计量经济学多元线性回归方程
计量经济学多元线性回归
调整过的R2(The Adjusted R-squared)
因此, R2增加并不意味着加入新的变量一定 会提高模型拟合度。
调整过的R2是R2一个修正版本,当加入新的 解释变量,调整过的R2不一定增加。
R 21(SS /n (R (k 1 ) )1n(k 1 )SSR
SS /n (T 1 )
定义:
y i y 2 to su to a s m flqS ua S总 rT es平
y ˆi y 2exp slu o as m ifq nu e Sd a Sr解 E es释 u ˆi2 ressiu d os m u fq au S l a SrR 残 es 差平
SST= SSE + SSR
3
重新定义变量
为什么我们想这样做? 数据测度单位变换经常被用于减少被估参数小数
点后的零的个数,这样结果更好看一些。 既然这样做主要为了好看,我们希望本质的东西
不改变。
4
重新定义变量:一个例子
以下模型反映了婴儿出生体重与孕妇吸烟量和家 庭收入之间的关系:
(1) b w g h t ˆ 0 ˆ 1 c ig s ˆ 2 fa m in c
explog考虑如果我们想知道时的百分比变化我们不能只报告因为所以22含二次式的模型u的模型我们不能单独将b解释为关于xy变化的度量我们需要将b如果感兴趣的是给定x的初始值和变动预测y的变化那么可以直接使用1
课堂提纲
重新定义变量的影响
估计系数 R 平方 t 统计量
函数形式
对数函数形式 含二次式的模型 含交叉项的模型
24
wage
7.37
3.73
24.4
exper
25
对含二次式模型的进一步讨论
计量经济学课程第4章(多元回归分析)
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
第三章多元线性回归模型(计量经济学,南京审计学院)
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
计量经济学-多元线性回归模型
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
高级计量经济学 第二章 多元线性回归模型
用方程形式,残差平方和可以表示为
E S S u i 2 Y i Y ˆ i2 Y i ˆ 0 ˆjX ij2
最小二乘法估计
(多元回归模型)
以包括两个解释变量的模型为例,对未知参数求一阶导数 得到:
如y果ˆ使xˆ12 , …x1,或 xk保持ˆ不1变 ,xyˆ1那么有
即每个估计的都反映出当其他因素不变时,该因
素产生的边际影响效果。
多元回归的拟合优度
多元回归方程的拟合优度同样可以用R2表示
R2RSS
TSS
Y Y ˆii Y Y2 21
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
对拟合优度的统计检验
检验拟合优度的虚假设是所有解释变量均不是真 正的解释变量,即:
H 0 : 12 .. .k 0
备择假设为至少有一个解释变量的参数不等于零 。相应的统计量为:
F k 1 ,N kE RSS K N S S 1 K 1 R R 22N K K 1
需要注意的是,在计量经济学中,“线性”指的是估计参数可以表达为 样本观察值和误差项的线性函数,并不要求回归方程中变量之间的关 系为线性的。
例:CD函数 Ye0X1 1X2 2eu
对该函数两边取对数得到:LnY=0+1LnX1+2LnX2+u
即比:较:YY *= 0e+0X 1X1 11 *X +2 2 2X 2*u +u
不同数学函数的性质
计量经济学第二章(第二部分)
其中,有k个解释变量;k+1个回归参数
3
计量经济学 第二章B
同 上
(2)矩阵形式: Y XB N Y1 Y2 Y ... Y n 1 1 X ... 1 0 u1 1 u2 , B , N ... ... u n 1 k (k 1) 1 n n 1 X 11 X 12 ... X 1n X 21 X 22 ... X 2n ... ... ... ... X k1 X k2 ... X kn n (k 1)
2
(2)当 R
2
k n -1
时,
R
2
<0 ,此时, 使
2
用 R 将失去意义。因此, R 只适
2
用于Y与解释变量整体相关程度较的
情况。
34
计量经济学 第二章B
四、回归方程的显著性检验
(1) 提出原假设 (2) 构造统计量 H 0 : 1 2 ... k 0 F ESS/k RSS/n (3) 对于给定的显著性水平 (4)判定方程的显著性, 若 F F , 则拒绝原假设 若 F F ,则接受原假设 H 0,即模型的线性关系 F 检验; - k -1 ~ F(k, n - k - 1) ( 在 H 0 成立时) F
不管其质量的好坏,而所要求的样本容量
的下限。
20
计量经济学 第二章B
