2021学年冀教版七年级数学下册第九章达标检测卷(含解析)
2021-2022学年冀教版七年级数学下册第九章 三角形课时练习试卷(含答案解析)
冀教版七年级数学下册第九章三角形课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、62、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm4、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm6、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是()A.80°B.90°C.100°D.120°7、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,78、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°9、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A .30°B .45°C .60°D .75°10、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a ∥b ,在Rt△ABC 中,点C 在直线a 上,若∠1=56°,∠2=29°,则∠A 的度数为______度.2、如图,∠ABD =80°,∠C =38°,则∠D =___度.3、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.4、在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且a =3,b =4,若三边长为连续整数,则c =______.5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)三、解答题(5小题,每小题10分,共计50分)1、如图,BD 是ABC ∆的角平分线,BE 是ABC ∆的AC 边上的中线.(1)若ABE △的周长为13,6BE =,4CE =,求AB 的长.(2)若92A ∠=︒,34CBD ∠=︒,求C ∠的度数.2、已知:如图,在△ABC 中,AB =3,AC =5.(1)直接写出BC 的取值范围是 .(2)若点D 是BC 边上的一点,∠BAC =85°,∠ADC =140°,∠BAD =∠B ,求∠C .3、如图,Rt △ABC 中,90C ∠=︒,D 、E 分别是AB 、AC 上的点,且12∠=∠.求证:ED ⊥AB4、根据题意画出图形,并填注理由证明:三角形的内角和等于180°.已知:△ABC求证:∴∠A +∠B +∠C =180°证明:作BC 的延长线CD ,过点C 作射线CE BA .∵CE BA (辅助线)∴∠B =∠ECD ( )∠A =∠ACE ( )∵∠BCA +∠ACE +∠ECD =180°( )∴∠A +∠B +∠ACB =180°( )5、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.-参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.5、C【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为x cm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.6、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.9、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.二、填空题1、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.2、423、30°##30度【解析】【分析】设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.4、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,∴c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.5、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.三、解答题1、(1)3;(2)20︒.【解析】【分析】(1)首先根据中线的性质得到4AE CE ==,然后根据ABE △的周长为13,即可求出AB 的长;(2)首先根据BD 是ABC ∆的角平分线得到268ABC CBD ∠=∠=︒,然后根据三角形内角和定理即可求出C ∠的度数.【详解】(1)∵BE 是ABC ∆的AC 边上的中线,∴4AE CE ==,又∵ABE △的周长为13,∴1313463AB AE BE =--=--=;(2)∵BD 是ABC ∆的角平分线,∴268ABC CBD ∠=∠=︒,又∵92A ∠=︒,∴180180926820C A ABC ∠=︒-∠-∠=︒-︒-︒=︒.此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.2、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.3、见解析【分析】根据三角形内角和定理可得90ADE C ∠=∠=︒,从而可得结论.【详解】解:在ABC ∆中,2180A C ∠+∠+∠=︒,在ADE ∆中,1180A ADE ∠+∠+∠=︒∵,12A A ∠=∠∠=∠∴90ADE C ∠=∠=︒∴ED ⊥AB【点睛】本题主要考查了垂直的判定,证明90ADE C ∠=∠=︒是解答本题的关键.4、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换【解析】【分析】根据平行线的性质和平角度数等于180°求解即可.【详解】解:证明:作BC 的延长线CD ,过点C 作射线CE BA .∵CE BA (辅助线)∴∠B =∠ECD (两直线平行,同位角相等)∠A =∠ACE (两直线平行,内错角相等)∵∠BCA +∠ACE +∠ECD =180°(平角等于180°)∴∠A +∠B +∠ACB =180°(等量代换)故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.【点睛】此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.5、见解析【解析】【分析】利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.【详解】∵AD是△ABC的角平分线,∴∠BAD=∠CAD,又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,∴∠CAD=∠F,∴EF AD∥.【点睛】此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.。
2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形综合测试试题(含详解)
冀教版七年级数学下册第九章三角形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是()A.30°B.35°C.45°D.60°2、如图,CM是ABC的中线,4cmAM ,则BM的长为()A.3cm B.4cm C.5cm D.6cm3、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A .63°B .58°C .54°D .56°4、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .135、如图,将△ABC 沿着DE 减去一个角后得到四边形BCED ,若∠BDE 和∠DEC 的平分线交于点F ,∠DFE =α,则∠A 的度数是( )A .180°﹣αB .180°﹣2αC .360°﹣αD .360°﹣2α6、下图中能体现∠1一定大于∠2的是( )A .B .C .D .7、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A.155°B.125°C.135°D.145°8、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理9、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .10、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( )A .60︒B .75︒C .90︒D .105︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC 中,45A ∠=︒,高BD 和CE 所在直线交于H ,则BHC ∠的度数是________.2、如图,直线ED 把ABC 分成一个AED 和四边形BDEC ,ABC 的周长一定大于四边形BDEC 的周长,依据的原理是____________________________________.3、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)4、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.5、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.三、解答题(5小题,每小题10分,共计50分)1、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.2、在△ABC中,∠A-∠B=30°,∠C=4∠B,求∠A、∠B、∠C的度数3、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C 岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?4、如图,AD 是△ABC 的边BC 上的中线,已知AB =5,AC =3.(1)边BC 的取值范围是 ;(2)△ABD 与△ACD 的周长之差为 ;(3)在△ABC 中,若AB 边上的高为2,求AC 边上的高.5、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.-参考答案-一、单选题1、B【解析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.2、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.3、C【解析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.4、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.5、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE+180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.6、C【解析】【分析】由对顶角的性质可判断A ,由平行线的性质可判断B ,由三角形的外角的性质可判断C ,由直角三角形中同角的余角相等可判断D ,从而可得答案.【详解】解:A 、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B 、如图,13,∠=∠若两线平行,则∠3=∠2,则1=2,∠∠若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C 、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D 、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C .【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.7、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A 不符合题意,C 不符合题意,D 符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B 不符合题意; 故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.9、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A 、B 、C 均不是高线.故选:D .【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.10、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.二、填空题1、45°或135°【解析】【分析】分两种情况讨论:①如图1,ABC 为锐角三角形,由题意知90BDA CEA ∠=∠=︒, 45ACE ∠=︒,45ABD ∠=︒,180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒,180DBC BCE BHC ∠+∠+∠=︒,代值计算求解即可;②如图2,ABC 为钝角三角形,由题意知90BDA CEA ∠=∠=︒,在BEH △中,45ABD ∠=︒,90CEB ∠=︒,180BHC CEB ABD ∠=︒-∠-∠,代值计算求解即可.【详解】解:由题意知90BDA CEA ∠=∠=︒①如图1所示,ABC 为锐角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ACE ∠=︒,45ABD ∠=︒∵180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒∴180********DBC BCE ∠+∠=︒-︒-︒-︒=︒∵180DBC BCE BHC ∠+∠+∠=︒∴18045135BHC ∠=︒-︒=︒;②如图2所示,ABC 为钝角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ABD ∠=︒在BEH △中,45ABD ∠=︒,90CEB ∠=︒∴180180904545BHC CEB ABD ∠=︒-∠-∠=︒-︒-︒=︒;综上所述,BHC ∠的值为45︒或135︒故答案为:45︒或135︒.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.2、三角形两边之和大于第三边【解析】【分析】表示出ABC 和四边形BDEC 的周长,再结合ADE 中的三边关系比较即可.【详解】解:ABC 的周长=AC AB BC AE AD CE CB BD ++=++++四边形BDEC 的周长=DE CE CB BD +++∵在ADE 中AE AD DE +>∴AE AD CE CB BD ++++>DE CE CB BD +++即ABC 的周长一定大于四边形BDEC 的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.3、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.4、40【解析】【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B =20°,∠ACD =60°,∠ACD 是△ABC 的外角,∴∠ACD =∠B +∠A ,∴602040A ACD B ∠=∠-∠=︒-︒=︒,故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.三、解答题1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE 平分∠MAB ,∴∠GAF =12∠MAB ,∵CH 平分∠NCB ,∴∠BCF =12∠BCN ,∵∠B =90°,∴∠BFC =90°﹣∠BCF ,∵∠AFG =∠BFC ,∴∠AFG =90°﹣∠BCF .∵∠AGH =∠GAF +∠AFG ,∴∠AGH =12∠MAB +90°﹣12∠BCN =90°﹣12(∠BCN ﹣∠MAB ).由(2)知:∠BCN ﹣∠MAB =90°,∴∠AGH =90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.2、55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC 中,180A B C ∠+∠+∠=︒,∠A -∠B =30°,∠C =4∠B ,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③ ①-②得2150B C ∠=︒-∠④将③代入④解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.3、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB =80°,∵DA ∥EB ,∴∠EBA =180°﹣∠DAB =100°,又∠EBC =40°,∴∠ABC =∠EBA ﹣∠EBC =60°,∵∠DAB =80°,∠DAC =50°,∴∠CAB =30°,∴∠ACB =180°﹣∠CAB ﹣∠ABC =90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.4、(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD 与△ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h ,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABC 中AB =5,AC =3,∴5353BC -<<+,即28BC <<,故答案为:28BC <<;(2)∵△ABD 的周长为AB AD BD ++,△ACD 的周长为AC AD CD ++,∵AD 是△ABC 的边BC 上的中线,∴BD CD =,∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=,故答案为:2;(3)设AC 边上的高为h , 根据题意得:11222AB AC h ⨯=⨯, 即1152322h ⨯⨯=⨯⨯, 解得103h =.【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.5、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯=则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.。
2022年最新冀教版七年级数学下册第九章 三角形达标测试试题(含答案解析)
冀教版七年级数学下册第九章 三角形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°2、如图,在ABC ∆中,若点D 使得BD DC =,则AD 是ABC ∆的( )A .高B .中线C .角平分线D .中垂线3、如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=46°,则∠2等于( )A .56°B .34°C .44°D .46°4、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°5、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG6、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米8、若一个三角形的两条边的长为5和7,那么第三边的长可能是()A.2 B.10 C.12 D.139、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是()A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:510、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是()A.3cm B.6cm C.10cm D.12cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.2、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.3、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.4、如图,A B C D E ∠+∠+∠+∠+∠=______.5、在ABC 中,AD ⊥BC 于点D ,BD =CD ,若BC =6,AD =4,则图中阴影部分的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、已知a b c ,,是ABC 的三边长.(1)若a b c ,,满足,2()||0a b b c -+-=,试判断ABC 的形状;(2)化简:||||||b c a a b c a b c --+-+---2、如图,已知点D 为△ABC 的边BC 延长线上一点,DF ⊥AB 于点F ,并交AC 于点E ,其中∠A =∠D =40°.求∠B 和∠ACD 的度数.3、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.4、如图,在△ABC中,AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.5、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3=(),∠2=().∵DF//CA,∴∠1=(),∠BFD=().∴∠2=().∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).-参考答案-一、单选题1、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C .【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.4、A【解析】【分析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.5、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA 是△ABC 的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.6、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;∠+∠=∠+∠,故选项D不符合题意;选项D、∵1∠+∠=∠,1A D∠+∠=∠,∴A D B CB C故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.7、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B 符合题意,故选:B .