函数极限的习题课

合集下载

15极限概念习题课

15极限概念习题课
第五讲 极限概念习题课
极限概念习题课
一、内容小结 二、题型练习
极限概念习题课
一、内容小结 二、题型练习
一、内容小结
(一)极限的概念 (二)极限的性质 (三)主要研究问题
一、内容小结
(一)极限的概念 (二)极限的性质 (三)主要研究问题
(一)极限的概念
1.概念纵览 2.不同变化过程的联系 3.不同概念的联系 4.不同概念的定义
(1) 0 (0 1), 正整数 N , 当n N 时,
恒有:xn a .
(2) 0 , 正整数 N , 当n N 时, 恒有:
xn a k (k 0).
(一)概念辨析
➢对N的理解 数列极限的定义是否可叙述为:
0 , 使不等式 xn a 成立的正整数n
(三)主要研究问题
1.存在性 2.唯一性 3.性质 4.求法
➢证明极限存在 利用定义 利用不同过程之间的关系 利用极限与无穷小的关系 利用无穷小的性质
➢证明极限不存在 利用定义的反面说法 利用极限的性质:无界→极限不存在 利用不同过程之间的关系
(三)主要研究问题
1.存在性 2.唯一性 3.性质 4.求法
x x0
➢定理2 lim f ( x) A lim f ( x) lim f ( x) A
x
x
x
➢定理3
lim
n
xn
A
lim
k
xnk
A
({xnk } {xn})
函数的变化趋势
有趋势
无趋势
趋势为 常数A
趋势为 无穷大
无界 有界 振荡
n
A≠0 有极限
A=0 无穷小 ∞ +∞ -∞
自 x
变 量

高等数学 习题课1-2 极限与连续

高等数学 习题课1-2 极限与连续
n
xn 1 x
n
( x 0)的连续性。
解 当x [0,1)时, f ( x ) 0;
0, 0 x 1 1 1 即 f ( x) , x 1 当x 1时, f ( x ) ; 2 2 1, x 1 1 当x 1时, f ( x ) lim 1 n 1 n ( ) 1 x
x )
lim
x 0
e x sin 2 x e
2 x
x
2
1
例6 问x 1时, f ( x ) 3 x 2 x 1 ln x
2
是x 1的几阶无穷小 ?
解 f ( x ) 3 x 1 x 1 ln[1 ( x 1)]
lim
x 1
2
n
(2)设x0 1, xn 1
1 xn 1
(n 1, 2,), 试证{ xn }收敛 ,
并求 lim xn。
n
5.求极限
(1) lim
x 0
x 1 cos x
(2) lim
x a
tan x tan a xa xe
(a k

2
)
(3) lim
其中 x=0为跳跃间断点,
例 10 证明: 方程 tanx = x 有无穷多个实根。
分析 从图形看 y=tanx与 y = x 有无穷多个交点。 证 设 f(x) = tan x- x (要在无穷个闭区间上用零点定理)
k Z ,
(1) k
lim
x ( k

2
f ( x ) , lim
8. 设f ( x )在[0,1]上非负连续, 且f (0) f (1) 0, 则对任意实

北科大高数课件第一章

北科大高数课件第一章

第一章
习题课
8/24
1 2 n ⎛ ⎞ lim ⎜ 2 + 2 + + 2 例5 求极限 ⎟. n→∞ n + n + 1 n +n+2 n +n+n⎠ ⎝ n( n + 1) 1 2 n < 2 + 2 + + 2 解 2 n + n+1 n + n+ 2 n +n+n 2 n +n+n
(
)
n( n + 1) 1 = , 而 lim n→∞ 2 n 2 + n + n 2 n( n + 1) 1 lim = , n→∞ 2 n 2 + n + 1 2
3 ⎛ ⎛ 1 + tan x tan x − sin x ⎞ x 3 ⎞⎞x ⎛ 1 − 1 ⎟ ⎟ = lim ⎜ 1 + 原式 = lim ⎜ 1 + ⎜ x →0 x →0 1 + sin x 1 + sin x ⎟ ⎠⎠ ⎝ ⎠ ⎝ ⎝
1

