数学悖论与三次数学危机

合集下载

数学的三次危机——第三次数学危机

数学的三次危机——第三次数学危机

三、第三次数学危机数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。

这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。

由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。

1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。

罗素,英国人,哲学家、逻辑学家、数学家。

1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。

他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。

他关心社会现象,参加和平运动,开办学校。

1968~1969年出版了他的自传。

罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。

理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。

当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。

罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。

当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。

狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。

发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。

自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。

集合论的现代悖论与逻辑的几个古代悖论有关系。

数学悖论与三次数学危机

数学悖论与三次数学危机
相关。因此,我们从勾股定理谈起。勾股定理是 欧氏几何中最著名的定理之一。天文学家开普勒 曾称其为欧氏几何两颗璀璨的明珠之一。它在数 学与人类的实践活动中有着极其广泛的应用,同 时也是人类最早认识到的平面几何定理之一。在 我国,最早的一部天文数学著作《周髀算经》中 就已有了关于这一定理的初步认识。不过,在我 国对于勾股定理的证明却是较迟的事情。一直到 三国时期的赵爽才用面积割补给出它的第一种证 明。
贝克莱
贝克莱悖论与第二次数学危机
第二次数学危机导源于微积分工具的使用。伴随 着人们科学理论与实践认识的提高,十七世纪几 乎在同一时期,微积分这一锐利无比的数学工具 为牛顿、莱布尼兹各自独立发现。这一工具一问 世,就显示出它的非凡威力。许许多多疑难问题 运用这一工具后变得易如翻掌。但是不管是牛顿, 还是莱布尼兹所创立的微积分理论都是不严格的。 两人的理论都建立在无穷小分析之上,但他们对 作为基本概念的无穷小量的理解与运用却是混乱 的。因而,从微积分诞生时就遭到了一些人的反 对与攻击。其中攻击最猛烈的是英国大主教贝克 莱。
1734年,贝克莱以“渺小的哲学家”之名出版了一本 标题很长的书《分析学家;或一篇致一位不信神数学家的 论文,其中审查一下近代分析学的对象、原则及论断是不 是比宗教的神秘、信仰的要点有更清晰的表达,或更明显 的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。 例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取 一个不为0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,后再被 Δx 除,得到 2x + Δx ,最后突然令 Δx = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学 却正确的结果”。因为无穷小量在牛顿的理论中一会儿说 是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是 “已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目 的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。

历史上的三次数学危机

历史上的三次数学危机
1 2 1 2 S S (t1 ) S (t0 ) gt1 gt0 2 2 1 1 2 2 g[(t0 t ) t0 ] g[2t0 t (t ) 2 ] 2 2
2
S t


S 1 gt0 g (t ) t 2
( *)
10
当 t 变成无穷小时,右端的 变成无穷小,因而上式右端就可以认为 是 gt ,这就是物体在 0 它是两个无穷小之比。
在美国学者麦克· 哈特所著的《影响人类历史进程的100名人排行榜》,牛顿名列 第2位,仅次于穆罕默德。书中指出:在牛顿诞生后的数百年里,人们的生活方 式发现了翻天覆地的变化,而这些变化大都是基于牛顿的理论和发现。在过去 500年里,随着现代科学的兴起,大多数人的日常生活发生了革命性的变化。同 1500年前的人相比,我们穿着不同,饮食不同,工作不同,更与他们不同的是 我们还有大量的闲暇时间。科学发现不仅带来技术上和经济上的革命,它还完全 改变了政治、宗教思想、艺术和哲学。
3. 危机的解决 但是彻底解决这一危机是在19世纪,依赖于数 系的扩张。直到人类认识了实数系,这次危机 才算彻底解决,这已经是两千多年以后的事情 了。
二. 第二次数学危机
第二次数学危机发生在牛顿创立微积分的
十七世纪。第一次数学危机是由毕达哥拉斯学
派内部提出的,第二次数学危机则是由牛顿学
派的外部、贝克莱大主教提出的,是对牛顿
29
① 在18世纪时,人们已经建立了极限理论,但
那是初步的、粗糙的。
② 达朗贝尔在1754年指出,必须用可靠的理论 去代替当时使用的粗糙的极限理论。但他本人未能 提供这样的理论。 ③ 19世纪初,捷克数学家波尔查诺开始将严格
他在1688年发表的著作《自然哲学的数学原理》里,对万有引力和 三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世 界的科学观点,并成为现代工程学的基础。他通过论证开普勒行星 运动定律与他的引力理论间的一致性,展示了地面物体与天体的运 动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝 疑虑,并推动了科学革命。