【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A 、设∠C=2x ,则∠B =3x ,∠A =6x ,∵180A B C ∠+∠+∠=︒,∴632180x x x ++=°, 解得18011x =︒, ∴∠A =6x =108011︒, ∴△ABC 不是直角三角形,故该选项不符合题意;B 、当∠C =20°,∠B=10°时符合题意,但是无法判断△ABC 是直角三角形,故该选项不符合题意;C 、∵∠A +∠B =∠C ,180A B C ∠+∠+∠=︒,∴90C ∠=︒,即△ABC 是直角三角形,故该选项符合题意;D 、设∠A =3x ,∠B =4x ,∠C =5x ,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴575C x ∠==︒,∴△ABC 不是直角三角形,故该选项不符合题意;故选:C .【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.10、C【解析】【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.二、填空题1、30°##30度【解析】【分析】设三角形的三个内角分别为x ,2x ,3x ,再根据三角形内角和定理求出x 的值,进而可得出结论.【详解】解:∵三角形三个内角的比为1:2:3,∴设三角形的三个内角分别为x ,2x ,3x ,∴x +2x +3x =180°,解得x =30°.∴这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.2、10°##10度【解析】【分析】由三角形内角和求出BAC ∠的度数,然后利用角平分线的定义求出BAE ∠的度数,再根据AD ⊥BC 求出BAD ∠的度数,利用DAE BAD BAE ∠=∠-∠即可求出DAE ∠的度数.【详解】解:如图,∵∠B =48°,∠C =68°180180486864BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒∵AE 平分∠BAC11643222BAE BAC ∴∠=∠=⨯︒=︒ ∵AD ⊥BC90BDA ∴∠=︒904842BAD BDA B ∴∠=∠-∠=︒-︒=︒423210DAE BAD BAE ∴∠=∠-∠=︒-︒=︒故答案为10︒【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.3、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B ∠=∠+∠ ,∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、180度##180︒【解析】【分析】如图,连接,BC 记,CD BE 的交点为,G 先证明,D E GBC GCB ∠+∠=∠+∠再利用三角形的内角和定理可得答案.【详解】解:如图,连接,BC 记,CD BE 的交点为,G180,180,,D E DGE GBC GCB BGC DGE BGC ∠+∠=︒-∠∠+∠=︒-∠∠=∠,D E GBC GCB ∴∠+∠=∠+∠180,A ABG GBC GCB ACG ∴∠+∠+∠+∠+∠=︒180,A ABG ACG D E ∴∠+∠+∠+∠+∠=︒故答案为:180︒【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.5、6【解析】【分析】如图,先标注字母,证明,,ABD ACD BEF CEF SS S S 可得1,2ABC S S 阴影从而可得结论.【详解】解:如图,先标注字母,AD ⊥BC 于点D ,BD =CD ,,,ABD ACD BEF CEFS S S S 1,2ABC S S 阴影BC =6,AD =4,16412,2ABC S 1 6.2ABCS S 阴影 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.三、解答题1、(1)ABC 是等边三角形;(2)33a b c -+【解析】【分析】(1)由性质可得a =b ,b =c ,故ABC 为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵2()||0a b b c -+-=∴2()0a b -=且||0b c -=∴a b c ==∴ABC 是等边三角形.(2)∵a b c ,,是ABC 的三边长∴b -c -a <0,a -b +c >0,a -b -c <0原式=|()|()|()|a c b a b c b c a -+-+-+--+-=a c b a b c b c a +-+-+--+=33a b c -+【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.2、∠B =50°;∠ACD =90°.【解析】【分析】由DF ⊥AB ,在Rt △BDF 中可求得∠B ;再由∠ACD =∠A +∠B 可求得结论.【详解】解:∵DF ⊥AB ,∴∠BFD =90°,∴∠B +∠D =90°,∵∠D =40°,∴∠B =90°-∠D =90°-40°=50°;∴∠ACD =∠A +∠B =40°+50°=90°.【点睛】本题主要考查了三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.3、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.4、20︒【解析】【分析】根据三角形内角和的性质求得BAC ∠的度数,再根据角平分线求得BAD ∠的度数,利用三角形外角性质求得ADE ∠的度数,从而求得E ∠的度数.【详解】解:∵35B ∠=︒,75ACB ∠=︒,∴70BAC ∠=︒,∵AD 平分∠BAC , ∴1=352BAD BAC ∠=∠︒,∴70ADE B BAD ∠=∠+∠=︒,∵PE ⊥AD ,∴90DPE ∠=︒,∴9020E ADE ∠=︒-∠=︒.【点睛】此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.5、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.。
2021-2022学年度冀教版七年级数学下册第九章 三角形课时练习试题(含详细解析)
冀教版七年级数学下册第九章 三角形课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列长度的三条线段,其中能组成三角形的是( )A .4,5,9B .2.5,6.5,10C .3,4,5D .5,12,172、如图,在△ABC 中,AD 是△ABC 的中线,△ABD 的面积为3,则△ABC 的面积为( )A .8B .7C .6D .53、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A.10°B.20°C.30°D.50°4、已知△ABC的内角分别为∠A、∠B、∠C,下列能判定△ABC是直角三角形的条件是()A.∠A=2∠B=3∠C B.∠C=2∠B C.∠A+∠B=∠C D.∠A:∠B:∠C= =3:4:55、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根6、以下长度的线段能和长度为2,6的线段组成三角形的是()A.2 B.4 C.6 D.97、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°8、利用直角三角板,作ABC的高,下列作法正确的是()A.B.C .D .9、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠D .122DAE ∠+∠∠=10、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC 边的取值范围.2、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.3、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.4、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)5、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.三、解答题(5小题,每小题10分,共计50分)1、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.2、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.3、如图,∠B =45°,∠A +15°=∠1,∠ACD =60°.求证:AB ∥CD .4、如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .(2)如图(1),猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A 重合在一起,则∠DAB 与∠CAE 的数量关系为 .5、如图,AD 是ABC 的高,CE 是ADC 的角平分线.若BAD ECD ∠=∠,70B ∠=︒,求CAD ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.3、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解. 【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.4、C【解析】【分析】根据三角形内角和定理依次计算判断.【详解】解:A 、设∠C=2x ,则∠B =3x ,∠A =6x ,∵180A B C ∠+∠+∠=︒,∴632180x x x ++=°, 解得18011x =︒, ∴∠A =6x =108011︒, ∴△ABC 不是直角三角形,故该选项不符合题意;B 、当∠C =20°,∠B=10°时符合题意,但是无法判断△ABC 是直角三角形,故该选项不符合题意;C 、∵∠A +∠B =∠C ,180A B C ∠+∠+∠=︒,∴90C ∠=︒,即△ABC 是直角三角形,故该选项符合题意;D 、设∠A =3x ,∠B =4x ,∠C =5x ,∵180A B C ∠+∠+∠=︒,∴345180x x x ++=︒,解得15x =︒,∴575C x ∠==︒,∴△ABC不是直角三角形,故该选项不符合题意;故选:C.【点睛】此题考查了三角形内角和定理,熟记三角形内角和为180度并应用是解题的关键.5、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.6、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为a ,已知长度为2,6的线段,根据三角形的三边关系可得,6262a -<<+,即48a <<,根据选项可得6a =∴6a =故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.7、A【解析】【分析】利用DE ∥AF ,得∠CDE =∠CFA =45°,结合∠CFA =∠B +∠BAF 计算即可.【详解】∵DE ∥AF ,∴∠CDE =∠CFA =45°,∵∠CFA =∠B +∠BAF ,∠B =30°,∴∠BAF =15°,故选A .【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.8、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.9、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=12∠BAC=12(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B 【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.10、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.二、填空题1、2<AC<10【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC边的取值范围为2<AC<10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.2、16cm或14cm##14cm或16cm【解析】【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.【解析】【分析】根据三角形的外角性质,可得BCD A B ∠=∠+∠ ,即可求解.【详解】解:∵BCD ∠ 是ABC 的外角,∴BCD A B ∠=∠+∠ ,∵∠A =50°,∠B =70°,∴120BCD ∠=︒ .故答案为:120【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.5、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410<<.AB故答案为:410<<.AB【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.三、解答题1、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE 平分∠MAB ,∴∠GAF =12∠MAB ,∵CH 平分∠NCB ,∴∠BCF =12∠BCN ,∵∠B =90°,∴∠BFC =90°﹣∠BCF ,∵∠AFG =∠BFC ,∴∠AFG =90°﹣∠BCF .∵∠AGH =∠GAF +∠AFG ,∴∠AGH =12∠MAB +90°﹣12∠BCN =90°﹣12(∠BCN ﹣∠MAB ).由(2)知:∠BCN ﹣∠MAB =90°,∴∠AGH =90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.2、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴a =b =c ,∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.3、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A =60°,得出∠ACD =∠A ,即可得出AB ∥CD .【详解】证明:∵∠A +∠B +∠1=180°,∠A +15°=∠1,∴∠A +45°+∠A +15°=180°,解得:∠A =60°,∵∠ACD =60°,∴∠ACD =∠A ,∴AB ∥CD .【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A 是解决问题的关键.4、(1)57°,147°;(2)∠ACB =180°-∠DCE ,理由见解析;(3)∠DAB+∠CAE =120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,∠=︒-︒=︒;BCD903357∠=︒+︒=︒;ACB9057147故答案为:57°,147°.(2)∠ACB=180°-∠DCE,理由如下:∵∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,∴∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE.(3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、50︒【解析】【分析】AD 是ABC 的高,有90ADB ADC ∠=∠=︒;由70B ∠=︒知20BAD ∠=︒;CE 是ADC 的角平分线可得12ECD ACD ∠=∠;20BAD ECD ∠=∠=︒,40ACD ∠=︒;在ACD △中,904050CAD ∠=︒-︒=︒. 【详解】解:∵AD 是ABC 的高∴90ADB ADC ∠=∠=︒∵70B ∠=︒∴20BAD ∠=︒∵CE 是ADC 的角平分线 ∴12ECD ACD ∠=∠∵20BAD ECD ∠=∠=︒∴40ACD ∠=︒∴在ACD △中,904050CAD ∠=︒-︒=︒.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.。
冀教版数学七年级下册第九章小测验及答案.docx
第九章三角形一、选择题 ( 第 1~10 小题各 3 分, 第 11~16 小题各 2 分, 共 42 分)1.不必定在三角形内部的线段是()A.三角形的角均分线B.三角形的中线C.三角形的高D.三角形的中位线2.以下图 , 三角形被遮住的两个角不行能是()A. 一个锐角 , 一个钝角B.两个锐角C.一个锐角 , 一个直角D.两个钝角3.以下说法中错误的选项是A.随意三角形的内角和都是() 180°B.三角形按边进行分类可分为不等边三角形和等腰三角形C.三角形的中线、角均分线、高都是线段D.三角形的一个外角大于任何一个内角4.以下图 , AD⊥BC于点D, GC⊥BC于点C, CF⊥AB于点F, 以下对于高的说法中错误的选项是()A.△ABC中, AD是BC边上的高B.△GBC中, CF是BG边上的高C.△ABC中, GC是BC边上的高D.△GBC中, GC是BC边上的高5.设M表示直角三角形, N表示等腰三角形, P表示等边三角形, Q表示等腰直角三角形, 则下列四个图中 , 能表示它们之间关系的是()6.以下图 , 一块试验田的形状是三角形( 设其为△ABC), 管理员从BC边上的一点D出发,沿DC→ CA→ AB→ BD的方向走了一圈回到D处,则管理员从出发到回到原处在途中身体()A.转过 90°B.转过 180°C.转过 270°D.转过 360°7.以下条件 : ①∠A+∠B=∠C; ②∠A∶∠B∶∠C=1∶ 2∶ 3; ③∠A=90°- ∠B; ④∠A=∠B- ∠C.此中能确立△ ABC是直角三角形的条件有()A.1 个B.2 个C.3 个D.4 个(第 6题图)( 第8题图)8.以下图, 是一块三角形木板的剩余部分, 量得∠A=100°,∠ B=40°,这块三角形木板此外()一个角∠C的度数为A. 30°B. 40°C. 50°D. 60°9.若△ABC中 ,2(∠ A+∠ C)=3∠B,则∠ B的外角度数为()A.36 °B.72 °C.108°D.144 °10.把 14 cm 长的铁丝截成三段 , 围成不是等边三角形的三角形, 而且使三边均为整数, 那么()A.有 1 种截法B.有 2 种截法C.有 3 种截法D.有 4 种截法11.以下图 , 在△ABC中 , 点D, E, F分别是三条边上的点, EF∥AC, DF∥AB, ∠B=45° , ∠=60°.则∠等于()C EFDA.80 °B.75 °C.70 °D.65°(第11题图)(第12题图)12.在△ABC中 , AD, CE分别是△ABC的高 , 且AD=2, CE=4, 则AB∶BC等于()A.3∶4B.4∶3C.1∶2D.2∶113 以下图 ,∠ +∠ +∠ +∠ -∠A 等于().BCDE A. 360° B. 300°C. 180°D. 240°14.如所示 , 在△ABC中 , ∠ABC,∠ACB的均分BE, CD订交于点 F,∠ ABC=42°,∠ A=60°,∠ BFC等于()A. 118°B. 119°C. 120°D. 121°(第14)(第15)15.如所示 , 用四个螺将四条不行曲折的木条成一个木框 , 不螺大小 , 此中相两螺的距离挨次2,3,4,6, 且相两木条的角均可整.若整木条的角不损坏此木框 , 随意两个螺的距离的最大()A.6B.7C.8D.1016.如所示 , △ABC的面1, 第一次操作 : 分延AB, BC, CA至点 A1, B1, C1,使A1B=AB, CB1=CB, C1A=CA,次接 A1, B1, C1,获得△ A1B1C1. 第二次操作:分延 A1B1, B1C1, C1A1至点 A2, B2, C2,使 A2B1=A1B1, B2C1=B1C1, C2A1=C1A1,次接 A2, B2, C2,获得△ A2B2C2,⋯,按此律,要使获得的三角形的面超2014, 操作的次数最少是()A.7B.6C.5D.4二、填空题 (第 17~18小题各 3 分, 第 19小题 4分,共 10 分)17.当三角形中一个内角α 是另一个内角β 的两倍,我称此三角形“特点三角形”, 其中α 称为“特点角”.假如一个“特点三角形”的“特点角”为100°, 那么这个“特点三角形”的最小内角的度数为.18.已知a, b, c 是三角形的三条边, 则 | a+b- c|-|c- a- b|的化简结果为.19.以下图, 将纸片△ABC沿DE折叠,点 A 落在点A' 处,已知∠1+∠2=100° , 则∠A的大小等于度 .三、解答题 ( 共 68 分)20. (9 分 ) 一副三角板叠在一同按以下图的方式搁置, 最小锐角的极点D恰巧放在等腰直角三角板的斜边AB上, BC与 DE交于点 M.已知∠ ADF=100°,求∠ DMB的度数 .21. (9 分)(1)如图(1)所示,有一块直角三角板XYZ搁置在△ ABC上,恰巧三角板 XYZ的两条直角边 XY, XZ分别经过点B, C.△ABC中,∠ A=30°,则∠ ABC+∠ ACB=度,∠ XBC+∠XCB=度;(2)如图 (2) 所示 , 改变直角三角板XYZ的地点 , 使三角板XYZ的两条直角边XY, XZ仍旧分别经过点B,C,那么∠ABX+∠ACX的大小能否变化?若变化,请举例说明;若不变化,恳求出∠ABX+∠ACX的大小 .22. (9 分 ) 以下图 , 武汉有三个车站A, B, C成三角形,一辆公共汽车从 B 站前去 C站 .(1)当汽车运动到点 D点时,恰巧 BD=CD,连结线段 AD, AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车持续向前运动 , 当运动到点E时 , 发现∠BAE=∠CAE,那么AE这条线段是什么线段呢 ? 在△ ABC中,这样的线段又有几条呢?(3)汽车持续向前运动 , 当运动到点F时 , 发现∠AFB=∠AFC=90° , 则AF是什么线段 ?这样的线段在△ ABC中有几条?(第22题图)(第23题图)23. (9 分 )(1) 以下图 , 有两根竹竿AB, DB靠在墙角上 , 并与墙角FCE形成必定的角度 , 测得∠CAB,∠ CDB的度数分别为α,β . 用含有α,β的代数式表示∠ DBF和∠ ABD的度数 .