1

1
⎛⎛ tan x − sin x ⎞ = lim ⎜ ⎜ 1 + x →0 ⎜ 1 + sin x ⎟ ⎠ ⎝⎝
第一章
习题课
7/24
x− y x+ y sin x − sin y = 2sin cos 2 2 x+ y x− y sin x + sin y = 2sin cos 2 2 x+ y x− y cos x − cos y = −2sin sin 2 2 x+ y x− y cos x + cos y = 2cos cos 2 2

高数第一次课随堂练习函数与极限

高数第一次课随堂练习函数与极限

随堂练习 一第一章 函数与极限一、填空题1、432lim23=-+-→x kx x x ,则k= 。

2、函数xxy sin =有间断点 ,其中 为其可去间断点。

3、若当0≠x 时 ,xxx f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。

4、=++++∞→352352)23)(1(limx x x x x x 。

5、3)21(lim -∞→=+e nknn ,则k= 。

6、函数23122+--=x x x y 的间断点是 。

7、当+∞→x 时,x1是比3-+x 8、当0→x 时,无穷小x --11与x 相比较是 无穷小。

9、函数xe y 1=在x=0处是第 类间断点。

10、设113--=x x y ,则x=1为y 的 间断点。

11、已知33=⎪⎭⎫⎝⎛πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

12、设⎪⎩⎪⎨⎧>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在 ,则a= 。

13、设⎩⎨⎧>≤+=0,cos 0,)(x x x a x x f 在0=x 连续 ,则常数a= 。

二、计算题1、计算下列极限 (1))2141211(lim n n ++++∞→ ; (2)2)1(321lim nn n -++++∞→ ;(3)35lim 22-+→x x x ; (4)112lim 221-+-→x x x x(5))12)(11(lim 2xx x -+∞→ ; (6)x x x 1sin lim 20→ ;(7)xx x x +---→131lim21; (8))1(lim 2x x x x -++∞→ ;2、计算下列极限 (1)x wx x sin lim0→ ; (2)xxx 5sin 2sin lim 0→ ; (3)x x x cot lim 0→ ;(4)x x x x )1(lim +∞→ ; (5)1)11(lim -∞→-+x x x x ; (6)x x x 1)1(lim -→ ; 3、比较无穷小的阶(1)32220x x x x x --→与,时 ; (2))1(21112x x x --→与,时 ; (3)当0→x 时 , 232-+xx与x 。

数学分析第一章 习题课

数学分析第一章 习题课

n n 3 n1 n 2 lim 2 2 2 n n 1 n 2 n n 2 1 a 例7 设x1 0, 证明xn1 ( xn )有极限(a 0) 2 xn 证 显然 xn 0 1 a xn 1 ( xn ) a 2 xn

注意到分子成等差数列
( n 1) ( n 2) ( n n) 2 n n ( n 1) ( n 2) ( n n) n2 1
n( 3n 1) n( 3n 1) 即 2 2( n n) 2( n2 1) n( 3n 1) 3 lim 2 n 2( n n ) 2 n( 3n 1) 3 lim 2 n 2( n 1) 2
② lim(1 x )(1 x )(1 x )(1 x ), (| x | 1)
2 4 n
2n
(1 x )(1 x )(1 x )(1 x ) 原式 lim n 1 x 2 n 1 1 x 1 lim n 1 x 1 x
1 x 1 2( x 1) ) f ( ) , 1 x x x
解联立方程组
x 1 f ( x) f ( x ) 2 x 1 2 ) f ( x) f ( 1 x 1 x 1 x 1 2( x 1) f (1 x ) f ( x ) x
p( x ) x 3 例8 设p( x )是多项式, 且 lim 2, 2 x x p( x ) lim 1, 求p( x ). x 0 x 3 解 lim p( x ) 2 x 2, x x 可设p( x ) x 3 2 x 2 ax b(其中a , b为待定系数 ) p( x ) 又 lim 1, x 0 x p( x ) x 3 2 x 2 ax b ~ x ( x 0)