悖论与数学史上的三次危机

悖论与数学史上的三次危机

悖论历史悠久,它的出现,本来并没有引起人们的重视,可是由于19世纪末20世纪初,在集合论中出现了3个著名的悖论,引起了当时数学界、逻辑学界以至于哲学界的震惊,触发了数学史上的第三次危机,才引起了现代数学界和逻辑学界的极大注意。

本文试图对悖论的定义、成因以及由于数学悖论引起的数学史上的三次危机作以简要分析。

1 悖论的历史与悖论的定义悖论的历史源远流长,它的起源可以一直追溯到古希腊和我国先秦时代。

“悖论”一词源于希腊文,意为“无路可走”,转义是“四处碰壁,无法解决问题”。

在古希腊时代,克里特岛的哲学家伊壁门尼德斯(约公元前6世纪)发现的“撒谎者悖论”可以算作人们最早发现的悖论。

公元前4世纪的欧布里德将其修改为“强化了的撒谎者悖论”。

在此基础上,人们构造了一个与之等价的“永恒的撒谎者悖论”。

埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。

在中国古代哲学中也有许多悖论思想,如战国时期逻辑学家惠施(约370B.C.—318B.C.)的“日方中方睨,物方生方死”、“一尺之棰,日取其半,万世不竭”;《韩非子》中记载的有关矛与盾的悖论思想等,这些悖论式的命题,表面上看起来很荒谬,实际上却潜伏着某些辨证的思想内容。

在近代,著名的悖论有伽利略悖论、贝克莱悖论、康德的二律背反、集合论悖论等。

在现代,则有光速悖论、双生子佯谬、EPR悖论、整体性悖论等。

这些悖论从逻辑上看来都是一些思维矛盾,从认识论上看则是客观矛盾在思维上的反映。

尽管悖论的历史如此悠久,但直到本世纪初,人们才真正开始专门研究悖论的本质。

在此之前,悖论只能引起人们的惊恐与不安;此后,人们才逐渐认识到悖论也有其积极作用。

特别是本世纪60、70年代以来,出现了研究悖论的热潮。

悖论的定义有很多说法,影响较大的有以下几种,如“悖论是指这样一个命题A,由A出发可以找到一语句B,然后,若假定B真,就可推出←B真,亦即可推出B假。

数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事

数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。

第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。

但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。

毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。

即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。

第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。

直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。

第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。

正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。

”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。

浅谈数学发展史中的三次危机

浅谈数学发展史中的三次危机

浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。

在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。

第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。

第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。

罗素悖论的发现,导致了数学史上的第三次危机。

为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。

归根结底,导致三次危机的原因,是由于人的认识。

关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。

打的挫折也可以叫做危机。

危机也意味着挑战,危机的解决就意味着进步。

所以,危机往往是数学发展的先导。

数学发展史上有三次数学危机。

每一次危机,都是数学的基本部分受到质疑。

实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。

二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。

他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。

这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。

他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。

数学史上的三大数学危机

数学史上的三大数学危机
24
3)实践是检验真理的唯一标准 应当承认,贝克莱的责难是有道理的。“无
穷小”的方法在概念上和逻辑上都缺乏基础。牛 顿和当时的其它数学家并不能在逻辑上严格说清 “无穷小”的方法。数学家们相信它,只是由于 它使用起来方便有效,并且得出的结果总是对的。 特别是像海王星的发现那样鼓舞人心的例子,显 示出牛顿的理论和方法的巨大威力。所以,人们 不大相信贝克莱的指责。这表明,在大多数人的 脑海里,“实践是检验真理的唯一标准。”
C1
1
11
下边证明,当 c2 2时,c 不能表成整数比。
如(果不不妨然 设,n 有是两既个约正分整数数即m(m和, nn) 使1)c。两mn端
m
平方得 2
n2 m2
,即
2m2
n2。
由此知 n2 是偶数。由于偶数的平方是偶
数,奇数的平方是奇数,∴ n 是偶数。
12
因 n “既约”,m 不能再是偶数,于是 m 是奇数。
有公式 S(t) 1 gt ,2 其中 g 是固定的重力加速度。
2
我们要求物体在t 0
的瞬时速度,先求S
t