同 上
ˆ 由 B ( X X)
-1
ˆ X Y 中看到,要使 B
存在,
必须保证(XˊX)-1存在,因此,必须满
足|XˊX|≠0 ,即XˊX为满秩矩阵,而
计量经济学-3多元线性回归模型
2020/12/8
计量经济学-3多元线性回归模型
•第一节 概念和基本假定
•一、基本概念: • 设某经济变量Y 与P个解释变量:X1,X2,…,XP存在线性依
存关系。 • 1.总体回归模型:
•其中0为常数项, 1 ~ P 为解释变量X1 ~ XP 的系数,u为随机扰动项。 • 总体回归函数PRF给出的是给定解释变量X1 ~ XP 的值时,Y的期 望值:E ( Y | X1,X2,…,XP )。 • 假定有n组观测值,则可写成矩阵形式:
计量经济学-3多元线性回归模型
•2.样本回归模型的SRF
计量经济学-3多元线性回归模型
•二、基本假定: • 1、u零均值。所有的ui均值为0,E(ui)=0。 • 2、u同方差。Var(ui)=δ2,i=1,2,…,n
计量经济学-3多元线性回归模型
•
计量经济学-3多元线性回归模型
•
•第二节 参数的最小二乘估 计
•五、预测
•(一)点预测 •点预测的两种解释:
计量经济学-3多元线性回归模型
•(二)区间预测
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•例5,在例1中,若X01=10,X02=10,求总体均值E(Y0|X0) 和总体个别值Y0的区间预测。
•
Yi=β0+β1Xi1+β2Xi2+ui
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
计量经济学-3多元线性回归模型
•三、最小二乘估计的性质
计量经济学-3多元线性回归模型
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
计量经济学实验报告(多元线性回归 自相关 )
计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
高级计量经济学 第二章 多元线性回归模型
本章内容
古典线性回归(Ordinary Linear Squares)
模型估计方法和统计检验
其他模型估计方法
最大似然法(Maximum Likelihood) 广义矩法(Generalized Method of Moments)
模型设定与设定误差 虚拟变量的使用 建立多元回归模型时应注意的问题
斜率(dY/dX)
β1 β1Y/X β1Y β1/X -β1/X2 -β1Y/X2 β1+2β2X β1+β2Z
弹性(dY/dX)(X/Y)
β1X/Y β1 β1X β1/Y
-β1/(XY) -β1/X
(β1+2β2X)X/Y (β1+β2Z)X/Y
5
假定2:矩阵X是满秩的
X是一个n K 矩阵,X的秩应该等于K; 该假定也被称做识别条件。只有当识别条件得到
用下标R和UR区分有约束和无约束的回归方程R2 ,q为约束条件的个数,相应的F统计值计算公式 为:
F q ,N k 1E ER U S S E R N S S U S K R q S R 1 U 2 R R U 2 R R 2R N qK
最大似未知的总体分布,样 本数据提供了有关概率分布参数的信息,估计方法建立在 样本来自哪个概率分布的可能性最大基础之上。
对估计系数的统计检验
利用前述的估计量方差矩阵可以得到每个 估计参数的标准差sj,估计参数与该标准差 的比值为相应的t统计值。
利用t统计表(或相应的软件)可以得到与 模型自由度相对应的显著性水平,据此可 以判断结果在统计意义上的可靠性。
对模型参数的联合检验
同样的方法可以用于检验有关多个估计参数之间 关系的联合假设。
《计量经济学》第五章最新完整知识
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
多元线性回归模型
多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。
它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。
本文旨在介绍多元线性回归模型的原理、假设条件和应用。
一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。
多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。
二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。
最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。
具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。