大学高数第一章例题

大学高数第一章例题

2

x
lim
1 x
0,
| arctan
x |
- 12 -

2
. lim
a rcta n x x
x
0
习题课(一)
(3)
第 一 章 函 数 极 限 连 续
lim
sin 2 x x 2 2
x 0

原式
lim
(
x 2
2 ) sin 2 x
x 0
x 22
n
lim x n
N 0,
M 0,
使得当 n
N
时, 恒有
xn M
成立, 则称 x n 是 n

时的负无穷大量
-7-
习题课(一)
(2) lim f ( x ) 2
x 3
第 一 章 函 数 极 限 连 续
0, 0,
使当
0 x 3
第 一 章 函 数 极 限 连 续
x n x n1 x n1 ,
2
证明 lim
n
xn
存在, 并求 lim 解 由于 x 1
n
xn .
2
x 0 x 0 x 0 ( 1 x 0 ),
0 x 0 1,
所以 0
x1 1 .
- 11 -
习题课(一)
(1)
第 一 章
x 8
lim
1 x 3 2
3
x
( 1 x 3 )(
1 1
1
2

原式
x 8
lim
1 x 3 )( 4 2 x 3 x 3 )

微积分B(1)第3次习题课(Stolz定理、函数极限)答案

微积分B(1)第3次习题课(Stolz定理、函数极限)答案
n n
( A − ε )(1 −

( A − ε )(−
bN +1 a a b a ) + N +1 < n < ( A + ε )(1 − N +1 ) + N +1 bn bn bn bn bn
因为
n →∞
lim bn = +∞
,所以 lim bb
n →∞
bN +1 a a b a ) + N +1 − ε < n − A < ( A + ε )( − N +1 ) + N +1 + ε bn bn bn bn bn
n →∞
+ 2m + ⋯ + n m n m +1
,其中 m 为自然数.
lim 1m + 2m + ⋯ + nm (n + 1) m = lim n →∞ n →∞ ( n + 1) m +1 − n m +1 nm +1
= lim
( n + 1) m 1 = n →∞ (m + 1)m m −1 m +1 m (m + 1) n + n +⋯ +1 2
1 1

(3)求
n− 2 2n −1 2 2 2n−1 22 2 lim 2 3 ⋯ n n →∞ 2 − 1 2 −1 2 −1
1

解:令
所以
n−2 2n−1 2 2 2n−1 22 2 an = 2 3 ⋯ n 2 −1 2 −1 2 −1

同济高等数学第一章习题课

同济高等数学第一章习题课

f (x) b k = lim [ − ] x→+∞ x x ∴ f (x) k = lim x→+∞ x
(或x →−∞)
f (x) b lim x[ −k − ] = 0 x→+∞ x x f (x) b lim [ −k − ] = 0 x→+∞ x x
b = lim [ f (x) − kx]
1
lim(cos x )
x →0
x2
ln cos x ln(1 + cos x − 1) lim = lim 2 x→ 0 x →0 → x x2 cos x − 1 = lim x→ x →0 x2 x2 − 1 = lim 2 = − x →0 x 2 1 2 − 所以, 所以,原式 = e 2
二、无穷小的比较
例11 当 下列函数分别是x的几阶无穷小 时,下列函数分别是 的几阶无穷小
~ ~
x2 2
x
1 2
2x = 1+ x + 1− x
~
x
练习: 练习: P74,3(1) , ( )
求分段函数的极限, 三、求分段函数的极限,判断分段函数的 连续性, 连续性,间断点的类型
例12
解:
1 x>0 x sin x , f ( x) = , 求 lim f ( x ). x x→ 0 → 1 − cos x − x sin 2 , x<0 x2 x 1 − cos x − x sin 2 lim− f ( x ) = lim− x x →0 x →0 x2 x sin 1 − cos x 1 1 2 = lim− − lim− = − =0 x →0 x →0 x2 x2 2 2 1 lim+ f ( x ) = lim+ x sin = 0 x →0 x →0 x lim− f ( x ) = lim+ f ( x ) = 0