S
S (t1)
S (t0 )
1 2
gt12
1 2
gt02
1 2
g[(t0
t ) 2
t02 ]
1 2
g[2t0t
(t)2 ]

S t
gt0
1 2
g(t)
(*)
21
当 t 变成无穷小时,右端的
1 g (t) 2
也变成无穷小,因而上式右端就可以认为
是 gt 0 ,这就是物体在 t0 时的瞬时速度,
它是两个无穷小之比。
牛顿的这一方法很好用,解决了大量过 去无法解决的科技问题。但是逻辑上不严 格,遭到责难。

史上数学三大危机简介

史上数学三大危机简介

---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。

相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。

罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。

他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。

由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。

毕达哥拉斯学派所说的数仅指整数。

而一切数均可表成整数或整数之比则是这一学派的数学信仰。

1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。

毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。

希帕索斯的发现导致了数学史上第一个无理数的诞生。

小小的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。

《四次数学危机与世界十大经典数学悖论》

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》“四次"数学危机第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。

这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。

当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。

该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。

希伯索斯的发现被认为是“荒谬"和违反常识的事.它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。

使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。

最后,这场危机通过在几何学中引进不可通约量概念而得到解决.两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。

正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的.很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了.我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。

但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。

第二次数学危机发生在十七世纪.十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。

数学史上三大危机

数学史上三大危机

数学史上三大危机数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯(Pythagoras,约公元前580~约前500)建立了毕达哥拉斯学派。

他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。

毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。

经过一番刻苦实践,他提出"万物皆为数"的观点:数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。

公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的"万物皆为数"(指有理数)的哲理大相径庭。

这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。

被毕氏门徒残忍地投入了水中杀害。

科学史就这样拉开了序幕,却是一场悲剧。

希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的"孔隙"。

而这种"孔隙"经后人证明简直多得"不可胜数"。

于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。

不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。

数学悖论与三次数学危机

数学悖论与三次数学危机

数学悖论与三次数学危机数学,作为一门精确的科学,自古以来一直受到人们的推崇和喜爱。

然而,数学也并非完美无缺,它也存在着一些悖论和危机,这些问题挑战着人们对数学的认知和理解。

本文将探讨数学悖论与三次数学危机,并着重讨论数学领域中的挑战和问题。

一、数学悖论1. 贝塞尔悖论:贝塞尔曲线在数学和科学领域中广泛应用,它是一种描述曲线形状的数学工具。

然而,贝塞尔悖论指出,贝塞尔曲线的某些性质与直觉相悖。

例如,当贝塞尔曲线被细分为越来越多的段落时,曲线并不会平滑地收敛到给定的目标形状。

这一悖论引发了对曲线近似和计算的许多挑战。

2. 伯克霍夫悖论:伯克霍夫悖论涉及到在无限次迭代的情况下,计算某些概率的困难性。

例如,如果我们有一枚硬币,每次抛掷,正面朝上的概率为1/2。

那么,如果我们连续无限次抛掷硬币,正面朝上的次数相对于总次数的比例又是多少呢?直觉上,这个比例应该是1/2,但根据伯克霍夫悖论,这个比例实际上是一个不确定的值。

3. 瑕疵统计:瑕疵统计是指在无限时间和空间中的某些分布,存在着某些奇怪的性质。

例如,考虑一个线段,我们可以通过在中间随机选择一个点,然后将剩余部分一分为二。

重复此过程,我们将得到一系列长度不断减小的线段。

然而,根据瑕疵统计,最终我们会得到一个长度为零的线段。

这种现象挑战着我们对无穷的理解。

二、三次数学危机1. 黑洞信息悖论:黑洞是宇宙中最神秘而又引人入胜的天体之一。

然而,根据黑洞信息悖论,当物质进入黑洞时,所有关于该物质的信息都将永久性地丢失。

这一结果与量子力学的基本原理相矛盾,其中信息是不可破坏的。

黑洞信息悖论挑战了我们对信息保存和宇宙进化的理解。

2. 艾伦-克拉曼恩悖论:在数学中,一个凯莱集合是指具有类似于实数线的长度,但没有定义的集合。

这种存在令人惊讶,因为对于实数而言,我们可以精确地描述和测量其长度。

然而,艾伦-克拉曼恩悖论指出,某些特殊的凯莱集合存在于一个叫做超计算的理论计算机中。

数学悖论与三次数学危机

数学悖论与三次数学危机

数学发展从来不是完全直线式的,而是常常出现悖论。

历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。

数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。

危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。

数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。

悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1] 。

数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。

数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。

本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。

公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2] 。

他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比),除此之外不再有别的数,即是说世界上只有整数或分数。

毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3] ,也就是我们所说的勾股定理。

勾股定理指出直角三角形三边应有如下关系,即 a2 =b2 +c 2,a 和 b 分别代表直角三角形的两条直角边, c 表示斜边。

然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。

数学史上的三次危机及对数学发展的影响

数学史上的三次危机及对数学发展的影响

数学史上的三次危机及对数学发展的影响《校园百家讲坛》演讲稿数学史上的三次危机及对数学发展的影响主讲XXX一引言“校园百家讲坛”很早就邀请我,要我给同学们讲点什么,因为这个讲坛的神圣性和严肃性,我一直没有敢答应下来。

今天,站在这个讲坛上,我仍然感到诚惶诚恐的。

讲什么呢?从哪儿开始呢?我一直思考着这个问题。

国学大师XXX在《人间词话》中说过:“诗人对宇宙人生,须入乎其内,又须出乎其外。

入乎其内,故能写之。

出乎其外,故能观之。

入乎其内,故有生气。

出乎其外,故有高致。

”同学们平时听课、读书、做题是入乎其内,今天听讲座是出乎其外,两者相互相成。

只知入乎其内,那是见木不见林,常常会迷失方向。

所以,还要辅助以出乎其外,站出来作高瞻远瞩。

正所谓“风声、雨声、读书声、声声入耳;家事、国事、天下事,事事关心!”整个人类文明的历史就像长江的波浪一样,一浪高过一浪,滚滚向前,科学巨人们站在时代的潮头,以他们的勇气、智慧和勤劳把人类的文明从一个推向另一个。

我们认为,整个人类文明可以分为三个层次:(1)以锄头为代表的农耕文明;(2)以大机器流水线作业为代表的工业文明;(3)以计算机为代表的信息文明。

数学在这三个文明中都是深层次的动力,其作用一次比一次明显。

基于此原因,我本日演讲的问题是:数学史上的三次危机及对数学发展的影响古人讲,欲穷千里目,更上一层楼。

本日,我们站在历史的角度,剖析历史上发生的三次数学危机及其对数学发展的紧张影响,让同学们不仅从数学自身的头脑办法和使用的角度,而且从文化和历史的高度审阅数学的全貌和艳丽。

赞美数学头脑的博大精深,赞美由数学文化引出的理性精神,以及在理性精神的指导下,人类文明的发达发展。

二数学史上的三次危机及对数学发展的影响1XXX与第一次数学危机1.1第一次数学危机的内容XXX是公元前五世纪古希腊的著名数学家与哲学家。

他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:XXX学派。

由XXX提出的著名命题“万物皆数”是该学派的哲学基石。

数学三大危机简介

数学三大危机简介

数学三大危机简介数学三大危机,涉及无理数、微积分和集合等数学概念。

今天小编在这给大家整理了数学三大危机资料,接下来随着小编一起来看看吧!数学三大危机第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。

他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。

由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。

毕达哥拉斯学派所说的数仅指整数。

而“一切数均可表示成整数或整数之比”则是这一学派的数学信仰。

然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。

毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。

希帕索斯的发现导致了数学史上第一个无理数根号2的诞生。

小小根号2的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。

这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。

这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的根号2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。