三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。
主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。
在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。
四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。
在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。
多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。
五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。
然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。
计量经济学(2012B)(第二章多元线性回归)详解
2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
计量经济学 詹姆斯斯托克 第3章 多元线性回归模型
i 2 i
10 21500 21500 53650000
1 X Y X1
1 X2
Y1 1 Y2 Yi 15674 X n X iYi 39468400 Yn
i i
638 1122 1155 1408 1595 1969 2078 2585 2530
ˆ 1
x y x
2 i
5769300 0.777 7425000
ˆ Y ˆ X 1567 0.777 2150 103 .172 0 0
因此,由该样本估计的回归方程(样本回归函数) 为:
i 1
n
2
ˆ ˆ X ˆ X ˆ X ))2 Q (Yi ( 0 1 1i 2 2i k ki
i 1
n
于是得到关于待估参数估计值的正规方程组:
ˆ ˆ X ˆ X ˆ X ) Y ( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2 2i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2i 2i k ki 2i i 2i ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X ki Yi X ki
习惯上:把常数项看成为一个虚变量的系 数,该虚变量的样本观测值始终取1。这样: 模型中解释变量的数目为(k +1)。
Yi 0 1 X 1i 2 X 2 i k X ki i
也被称为 总体回归函数 的 随机表达形式 。它的 非随机表达式为:
计量经济学第三章第3节多元线性回归模型的显著性检验
当增加一个对被解释变量有较大影响的解释变量时, 残差平方和减小的比n-k-1 减小的更显著,拟合优度 就增大,这时就可以考虑将该变量放进模型。 如果增加一个对被解释变量没有多大影响的解释变量, 残差平方和减小没有n-k-1减小的显著,拟合优度会减 小,其说明模型中不应该引入这个不重要的解释变量, 可以将其剔除。
在对话框中输入:
y c x y(-1)
y c x y(-1) y(-2)
字母之间用空格分隔。 注:滞后变量不需重新形成新的时间序列,软件 自动运算实现,k期滞后变量,用y(-k)表示。
• 使用k期滞后变量,数据将损失k个样本观察值, 例如:
序号 2000 2001 2002 2003 2004 2005 2006 2007 2008 y 3 4 5 6 7 8 9 10 11 Y(-1) Y(-2) Y(-3)
2
2
2
*赤池信息准则和施瓦茨准则
• 为了比较所含解释变量个数不同的多元回归模型的 拟合优度,常用的标准还有: 赤池信息准则(Akaike information criterion, AIC) e e 2( k 1) AIC ln n n 施瓦茨准则(Schwarz criterion,SC)
一元、二元模型的系数均大于0,符合经济意义,三元模型 系数的符号与经济意义不符。 用一元回归模型的预测值是1758.7,二元回归模型的预测值 是1767.4,2001年的实际值是1782.2。一元、二元模型预测 的绝对误差分别是23.5、14.8。
3) 三个模型的拟合优度与残差
二元:R2 =0.9954,E2 ei2 13405 三元:R2 =0.9957,E3 ei2 9707
746.5 788.3
计量经济学第三章-多元线性回归方程-1
因此,参数的最大或然估计为
βˆ (XX)1 XY
结果与参数的普通最小二乘估计相同
*三、矩估计(Moment Method)
OLS估计是通过得到一个关于参数估计值的正
规方程组
(XX)βˆ XY
