D.2113.下列方程,是一元二次方程的是( )①2032=+x x ②04322=+-xy x ③412=-x x ④02=x ⑤0332=+-xx A.①② B.①②④⑤ C.①③④ D.①④⑤4.若xxxx -=-33,则x 的取值范围是( ) A.x <3 B. x ≤3 C.0≤x <3 D.x ≥0 5.方程)3()3(2-=-x x 的根为( )A.3B.4C.4或3D.4-或3 6.用配方法解方程2870x x ++=,则配方正确的是( )A.()249x -= B.()249x += C.()2816x -= D.()2857x +=7.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根为0,则a 的值为( ) A.1 B.-1 C.1或-1 D.21 8.三角形两边长分别是8和6,第三边长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A.24B.48C.24或85D. 85二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.+-x x 102-=x ( 2).10.在直角坐标系内,点P (2,3)关于原点的对称点坐标为 . 11. 若=-<==b a ab b a 则且,0,2,32 .12.10在两个连续整数a 和b 之间,且b a <<10,那么a 、b 的值分别是 . 13.已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为__________.14.某矩形的长为a ,宽为b ,且(a +b )(a +b +2)=8,则a +b 的值为 _。
15.已知点A 的坐标为(a ,b ),O 是坐标原点,连接OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA 1 ,则点A 1 的坐标为 ____ __.16.观察分析下列数据,寻找规律:0,3,6,3,23,15,32,…… ,那么第10个数据应是 .17.已知方程01272=+-x x 的两根恰好Rt △ABC 的两条边的长,则Rt △ABC 的第三边长为 .18. 一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1))272(43)23(21--+ ; (2)27)4648(÷+ ;20.(本题满分8分)用适当的方法解下列方程:(1)22)1()13(+=-x x (2)02122=-+x x21.(本题满分8分)若x=1是方程mx 2+3x +n=0的根,求(m -n)2+4mn 的值。
22.(本题满分8分)已知a 、b 、c 满足()018582=-+-+-c b a⑴求a 、b 、c 的值;⑵试问以a 、b 、c 为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由。
23.(本题满分10分)⑴半径为R 的圆的面积恰好是半径为5与半径为2的两个圆面积之差,求R 的值。
⑵某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会?24.(本题满分10分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).25.(本题满分10分)已知a 、b 、c 是△ABC 的三条边,关于x 的一元二次方程021212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为x=0。
(1)试判断△ABC 的形状。
(2)若a 、b 为关于x 的一元二次方程x 2+m x -3m=0的两个根,求m 的值。
A B C26.(本题满分10分)三门旅行社为吸引市民组团去蛇蟠岛风景区旅游,推出如下收费标准:某中学九(一)班去蛇蟠岛风景区旅游,共支付给三门旅行社旅游费用5888元,请问该班这次共有多少名同学去蛇蟠岛风景区旅游?27.(本题满分12分)(1)如图①所示,P 是等边△ABC 内的一点,连结P A 、PB 、PC ,将△BAP 绕B 点顺时针旋转60°得△BCQ ,连结PQ .若P A 2+PB 2=PC 2,证明∠PQC =90°.(2) 如图②所示,P 是等腰直角△ABC (∠ABC =90°)内的一点,连结P A 、PB 、PC ,将△BAP 绕B 点顺时针旋转90°得△BCQ ,连结PQ .当P A 、PB 、PC 满足什么条件时,∠PQC =90°?请说明理由. 如果人数不超过35人,人均旅游费用为150元如果人数超过35人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于120元Q CPAB第27题图①ABCPQ 第27题图②28.(本题满分12分)已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>. ⑴求证:方程有两个不相等的实数根;⑵设方程的两个实数根分别为1x 、2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;⑶在(2)的条件下,结合函数的图象回答:当自变量2y m ≤.数学月考参考答案一、选择题(本大题共有8小题,每小题3分,共24分) 二、填空题(本大题共有10小题,每小题3分,共30分)9. 25 ,5 ; 10. (-2,-3) ; 11. -7 ; 12. a=3 ,b=4 ; 13. -2; 14. 2; 15. (-b , a); 16. 17. 5; 18.25或36 . 三、解答题(本大题共有10小题,共96分.) 19.⑴2413411- ⑵212134+ 20.⑴1,0==x x ⑵51,51--=+-=x x21.由题意得:m + n = -3, 所以(m - n )2+ 4mn = (m + n )2= 9 22.⑴ a=8=22 b=5 c=18= 32⑵∵a <b,c <b, a +c >b ∴能构成三角形,此时三角形的周长为5 + 52 23.(1)21; (2)9个 24.(本题10分)每个图形5分。
略25.(1)ABC 为等边三角形 ; (2)m=-12 26.(本题10分)46名。
27.(本题10分)⑴略;⑵2222PA PB PC += 28.(本题12分)(1)222[(32)]4(22)44(2)m m m m m m ∆=-+-+=++=+>0 (2)2(0)y m m=>(3)当1m ≥时,2y m ≤.安化中学2011-2012学年度上学期数学月考试题班级 姓名 得分________一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是 ( )A. x 18B. b a 252a 2、下列计算中,正确的是( )A 、4=±B 、1=C 4=D 2= 3.下列方程中,是关于x 的一元二次方程的是 ( )A .23(1)2(1)x x +=+ B .21120x x+-= C .20ax bx c ++= D .21x =A .m ≥0B .m>0C .m ≥13 D .m>135.将方程 3x (x -1)= 5(x + 2)化为一元二次方程的一般式,正确的是 ( )A .4x 2-4x + 5 = 0B .3x 2-8x -10 = 0C .4x 2 + 4x -5 = 0D .3x 2+ 8x + 10 = 06a b =成立的条件是 ( )A .0a >,0b > B. 0a ≥,0b ≥ C.0ab > D.0ab ≥7.-和- ( )A .->--<--=-不能比较 8. 一元二次方程2240x x +=的解是 ( ) A .2x =- B .120,2x x ==- C .120,2x x == D .12x =9. 用配方法解方程2670x x ++=,下面配方正确的是 ( )A.2(3)2x +=- B.2(3)2x += C.2(3)2x -= D.2(3)2x -=- 7.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( ) A .1 B .-1 C .2 D .-2 二、填空题(每小题3分,总计15分)11.方程(12-x )(5+x )=6x 化成一般形式为___________________ 12有意义的条件是 。
13.a2-b 2=_________, (a-b)2=___________,求根公式:x=____________14.若232(2)mx x x +=-是关于x 的一元二次方程,则m 的取值范围为 。
15. 已知一元二次方程22(1)50x m x -+-=的一个根为14-,则=m 。
三、解答题(17题每题3分,其余每题4分,总计38分) 17.计算:(1)349 (2))522(531-18.计算:(1(2)22)()(b a b a --+19.用配方法解方程:(1)x 2-8x+7=0 (2) 3x 2=12x+120.用公式法解方程:(1) 2x (x-3)-1=0 (2)x 2+3x=-221.用适当的方法解方程:(1)22(23)3(23)t t +=+ (2) 22(4)(21)0x x +--=四、解答题(总计17分)22. (5分)已知2223.(5分)甲A 联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110场,则联赛中共有多少个队参加比赛24. (7分)“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况. (1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;(2)如果我国的教育经费从2002年的5480亿元,增加到2004年7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01)。