极限 章节习题课

极限 章节习题课

? ?
x
(含 x n)
x
x
… xN … x N
lim f ( n)
n
?Байду номын сангаас
lim f ( x )
?
2. 极限的性质 (1) 极限的唯一性. (2) 极限的局部保号性.
δ 0, 当 0 | x - x0 | 时,
有 f ( x) 0
1 ( 1)n 2 0 分析: n n 1 ( 1) n 0, 要 使 0 , n 2 即 n
2 只需要 , n
2 总 N , 证 明 : 0 , 1 ( 1) n 0 当 n N 时,就有 n

1 ( 1) n lim 0 n n
(1) 利用函数连续性求极限——代入法. (2) 用恒等变形消去零因子法求极限.
(3) 用同除一个函数的方法求 型极限.
(4) 利用两个重要极限求极限. (5) 利用无穷小性质求极限.
(6) 利用等价无穷小代换求极限.
(7) 利用极限存在的两个准则求极限. (8) 从左、右极限求分段函数在分界点处的极限. (9) * 用洛必达法则求未定式的极限.
(× )
.
(13) (14) (15) (16) (17) (18)
n
lim| a n | 0 lim a n 0
n n
(√ ) ( ×) (× ) (× ) ( √) ( ×)
lim| a n | 1 lim a n 1
n
1 1 lim xsin lim x limsin 0 x 0 x x 0 x 0 x x tanx x x lim lim 3 0 3 x 0 x 0 x x 1 cosx 1 cosx 1 lim lim 2 x 0 xsin x 0 x 2 x x sinxcosx x sin x lim lim 3 x 0 x 0 x x3

高等数学课后习题答案--第一章 函数与极限

高等数学课后习题答案--第一章  函数与极限

第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a ax a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}nx 有界, 又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。

从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n 5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。

高数习题课

高数习题课

e −b 有无穷间断点 x =0 例7. 设函数 f (x) = (x−a)(x−1 ) 及可去间断点 x =1, 试确定常数 a 及 b . x e −b 为无穷间断点, ∴lim 解: =∞ ) x→ (x−a)(x−1 0 (x−a)(x−1 ) a lim = 即 =0 x x→ 0 1−b e −b 由此得 a = 0, b ≠1 ex −b ∵x =1为可去间断点 , ∴lim 极限存在, ) x→ x(x−1 1
1+tan x x3 ) . 例5. 求极限 lim ( x→ 1+sin x 0 1 1+tan x x3 解: 原式 = lim [1+( −1 )] 1+sin x x→ 0 1 tan x−sin x x3 = lim [1+ ] 1+sin x x→ 0
1
lim 1± f (x)]g(x) [
3
3
练习: 练习: (1) 求 lim
x→ ∞
x2 + x2 +3
4
2x− 2x −1 (2) lim(3 1−x3 −ax+b) =0 确定常数 a 及 b
x→ ∞ +
解:
原式 = lim x(3
∞ x→
x 1 ∴ lim(3 x3 −1−a+b ) =0 x x→ ∞
1 x3
−1−a+ b ) =0
习题课 函数与极限
一. 函数 1. 函数的概念 定义: x∈D
f
对应规律
y∈W={y y = f (x), x∈D }
值域
定义域
y
图形: } C ={(x, y) y = f (x), x∈D ( 一般为曲线 )

清华大学微积分习题课(Stolz定理、数列极限、函数极限)

清华大学微积分习题课(Stolz定理、数列极限、函数极限)