并对它进行求解而完成的。
该正规方程组 可以从另外一种思路来导:
求期望 :
Y Xβμ
XY XXβ Xμ
X 2i ˆk ˆk X ki ˆk X ki
X ki) ) X 1i ) X 2i
Yi Yi X 1i Yi X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
解该(k+1)个方程组成的线性代数方程组,即可得 到 (k+1)个待估参数的估计值 j , j 0,1,2,, k 。
解释变量:人均GDP:GDPP 前期消费:CONSP(-1)
估计区间:1979~2000年
Eviews软件估计结果
LS // Dependent Variable is CONS Sample(adjusted): 1979 2000
Included observations: 22 after adjusting endpoints
方程表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变量保
持不变的情况下,Xj每变化1个单位时,Y的均值 E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直接”
或“净”(不含其他变量)影响。
5
一、多元线性回归模型
总体回归模型n个随机方程的矩阵表达式为 Y Xβ μ
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
计量经济学复习笔记(四):多元线性回归
计量经济学复习笔记(四):多元线性回归⼀元线性回归的解释变量只有⼀个,但是实际的模型往往没有这么简单,影响⼀个变量的因素可能有成百上千个。
我们会希望线性回归模型中能够考虑到这些所有的因素,⾃然就不能再⽤⼀元线性回归,⽽应该将其升级为多元线性回归。
但是,有了⼀元线性回归的基础,讨论多元线性回归可以说是轻⽽易举。
另外我们没必要分别讨论⼆元、三元等具体个数变量的回归问题,因为在线性代数的帮助下,我们能够统⼀讨论对任何解释变量个数的回归问题。
1、多元线性回归模型的系数求解多元线性回归模型是⽤k 个解释变量X 1,⋯,X k 对被解释变量Y 进⾏线性拟合的模型,每⼀个解释变量X i 之前有⼀个回归系数βi ,同时还应具有常数项β0,可以视为与常数X 0=1相乘,所以多元线性回归模型为Y =β0X 0+β1X 1+β2X 2+⋯+βk X k +µ,这⾥的µ依然是随机误差项。
从线性回归模型中抽取n 个样本构成n 个观测,排列起来就是Y 1=β0X 10+β1X 11+β2X 12+⋯+βk X 1k +µ1,Y 2=β0X 20+β1X 21+β2X 22+⋯+βk X 2k +µ2,⋮Y n =β0X n 0+β1X n 1+β2X n 2+⋯+βk X nk +µn .其中X 10=X 20=⋯=X n 0=1。
⼤型⽅程组我们会使⽤矩阵表⽰,所以引⼊如下的矩阵记号。
Y =Y 1Y 2⋮Y n,β=β0β1β2⋮βk,µ=µ1µ2⋮µn.X =X 10X 11X 12⋯X 1k X 20X 21X 22⋯X 2k ⋮⋮⋮⋮X n 0X n 1X n 2⋯X nk.在这些矩阵表⽰中注意⼏点:⾸先,Y 和µ在矩阵表⽰式中都是n 维列向量,与样本容量等长,在线性回归模型中Y ,µ是随机变量,⽽在矩阵表⽰中它们是随机向量,尽管我们不在表⽰形式上加以区分,但我们应该根据上下⽂明确它们到底是什么意义;β是k +1维列向量,其长度与Y ,µ没有关系,这是因为β是依赖于变量个数的,并且加上了对应于常数项的系数(截距项)β0;最后,X 是数据矩阵,且第⼀列都是1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.5 回归模型的其他函数形式
如在实际经济活动中,经济变量的关系是复杂的, 直接表现为线性关系的情况并不多见。
著名的恩格尔曲线(Engle curves)表现为幂函数曲 线形式、宏观经济学中的菲利普斯曲线(Pillips cuves)表现为双曲线形式等。
于是,得到(1-)的置信水平下E(Y0)的置信区间:
Yˆ0 t ˆ X 0 (XX) 1 X0 E(Y0 ) Yˆ0 t ˆ X 0 (XX) 1 X0
2
2
其中,t/2为(1-)的置信水平下的临界值。
二、Y0的置信区间
如果已经知道实际的预测值Y0,那么预测误差为:
e0 Y0 Yˆ0
(****)
(****)式也可看成是对(***)式施加如下约束而得
1 2 3 0
因此,对(****)式进行回归,就意味着原需 求函数满足零阶齐次性条件。
表 3.5.1 中国城镇居民消费支出(元)及价格指数
X
X1
GP
FP
XC
Q
P0
P1
(当年价) (当年价) (上年=100) (上年=100) (1990年价) (1990年价) (1990=100) (1990=100)