(2)小明、小芳和小兵三位同学同时丈量△ABC的三边长,小明说:“三角形的周长是11”,小芳说 : “有一条边长为 4”, 小兵说 : “三条边的长度是三个不一样的整数”.三边的长度分别是多少 ?24. (10 分 ) 以下图 , AD为△ABC的中线 , BE为△ABD的中线.(1)∠ ABE=15°,∠ BAD=26°,求∠ BED的度数;(2)若△ ABC的面积为40, BD=5,则△ BDE中 BD边上的高为多少?25. (10 分 ) 以下图 , 点P是△ABC内部一点 , 连结BP, 并延伸交AC于点 D.(1) 尝试究∠ 1, ∠ 2, ∠A从大到小的摆列次序;(2)尝试究线段 AB+BC+CA与线段2BD的大小关系;(3)尝试究线段 AB+AC与线段 PB+PC的大小关系 .(第25题图)(第26题图)26. (12 分 ) 以下图 , 在△ABC中 , AD⊥BC, AE均分∠BAC,∠B=70° , ∠C=30°.求 :(1)∠ BAE的度数;(2)∠ DAE的度数;(3)假如条件∠ B=70°,∠ C=30°改成∠ B-∠ C=40°,能否能得出∠ DAE的度数?若能,请你写出求解过程 ; 若不可以 , 请说明原因.参照答案:1. C( 分析 : 三角形的角均分线、中线、中位线都在三角形的内部 , 只有高可能在外面或许与三角形的边重合 . )2. D( 分析 : 依据三角形内角和定理 , 可知三角形三个内角的和为 180° , 因此三角形被遮住的两个角不行能是两个钝角 . )3. D( 分析 : 分别依据三角形外角的性质、三角形的分类及三角形的内角和定理对各选项进行逐个剖析即可 . A,B,C都正确.D. 三角形的一个外角大于任何一个和它不相邻的内角, 故本选项错误 .)4.C( 分析 : 依据三角形的高的定义对各选项剖析判断后利用清除法求解. )5.A ( 分析 : 依据各种三角形的观点可知 A 能够表示它们之间的包括关系. )6D( 分析 : 管理员正面朝前行走 , 转过的角的度数和正好为三角形的外角和360°)..7. D( 分析 : ①由于∠A+∠B=∠C, 则 2∠C=180° , ∠C=90° , 因此△ABC是直角三角形;②由于∠A∶∠ B∶∠ C=1∶2∶3,设∠ A=x,则 x+2x+3x=180°, x=30°,∠ C=30°×3=90°,因此△ABC是直角三角形;③由于∠ A=90°-∠B,因此∠ A+∠ B=90°,则∠ C=180°-90°=90°,因此△ABC是直角三角形;④由于∠ A=∠ B-∠C,因此∠ C+∠ A=∠B,又∠ A+∠ B+∠ C=180°,2∠B=180°,解得∠ B=90°,△ ABC是直角三角形 . 能确立△ ABC是直角三角形的有①②③④, 共 4个. )8. B( 分析 : 由于△ABC中 , ∠A=100° , ∠B=40° , 因此∠C=180° - ∠A- ∠B=180° -100 °-40 ° =40°. )9. C( 分析 : 由于∠A+∠B+∠C=180° , 因此 2( ∠A+∠B+∠C)=360 ° , 由于 2( ∠A+∠C)=3 ∠B, 因此∠ B=72°,因此∠ B 的外角度数是180°-∠ B=108° . )10. D ( 分析 : 依据三角形的三边关系, 两边之和大于第三边, 最短的边长是 1 时, 不建立 ; 当最短的边长是 2 时 , 三边长是2,6,6;当最短的边长是 3 时 , 三边长是3,5,6;当最短的边长是4时, 三边长是4,4,6和4,5,5.最短的边长必定不可以大于4.综上可知有2,6,6;3,5,6;4,4,6和 4,5,5, 共 4 种截法. )11. B( 分析 : 先由平行线的性质可得∠BFE=∠ C=60°,∠ CFD=∠ B=45°,再依据平角定义求得答案 . 由于 EF∥AC,因此∠ BFE=∠ C=60°. 由于 DF∥ AB,∠ CFD=∠ B=45°,因此∠ EFD=180°-∠- ∠=180° -60 ° -45 ° =75°)BFE CFD.12. C(分析 : 由于AD, CE分别是△ABC的高 , 因此S△ABC=1AB·CE=1BC·AD, 由于AD=2, CE=4, 因此22∶= ∶ =2∶ 4=1∶ 2.)AB BC AD CE13. C(分析 : 依据三角形的外角的性质, 得∠B+∠C=∠CGE=180° - ∠ 1, ∠D+∠E=∠DFG=180° -∠2, 两式相加再减去∠, 依据三角形的内角和是 180°可求解.由于∠ +∠ =∠=180° -A B C CGE∠1, ∠D+∠E=∠DFG=180° - ∠2, 因此∠B+∠C+∠D+∠E- ∠A=360° -( ∠ 1+∠ 2+∠A)=180 °. )14. C(分析 : 由于∠ABC=42° , ∠A=60° , 因此∠ACB=78° , 由于BE是∠ABC的均分线 , 因此∠EBC=1∠ ABC=1×42°=21°,同理得∠ DCB=39°,在△ FBC 中,∠ BFC=180°-∠ EBC-∠ DCB=180°22-21 ° -39 °=120°. )15. B ( 分析 : 若两个螺丝的距离最大, 则此时这个木框的形状为三角形, 可依据三根木条的长来判断有几种三角形的组合, 而后分别找出这些三角形的最长边即可. 已知4根木条的四边长分别为2,3,4,6:①选2+3,4,6作为三角形,则三边长为5,4,6;5-4<6<5+4,能组成三角形此时两个螺丝间的最大距离为6; ②选 3+4,6,2作为三角形,则三边长为2,7,6;6-2<7<6+2,能组成三角形 , 此时两个螺丝间的最大距离为7; ③选 4+6,2,3作为三角形,则三边长为,10,2,3;2+3<10, 不可以组成三角形, 此种状况不建立; ④选 6+2,3,4作为三角形,则三边长为8,3,4;而 3+4<8, 不可以组成三角形 , 此种状况不建立.综上所述 , 随意两个螺丝间的距离的最大值为 7. )16. D(分析 : △ABC与△A1BB1底相等 ( AB=A1B), 其高的比为1∶ 2( BB1=2BC), 故面积比为 1∶ 2,由于△ ABC的面积为1,因此??=2.同理可得 , ??=2, ??=2, 因此△ ???? ??△ ???? ??△ ?????111111??△??????=??+??+??+ △ABC=2+2+2+1=7; 同理可得△ 2 2 2 的面积=7×△111的△ ???? ?? △ ?????△ ???? ?? S A B C A B C 111111111面积 =49, 第三次操作后的面积为7× 49=343, 第四次操作后的面积为7× 343=2401故按此规.律, 要使获得的三角形的面积超出2014, 最少经过 4次操作.)17 30° ( 分析 : 依据题目赐予的定义 , 得α=100°?2=100° ?β=50° , 进一步求出最小内.β角是 180°-100 ° -50 ° =30°. )18. 0( 分析 : 依据三角形三边知足的条件是两边和大于第三边, 依据此来确立绝对值内的式子的正负 , 进而化简计算即可.由于, ,是三角形的三边长, 因此+ -c>0,- - <0, 因此原式a b c a b c a b=a+b- c+c- a- b=0. )19. 50( 分析 : 连结AA', 易得AD=A'D, AE=A'E, 故∠ 1+∠ 2=2( ∠DAA'+∠EAA')=2 ∠BAC=100°.故∠ BAC=50° . )20.解 : 由于∠ADF=100° , ∠FDE=30° , ∠ADF+∠FDE+∠MDB=180° , 因此∠MDB=180° -100 °-30 ° =50°, 由于∠B=45° , ∠B+∠DMB+∠MDB=180° , 因此∠DMB=180° -50 °-45 ° =85°.21.解 :(1)150 90 (2) 不变化.原因以下 : ∠ABX+∠ACX=∠ABC-∠XBC+∠ACB-∠XCB=( ∠ABC+∠ ACB)-(∠ XBC+∠ XCB)=150°-90°=60° .22.解 :(1)AD是△ ABC中 BC边上的中线,△ ABC中有三条中线,此时△ ABD与△ ADC的面积相等. (2) AE是△ ABC中∠ BAC的均分线,△ ABC中角均分线有三条 . (3) AF是△ ABC中 BC边上的高线 , △ABC中有三条高线.23.解 :(1)∠ DBF=90°+β,∠ABF=90°+α,因此∠ ABD=∠ ABF-∠ DBF=α-β.(2) 由于三角形的周长是 11, 有一条边长为 4, 因此另两边的和为7, 由于三条边的长度是三个不一样的整数,因此另两边长可能为 1 与 6,1+4=5<6, 不切合三角形三边关系, 舍去 , 另两边长可能为 2 与5,2+4=6>5, 切合三角形三边关系 , 另两边长可能为 3 与 4,4=4,不切合题意 , 舍去.因此另两边长为 2 与 5, 因此三边的长度应当是2,4,5 .24.解 :(1) ∠BED=∠ABE+∠BAD=15° +26° =41°.(2) 由于AD为△ABC的中线 , BE为△ABDBDE 11S△ABC11×5h=10, 解得h=4,即的中线 , 因此 S= ×= ×40=10, 设△ BD中 BD边上的高为 h, 则2242△BDE中 BD边上的高为4.25 解 :(1)由于∠ 2 是△的外角 , 因此∠ 2>∠ , 由于∠ 1 是△的外角 , 因此∠ 1>∠2, 所.ABD A PDC以∠ 1>∠ 2>∠A.(2)在△ ABD中, AB+AD>BD,①在△ BCD中, BC+CD>BD,②① +②得+++>2, 即++ >2(3) 在△中 ,+ >+ ,在△中 ,+ >, AB AD BC CD BD AB BC CA BD.ABD AB AD BP PD PDC PD CD PC 两式相加得+++>+ +, 即+ >+AB AD PD DC BP PD PC AB AC PB PC.26.解 :(1)由于∠ B+∠ C+∠ BAC=180°,因此∠ BAC=180°-∠ B-∠ C=180°-70°-30°=80°,由于 AE均分∠ BAC,因此∠ BAE=1∠BAC=40°.(2)由于 AD⊥ BC,因此∠ ADE=90°,而∠ ADE=2冀教版数学七年级下册第九章小测验及答案.docx∠B+∠ BAD,因此∠ BAD=90°-∠ B=90°-70°=20°,因此∠ DAE=∠ BAE-∠ BAD=40°-20°=20°. (3) 能.原因以下 : 由于∠B+∠C+∠BAC=180° , 因此∠BAC=180° - ∠B- ∠C, 由于AE111因此∠均分∠ BAC,因此∠ BAE=∠BAC= (180° - ∠B- ∠C)=90 ° - ( ∠B+∠C), 由于AD⊥BC,222ADE=90°,而∠ ADE=∠ B+∠ BAD,因此∠ BAD=90°-∠ B,因此∠ DAE=∠ BAE-∠ BAD=90°-1(∠ B+211× 40°=20°.∠C)-(90°-∠ B)= (∠ B-∠ C),由于∠ B-∠ C=40°,因此∠ DAE=22。
2021-2022学年度冀教版七年级数学下册第九章 三角形章节测评试卷(精选含详解)
冀教版七年级数学下册第九章 三角形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°2、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 113、如图,将△ABC 绕点C 按逆时针方向旋转至△DEC ,使点D 落在BC 的延长线上.已知∠A =32°,∠B =30°,则∠ACE 的大小是( )A.63°B.58°C.54°D.56°4、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为()A.30°B.35°C.40°D.45°5、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角6、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.57、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根8、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE=,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.409、三角形的外角和是()A.60°B.90°C.180°D.360°10、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是()A.80°B.90°C.100°D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积等于36,则△BEF的面积为________.2、如图,将ABC 绕点B 逆时针旋转95︒,得到EBD △,若点E 恰好落在AD 的延长线上,则CAD ∠=__________︒.3、如图:ABC 中,40A ∠=︒,60B ∠=︒,CD AB ⊥于D ,CE 平分ACB ∠,DF CE ⊥于F ,则CDF ∠=______°.4、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).5、已知两个定点A 、B 的距离为4厘米,那么到点A 、B 距离之和为4厘米的点的轨迹是____________.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC 中,BE 为AC 边上的高,CD 平分ACB ∠,CD 、BE 相交于点F .若70A ∠=︒,60ABC ∠=︒,求BFC ∠的度数.2、如图,在ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.3、在△ABC 中,∠B =∠A +30°,∠C =40°,求∠A 和∠B 的度数.4、如图,在△ABC 中,∠BAC =40°,∠B =75°,AD 是△ABC 的角平分线,求∠ADB 的度数.5、如图,在ABC 中,CD 是ACB ∠的平分线,点E 在边AC 上,且DE CE =.(Ⅰ)求证:∥DE BC ;(Ⅱ)若50A ∠=︒,60B ∠=︒,求BDC ∠的大小.-参考答案-一、单选题1、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.2、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.3、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DE C.4、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.5、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.6、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.7、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.8、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.9、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,142536180∠+∠=∠+∠=∠+∠=︒,142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,456540180360∴∠+∠+∠=︒-︒=︒,即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.10、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.二、填空题1、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点D,E,F分别是BC,AD,EC的中点,∴AE =DE =12AD ,EF =CF =12CE ,BD =DC =12BC ,∵△ABC 的面积等于36, ∴11361822ABD ACD ABC S S S ===⨯=, 192ABE BED ABD S S S ===,192AEC CDE ACD S S S ===, ∴9918BEC BDE CDE S S S =+=+=,∴1118922BEF BCF BEC S S S ===⨯=, 故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..2、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC 绕点B 逆时针旋转95°,∴∠ABE =95°,AB =BE ,∠CAB =∠E ,∵AB =BE ,∴∠E =∠BAE ,∴∠BAE +∠CAB =∠BAE +∠E =180°−∠ABE=180°−95°故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.3、804、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.5、线段AB【解析】【分析】设到定点A、B的距离之和为4厘米的点是点P,若点P不在线段AB上,易得PA+PB>4,若点P在线段AB上,则PA+PB=AB=4,由此可得答案.解:设到定点A 、B 的距离之和为4厘米的点是点P ,若点P 在不在线段AB 上,则点P 在直线AB 外或线段AB 的延长线或线段BA 的延长线上,则由三角形的三边关系或线段的大小关系可得:PA +PB >AB ,即PA +PB >4,若点P 在线段AB 上,则PA +PB =AB =4,所以到点A 、B 的距离之和为4厘米的点的轨迹是线段AB .故答案为:线段AB .【点睛】本题考查了点的轨迹和三角形的三边关系,正确理解题意、掌握解答的方法是关键.三、解答题1、115︒.【解析】【分析】先根据三角形的内角和定理可得50∠=°ACB ,再根据角平分线的定义可得25ECF ∠=︒,然后根据垂直的定义可得90CEF ∠=︒,最后根据三角形的外角性质即可得.【详解】 解:在ABC 中,70A ∠=︒,60ABC ∠=︒,18050AB B C AC A ∴∠=︒-∠=∠-︒, CD 平分ACB ∠,1252ECF ACB ∠=∠=∴︒, BE 为AC 边上的高,90CEF ∴∠=︒,9025115BFC CEF ECF ∴∠=∠+∠=︒+︒=︒.本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.2、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABC S AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.3、55A ∠=︒,85B ∠=︒【解析】【分析】利用已知结合三角形内角和定理即可求解.【详解】解:∵40C ∠=︒,∴140A B ∠+∠=︒.∵30B A ∠=∠+︒,∴30140A A ∠+∠+︒=︒,∴55A ∠=︒,∴85B ∠=︒.【点睛】本题考查三角形内角和定理,正确得出30140A A ∠+∠+︒=︒是解题关键.4、85°【解析】【分析】根据角平分线定义求出DAB ∠,根据三角形内角和定理得出180ADB DAB B ∠=︒-∠-∠,代入求出即可.【详解】解:AD 平分CAB ∠,40BAC ∠=︒,1202DAB BAC ∴∠=∠=︒, 75B ∠=︒,180180207585ADB DAB B ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于180︒.5、(Ⅰ)见解析;(Ⅱ)85︒【解析】【分析】(Ⅰ)由CD 是ACB ∠的平分线得出DCB DCE ∠=∠,由DE CE =得出CDE DCE ∠=∠从而得出DCB CDE ∠=,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出70ACB ∠=︒,由角平分线得出35BCD ∠=︒,由三角形内角和求出BDC ∠即可得出答案.【详解】(Ⅰ)∵CD 是ACB ∠的平分线,∴DCB DCE ∠=∠,∵DE CE =,∴CDE DCE ∠=∠,∴DCB CDE ∠=,∴∥DE BC ;(Ⅱ)∵50A ∠=︒,60B ∠=︒,∴180506070ACB ∠=︒-︒-︒=︒, ∴1352BCD ACB ∠=∠=︒,∴18085BDC B BCD ∠=︒-∠-∠=︒.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键。
2021-2022学年最新冀教版七年级数学下册第九章 三角形定向练习试卷(含答案详解)