( )求极限 . 4
lim
x→0
2 1
+ +
1
ex
4
ex
+
sin x
x
Page 1 of 3
2/3
3.求下列极限
( )求 .1
1
lim(1 + sin x)2x
x→0
( ) . x2 −1x2
3
lim
x→∞
x2
+
1
4.求下列极限
( )求 2
lim(sin 1 + cos 1 )x .
x→∞
f (x) g(x)
τ = Tf ∈Q
f (x) g(x)
x→∞
Tg
什么关系?
.证明:若 ,且 ≤ ,则 11
f (x) = a1 sin x + a2 sin 2x + ⋯ + an sin nx
| f (x) | | sin x |
≤ . a1 + 2a2 + ⋯ + nan 1
Page 2 of 3
.已知 ,求证: . 1
lim
n→∞
an
=
+∞
lim a1 + a2 + ⋯ + an = +∞
n→∞
n
.已知数列 单调,且 ,证明: . 2
{an }
lim a1 + a2 + ⋯ + an = A
n→∞
n
lim
n→∞
an
=
A
3.证明:数列
{an
}
没有收敛子列等价于
lim
n→∞

函数,极限,连续-习题课

函数,极限,连续-习题课

取Nmax{9,[

]},则 0n N, 有

n2 n 1 lim 2 . n 2n n 9 2
例5

证明
lim
x 2
x 2. x 1
x x2 | 2 || | x 1 x 1 1 不妨取 | x 2 | 2 ,即 3 5 1 3 1 x | x 1 | 2. 2 2 2 2 | x 1| x2 | 2 | x 2 | | x 2 | . 则 | x 1 2 1 取 min{ , },则x:0<|x-2|<,有 2 2 x | 2 | . 证毕. x 1
f (x ) x 2 2 x 2
例3 判断下列函数的奇偶性
a x 1 ① yx x a 1
② y ln x x 2 1
(
)
1 1 ax 1 x x x x a 1 1 a a a ( x ) ( ) ( ) ( ) ( ) f x x x x 解 ① 1 a x 1 1 ax 1 ax 1 x x a a x x a 1 a 1 为偶函数。 x x f ( x) ∴函数 y x x a 1 a 1
1
x ln (1 2 x ) ~ 12 x
e
x 0
x 2x lim ( cos sin x 1 x )
1 x
e
2
复习: 若 lim u ( x) 0 , lim v( x) , 则有 x x0 x x0
x x0
lim 1 u ( x)
v( x)
lim
1 (1 x 3 ) 2 x 3 1 x 3 x 2
x 3

高等数学课件习题课8

高等数学课件习题课8

(2)找 两 种 不 同 趋 近 方 式 , 使 lim f(x,y)存 在 , 但
x x0 y y0
两 者 不 相 等 , 此 时 也 可 断 言 f(x,y)在 点 P0(x0,y0) 处 极 限 不 存 在 .
二元函数的连续性
定义
设n元函数f(P)的定义域为点集D, P0是其聚 点且P0D,如果limf(P)f(P0)则称n元
u x
zv wy
特殊地 zf(u ,x,y) 其中 u(x,y)
x z u f u x fx, yzu f u yfy.
隐函数的求导法则
1 . F (x ,y)0
dy dx
Fx Fy
.
2 . F (x ,y ,z) 0
z yFy Fz源自,z yFy Fz
.
3.
F(x, y,u,v)0 G(x, y,u,v)0
连续偏导数,则对于每一点P(x, y)D,都
可定出一个向量f x
i
f y
j
,这向量称为函
数z f(x, y)在点P(x, y)的梯度,记为
grfa(xd ,y) fxi fyj. 三元函数的梯度
grf(a x ,y ,d z) f xi f yj f zk.
多元函数的极值
极 大 值 、 极 小 值 统 称 为 极 值 . 使 函 数 取 得 极 值 的 点 称 为 极 值 点 .
设 P 0 是 函 数 f(P )的 定 义 域 的 聚 点 , 如 果 f(P )在 点 P 0 处 不 连 续 , 则 称 P 0 是 函 数 f(P )的 间 断 点 . 注意:二元函数可能在某些孤立点处间断,也可能
在曲线上的所有点处均间断。
在定义区域内的连续点求极限可用“代入法”: lim f(P)f(P 0) (P 0 定义)区域