X
βˆ
0
它可以是总体均值E(Y0)或个值Y0的预测。 但严格地说,这只是被解释变量的预测值的估
计值,而不是预测值。
为了进行科学预测,还需求出预测值的置信区 间,包括E(Y0)和Y0的置信区间。
一、E(Y0)的置信区间
易知
E(Yˆ0 ) E(X0βˆ ) X0 E(βˆ ) X0β E(Y0 ) Var(Yˆ0 ) E(X0βˆ X0β)2 E(X0 (βˆ β)X0 (βˆ β))
ˆ
2 e0
ˆ 2 (1 X0 (XX)1 X0 ))
构造t统计量
ห้องสมุดไป่ตู้
t Yˆ0 Y0 ~ t(n k 1)
ˆ e0
可得给定(1-)的置信水平下Y0的置信区间:
Yˆ0 t ˆ 1 X 0 (XX) 1 X0 Y0 Yˆ0 t ˆ 1 X 0 (XX) 1 X0
2
2
3.5 回归模型的其他函数形式
但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可 以运用线性回归的方法进行计量经济学方面的处 理。
恩格尔曲线(Engle curves)表现为幂函数曲线形式
反映的是所购买的一种商品的均衡数量与消费者收入水 平之间的关系的曲线。
10
菲利普斯曲线(Pillips cuves)表现为双曲线形式
《计量经济学》
《Econometrics》 《经济计量学》
1
3.4 多元线性回归模型的预测
一、E(Y0)的置信区间 二、Y0的置信区间
2
3.4 多元线性回归模型的预测
对于模型 Yˆ Xβˆ
给定样本以外的解释变量的观测值
X0=(1,X10,X20,…,Xk0),可以得到被解释变量的预
测值:
Yˆ0
容易证明 E(e0 ) E(X0β 0 X0βˆ )
E(0 X0 (βˆ β)) E(0 X0 (XX)1 Xμ)
0
Var(e0 ) E(e02 )
E(0 X0 (XX)1 Xμ)2 2 (1 X0 (XX)1 X0 )
二、Y0的置信区间
e0服从正态分布,即
e0 ~ N(0, 2 (1 X0 (XX)1 X0 ))
1、倒数模型、多项式模型与变量的直接置换法
例如,描述税收与税率关系的拉弗曲线:抛物线
s = a + b r + c r2
c<0
s:税收; r:税率
设X1 = r,X2 = r2, 则原方程变换为
s = a + b X1 + c X2
c<0
一、模型的类型与变换
2、幂函数模型、指数函数模型与对数变换法 例如,Cobb-Dauglas生产函数:幂函数 Q = AKL
例题
选择题 下列模型不能转化为线性模型的是:p83 A、 s = a + b r + c r2 +μ B、 Q = AKL+μ C、1/Q=a+b*1/P+μ D、 Q = AKLeμ
答案:B
16
二、非线性回归实例
例:建立中国城镇居民食品消费需求函数模型。
根据需求理论,居民对食品的消费需求函数大致为
Var(Yˆ0 ) E(X0 (βˆ β)(βˆ β)X0 ) X0 E(βˆ β)(βˆ β)X0
2 X0 (XX) 1 X0
一、E(Y0)的置信区间
容易证明
Yˆ0 ~ N (X0β, 2X0 (XX) 1 X0 )
Yˆ0 E(Y0 ) ~ t(n k 1)
ˆ X0 (XX) 1 X0
1981 456.8 420.4
102.5
102.7
646.1
318.3
70.7
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数: ln Q = ln A + ln K + ln L
一、模型的类型与变换
并非所有的函数形式都可以线性化
无法线性化模型的一般形式为:
Y f (X1, X 2, , X k )
其中,f(x1,x2,…,Xk)为非线性函数。如:
Q AK L
通胀率
失业率 反应失业率和通货膨胀率此消彼长的关系
11
一、模型的类型与变换
1、倒数模型、多项式模型与变量的直接置换法
例如,商品的需求曲线是双曲线形式: 1/Q = a + b *1/P + μ
Q:商品需求量; P:商品价格 设Y = 1/Q ,X = 1/P , 则原方程变换为
Y=a+bX+μ
一、模型的类型与变换
Q f (X , P1, P0 )
(*)
Q:居民对食品的需求量,X:消费者的消费支出总额
P1:食品价格指数,P0:居民消费价格总指数。
零阶齐次性,当所有商品和消费者货币支出总额按同一 比例变动时,需求量保持不变
Q f (X / P0 , P1 / P0 )
(**)
为了进行比较,将同时估计(*)式与(**)式。
首先,确定具体的函数形式
根据恩格尔定律,居民对食品的消费支出与居 民的总支出间呈幂函数的变化关系:
对数变换:
Q
AX
P 1 2 1
P 3 0
ln(Q) 0 1 ln X 2 ln P1 3 ln P0
(***)
考虑到零阶齐次性时
ln(Q) 0 1 ln( X / P0 ) 2 ln(P1 / P0 )