冀教版七年级数学下册第九章 三角形定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一扇窗户打开后,用窗钩AB 可将其固定( )A .三角形的稳定性B .两点之间线段最短C .四边形的不稳定性D .三角形两边之和大于第三边2、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A.30°B.45°C.60°D.75°3、下列长度的三条线段能组成三角形的是()A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,114、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.115、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角∠的度数是()板的一条直角边放在同一条直线上,则αA.45°B.60°C.75°D.85°6、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB7、以下长度的线段能和长度为2,6的线段组成三角形的是()A.2 B.4 C.6 D.98、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°9、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,1310、在△ABC中,∠A=∠B=14∠C,则∠C=()A.70°B.80°C.100°D.120°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形ABC的面积为1,:2:1BD DC ,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.2、如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=______.3、如图,一副三角板按如图放置,则∠DOC 的度数为______.4、已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.5、如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm 2,则阴影部分图形面积等于_____cm 2三、解答题(5小题,每小题10分,共计50分)1、如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB ≥C D .2、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.3、已知,如图1,直线AB CD ∥,E 为直线AB 上方一点,连接ED BE 、,ED 与AB 交于P 点.(1)若110,70ABE CDE ∠=∠=︒︒,则E ∠=_________︒(2)如图1所示,作CDE ∠的平分线交AB 于点F ,点M 为CD 上一点,BFM ∠的平分线交CD 于点H ,过点H 作HG FH ⊥交FM 的延长线于点G ,GF BE ∥,且2320E DFH ∠=∠+︒,求EDF G ∠+∠的度数.(3)如图2,在(2)的条件下,25FDC ∠=︒,将FHG △绕点F 顺时针旋转,速度为每秒钟3︒,记旋转中的FHG △为FH G '',同时FDE ∠绕着点D 顺时针旋转,速度为每秒钟5︒,记旋转中的FDE ∠为F DE ∠'',当FDE ∠旋转一周时,整个运动停止.设运动时间为t (秒),则当FH G ''其中一条边与F DE ∠''的边DF′互相垂直时,直接写出t 的值.4、如图,在ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.5、如图,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,求∠BED 的度数.-参考答案-一、单选题1、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB 可将其固定,故选:A .【点睛】本题考查了三角形的稳定性,加上窗钩AB 构成了△AOB ,而三角形具有稳定性是解题的关键.2、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.3、A【解析】【分析】根据构成三角形的条件逐项分析判断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.【详解】解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意;C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意;D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;故选A【点睛】本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.4、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.5、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.6、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.7、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为a ,已知长度为2,6的线段,根据三角形的三边关系可得,6262a -<<+,即48a <<,根据选项可得6a =∴6a =故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.8、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.9、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A 不符合题意;∵5+7=12,∴B 不符合题意;∵5+5=10<11,∴C 不符合题意;∵5+12=17>13,∴D 符合题意;故选D .【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.10、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.二、填空题1、730 【解析】【分析】连接CP .设△CPE 的面积是x ,△CDP 的面积是y .根据BD :DC =2:1,E 为AC 的中点,得△BDP 的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得43y x=,再根据△ABC的面积是1即可求得x、y的值,从而求解.【详解】解:连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,1,2 ABE BCES S==∵BD:DC=2:1,CE:AC=1:2,2,ABD ACDS S∴△ABP的面积是4x.∴4x+x=2y+x+y,解得43y x =.又∵4x+x=12,解得:x=110,则412,31015y则四边形PDCE的面积为x+y=730.故答案为:730.【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.2、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.3、75【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD =∠ACD -∠ACB =15°,∴∠DOC =90°-∠OCD =75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB =30°,∠ACD =45°,∠D =90°是解题的关键.4、2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--<,然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边,∴00a b c b a c +->--<,, ∴||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a +b -c |+|b -a -c |5、6【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.三、解答题1、见解析【分析】连接OC ,OD ,再根据三角形的三边关系即可得出结论.【详解】连接OC ,OD ,AB OA OB OC OD =+=+,OC OD CD +>,AB CD ∴>.当且仅当CD 过圆心O 时,取“=”号,AB CD ∴≥.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.3、 (1)40;(2)EDF G ∠+∠=70°;(3)t 的值为10.【解析】【分析】(1)根据平行线性质求出∠EPB =∠CDE =70°,根据∠ABE 是△BEP 的外角可求∠E =∠ABE -∠EPB =110°-70°=40°即可;(2)根据GF BE ∥,得出∠GFB =∠FBE ,∠HDF =∠PFD ,根据FH 平分BFM ∠,得出∠GFH =∠HFP ,可得∠GFB =2∠HFB =2∠HFD +2∠DFP ,根据DF 平分CDE ∠,得出∠FDH =∠FDE =∠PFD ,可得∠EPB =∠PDH =2∠PDF =2∠PFD ,根据∠EBF 为△EBP 的外角,可证∠E =2∠DFH ,根据2320E DFH ∠=∠+︒,解方程得出∠DFH =20°,根据HG FH ⊥,得出∠G +∠GFH =90°,得出∠G +∠PFD =90°-∠HFD =90°-20°=70°即可;(3)当25FDC ∠=︒时,∠HFP =∠HFD +∠DFP =45°,可得∠GFH =∠HFP =45°,∠G =45°,当FH G ''其中一条边与F DE ∠''的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD 与S ,FH′∥F′D ,∠CDF′=25°+5t ,∠FSC =45°+3°t ,列方程25°+5t =45°+3°t ,当GF ⊥F′D 时,GF 交CD 于R ,交DF′于Q ,∠HDF ′=25°+5t ,∠CRG =∠GFA =3t -90°,∠QRD +∠QDR =90°,列方程3t-90°+180°-(25+5t )=90°,当H′F ⊥DF ′,H′F 交CD 于U ,交DF′于V ,∠HDF′=25°+5°t ,∠CUF =∠AFH′=3°t -90°-45°,∠VUD +∠UDV =90°,列方程180°-(25°+5°t )+3°t -90°-45°=90°即可.(1)解:∵AB CD ∥,70CDE ∠=︒,∴∠EPB =∠CDE =70°,∵∠ABE 是△BEP 的外角,110ABE ∠=︒,∴∠E =∠ABE -∠EPB =110°-70°=40°,故答案为:40;(2)解:∵GF BE ∥,∴∠GFB =∠FBE ,∠HDF =∠PFD∵FH 平分BFM ∠,∴∠GFH =∠HFP ,∴∠GFB =2∠HFB =2∠HFD +2∠DFP∵DF 平分CDE ∠,∴∠FDH =∠FDE =∠PFD ,∴∠EPB =∠PDH =2∠PDF =2∠PFD∵∠EBF 为△EBP 的外角,∴∠EBF =∠E +∠EPB =∠E +2∠PFD ,∴2∠HFD +2∠DFP =∠E +2∠PFD ,∴∠E =2∠DFH ,∵2320E DFH ∠=∠+︒,∴4∠DFH =3∠DFH +20°,∴∠DFH=20°,∵HG FH⊥,∴∠FHG=90°,∴∠G+∠GFH=90°,∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,∴EDF G∠+∠=70°;(3)当25∠=︒时,∠HFP=∠HFD+∠DFP=45°,FDC∴∠GFH=∠HFP=45°,∴∠G=45°,当FH G''其中一条边与F DE∠''的边DF′互相垂直,分三种情况,当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,∴25°+5t=45°+3°t,解得t=10,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,解得t=-12.5<0舍去,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∵∠VUD+∠UDV=90°,∴180°-(25°+5°t)+3°t-90°-45°=90°,解得t=-35<0舍去,综合t 的值为10.【点睛】本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质, 直线垂直,图形旋转性质,根据余角性质列方程是解题关键.4、203BE =. 【解析】【分析】根据三角形面积公式计算即可.【详解】 解:11=,=22ABC ABCS AC BE S BC AD ⋅⋅ AC BE BC AD ∴⋅=⋅402063BE ∴==. 【点睛】本题考查三角形面积的计算,利用等积法是解题关键.5、150°【解析】【分析】求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.【详解】解:∵∠BDC是△ABD的外角,∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∴∠ABC=30°,∵DE∥BC,∴∠BED=180°﹣∠ABC=180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.。
2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专项测评试题(含详细解析)
冀教版七年级数学下册第九章三角形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,172、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为()A.40°B.45°C.50°D.60°3、以下列长度的各组线段为边,能组成三角形的是()A .2cm ,4cm ,6cmB .2cm ,5cm ,9cmC .7cm ,8cm ,10cmD .6cm ,6cm ,13cm4、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°5、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,106、如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠COD =30°,则∠BOC 的度数是()A .30°B .35°C .45°D .60°7、如图,图形中的x 的值是( )A .50B .60C .70D .808、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .139、下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .10、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,OA =15米,OB =10米,A 、B 间的距离不可能是( )A .5米B .10米C .15米D .20米第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.2、在△ABC 中,若AC =3,BC =7则第三边AB 的取值范围为________.3、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.4、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.5、已知在△ABC 中,∠A +∠B <∠C ,则△ABC 是______三角形.(填“直角”、“锐角”或“钝角”)三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3=(),∠2=().∵DF//CA,∴∠1=(),∠BFD=().∴∠2=().∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).2、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.3、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<(1)在旋转过程中,当α为 度时,A 'B '∥OC ,当α为 度时,A 'B '⊥CD ;(2)如图2,将图1中的△OAB 以点O 为旋转中心旋转到△OA 'B '的位置,求当α为多少度时,OB '平分∠COD ;拓展应用:(3)当90°<α<120°时,连接A 'D ,利用图3探究∠B 'A 'D +∠B 'OC +∠A 'DC 值的大小变化情况,并说明理由.4、如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =60°,求∠DAC 和∠BOA 的度数.5、如图,ABC 中,AE 是角平分线,且52B ∠=︒,78C ∠=︒,求BAE ∠的度数.-参考答案-1、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,A 、459+=,不能够组成三角形,不符合题意;B 、2.5 6.5910+=<,不能够组成三角形,不符合题意;C 、3475,4315+=>-=<,能够组成三角形,符合题意;D 、51217+=,不能组成三角形,不符合题意;故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【解析】【分析】根据三角形内角和定理确定50ABC ∠=︒,然后利用平行线的性质求解即可.【详解】解:∵40BAC ∠=︒,90ACB ∠=︒,∴50ABC ∠=︒,∵a b ∥,∴150ABC ∠=∠=︒,故选:C .【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.3、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴2cm ,4cm ,6cm 不能组成三角形;B. ∵2+5<9,∴2cm ,5cm ,9cm 不能组成三角形;C. ∵7+8>10,∴7cm ,8cm ,10cm 能组成三角形;D. ∵6+6<13,∴6cm ,6cm ,13cm 不能组成三角形;故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.4、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.5、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.6、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC =65°,∵∠AOB =30°,∴∠BOC =∠AOC −∠AOB =35°.故选:B .【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.7、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得:()1070x x x ++=+∴1070x x x ++=+,∴60x =,故选B .【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、D【解析】【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是ABC∆的高,再结合图形进行判断.【详解】解:线段BE是ABC∆的高的图是选项D.故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.10、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.二、填空题1、76 ##76度【解析】【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.【详解】解:∵∠BOC=128°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.故答案为:76°.【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是180︒是解决本题的关键.2、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410<<.AB故答案为:410AB <<.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.3、2<a <12【解析】【分析】直接利用三角形三边关系得出a 的取值范围.【详解】解:∵△ABC 中,AB =5,AC =7,BC =a ,∴7﹣5<a <7+5,即2<a <12.故答案为:2<a <12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.4、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.5、钝角【解析】【分析】根据三角形内角和定理,当A B C ∠+∠<∠可求得90C ∠>︒可得到答案.【详解】解:180A B C ∠+∠+∠=︒,∴当A B C ∠+∠<∠时,可得90C ∠>︒,则ABC ∆为钝角三角形,故答案为:钝角.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为180︒.三、解答题1、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.2、∠G+∠H=36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.3、(1)30,90;(2)105°;(3)不变,理由见解析【解析】【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得∠AOB =∠A 'OB '=45°,由角的数量关系可求解;(3)由α可分别表示∠B 'A 'D ,∠B 'OC ,∠A 'DC 再求和即可.【详解】解:(1)当A 'B '∥OC 时,∴∠A′OC+∠A′=180°,∵∠A′=90°,∴∠A′OC=90°,∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;当A'B'⊥CD时,则OA′∥CD,∴∠AOA′=∠ODC=90°,即α=90°;故答案为:30;90.(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠DOB'=30°,∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,即当α为105°时,OB'平分∠COD;(3)不变,理由如下:∵∠AOA′=α,∴∠B′OD=180°﹣45°﹣α=135°﹣α,∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,设∠A′DC=β,∴∠A′DO=90°﹣β,∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,解得∠B'A'D=180°﹣α﹣β,∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.4、∠DAC=30°,∠BOA=120°.【解析】【分析】根据三角形的内角和定理,高线、角平分线的定义进行解答即可.【详解】解:∵在△ABC中,AD是高,∴∠ADC=90°,∵在△ACD中,∠C=60°,∴∠DAC=90°-60°=30°,∵在△ABC中,∠C=60°,∠BAC=50°,∴∠ABC=70°,∵在△ABC中,AE,BF分别是∠BAC和∠ABC的角平分线,∴∠EAC=12∠BAC=25°,∠FBC=12∠ABC=35°,∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=60°+25°+35°=120°.【点睛】本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.5、25°【解析】【分析】根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.【详解】解:∵∠B=52°,∠C=78°,∴∠BAC=180°-52°-78°=50°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12×50°=25°.【点睛】本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.。
2021-2022学年最新冀教版七年级数学下册第九章 三角形专项练习试卷(含答案详解)