无穷级数习题课

无穷级数习题课
主要内容
第九章
无穷级数
一、数项级数的审敛法 二、求幂级数收敛域的方法 三、幂级数和函数的求法 四、函数的幂级数展开法
习题课
对于函数项级数 求和 展开 当 当 *当 时为数项级数; 时为数项级数; 时为幂级数; 时为幂级数; (在收敛域内进行) 在收敛域内进行)
一、数项级数的审敛法 1. 利用部分和数列的极限判别级数的敛散性 2. 正项级数审敛法 必要条件 lim un = 0

∑ (n + 1) x
n =0


n
的和函数.
n+2 = 1, R = 1, n +1 ∞
n =0
解: ∵ 当x = 1,
n =0
ρ = lim
n →∞
当 x = −1, ∑ (n + 1) 发散, ∑ (n + 1)( −1)n 发散.
∞ n
Байду номын сангаас
∴ 收敛域为(-1,1).
设 s ( x) =
∑ (n + 1)x , ∞ x x ( n + 1) x n dx ∫0 s( x )dx = ∑ ∫ 0 n =0

∞ 2n − 1 x 2 n − 2 1 x dx = ∑ n x 2 n−1 n ∫0 2 n =1 2 n =1 2 x 1 ∞ x2 1 x = ∑ ( )n = ⋅ 2 2 = , x x n =1 2 x 2 − x2 1− 2 ∞
常用展开 式的和: 式的和:
∞ x3 x5 x 2 n+1 x − + − ⋯ = ∑ (−1)n = sin x (−∞ < x < +∞) 3! 5! (2n + 1)! n=0

数列和函数极限部分习题课

数列和函数极限部分习题课
n→ ∞ n→ ∞ n→ ∞
例: lim (
n→ ∞
12 + 2 1 n +n
2
+L+ ≤ 1
1 n2 + n ≤ 1
) 1 n2 +1 ≤
注意到对任意的 k ,
n +k
2
,因此
n n +n
2

1 n +1
2
+
1 n +2
2
+L+
n n +1
2
n +n
2
而 lim
n→ ∞
n n2 +1
1
(5)使用两个基本极限 lim
例: lim
x→0
sin 2 x 2 sin x cos x sin x = lim = 2 lim lim cos x = 2 ⋅1⋅1 = 2 x → 0 x → 0 x x x x→0
也可以这样做:
sin 2 x sin 2 x sin u = 2 lim = 2 lim = 2 ⋅1 = 2(其中令u = 2 x) x→0 x→ 0 u →0 x 2x u arctan x 例: lim ,令 u = arctan x ,即 x = tan u , x → 0 变为 u → 0 。 x→0 x arctan x u u lim = lim = lim cos u = 1 。 x→0 u → 0 tan u u → 0 sin u x lim
(3)分子有理化和分母有理化
例:
lim 3
x→1
x −1 ( x − 1)( x + 1)(3 x 2 + 3 x + 1) ( x − 1)(3 x 2 + 3 x + 1) = lim = lim x − 1 x→1 (3 x − 1)(3 x 2 + 3 x + 1)( x + 1) x→1 ( x − 1)( x + 1)