更糟糕的是,面对这一荒谬人们竟然毫无办法。

这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

第二次数学危机出现第二次数学危机导源于微积分工具的使用。

伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。

从罗素悖论到第三次数学危机

从罗素悖论到第三次数学危机

• (3)无序对公理:对任意集合X,Y,存在集合Z,使得X,Y是它仅有的元素。 也
就是说:我们可以用一个集合 Z={X,Y} 来表示任给的两个集合 X,Y,称之为X 与Y的无序对。 •
• (4)并集公理:任给一族M,存在UM(称为M的并)它的元素恰好为M中所含
元素的元素。 也就是说:我们可以把族M的元素的元素汇集到一起,组成一 个新集合。 注:为了方便描述,定义族表示其元素全为集合的集合。 • (5)幂集公理(子集之集公理):对任意集合X,存在集合P(X),它的元素恰 好就是X的一切子集。 也就是说:存在以已知集合的一切子集为元素的集合。
存在的。
• 罗素悖论的形式帮助我们看清了这一点:对于任何一个集合 A,总存在一个 集合 B,使得 B 不在 A 里面。换而言之,不存在所有集合的集合。
第三次数学危机的后续
• 罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他
刚要出版的《算术的基本法则》第2卷末尾写道: "一位科学家不会碰到比这 更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的 时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。 • 承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数
得诺贝尔文学奖,以表彰其“多样且重要的作品,持续不断的追求人道主义
理想和思想自由”。他的代表作品有《幸福之路》、《西方哲学史》、《数 学原理》、《物的分析》等。
数学危机
• 数学危机是数学在发展中种种矛盾, 数学中有大大小小的许多矛盾,比如正
与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是 整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散, 乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在 整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整

第9讲 三次数学危机与悖论欣赏

第9讲 三次数学危机与悖论欣赏

第9讲三次数学危机与悖论欣赏一、前言何谓悖论?一种理论系统中出现的逻辑矛盾就是悖论。

它与谬论不同,谬论可以从已有的理论中指出它错在哪里,而悖论尽管是自相矛盾的,但从它所在的理论体系中却不能阐明其错误的原因。

什么叫悖论?有人认为悖论有3种主要形式:一个论断看起来好象肯定错了,但实际上却是对的(佯谬);一个论断看起来好象肯定是对的,但实际上却错了(似是而非的理论);一系列推理看起来好象无懈可击,可是却导致了逻辑上的自相矛盾。