冀教版七年级数学下册第九章三角形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理2、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°3、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°4、下列各图中,有△ABC的高的是()A.B.C.D.5、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 116、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边7、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根∠等于()8、如图所示,一副三角板叠放在一起,则图中αA.105°B.115°C.120°D.135°9、将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为()A.35°B.42°C.45°D.48°10、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为()A.15°B.10°C.20°D.25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,三边为a、b、c,如果3c=,那么x的取值范围是_____.b x,28=,4a x2、已知ABC 中,45A ∠=︒,高BD 和CE 所在直线交于H ,则BHC ∠的度数是________.3、如图,从A 处观测C 处的仰角是36∠=︒CAD ,从B 处观测C 处的仰角74CBD ∠=︒,则从C 处观测A ,B 两处的视角BCA ∠的度数是__________.4、等腰三角形的一条边长为4cm ,另一条边长为6cm ,则它的周长是________.5、已知a ,b ,c 是ABC 的三条边长,化简a b c a b c +-+--的结果为_______.三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明已知:如图,点D ,E ,F 分别是三角形ABC 的边BC ,CA ,AB 上的点,DE //BA ,DF //CA .求证:∠A +∠B +∠C =180°.证明:∵DE //BA ,∴∠3= ( ),∠2= ( ).∵DF //CA ,∴∠1= ( ),∠BFD = ( ).∴∠2= ( ).∵∠1+∠2+∠3=180°(平角的定义),∴∠A +∠B +∠C =180°(等量代换).2、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.3、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB 的度数.4、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.OA=,点B在点O的南偏东5、平面上有三个点A,B,O.点A在点O的北偏东80方向上,4cm30°方向上,3cmOB=,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);<+的依据:(2)写出AB OA OB(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.-参考答案-一、单选题1、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.2、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.3、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解. 【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.6、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.7、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.8、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,∠=∠C+∠CAO=90°+15°=105°,∴α故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.9、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.10、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.二、填空题1、4<x<28【解析】【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;【详解】解:由题意得:34284328x x x x +>⎧⎨-<⎩ 解得:4<x <28.故答案为:4<x <28【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.2、45°或135°【解析】【分析】分两种情况讨论:①如图1,ABC 为锐角三角形,由题意知90BDA CEA ∠=∠=︒, 45ACE ∠=︒,45ABD ∠=︒,180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒,180DBC BCE BHC ∠+∠+∠=︒,代值计算求解即可;②如图2,ABC 为钝角三角形,由题意知90BDA CEA ∠=∠=︒,在BEH △中,45ABD ∠=︒,90CEB ∠=︒,180BHC CEB ABD ∠=︒-∠-∠,代值计算求解即可.【详解】解:由题意知90BDA CEA ∠=∠=︒①如图1所示,ABC 为锐角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ACE ∠=︒,45ABD ∠=︒∵180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒∴180********DBC BCE ∠+∠=︒-︒-︒-︒=︒∵180DBC BCE BHC ∠+∠+∠=︒∴18045135BHC ∠=︒-︒=︒;②如图2所示,ABC 为钝角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ABD ∠=︒在BEH △中,45ABD ∠=︒,90CEB ∠=︒∴180180904545BHC CEB ABD ∠=︒-∠-∠=︒-︒-︒=︒;综上所述,BHC ∠的值为45︒或135︒故答案为:45︒或135︒.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.3、38︒【解析】【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得36∠=︒CAD ,74CBD ∠=︒,∴743638BCA DBC CAD ∠=∠-∠=︒-︒=︒,故答案为:38︒【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.4、16cm 或14cm##14cm 或16cm【解析】【分析】根据题意分腰为6cm 和底为6cm 两种情况,分别求出即可.【详解】解:①当腰为6cm 时,它的周长为6+6+4=16(cm );②当底为6cm 时,它的周长为6+4+4=14(cm );故答案为:16cm 或14cm .【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.5、2b【解析】【分析】由题意根据三角形三边关系得到a +b -c >0,b -a -c <0,再去绝对值,合并同类项即可求解.【详解】解:∵a ,b ,c 是ABC 的三条边长,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案为:2b.【点睛】本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.三、解答题1、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),∵DF//CA,∴∠1=∠C(两直线平行,同位角相等),∠A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.2、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.【详解】证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,∴∠A+45°+∠A+15°=180°,解得:∠A=60°,∵∠ACD=60°,∴∠ACD=∠A,∴AB∥CD.【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.3、75°【解析】【分析】根据角平分线的定义求出∠DAC 的度数,所以EDCA 可求,进而求出∠ACB 的度数.【详解】解:∵AD 是∠BAC 的平分线,∠BAC =80°,∴∠DAC =40°,∵CE 是△ADC 边AD 上的高,∴∠ACE =90°﹣40°=50°,∵∠ECD =25°∴∠ACB =50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.4、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.5、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC > ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.。
2021-2022学年度冀教版七年级数学下册第九章 三角形定向训练试卷(含答案详解)
冀教版七年级数学下册第九章三角形定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角∠的度数是()板的一条直角边放在同一条直线上,则αA.45°B.60°C.75°D.85°2、如图,将一副三角板平放在一平面上(点D在BC上),则1∠的度数为()A.60︒B.75︒C.90︒D.105︒3、如图,图形中的x 的值是( )A .50B .60C .70D .804、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°5、已知三角形的两边长分别是3cm 和7cm ,则下列长度的线段中能作为第三边的是( )A .3cmB .4cmC .7cmD .10cm6、下列长度的三条线段能组成三角形的是( )A .3,4,7B .3,4,8C .3,4,5D .3,3,77、如图,直线l 1、l 2分别与△ABC 的两边AB 、BC 相交,且l 1∥l 2,若∠B =35°,∠1=105°,则∠2的度数为( )A .45°B .50°C .40°D .60°8、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,79、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定10、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C =∠F =90°,∠A =45°,∠D =30°,则∠a +∠β等于( )A .180°B .210°C .360°D .270°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形ABC 的面积为1,:2:1BD DC =,E 为AC 的中点,AD 与BE 相交于P ,那么四边形PDCE 的面积为______.2、在ABC 中,若50,A B C ∠=︒∠=∠,则B ∠=_______.3、如图,一副三角板按如图放置,则∠DOC的度数为______.4、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD 的面积是__________cm2.5、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)三、解答题(5小题,每小题10分,共计50分)1、如图,在三角形ABC中,∠ABC与∠ACB的角平分线交于点P(1)当∠A=60°时,求∠BPC的的度数;(提示:三角形内角和180°);(2)当∠A=α°时,直接写出∠A与∠BPC的数量关系.OA=,点B在点O的南偏东2、平面上有三个点A,B,O.点A在点O的北偏东80方向上,4cm30°方向上,3cmOB=,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出AB OA OB<+的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.3、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.4、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.∵AB∥CD(已知),∴∠ABC+ =180°().∵BD平分∠ABC,AC平分∠BCD,(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线的意义).∴∠DBC+∠ACB=12()(等式性质),即∠DBC+∠ACB=°.∵∠DBC+∠ACB+∠BOC=180°(),∴∠BOC=°(等式性质).5、上小学时,我们已学过三角形三个内角的和为180°.定义:如果一个三角形的两个内角α与β满足290αβ+=︒.那么我们称这样的三角形为“准互余三角形”.(1)若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则B ∠=______;(2)若ABC 是直角三角形,90ACB ∠=︒.①如图,若AD 是BAC ∠的平分线,请你判断ABD △是否为“准互余三角形”?并说明理由. ②点E 是边BC 上一点,ABE △是“准互余三角形”,若24ABC ∠=︒,则EAC ∠=______.-参考答案-一、单选题1、C【解析】【分析】先根据三角形的内角和得出∠CGF =∠DGB =45°,再利用∠α=∠D +∠DGB 可得答案.【详解】解:如图:∵∠ACD =90°、∠F =45°,∴∠CGF =∠DGB =45°,∴∠α=∠D +∠DGB =30°+45°=75°.故选C .【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.2、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠【详解】 解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.3、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得:()1070x x x ++=+∴1070x x x ++=+,∴60x =,故选B .【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.4、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.5、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.7、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.8、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∠CDF =12∠ADC ,∠DCF =12∠BCD ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∠CDF +∠DCF =12(∠ADC +∠BCD ) =90°,∴∠1=180°-(∠BAE +∠ABE )= 90°,∠2=∠CDF +∠DCF = 90°,∴∠1=∠2=90°,故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.10、B【解析】【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.二、填空题1、730【解析】【分析】连接CP .设△CPE 的面积是x ,△CDP 的面积是y .根据BD :DC =2:1,E 为AC 的中点,得△BDP 的面积是2y ,△APE 的面积是x ,进而得到△ABP 的面积是4x .再根据△ABE 的面积是△BCE 的面积相等,得4x +x =2y +x +y ,解得43y x =,再根据△ABC 的面积是1即可求得x 、y 的值,从而求解. 【详解】解:连接CP , 设△CPE 的面积是x ,△CDP 的面积是y .∵BD :DC =2:1,E 为AC 的中点,∴△BDP 的面积是2y ,△APE 的面积是x , 1,2ABE BCE SS == ∵BD :DC =2:1,CE :AC =1:2,2,ABD ACDS S ∴△ABP 的面积是4x .∴4x +x =2y +x +y ,解得43y x =. 又∵4x +x =12, 解得:x =110,则412,31015y 则四边形PDCE 的面积为x +y =730. 故答案为:730. 【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.2、65°##65度【解析】【分析】由三角形的内角和定理,得到180A B C ∠+∠+∠=︒,即可得到答案;【详解】解:在ABC 中,180A B C ∠+∠+∠=︒,∵50,A B C ∠=︒∠=∠,∴502180B ︒+∠=︒,∴65B ∠=︒;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.3、75︒【解析】【分析】根据题意得:∠ACB =30°,∠ACD =45°,∠D =90°,从而得到∠OCD =15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB =30°,∠ACD =45°,∠D =90°,∴∠OCD =∠ACD -∠ACB =15°,∴∠DOC =90°-∠OCD =75°.故答案为:75°【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB =30°,∠ACD =45°,∠D =90°是解题的关键.4、30【解析】【分析】根据三角形的面积公式求出△ACD 的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C =90°,CD =5cm ,AC =12cm ,∴△ACD 的面积为1302CD AC ⨯=(cm 2),∵AD 是BC 边上的中线,∴△ACD 的面积=△ABD 的面积为30=(cm 2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两部分解答.5、4(答案不唯一)【解析】【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即532-=;而小于两边之和,即538+=,即2<第三边8<,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.三、解答题1、 (1)120°(2)∠BPC =1902A ︒+∠【解析】【分析】(1)根据BP 是∠ABC 的平分线,得出∠PBC =12ABC =∠.根据CP 是∠ACB 的平分线,∠PCB =12ACB =∠,根据∠A =60°,得出ACB ABC ∠+∠=120°,求∠PBC +∠PCB =()12ACB ABC ∠+∠=60°即可;(2)根据BP 是∠ABC 的平分线,得出∠PBC =12ABC =∠.根据CP 是∠ACB 的平分线,得出∠PCB =12ACB =∠,根据∠A =α°,得出ACB ABC ∠+∠=180°-α°,可求∠PBC +∠PCB =()119022ACB ABC α∠+∠=︒-︒即可. (1)解:如图,∵BP 是∠ABC 的平分线,∴∠PBC =12ABC =∠.(角平分线定义)∵CP 是∠ACB 的平分线,∴∠PCB =12ACB =∠,∴∠PBC +∠PCB =1()2ACB ABC =∠+∠ , ∵∠A =60°,∴ACB ABC ∠+∠=120°,∴∠PBC +∠PCB =()12ACB ABC ∠+∠=60°, ∴∠BPC =180°-∠PBC -∠PCB =180°-(∠PBC +∠PCB )=180°-60°=120°.(2)如图,∵BP 是∠ABC 的平分线,∴∠PBC =12ABC =∠.(角平分线定义)∵CP 是∠ACB 的平分线,∴∠PCB =12ACB =∠,∴∠PBC +∠PCB =1()2ACB ABC =∠+∠, ∵∠A =α°,∴ACB ABC ∠+∠=180°-α°,∴∠PBC +∠PCB =()119022ACB ABC α∠+∠=︒-︒, ∴∠BPC =180°-∠PBC -∠PCB =180°-(∠PBC +∠PCB )=180°-90°12α+︒=90°12α+︒. ∴∠BPC =1902A ︒+∠.【点睛】本题考查角平分线定义,三角形内角和,掌握角平分线定义,三角形内角和是解题关键.2、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC > ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、见解析【解析】【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.4、∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90【解析】【分析】根据题意利用AB∥CD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=12(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵AB∥CD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∵BD平分∠ABC,AC平分∠BCD(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线定义),∴∠DBC +∠ACB =12(∠ABC +∠BCD )(等式性质),即∠DBC +∠ACB =90°,∴∠DBC +∠ACB +∠BOC =180°(三角形内角和等于180°),∴∠BOC =90°(等式性质),故答案为:∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.5、(1)15°;(2)①是,见解析;②24°或33°【解析】【分析】(1)根据ABC 是“准互余三角形”,60A ∠=︒得出+290A B ∠∠=︒,从中求出∠B 即可;(2)①ABD △是“准互余三角形”,理由如下:根据AD 平分BAC ∠,得出22BAC BAD DAC ∠=∠=∠,根据三角形内角和180BAC B C ∠+∠+∠=︒ ,得出290BAD B ∠+∠=︒即可;②点E 是边BC 上一点,ABE △是“唯互余三角形”,分两种情况,当2∠BAE +∠ABC =90°时,先求出33BAE ∠=︒,可得∠EAC =33°,当∠BAE +2∠ABC =90°时,可求42BAE ∠=︒,根据∠EAC =90°-∠BAE -∠ABC =24°即可.【详解】(1)∵ABC 是“准互余三角形”,60A ∠=︒,∴+290A B ∠∠=︒, ∴()()119090601522B A ∠=︒-∠=︒-︒=︒, 故答案为:15°(2)①解:ABD △是“准互余三角形”,理由如下:∵AD 平分BAC ∠,∴22BAC BAD DAC ∠=∠=∠,∵180BAC B C ∠+∠+∠=︒,90C ∠=︒,∴90BAC B ∠+∠=︒,∴290BAD B ∠+∠=︒,∴ABD △是“准互余三角形”.②点E 是边BC 上一点,ABE △是“准互余三角形”,∴当2∠BAE +∠ABC =90°时, ∴()()119090243322BAE ABC ∠=︒-∠=︒-︒=︒, ∴∠EAC =90°-∠BAE -∠ABC =33°,∴当∠BAE +2∠ABC =90°时,∴()()9029022442BAE ABC ∠=︒-∠=︒-⨯︒=︒,∴∠EAC =90°-∠BAE -∠ABC =90°-42°-24°=24°.故答案为33°或24°.【点睛】本题考查新定义“准互余三角形”,角平分线定义,角的倍分,掌握如果一个三角形的两个内角α与β满足290αβ+=︒或290αβ+=︒.那么我们称这样的三角形为“准互余三角形”是解题关键.。