同济高数第一章习题课

同济高数第一章习题课

0 2.做变量替换转化为 型 0
3.其他方法。罗比达法则。
4.“0·∞”型未定式 转化为
0 型或 型 0
5.“∞- ∞”型未定式 通过通分、分子有理化或倒数替换将其转化
0 为 型或型 0
5.幂指数函数极限的求法 幂指函数: 形如 u(x)v(x) (u(x)>0, u(x)1)的函数 (1)利用两个重要极限的第二个。 (2)若 lim u( x ) a 0, lim v( x ) b, 则
lim u( x )
v( x )
a .
b
6.n项求和及乘积的极限 求和时
1.分子和分母同乘一个因子,然后拆项求和。
2.夹逼准则。
乘积时
1.夹逼准则 例 求极限 lim n 1n 2n 3n .
n
lim 3 x 9 x 例 求极限 x
1 x
例. 求 lim (1 2
证明数列{xn}的极限存在, 并求其极限.
7.确定极限中的参数
0 由于极限为常数,故常为 型 或 型 ,利用 消去零因子来求出常数。 0
2 n 1
例 设 f ( x ) lim
x
n
ax b 为连续函数, 求a, b. 2n x 1
例. 确定常数 a , b , 使 解: 原式 lim x ( 3 13 1 a b ) 0 x
x
x
3x ) x .
x x x 3 )
1
1
解: 令 f ( x) (1 2
3
1 x
(1) x 3
( 2) x 3
1
1 x
3 f (x) 3 3 利用夹逼准则可知 lim f ( x) 3 .

函数序列与函数项级数习题课(一)

函数序列与函数项级数习题课(一)