这些关于悖论的说法未免失之过宽,它是以“人的直觉和日常经验”为标准的。

而且,这很可能造成悖论与正确之间的混淆,前者对其错误之所在是没有明确判断的,而且对于由直觉得出的结论和日常经验作出的判断,其正确与否还难以作出。

日本《数学百科辞典》说:“一个论断能够导出与一般判断相反的结果,而要推翻它又很难给出正当的根据时,这种论断称为悖论”。

这里,关于“很难给出正当的根据”这句话过于含糊。

在一定条件下“很难给出”与“能否给出”的含义是不一样的。

奥地利学者班格特·汉生认为,一些常见的悖论,除了非直谓的原因之外,其性质就和数学上的方程没有解一样。

在算术中,这类问题是靠引进新数、扩大数系来解决的。

例如,x+=,在实数系里无解,10x+=,在正整数系里无解,扩大到有理数系便有解了;219而扩大到复数系时有解了。

悖论的发生常常是与人们在相应的历史条件下的认识水平有密切关系的。

例如,伽利略关于“自然数并不比平方数多”的悖论,在有了集合论之后,在有了无穷基数概念之后,这个悖论产生的原因和解决的办法就都有了。

我们甚至不难设想,对于今天还不知道无穷基数概念的人来说,伽利略悖论可能仍然是一个悖论,但事实上它是已经被消除了的,只是他不知道而已。

所谓悖论与一定的历史条件相联系,其实质在于悖论是相对于某个理论体系而言的。

面对悖论,人们也就努力去探寻或建立新的理论,使之既不损害原有理论的精华,又能消除悖论。

因此,客观上,悖论推动了理论的研究与发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧多克
二百年后,大约在公元前 二百年后,大约在公元前370年,才华横溢的 年 欧多克索斯建立起一套完整的比例论。 欧多克索斯建立起一套完整的比例论。他本人的 著作已失传,他的成果被保存在欧几里德《 著作已失传,他的成果被保存在欧几里德《几何 原本》一书第五篇中。 原本》一书第五篇中。欧多克索斯的巧妙方法可 以避开无理数这一“逻辑上的丑闻” 以避开无理数这一“逻辑上的丑闻”,并保留住 与之相关的一些结论, 与之相关的一斯的解决方式, 而引起的数学危机。但欧多克索斯的解决方式, 是借助几何方法, 是借助几何方法,通过避免直接出现无理数而实 现的。这就生硬地把数和量肢解开来。 现的。这就生硬地把数和量肢解开来。在这种解 决方案下, 决方案下,对无理数的使用只有在几何中是允许 合法的,在代数中就是非法的,不合逻辑的。 的,合法的,在代数中就是非法的,不合逻辑的。 或者说无理数只被当作是附在几何量上的单纯符 而不被当作真正的数。 号,而不被当作真正的数。
数学史上把贝克莱的问题称之为“ 数学史上把贝克莱的问题称之为“贝克 莱悖论” 笼统地说, 莱悖论”。笼统地说,贝克莱悖论可以表述 无穷小量究竟是否为0”的问题 的问题: 为“无穷小量究竟是否为 的问题:就无穷 小量在当时实际应用而言,它必须既是0, 小量在当时实际应用而言,它必须既是 , 又不是0。但从形式逻辑而言, 又不是 。但从形式逻辑而言,这无疑是一 个矛盾。 个矛盾。这一问题的提出在当时的数学界引 起了一定的混乱, 起了一定的混乱,由此导致了第二次数学危 机的产生。 机的产生。
希帕索斯悖论与第一次数学危机
希帕索斯悖论的提出与勾股定理的发现密切 相关。因此,我们从勾股定理谈起。 相关。因此,我们从勾股定理谈起。勾股定理是 欧氏几何中最著名的定理之一。 欧氏几何中最著名的定理之一。天文学家开普勒 曾称其为欧氏几何两颗璀璨的明珠之一。 曾称其为欧氏几何两颗璀璨的明珠之一。它在数 学与人类的实践活动中有着极其广泛的应用, 学与人类的实践活动中有着极其广泛的应用,同 时也是人类最早认识到的平面几何定理之一。 时也是人类最早认识到的平面几何定理之一。在 我国,最早的一部天文数学著作《周髀算经》 我国,最早的一部天文数学著作《周髀算经》中 就已有了关于这一定理的初步认识。不过, 就已有了关于这一定理的初步认识。不过,在我 国对于勾股定理的证明却是较迟的事情。 国对于勾股定理的证明却是较迟的事情。一直到 三国时期的赵爽才用面积割补给出它的第一种证 明。