难点解析冀教版七年级数学下册第九章 三角形定向测试试卷(含答案解析)
冀教版七年级数学下册第九章 三角形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A .2,3,5B .3,8,4C .2,4,7D .3,4,52、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A .30°B .45°C .60°D .75°3、如图,在ABC 中,∠A =55°,∠B =45°,那么∠ACD 的度数为( )A .110B .100C .55D .454、下列长度的三条线段能组成三角形的是( )A .3 4 8B .4 4 10C .5 6 10D .5 6 115、如图,已知△ABC 中,BD 、CE 分别是△ABC 的角平分线,BD 与CE 交于点O ,如果设∠BAC =n °(0<n <180),那么∠BOE 的度数是( )A .90°12-n ° B .90°12+n ° C .45°+n ° D .180°﹣n °6、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( )A .140︒B .130︒C .120︒D .110︒7、若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( )A .3<c <4B .2≤c ≤6C .1<c <7D .1≤c ≤78、有下列长度的三条线段,其中能组成三角形的是( )A .4,5,9B .2.5,6.5,10C .3,4,5D .5,12,179、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠D .122DAE ∠+∠∠=10、数学课上,同学们在作ABC 中AC 边上的高时,共画出下列四种图形,其中正确的是( ).A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC 中,BA =BC ,D 为△ABC 内一点,将△BDC 绕点B 逆时针旋转至△BEA 处,延长AE ,CD 交于点F ,若∠ABC =70°,则∠AFC 的度数为 _____.2、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.3、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.4、如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.若保持△A′DE的一边与BC平行,则∠ADE的度数______.5、已知ABC中,AB=5,AC=7,BC=a,则a的取值范围是 ___.三、解答题(5小题,每小题10分,共计50分)1、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长2、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=32∠CGB,求∠A的度数.3、如图,∠O=30°,任意裁剪的直角三角形纸板ABC的两条直角边所在直线与∠O的两边分别交于D,E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB=度;(2)如图2,若直角顶点C在∠O的内部,求∠ADO+∠OEB的度数;(3)如图3,若直角顶点C在∠O的外部,求∠ADO+∠OEB的度数.4、已知AM∥CN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.5、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.-参考答案-一、单选题1、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A 、2+3=5,不能组成三角形,不符合题意;B 、3+4<8,不能够组成三角形,不符合题意;C 、2+4<7,不能够组成三角形,不符合题意;D 、3+4>5,不能够组成三角形,不符合题意.故选:D .【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.3、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD =∠A +∠B =100°,故选:B .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.4、C【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A .∵3+4<8,∴不能组成三角形,故本选项不符合题意;B .∵4+4<10,∴不能组成三角形,故本选项不符合题意;C .∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.5、A【解析】【分析】根据BD 、CE 分别是△ABC 的角平分线和三角形的外角,得到()12BOE ABC ACB ∠=∠+∠,再利用三角形的内角和,得到180180ABC ACB BAC n ∠+∠=︒-∠=︒-︒,代入数据即可求解.【详解】解:∵BD 、CE 分别是△ABC 的角平分线, ∴12DBC ABC ∠=∠,12ECB ACB ∠=∠, ∴BOE DBC ECB ∠=∠+∠1122ABC ACB =∠+∠ ()12ABC ACB =∠+∠,∵180180ABC ACB BAC n ∠+∠=︒-∠=︒-︒, ∴()()11118090222BOE ABC ACB n n ∠=∠+∠=⨯︒-︒=︒-︒. 故答案选:A .【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于180︒.三角形的一个外角等于与它不相邻的两个内角之和.6、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵50B ∠=︒,80A ∠=︒,∴130ACD A B ∠=∠+∠=︒;故选B .【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.7、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边a 、b 的长分别为3和4,∴其第三边c的取值范围是4334-<<+,c即17c<<.故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=12∠BAC=12(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.10、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题1、70°或70度【解析】【分析】先根据旋转的性质得到∠EBD=∠ABC=70°,∠BDC=∠BEA,然后根据邻补角的性质和三角形内角和定理即可得到∠AFC=∠EBD=70°.【详解】解:∵△BDC绕点B逆时针旋转得到△BEA,∴∠EBD=∠ABC=70°,∠BDC=∠BEA,∴∠FEG=∠BDG,∵∠EGF=∠DGB,∴∠AFC=∠EBD=70°.故答案为:70°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、7【解析】【分析】由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.【详解】解:设第三边长是c,则9﹣4<c<9+4,即5<c<13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,∴c=7.故答案为:7.【点睛】本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.3、三角形具有稳定性,四边形具有不稳定性【解析】【分析】根据三角形的稳定性和四边形的不稳定性解答.【详解】由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.故答案是:三角形具有稳定性,四边形具有不稳定性.【点睛】本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.4、45°或30°【解析】【分析】分DA'BC或EA'BC两种情况,分别画出图形,即可解决问题.【详解】解:当DA'BC时,如图,∠A'DA=∠ACB=90°,∵△ADE沿DE折叠到A'DE,∠ADA′=45°,∴∠ADE=∠A'DE=12当EA'BC时,如图,在△ABC中,∠B=180°-∠C-∠A=60°,∴∠2=∠ABC=60°,由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°-∠A′-∠A′FE=150°-∠A′FE,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°-∠C-∠B-∠BFD=210°-∠BFD,∵∠BFD=∠A′FE,∴∠1-∠2=210°-150°=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到A'DE,∴∠ADE=∠A'DE=12∠ADA′=12(180°-∠1)=30°,综上所述,∠ADE的度数为:45°或30°.故答案为:45°或30°.【点睛】本题主要考查了翻折的性质,平行线的性质等知识,能根据题意,运用分类讨论思想分别画出图形是解题的关键.5、2<a<12【解析】【分析】直接利用三角形三边关系得出a的取值范围.【详解】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故答案为:2<a<12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.三、解答题1、第三边长为7cm或9cm或11cm【解析】【分析】设三角形的第三边长为x cm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为x cm,由三角形的两边长分别是4cm和9cm可得:-<<+,即为5139494x<<,x∵第三边长是奇数,x=或9或11.∴7【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.2、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA交PQ于点H,∵∠ECM=∠ACD,∠DCE=∠ACE,∴∠MCA=∠ACE=∠ECD,∵MN∥PQ,∴∠MCA=∠AHB,∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN,∴∠ABP=∠NCD,设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,∴∠CFB=270-2x,由(1)可知∠CGB=∠MCG+∠GBP,∴∠CGB =135°−12x ,∴270°−2x =32 (135°−12x ) ,解得:x =54°,∴∠AHB =54°,∴∠ABP =∠NCD =180°-54°×3=18°,∴∠CAB =54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.3、(1)120;(2)120°;(3)120°【解析】【分析】(1)由三角形外角性质可知OEB ECO O ∠=∠+∠,即可得出ADO OEB ACB O ∠+∠=∠+∠,即可求出答案;(2)连接OC ,由三角形外角性质可知ADO ACO DOC ∠=∠+∠,OEB EOC ECO ∠=∠+∠,即可得出ADO OEB ACO DOC EOC ECO ACE DOE ∠+∠=∠+∠+∠+∠=∠+∠, 即得出答案;(3)连接OC ,由三角形外角性质可知ADO ACO DOC OEB EOC ECO ∠=∠-∠∠=∠+∠,,即可得出ADO OEB ACO DOC EOC ECO ACE DOE ∠+∠=∠-∠+∠+∠=∠+∠,即得出答案.【详解】解:(1)∵OEB ECO O ∠=∠+∠,∴9030120ADO OEB ACO ECO O ACB O ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒.故答案为:120.(2)如图,连接OC ,∵ADO ACO DOC ∠=∠+∠,OEB EOC ECO ∠=∠+∠,9030ACE DOE ∠=︒∠=︒,,∴ADO OEB ACO DOC EOC ECO ∠+∠=∠+∠+∠+∠()()ACO ECO EOC DOC =∠+∠+∠+∠ACE DOE =∠+∠9030=︒+︒120=︒(3)如图,连接OC∵9030ADO ACO DOC OEB EOC ECO ACE DOE ∠=∠-∠∠=∠+∠∠=︒∠=︒,,,∴ADO OEB ACO DOC EOC ECO ∠+∠=∠-∠+∠+∠()()ACO ECO EOC DOC =∠+∠+∠-∠ACE DOE =∠+∠9030=︒+︒120=︒【点睛】本题主要考查三角形外角的性质,正确的连接辅助线并利用数形结合的思想是解答本题的关键.4、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°【解析】【分析】(1)过点B作BE∥AM,利用平行线的性质即可求得结论;(2)过点B作BE∥AM,利用平行线的性质即可求得结论;(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.【详解】(1)过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案为:∠A+∠C=90°;(2)∠A和∠C满足:∠C﹣∠A=90°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)设CH与AB交于点F,如图,∵AE 平分∠MAB ,∴∠GAF =12∠MAB ,∵CH 平分∠NCB ,∴∠BCF =12∠BCN ,∵∠B =90°,∴∠BFC =90°﹣∠BCF ,∵∠AFG =∠BFC ,∴∠AFG =90°﹣∠BCF .∵∠AGH =∠GAF +∠AFG ,∴∠AGH =12∠MAB +90°﹣12∠BCN =90°﹣12(∠BCN ﹣∠MAB ).由(2)知:∠BCN ﹣∠MAB =90°,∴∠AGH =90°﹣45°=45°.故答案为:45°.【点睛】本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.5、(1)30F ∠=︒;(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75PAC ∠=︒,45ABC ACB ∠=∠=︒,由各角之间的关系及三角形内角和定理可得30PCD ∠=︒,60PDC ∠=︒,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得30CBE ∠=︒,得出DCB CBE ∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC ∠=︒,15BAE ∠=︒,AB AC =,∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE ⊥,∴90ADC ∠=︒,18015ACD ADC DAC ∠=︒-∠-∠=︒,∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.。
2021-2022学年基础强化冀教版七年级数学下册第九章 三角形章节测试试题(含答案解析)
冀教版七年级数学下册第九章三角形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,102、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.S△AEB=S△EDB3、如图,在ABC∆的()∆中,若点D使得BD DC=,则AD是ABCA .高B .中线C .角平分线D .中垂线4、下列各组线段中,能构成三角形的是( )A .2、4、7B .4、5、9C .5、8、10D .1、3、65、如图,在ABC 中,AD 、AE 分别是边BC 上的中线与高,4AE =,CD 的长为5,则ABC 的面积为( )A .8B .10C .20D .406、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定7、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°8、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )A .80°B .90°C .100°D .120°9、如图所示,一副三角板叠放在一起,则图中α∠等于( )A .105°B .115°C .120°D .135°10、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.2、如图,线段AF AE ⊥,垂足为点A ,线段GD 分别交AF 、AE 于点C ,B ,连结GF ,ED .则D G AFG AED ∠∠∠∠+++的度数为______.3、如图,△ABC 中,点D 在BC 的延长线上,A α∠=,ABC ∠与ACD ∠的平分线相交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;…;2020A BC ∠与2020A CD ∠的平分线相交于点2021A ,得2021A ∠,2021A ∠=__________.4、已知在△ABC 中,∠A +∠B <∠C ,则△ABC 是______三角形.(填“直角”、“锐角”或“钝角”)5、如图,在△ABC中,∠C=90°,AD是BC边上的中线,交BC于点D,CD=5cm,AC=12cm,则△ABD 的面积是__________cm2.三、解答题(5小题,每小题10分,共计50分)1、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°.(1)如图1,若∠BOD=65°,则∠AOC=______ ;∠AOC=120°,则∠BOD=____ ;(2)如图2,若∠AOC=150°,则∠BOD=_____ ;(3)猜想∠BOD与∠AOC的数量关系,并结合图1说明理由;(4)如图3三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.2、如图是A 、B 、C 三岛的平面图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向.从C 岛看A 、B 岛的视角∠ACB 为多少?3、已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.4、已知,如图1,直线AB CD ∥,E 为直线AB 上方一点,连接ED BE 、,ED 与AB 交于P 点.(1)若110,70ABE CDE ∠=∠=︒︒,则E ∠=_________︒(2)如图1所示,作CDE ∠的平分线交AB 于点F ,点M 为CD 上一点,BFM ∠的平分线交CD 于点H ,过点H 作HG FH ⊥交FM 的延长线于点G ,GF BE ∥,且2320E DFH ∠=∠+︒,求EDF G ∠+∠的度数.(3)如图2,在(2)的条件下,25FDC ∠=︒,将FHG △绕点F 顺时针旋转,速度为每秒钟3︒,记旋转中的FHG △为FH G '',同时FDE ∠绕着点D 顺时针旋转,速度为每秒钟5︒,记旋转中的FDE ∠为F DE ∠'',当FDE ∠旋转一周时,整个运动停止.设运动时间为t (秒),则当FH G ''其中一条边与F DE ∠''的边DF′互相垂直时,直接写出t 的值.5、如图,在ABC 中,CD 是ACB ∠的平分线,点E 在边AC 上,且DE CE =.(Ⅰ)求证:∥DE BC ;(Ⅱ)若50A ∠=︒,60B ∠=︒,求BDC ∠的大小.-参考答案-一、单选题1、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.2、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.3、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.4、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247B、459+=,不能构成三角形,此项不符题意;C、5810+>,能构成三角形,此项符合题意;D、136+<,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.5、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.6、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.7、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.8、B【解析】【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.