(1) 当 1 1, 1 x 1, 1 x
即 x 0或x 2时, 原级数绝对收敛,所以收敛;
(2) 当 1 1, 1 x 1, 1 x
即 2 x 0时, 原级数发散.
(3) 当| 1 x | 1, x 0或x 2,
当 x 0时, 级数 (1)n收敛; n1 n
x
),
n1
⒊ un ( x)至少在一点x0处收敛,
n1
则 un ( x)在[a,b]上一致收敛,其和S'( x) C[a,b],
n1
且S'( x) g( x), 即有:
'
un
(
x)
un' (x)
n1
n1
逐项可导
典型例题
例1:求
n1
n x n nn x
收敛域
n xn
解:lim nn x
n
1
lim
n
1
x n
n
ex
nx
x 1
n x
n
收敛
n n1
n x
x 1,
n x n 发散
nnx
n1
例 判断 xn 1 x x2
1.
n0
和发散点集。
xn 的收敛点集
解:当 x 1时, 级数收敛; x 1时,级数发散.
收敛点集: (1,1);发散点集: (, 1] [1, ).
fn ( x), n 1,2, ...在I上连续,且{ fn( x)}在I上一致收敛 于f ( x),则f ( x)在I上连续.
定理4.2(函数项级数的和函数的连续性) 设级数
un ( x)在I上一致收敛于S( x), 且若un ( x) CI , 则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无穷小: 极限为零的变量称为无穷小.
记 lif ( 作 m x ) 0( 或 lif ( m x ) 0 ).
x x 0
x
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小.
定理2 有界函数与无穷小的乘积是无穷小.
定理3
lif( m x ) A f( x ) A ( x ),
x x 0
1
1 22n1
从 ln i 而 m 1 1 2 1 2 1 2 1 2 1 2 n 2
例4 当 x1时 ,
求 li(m 1x)1 (x2)1 (x4) (1x2n). n
解 将分子、分母同乘以因子(1-x), 则
原 li ( 式 1 m x )1 (x )1 (x 2 )1 (x 4 ) ( 1 x 2 n )
xx0 ( x)
xx0 ( x)
那末lim f (x)存在,且等于A. (夹逼准则) xx0 ( x)
准 则 Ⅱ 单 调 有 界 数 列 必 有 极 限 .
8、两个重要极限
(1) lim six n1 x 0 x
limsin1; 某过程
(2) li(m 11)xe x x
1
lim (1x)x e
n
1 x
li(1 m x 2 )1 ( x 2 )1 ( x 4 ) (1 x 2 n)
n
1 x
(1x2n)1(x2n)
1 x2n1
lim
lim
n
பைடு நூலகம்1x
n 1 x
1 . ( 当 x 1 时 ,lix m 2 n 1 0 .)
1 x
n
例5 求 ln i m 12 1 2 13 1 2 1n 1 2 .
解 设 u n 12 1 2 13 1 2 1n 1 2 . ( 2 1 2 ) 2 2 ( 1 ) ( 3 1 3 ) 2 3 ( 1 ) ( n 1 n ) 2 n (1 ) .
n1 2n ln i m 12 1 2 13 1 2 1n 1 2 1 2.
例6 求下列极限
arctaxn (1) lim
x0ln1(sinx)
lim x x0 sinx
=1.
1xsix n1
(2)lim x 0
ex2
1
lxim0 x2sixn2x
1. 2
ex2 cosx
(3)
lim x0 ln1(
x2)
lx i0m ln e1 x2 (x 12)l1n 1c (x ox 2)s
lim(x)0
xx0
定理4(等价无穷小替换定理)
设 ~ , ~ 且 li m 存 ,则 l在 i m li m .
6、极限的运算
定理1 设 lim f (x) A,lim g(x) B,则
(1) lim[ f (x) g(x)] A B;
(2) lim[ f (x) g(x)] A B;
lim f(x)A x
X
A
X
(3).""定义
0,0,使0 当 xx0时 , 恒f有 (x)A. lim f(x)A
x x0
y
A
yf(x)
A
A
o x0 x 0 x0
x
左极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i 作 0m f(x ) A或 f(x 0 0 ) A . (x x 0 )
f ( x 1) x
2( x 1) x
f(x)x11 1. x 1x
例3 求 ln i m 11 2 12 1 2 12 1 2n .
解 设 u n 11 2 12 1 2 12 1 2n
则 1 1 2 u n 1 1 2 1 1 2 1 2 1 2 1 2 1 2 n
x0
1
lim(1) e.
某过程
9、求极限的常用方法
a.多项式与分式函数代入法求极限; b.消去零因子法求极限; c.无穷小因子分出法求极限; d.利用无穷小运算性质求极限; e.利用左右极限求分段函数极限; f.极限的运算; g.两个重要极限及两个收敛准则; h.用定义验证.
二、例题选讲
例1 求函 yl数 o(x g 1)(1 6x2)的定 . 义域
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i 作 0m f(x ) A或 f(x 0 0 ) A . (x x 0 )
定 : x l x 0 i f ( x ) m 理 A f ( x 0 0 ) f ( x 0 0 ) A .
5、无穷小的性质
1t
1t
1x 1x
令 1 u1, 即x 1 ,
1x u
1u
代入上式得
f(1)f(u 1 )2 (u 1 ),即 f(1)f(x 1 ) 2 (x 1 ),
1u u u
1 x x x
解联立方程组
f
(
x
)
f ( x 1) 2x x
f
(
x
)
f( 1 ) 2 1 x 1 x
f( 1 ) 1 x
解 16x20, x10, x11,
x 4
x
1
x
2
1 x 2 及 2 x 4 ,
即 (1 ,2 ) (2 ,4 ).
例2 设 f(x)f(x1)2x,其x中 0,x1.
x 求 f(x).
解 利用函数表示法的无关特性
令t x1, x
即x 1 , 1t
代入原方程得
f( 1)f(t) 2, 即 f(x)f( 1) 2,
定理2
(3) lim f (x) A, 其中B 0. g(x) B
lim f[(x)] 令u(x)
xx0
alim (x)
xx0
limf(u)
ua
7、判定极限存在的准则
准则Ⅰ′ 如果当xU0(x0,r)(或x M)时,有 (1) g(x) f (x) h(x),
(2) limg(x) A, limh(x) A,
函数极限的习题课


4、极限的定义
(1)."N"定义
0 , N 0 , 使 n N 时 , 恒 x n a 有 .
ln i m xna
a 2 a
x 2 x 1 xN1 a xN2 x 3 x
(2)."X"定义
0 , X 0 , 使 x X 时 , 恒 当 f ( x ) A 有 .
相关文档
最新文档