“向前进,向前进,你就会获得信念!” 向前进,向前进,你就会获得信念! 向前进 达朗贝尔吹起奋勇向前的号角, 达朗贝尔吹起奋勇向前的号角,在此号角的 鼓舞下, 鼓舞下,十八世纪的数学家们开始不顾基础 的不严格,论证的不严密, 的不严格,论证的不严密,而是更多依赖于 直观去开创新的数学领地。 直观去开创新的数学领地。于是一套套新方 新结论以及新分支纷纷涌现出来。 法、新结论以及新分支纷纷涌现出来。
牛顿
莱布尼兹
针对贝克莱的攻击, 针对贝克莱的攻击,牛顿与莱布尼兹都 曾试图通过完善自己的理论来解决, 曾试图通过完善自己的理论来解决,但都没 有获得完全成功。 有获得完全成功。这使数学家们陷入了尴尬 境地。一方面微积分在应用中大获成功, 境地。一方面微积分在应用中大获成功,另 一方面其自身却存在着逻辑矛盾, 一方面其自身却存在着逻辑矛盾,即贝克莱 悖论。 悖论。这种情况下对微积分的取舍上到底何 去何从呢? 去何从呢?
柯西
到十九世纪,批判、 到十九世纪,批判、系统化和严密论 证的必要时期降临了。 证的必要时期降临了。 使分析基础严密 化的工作由法国著名数学家柯西迈出了第 一大步。柯西于1821年开始出版了几本具 一大步。柯西于 年开始出版了几本具 有划时代意义的书与论文。 有划时代意义的书与论文。其中给出了分 析学一系列基本概念的严格定义。 析学一系列基本概念的严格定义。如他开 始用不等式来刻画极限, 始用不等式来刻画极限,使无穷的运算化 为一系列不等式的推导。 为一系列不等式的推导。
实际上, 实际上,这一伟大发现不但是对毕达 哥拉斯学派的致命打击。 哥拉斯学派的致命打击。对于当时所 有古希腊人的观念这都是一个极大的 冲击。 冲击。这一结论的悖论性表现在它与 常识的冲突上:任何量, 常识的冲突上:任何量,在任何精确 度的范围内都可以表示成有理数。 度的范围内都可以表示成有理数。这 不但在希腊当时是人们普遍接受的信 就是在今天, 仰,就是在今天,测量技术已经高度 发展时, 发展时,这个断言也毫无例外是正确 的!
在国外,最早给出这一定理证明的 在国外, 是古希腊的毕达哥拉斯。 是古希腊的毕达哥拉斯。因而国外一般 称之为“毕达哥拉斯定理” 称之为“毕达哥拉斯定理”。并且据说 毕达哥拉斯在完成这一定理证明后欣喜 若狂,而杀牛百只以示庆贺。 若狂,而杀牛百只以示庆贺。因此这一 定理还又获得了一个带神秘色彩的称号: 定理还又获得了一个带神秘色彩的称号: “百牛定理”。 百牛定理”
如果这一悖论涉及面十分广泛的话, 如果这一悖论涉及面十分广泛的话, 这种冲击波会更为强烈, 这种冲击波会更为强烈,由此导致的怀 疑还会引发人们认识上的普遍危机感。 疑还会引发人们认识上的普遍危机感。 在这种情况下, 在这种情况下,悖论往往会直接导致 数学危机”的产生。 “数学危机”的产生。按照西方习惯的 说法, 说法,在数学发展史上迄今为止出现了 三次这样的数学危机。 三次这样的数学危机。
毕达哥拉斯
毕达哥拉斯是公元前五世纪古希腊的著 名数学家与哲学家。他曾创立了一个合政治、 名数学家与哲学家。他曾创立了一个合政治、 学术、宗教三位一体的神秘主义派别: 学术、宗教三位一体的神秘主义派别:毕达 哥拉斯学派。 哥拉斯学派。由毕达哥拉斯提出的著名命题 万物皆数”是该学派的哲学基石。 “万物皆数”是该学派的哲学基石。而“一 切数均可表成整数或整数之比” 切数均可表成整数或整数之比”则是这一学 派的数学信仰。然而, 派的数学信仰。然而,具有戏剧性的是由毕 达哥拉斯建立的毕达哥拉斯定理却成了毕达 哥拉斯学派数学信仰的“掘墓人” 哥拉斯学派数学信仰的“掘墓人”。
经过一个多世纪的漫漫征程,几代数学家, 经过一个多世纪的漫漫征程,几代数学家, 包括达朗贝尔、拉格朗日、贝努力家族、 包括达朗贝尔、拉格朗日、贝努力家族、拉 普拉斯以及集众家之大成的欧拉等人的努力, 普拉斯以及集众家之大成的欧拉等人的努力, 数量惊人前所未有的处女地被开垦出来, 数量惊人前所未有的处女地被开垦出来,微 积分理论获得了空前丰富。 世纪有时甚至 积分理论获得了空前丰富。18世纪有时甚至 被称为“分析的世纪” 然而, 被称为“分析的世纪”。然而,与此同时十 八世纪粗糙的, 八世纪粗糙的,不严密的工作也导致谬误越 来越多的局面, 来越多的局面,不谐和音的刺耳开始震动了 数学家们的神经。 数学家们的神经。