【详解】解:由题意得:α=2β,α=60°,则β=30°,180°-60°-30°=90°,故选B.【点睛】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.9、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,∠=∠C+∠CAO=90°+15°=105°,∴α故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.10、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∵3230∠=∠+︒,∴21153085∠=︒-︒=︒;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.二、填空题1、三角形具有稳定性,四边形具有不稳定性【解析】【分析】根据三角形的稳定性和四边形的不稳定性解答.【详解】由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.故答案是:三角形具有稳定性,四边形具有不稳定性.【点睛】本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.2、270°##270度【解析】【分析】由题意易得90ACB ABC ∠+∠=︒,然后根据三角形内角和定理可进行求解.【详解】解:∵AF AE ⊥,∴90A ∠=︒,∴90ACB ABC ∠+∠=︒,∵180,180D DBE AED ABC ACB A ∠∠∠∠∠++=︒++∠=︒,且ABC DBE ∠=∠,∴D AED ACB A ∠∠∠+=+∠,同理可得:G AFG ABC A ∠∠∠+=+∠,∴2270D G AFG AED A ABC ACB ∠∠∠∠+++=∠+∠+∠=︒,故答案为270°.【点睛】本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.3、20212α【解析】【分析】 结合题意,根据角平分线、三角形外角、三角形内角和的性质,得112A A ∠=∠,同理得212122A A α∠=∠=;再根据数字规律的性质分析,即可得到答案. 【详解】解:根据题意,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,∴∠A 1BC =12ABC ∠,∠ACA 1=12ACD ∠, ∴1111118018022A A BC ACB ACA ABC ACB ACD ∠=︒-∠-∠-∠=︒-∠-∠-∠, ∵ACD A ABC ∠=∠+∠,∴111802A ABC ACB A ∠=︒-∠-∠-∠, ∵180A ABC ACB ∠+∠+∠=︒, ∴112A A ∠=∠=2α,同理,得2121112222A A A α∠=∠=⨯∠=; 323111122222A A A α∠=∠=⨯⨯∠=; 43411111222222A A A α∠=∠=⨯⨯⨯∠=; …1122n n n A A α-∠=∠=, ∴202120212A α∠=. 故答案为:20212α.【点睛】 本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.4、钝角【分析】根据三角形内角和定理,当A B C ∠+∠<∠可求得90C ∠>︒可得到答案.【详解】解:180A B C ∠+∠+∠=︒,∴当A B C ∠+∠<∠时,可得90C ∠>︒,则ABC ∆为钝角三角形,故答案为:钝角.【点睛】本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为180︒.5、30【解析】【分析】根据三角形的面积公式求出△ACD 的面积,利用三角形中线的性质即可求解.【详解】解:∵∠C =90°,CD =5cm ,AC =12cm ,∴△ACD 的面积为1302CD AC ⨯=(cm 2),∵AD 是BC 边上的中线,∴△ACD 的面积=△ABD 的面积为30=(cm 2),故答案为:30.【点睛】本题考查了三角形的面积和三角形中线的性质,关键是根据三角形的中线把三角形分成面积相等的两三、解答题1、(1)115°,60°;(2)30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=65°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,若∠AOC=120°,则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;故答案为:115°;60°;(2)如图2,若∠AOC=150°,则∠BOD=360°-∠AOC-∠AOB-∠COD=360°-150°-90°-90°=30°;故答案为:30°;(3)∠AOC与∠BOD互补.理由如下:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补;(4)分四种情况讨论:当OD⊥AB时,∠AOD=90°-∠A=30°,t=30°÷15°=2(秒);当CD⊥OB时,∠AOD=∠D=45°,t=45°÷15°=3(秒);当CD⊥AB时,∠AOD=180°-60°-45°=75°,t=75°÷15°=5(秒);当OD⊥OA时,∠AOD=90°,t=90°÷15°=6(秒);综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.2、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB =80°,∵DA ∥EB ,∴∠EBA =180°﹣∠DAB =100°,又∠EBC =40°,∴∠ABC =∠EBA ﹣∠EBC =60°,∵∠DAB =80°,∠DAC =50°,∴∠CAB =30°,∴∠ACB =180°﹣∠CAB ﹣∠ABC =90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.3、ABC 的形状是等边三角形.【解析】【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .【详解】解:∵22()()0a b b c -+-=,∴0a b -=,0b c -=∴a =b =c ,∴ ABC ∆是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.4、 (1)40;(2)EDF G ∠+∠=70°;(3)t 的值为10.【解析】【分析】(1)根据平行线性质求出∠EPB =∠CDE =70°,根据∠ABE 是△BEP 的外角可求∠E =∠ABE -∠EPB =110°-70°=40°即可;(2)根据GF BE ∥,得出∠GFB =∠FBE ,∠HDF =∠PFD ,根据FH 平分BFM ∠,得出∠GFH =∠HFP ,可得∠GFB =2∠HFB =2∠HFD +2∠DFP ,根据DF 平分CDE ∠,得出∠FDH =∠FDE =∠PFD ,可得∠EPB =∠PDH =2∠PDF =2∠PFD ,根据∠EBF 为△EBP 的外角,可证∠E =2∠DFH ,根据2320E DFH ∠=∠+︒,解方程得出∠DFH =20°,根据HG FH ⊥,得出∠G +∠GFH =90°,得出∠G +∠PFD =90°-∠HFD =90°-20°=70°即可;(3)当25FDC ∠=︒时,∠HFP =∠HFD +∠DFP =45°,可得∠GFH =∠HFP =45°,∠G =45°,当FH G ''其中一条边与F DE ∠''的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD 与S ,FH′∥F′D ,∠CDF′=25°+5t ,∠FSC =45°+3°t ,列方程25°+5t =45°+3°t ,当GF ⊥F′D 时,GF 交CD 于R ,交DF′于Q ,∠HDF ′=25°+5t ,∠CRG =∠GFA =3t -90°,∠QRD +∠QDR =90°,列方程3t-90°+180°-(25+5t )=90°,当H′F ⊥DF ′,H′F 交CD 于U ,交DF′于V ,∠HDF′=25°+5°t ,∠CUF =∠AFH′=3°t -90°-45°,∠VUD +∠UDV =90°,列方程180°-(25°+5°t )+3°t -90°-45°=90°即可.(1)解:∵AB CD ∥,70CDE ∠=︒,∵∠ABE 是△BEP 的外角,110ABE ∠=︒,∴∠E =∠ABE -∠EPB =110°-70°=40°,故答案为:40;(2)解:∵GF BE ∥,∴∠GFB =∠FBE ,∠HDF =∠PFD∵FH 平分BFM ∠,∴∠GFH =∠HFP ,∴∠GFB =2∠HFB =2∠HFD +2∠DFP∵DF 平分CDE ∠,∴∠FDH =∠FDE =∠PFD ,∴∠EPB =∠PDH =2∠PDF =2∠PFD∵∠EBF 为△EBP 的外角,∴∠EBF =∠E +∠EPB =∠E +2∠PFD ,∴2∠HFD +2∠DFP =∠E +2∠PFD ,∴∠E =2∠DFH ,∵2320E DFH ∠=∠+︒,∴∠DFH=20°,∵HG FH⊥,∴∠FHG=90°,∴∠G+∠GFH=90°,∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,∴EDF G∠+∠=70°;(3)当25∠=︒时,∠HFP=∠HFD+∠DFP=45°,FDC∴∠GFH=∠HFP=45°,∴∠G=45°,当FH G''其中一条边与F DE∠''的边DF′互相垂直,分三种情况,当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,∴25°+5t=45°+3°t,解得t=10,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,解得t=-12.5<0舍去,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∵∠VUD+∠UDV=90°,∴180°-(25°+5°t)+3°t-90°-45°=90°,解得t=-35<0舍去,综合t 的值为10.【点睛】本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质, 直线垂直,图形旋转性质,根据余角性质列方程是解题关键.5、(Ⅰ)见解析;(Ⅱ)85︒【解析】【分析】(Ⅰ)由CD 是ACB ∠的平分线得出DCB DCE ∠=∠,由DE CE =得出CDE DCE ∠=∠从而得出DCB CDE ∠=,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出70ACB ∠=︒,由角平分线得出35BCD ∠=︒,由三角形内角和求出BDC ∠即可得出答案.【详解】(Ⅰ)∵CD 是ACB ∠的平分线,∴DCB DCE ∠=∠,∵DE CE =,∴CDE DCE ∠=∠,∴DCB CDE ∠=,∴∥DE BC ;(Ⅱ)∵50A ∠=︒,60B ∠=︒,∴180506070ACB ∠=︒-︒-︒=︒, ∴1352BCD ACB ∠=∠=︒,∴18085BDC B BCD ∠=︒-∠-∠=︒.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键。
2021-2022学年度强化训练冀教版七年级数学下册第九章 三角形同步测评试题(含详解)
冀教版七年级数学下册第九章三角形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的三个外角之比为3:4:5,则该三角形为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2、若一个三角形的两条边的长为5和7,那么第三边的长可能是()A.2 B.10 C.12 D.13∠等于()3、如图所示,一副三角板叠放在一起,则图中αA.105°B.115°C.120°D.135°4、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,175、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是()A .30°B .35°C .45°D .60°6、如图,一扇窗户打开后,用窗钩AB 可将其固定( )A .三角形的稳定性B .两点之间线段最短C .四边形的不稳定性D .三角形两边之和大于第三边7、如图,在ABC 中,35A ∠=︒,45C ∠=︒,则外角ABD ∠的度数是( )A .35°B .45°C .80°D .100°8、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm9、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个10、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC 中,45A ∠=︒,高BD 和CE 所在直线交于H ,则BHC ∠的度数是________.2、如图,在ABC 中,,40AB AC BAC =∠=︒,点D 是边AB 上一点,将BCD △沿直线CD 翻折,使点B 落在点E 处,如果ED BC ∥,那么ACD ∠等于______度.3、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.4、已知a ,b ,c 是ABC 的三边长,满足()2720a b -+-=,c 为奇数,则c =______.5、一个三角形的其中两个内角为88︒,32︒,则这个第三个内角的度数为______.三、解答题(5小题,每小题10分,共计50分)1、如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .(2)如图(1),猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A 重合在一起,则∠DAB 与∠CAE 的数量关系为 .2、已知,如图,在ABC 中,点E ,F 分别为,AC AB 边上的动点,BE 和CF 相交于点D ,80A ∠=︒.(1)如果,BE CF 分别为,AC AB 上的高线时,求BDC ∠的度数;(2)如果,BE CF 分别平分,ABC ACB ∠∠时,求BDC ∠的度数.3、如图所示,AB //CD ,G 为AB 上方一点,E 、F 分别为AB 、CD 上两点,∠AEG =4∠GEB ,∠CFG =2∠GFD ,∠GEB 和∠GFD 的角平分线交于点H ,求∠G +∠H 的值.4、如图,AD EF ,12180∠+∠=︒.请从以下三个条件:①DG 平分ADC ∠,②C CAD ∠=∠,③B BAD ∠=∠中选择一个作为条件,使DG AB ,你选的条件是______(填写序号).并说明理由.5、如图,在△ABC 中,CE 平分∠ACB 交AB 于点E ,AD 是△ABC 边BC 上的高,AD 与CE 相交于点F ,且∠ACB =80°,求∠AFE 的度数.-参考答案-一、单选题1、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.2、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.3、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,∠=∠C+∠CAO=90°+15°=105°,∴α故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.4、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.6、A【解析】【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB 可将其固定,故选:A .【点睛】本题考查了三角形的稳定性,加上窗钩AB 构成了△AOB ,而三角形具有稳定性是解题的关键.7、C【解析】【分析】根据三角形的外角的性质直接求解即可,ABD A C ∠=∠+∠.【详解】解:∵在ABC 中,35A ∠=︒,45C ∠=︒,∴ABD A C ∠=∠+∠453580=︒+︒=︒故选C【点睛】本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.8、C【解析】【分析】设第三根木棒的长度为x cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm,则x9393,x612,所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.9、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.10、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.二、填空题1、45°或135°【解析】【分析】分两种情况讨论:①如图1,ABC 为锐角三角形,由题意知90BDA CEA ∠=∠=︒, 45ACE ∠=︒,45ABD ∠=︒,180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒,180DBC BCE BHC ∠+∠+∠=︒,代值计算求解即可;②如图2,ABC 为钝角三角形,由题意知90BDA CEA ∠=∠=︒,在BEH △中,45ABD ∠=︒,90CEB ∠=︒,180BHC CEB ABD ∠=︒-∠-∠,代值计算求解即可.【详解】解:由题意知90BDA CEA ∠=∠=︒①如图1所示,ABC 为锐角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ACE ∠=︒,45ABD ∠=︒∵180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒∴180********DBC BCE ∠+∠=︒-︒-︒-︒=︒∵180DBC BCE BHC ∠+∠+∠=︒∴18045135BHC ∠=︒-︒=︒;②如图2所示,ABC 为钝角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ABD ∠=︒在BEH △中,45ABD ∠=︒,90CEB ∠=︒∴180180904545BHC CEB ABD ∠=︒-∠-∠=︒-︒-︒=︒;综上所述,BHC ∠的值为45︒或135︒故答案为:45︒或135︒.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.2、15【解析】【分析】先根据等腰三角形的性质和三角形内角和等于180°求出∠B=∠ACB=70°,由折叠可得∠BDC=∠EDC,由DE∥AC可得∠EDC=∠BCD,在等腰三角形BDC中求出∠BCD的度数,根据角度关系可求∠ACD的度数.【详解】解:如图,=∠=,40AB AC BAC∴∠=∠=︒,70B ACB∠=∠,由折叠可知BDC EDCDE//BC,∴∠=∠=∠,BCD EDC BDC∠=︒,70B55BCD BDC ∴∠=∠=︒,705515ACD ACB BCD ∴∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了折叠问题,涉及到平行线的性质和等腰三角形的性质,熟练运用折叠的性质是解决本题的关键.3、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD 为△ABC 中线可得S △ABD =S △ACD ,根据E 为AD 中点,12BEC ABC S S ∆∆=,根据BF 为△BEC 中线,1124BEF BEF ABC S S S ∆∆∆==即可.【详解】解:∵AD 为△ABC 中线∴S △ABD =S △ACD ,又∵E 为AD 中点, 故1122ABE DBE ABD ACE DCE ACD S S S S S S ∆∆∆∆∆∆====,, ∴111222BEC BDE DCE ABD ACD ABC S S S S S S ∆∆∆∆∆∆=+=+=,∵BF 为△BEC 中线, ∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.4、7【解析】【分析】绝对值与平方的取值均≥0,可知70a -=,20b -=,可得a 、b 的值,根据三角形三边关系a b c a b c+>⎧⎨-<⎩求出c 的取值范围,进而得到c 的值.【详解】 解:()2720a b -+-= 70a ∴-=,20b -=72a b ∴==,由三角形三边关系a b c a b c +>⎧⎨-<⎩可得95c c >⎧⎨<⎩ 59c ∴<<c 为奇数7c ∴=故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.5、60°##60度【解析】【分析】依题意,利用三角形内角和为:180︒,即可;【详解】由题得:一个三角形的内角和为:180︒;又已知两个其中的内角为:88︒,32︒;︒-︒-︒=︒;∴ 第三个角为:180883260故填:60︒【点睛】本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;三、解答题1、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°【解析】【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,∠=︒-︒=︒;903357BCD∠=︒+︒=︒;9057147ACB故答案为:57°,147°.(2)∠ACB=180°-∠DCE,理由如下:∵∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,∴∠ACB=∠ACE+∠DCE+∠BCD=90°-∠DCE+∠DCE+90°-∠DCE=180°-∠DCE.(3)结论:∠DAB+∠CAE=120°.理由如下:∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,又∵∠DAC=∠EAB=60°,∴∠DAB+∠CAE=60°+60°=120°.故答案为:∠DAB+∠CAE=120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、(1)100゜;(2)130゜【解析】【分析】(1)利用直角三角形两锐角互余、三角形外角的性质,可求得结果;(2)由角平分线的性质及三角形内角和定理可求得∠EBC+∠FCB的度数,从而可求得结果的度数.【详解】(1)∵BE⊥AC,CF⊥AB∴∠AEB=∠CFB=90゜∴∠ABE=90゜-∠A=10゜∴∠BDC=∠CFB+∠ABE=90゜+10゜=100゜(2)∵BE、CF分别平分∠ABC、∠ACB∴12EBC ABC ∠=∠,12FCB ACB ∠= ∵∠ABC +∠ACB =180゜ -∠A =100゜ ∴11()1005022EBC FCB ABC ACB ∠+∠=∠+∠=⨯︒=︒∴180()18050130BDC EBC FCB ∠=︒-∠+∠=︒-︒=︒【点睛】本题考查了三角形内角和定理、三角形外角的性质、角平分线的性质,熟练运用它们是解答的关键.3、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.4、①或③,理由见解析.【解析】【分析】首先根据AD EF ,12180∠+∠=︒,得到1BAD ∠=∠,然后根据平行线的判定定理逐个判断求解即可.【详解】解:∵AD EF ,∴2180BAD ∠+∠=︒,∵12180∠+∠=︒,∴1BAD ∠=∠,当选择条件①DG 平分ADC ∠时,∴1ADG ∠=∠,∴ADG BAD ∠=∠,∴DG AB ,故选择条件①可以使DG AB ;当选择条件②C CAD ∠=∠时,∵1AGD C ∠=∠+∠,BAG BAD CAD ∠=∠+∠,∴BAG AGD ∠=∠,同旁内角相等,不能证明两直线平行,∴选择条件②不可以使DG AB ;当选择条件③B BAD ∠=∠时,∵1BAD ∠=∠,∴1B ∠=∠,∴DG AB ,故选择条件③可以使DG AB ,综上所述,使DG AB ,可以选的条件是①或③.故答案为:①或③.【点睛】此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.5、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=11804022ACB∠=⨯︒=︒,∵AD是△ABC边BC上的高,AD⊥BC,∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.。