毕达哥拉斯定理提出后, 毕达哥拉斯定理提出后,其学派中的一个成 员希帕索斯考虑了一个问题:边长为1的正 员希帕索斯考虑了一个问题:边长为 的正 方形其对角线长度是多少呢? 方形其对角线长度是多少呢?他发现这一长 度既不能用整数,也不能用分数表示, 度既不能用整数,也不能用分数表示,而只 能用一个新数来表示。 能用一个新数来表示。希帕索斯的发现导致 了数学史上第一个无理数√2 的诞生。小小√2 了数学史上第一个无理数 的诞生。小小 的出现, 的出现,却在当时的数学界掀起了一场巨大 风暴。 风暴。它直接动摇了毕达哥拉斯学派的数学 信仰,使毕达哥拉斯学派为之大为恐慌。 信仰,使毕达哥拉斯学派为之大为恐慌。
可是为我们的经验所确信的, 可是为我们的经验所确信的,完全符 合常识的论断居然被小小的√2的存在 合常识的论断居然被小小的 的存在 而推翻了!这应该是多么违反常识, 而推翻了!这应该是多么违反常识, 多么荒谬的事! 多么荒谬的事!它简直把以前所知道 的事情根本推翻了。更糟糕的是, 的事情根本推翻了。更糟糕的是,面 对这一荒谬人们竟然毫无办法。 对这一荒谬人们竟然毫无办法。这就 在当时直接导致了人们认识上的危机, 在当时直接导致了人们认识上的危机, 从而导致了西方数学史上一场大的风 史称“第一次数学危机” 波,史称“第一次数学危机”。
数学悖论与三次数学危机
“……古往今来,为数众多的 古往今来, 古往今来 悖论为逻辑思想的发展提供了食粮。 悖论为逻辑思想的发展提供了食粮。” ——N·布尔巴基 布尔巴基
什么是悖论?笼统地说, 什么是悖论?笼统地说,是指这样的 推理过程:它看上去是合理的, 推理过程:它看上去是合理的,但结果却 得出了矛盾。 得出了矛盾。悖论在很多情况下表现为能 得出不符合排中律的矛盾命题:由它的真, 得出不符合排中律的矛盾命题:由它的真, 可以推出它为假;由它的假, 可以推出它为假;由它的假,则可以推出 它为真。 它为真。由于严格性被公认为是数学的一 个主要特点, 个主要特点,因此如果数学中出现悖论会 造成对数学可靠性的怀疑。 造成对数学可靠性的怀疑。
贝克莱
贝克莱悖论与第二次数学危机
第二次数学危机导源于微积分工具的使用。 第二次数学危机导源于微积分工具的使用。伴随 着人们科学理论与实践认识的提高, 着人们科学理论与实践认识的提高,十七世纪几 乎在同一时期, 乎在同一时期,微积分这一锐利无比的数学工具 为牛顿、莱布尼兹各自独立发现。 为牛顿、莱布尼兹各自独立发现。这一工具一问 就显示出它的非凡威力。 世,就显示出它的非凡威力。许许多多疑难问题 运用这一工具后变得易如翻掌。但是不管是牛顿, 运用这一工具后变得易如翻掌。但是不管是牛顿, 还是莱布尼兹所创立的微积分理论都是不严格的。 还是莱布尼兹所创立的微积分理论都是不严格的。 两人的理论都建立在无穷小分析之上, 两人的理论都建立在无穷小分析之上,但他们对 作为基本概念的无穷小量的理解与运用却是混乱 因而, 的。因而,从微积分诞生时就遭到了一些人的反 对与攻击。 对与攻击。其中攻击最猛烈的是英国大主教贝克 莱。
1734年,贝克莱以“渺小的哲学家”之名出版了一本 年 贝克莱以“渺小的哲学家” 标题很长的书《分析学家; 标题很长的书《分析学家;或一篇致一位不信神数学家的 论文,其中审查一下近代分析学的对象、原则及论断是不 论文,其中审查一下近代分析学的对象、 是比宗教的神秘、信仰的要点有更清晰的表达, 是比宗教的神秘、信仰的要点有更清晰的表达,或更明显 的推理》 在这本书中,贝克莱对牛顿的理论进行了攻击。 的推理》。在这本书中,贝克莱对牛顿的理论进行了攻击。 例如他指责牛顿, 的导数, 例如他指责牛顿,为计算比如说 x2 的导数,先将 x 取 一个不为0的增量 一个不为 的增量 ∆x ,由 (x + ∆x)2 - x2 ,得到 2x∆x + (∆x2) ,后再被 ∆x 除,得到 2x + ∆x ,最后突然令 ∆x = 0 ,求得导数为 2x 。这是“依靠双重错误得到了不科学 这是“ 却正确的结果” 却正确的结果”。因为无穷小量在牛顿的理论中一会儿说 是零,一会儿又说不是零。因此, 是零,一会儿又说不是零。因此,贝克莱嘲笑无穷小量是 已死量的幽灵” “已死量的幽灵”。贝克莱的攻击虽说出自维护神学的目 但却真正抓住了牛顿理论中的缺陷,是切中要害的。 的,但却真正抓住了牛顿理论中的缺陷,是切中要害的。
相关文档
最新文档