2021-2022学年基础强化冀教版七年级数学下册第九章 三角形定向测试试题(含答案解析)
冀教版七年级数学下册第九章 三角形定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°2、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B .下列说法正确的是( )A .证法1用特殊到一般法证明了该定理B .证法1只要测量够100个三角形进行验证,就能证明该定理C .证法2还需证明其他形状的三角形,该定理的证明才完整D .证法2用严谨的推理证明了该定理3、将一副三角板按不同位置摆放,下图中α∠与β∠互余的是( )A .B .C .D . 4、如图,已知AD AB =,CE ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A.155°B.125°C.135°D.145°5、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,176、下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,97、以下各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cm C.5cm,6cm,12cm D.3cm,3cm,6cm8、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.3∠+∠+∠+∠+∠=()9、如图,12345A .180°B .360°C .270°D .300°10、如图,钝角ABC 中,2∠为钝角,AD 为BC 边上的高,AE 为BAC ∠的平分线,则DAE ∠与1∠、2∠之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A .21DAE ∠=∠-∠B .212DAE ∠-∠∠=C .212DAE ∠∠=-∠D .122DAE ∠+∠∠=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、ABC 中,A ∠比B 大10°,50C ∠=︒,则A ∠=______.2、如图,一副三角板按如图放置,则∠DOC 的度数为______.3、若△ABC 的边AB 、BC 的长是方程组93x y x y +=⎧⎨-=⎩的解,设边AC 的长为m ,则m 的取值范围是_____. 4、在ABC 中,20A ∠=︒,60B ∠=︒,100C ∠=︒,那么ABC 是______三角形.(填“锐角”、“钝角”或“直角” )5、如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,连接BE 交AD 于F ,再将三角形DEF 沿DF 折叠后,点E 落在点G 处,若DG 刚好平分∠ADB ,那么∠ADB 的度数是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB 的度数.2、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求(1)∠CAD的度数;(2)∠AED的度数.3、完成下面的证明已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE//BA,DF//CA.求证:∠A+∠B+∠C=180°.证明:∵DE//BA,∴∠3=(),∠2=().∵DF//CA,∴∠1=(),∠BFD=().∴∠2=().∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).4、根据题意画出图形,并填注理由证明:三角形的内角和等于180°.已知:△ABC求证:∴∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD()∠A=∠ACE()∵∠BCA+∠ACE+∠ECD=180°()∴∠A +∠B +∠ACB =180°( )5、已知:如图,AB CD ∥,37,60E D ∠=︒∠=︒,求ABE ∠的度数.-参考答案-一、单选题1、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD 与BC 相交于O ,则∠COD =∠AOB ,∵∠C +∠COD +∠D =180°,∠A +∠AOB =∠B =180°,∠C =∠A =90°,∴∠D =∠B =25°,故选:D .【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.2、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.3、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;故A符合题意;选项B:如图,3903,=,故B不符合题意;选项C:如图,9011,故C不符合题意;选项D:18045135,故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.4、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.5、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,A 、459+=,不能够组成三角形,不符合题意;B 、2.5 6.5910+=<,不能够组成三角形,不符合题意;C 、3475,4315+=>-=<,能够组成三角形,符合题意;D 、51217+=,不能组成三角形,不符合题意;故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形,故不符合题意;B、4+6>8,能组成三角形,故符合题意;C、5+6<12,不能够组成三角形,故不符合题意;D、3+3=6,不能组成三角形,故不符合题意.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、D【解析】【分析】过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴12×AB×DE+12×AC×DF=7,∴12×4×2+12×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.9、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.10、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=12∠BAC=12(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+12(180°-∠2-∠1)=12(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.二、填空题1、70°【解析】【分析】根据三角形内角和定理可得130A B ∠+∠=︒,由题意A ∠比B ∠大10︒,可得10A B ∠-∠=︒,组成方程组求解即可.【详解】解:∵50C ∠=︒,∴130A B ∠+∠=︒,∵A ∠比B ∠大10︒,∴10A B ∠-∠=︒,∴13010A B A B ∠+∠=︒⎧⎨∠-∠=︒⎩, 解得:7060A B ∠=︒⎧⎨∠=︒⎩, 故答案为:70︒.【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.2、75︒【解析】【分析】根据题意得:∠ACB =30°,∠ACD =45°,∠D =90°,从而得到∠OCD =15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB =30°,∠ACD =45°,∠D =90°,∴∠OCD =∠ACD -∠ACB =15°,∴∠DOC =90°-∠OCD =75°.【点睛】本题主要考查了直角三角形的性质,根据题意得到∠ACB =30°,∠ACD =45°,∠D =90°是解题的关键.3、3<m <9【解析】【分析】直接利用三角形三边关系得出答案.【详解】解:∵△ABC 的边AB 、BC 的长是方程组93x y x y +=⎧⎨-=⎩的解,边AC 的长为m , ∴m 的取值范围是:3<m <9,故答案为:3<m <9.【点睛】本题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.4、钝角【解析】【分析】根据三角形按角的分类可得结论.【详解】解:在ABC ∆中,20A ∠=︒,60B ∠=︒,100C ∠=︒,10090C ∠=︒>︒,ABC ∴∆是钝角三角形,【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.5、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDF,∵DG平分∠ADB,∴∠BDG=∠GDF,∴∠EDF=∠BDG,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF,∴∠BDC=∠BDE=3∠GDF,∠BDA=∠GDF+∠BDG=2∠GDF,∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF,∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.三、解答题1、75°【解析】【分析】根据角平分线的定义求出∠DAC 的度数,所以EDCA 可求,进而求出∠ACB 的度数.【详解】解:∵AD 是∠BAC 的平分线,∠BAC =80°,∴∠DAC =40°,∵CE 是△ADC 边AD 上的高,∴∠ACE =90°﹣40°=50°,∵∠ECD =25°∴∠ACB =50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.2、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得CAD ∠的度数;(2)先根据三角形外角性质计算出30BAC ∠=︒,再根据角平分线定义得到1122BAE BAC ∠∠==︒,接着再利用三角形外角性质得到AED ∠.(1)解:在Rt ACD △中,90D ∠=︒,56ACD ∠=︒,180905634CAD ∴∠=︒-︒-︒=︒;(2)解:在ABC ∆中,ACD B BAC ∠=∠+∠,562630BAC ∴∠=︒-︒=︒,AE ∵平分BAC ∠,1152BAE BAC ∴∠=∠=︒, 261541AED B BAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是180︒,合理使用三角形外角性质计算角度.3、∠B ,两直线平行,同位角相等;∠BFD ,两直线平行,内错角相等;∠C ,两直线平行,同位角相等;∠A ,两直线平行,同位角相等;∠A ,等量代换【解析】【分析】先根据平行线的性质得出∠A =∠2,∠1=∠C ,∠3=∠B ,再由平角的定义即可得出结论.【详解】证明:∵DE //B∴∠3=∠B (两直线平行,同位角相等),∠2=∠BFD (两直线平行,内错角相等),∵DF //CA ,∴∠1=∠C (两直线平行,同位角相等),∠A =∠BFD (两直线平行,同位角相等),∴∠2=∠A (等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.4、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换【解析】【分析】根据平行线的性质和平角度数等于180°求解即可.【详解】解:证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)∴∠A+∠B+∠ACB=180°(等量代换)故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.【点睛】此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.5、97°【解析】【分析】延长AB 交DE 于点F ,根据平行线的性质可得160D ∠=∠=︒,根据三角形的外角性质即可求得ABE ∠的度数.【详解】解:如图,延长AB 交DE 于点F .∵AB ∥CD ,∠D =60°,∴160D ∠=∠=︒∵∠ABE 是△BEF 的一个外角,∴∠ABE =∠E +∠1∵∠E =37°∴∠ABE =37°+60°=97°【点睛】本题考查了平行线的性质,三角形外角的性质,掌握三角形的外角性质是解题的关键.。
2021-2022学年度冀教版七年级数学下册第九章 三角形同步训练试题(含答案解析)
冀教版七年级数学下册第九章 三角形同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数学课上,同学们在作ABC 中AC 边上的高时,共画出下列四种图形,其中正确的是( ).A .B .C .D .2、有下列长度的三条线段,其中能组成三角形的是( )A .4,5,9B .2.5,6.5,10C .3,4,5D .5,12,173、将一副三角板按不同位置摆放,下图中α∠与β∠互余的是( )A .B .C .D .4、如果一个三角形的两边长都是6cm ,则第三边的长不能是( )A .3cmB .6cmC .9cmD .13cm5、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A .4B .5C .8D .116、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于()A .140°B .150°C .160°D .170°7、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C∠+∠=∠+∠8、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°9、如图,在ABC 中,90C ∠=︒,30A ∠=︒,将ABC 沿直线m 翻折,点A 落在点D 的位置,则12∠-∠的度数是( )A .30°B .45°C .60°D .75°10、如图,12345∠+∠+∠+∠+∠= ( )A .180°B .360°C .270°D .300°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我们将一副三角尺按如图所示的位置摆放,则αβ∠-∠=_______°.2、在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且a =3,b =4,若三边长为连续整数,则c =______.3、如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,连接BE 交AD 于F ,再将三角形DEF 沿DF 折叠后,点E 落在点G 处,若DG 刚好平分∠ADB ,那么∠ADB 的度数是__________.4、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.5、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.2、平面上有三个点A,B,O.点A在点O的北偏东80方向上,4cmOA=,点B在点O的南偏东30°方向上,3cmOB=,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出AB OA OB<+的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.3、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.∵AB∥CD(已知),∴∠ABC+ =180°().∵BD平分∠ABC,AC平分∠BCD,(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线的意义).∴∠DBC+∠ACB=12()(等式性质),即∠DBC+∠ACB=°.∵∠DBC+∠ACB+∠BOC=180°(),∴∠BOC=°(等式性质).4、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°.(1)如图1,若∠BOD =65°,则∠AOC =______ ;∠AOC =120°,则∠BOD =____ ;(2)如图2,若∠AOC =150°,则∠BOD =_____ ;(3)猜想∠BOD 与∠AOC 的数量关系,并结合图1说明理由;(4)如图3三角尺AOB 不动,将三角尺COD 的OD 边与OA 边重合,然后绕点O 按顺时针以1秒钟15°的速度旋转,当时间t (其中0<t ≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t 的值.5、在ABC 中,100,80,ADB C AD ∠=︒∠=︒平分,BAC BE ∠平分ABC ∠,求BED ∠的度数.-参考答案-一、单选题1、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;+=,不能组成三角形,不符合题意;D、51217故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;故A符合题意;选项B:如图,3903,=,故B不符合题意;选项C:如图,9011,故C不符合题意;选项D:18045135,故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.4、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm ,依题意有6666x -<<+ ,即012x <<,故只有D 符合题意,故选:D .【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.5、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.6、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C=90°,∠2=∠CDE=50°,∠3=∠C+∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.7、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;∠+∠=∠+∠,故选项D不符合题意;选项D、∵1A D∠+∠=∠,1∠+∠=∠,∴A D B CB C故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.8、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.9、C【解析】【分析】设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,设,AEG DEG AFG DFG αβ∠=∠=∠=∠=,根据三角形的外角的性质可得30βα-=︒,进而根据平角的定义即可求得1,2∠∠,即可求得12∠-∠.【详解】如图,设m 交,AC AB 于点,E F ,G 是射线EF 上的一点,折叠,,AEG DEG AFG DFG ∴∠=∠∠=∠设,AEG DEG AFG DFG αβ∠=∠=∠=∠=30A βαα∴=+∠=+︒即30βα-=︒11802,21802αβ∠=︒-∠=︒-122260βα∴∠-∠=-=︒故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.二、填空题1、45【解析】【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.2、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,∴c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.3、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDF,∵DG平分∠ADB,∴∠BDG=∠GDF,∴∠EDF=∠BDG,∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF,∴∠BDC=∠BDE=3∠GDF,∠BDA =∠GDF +∠BDG =2∠GDF ,∵∠BDC +∠BDA =90°=3∠GDF +2∠GDF =5∠GDF ,∴∠GDF =18°,∴∠ADB =2∠GDF =2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.4、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD 为△ABC 中线可得S △ABD =S △ACD ,根据E 为AD 中点,12BEC ABC S S ∆∆=,根据BF 为△BEC 中线,1124BEF BEF ABC S S S ∆∆∆==即可.【详解】解:∵AD 为△ABC 中线∴S △ABD =S △ACD ,又∵E 为AD 中点, 故1122ABE DBE ABD ACE DCE ACD S S S S S S ∆∆∆∆∆∆====,, ∴111222BEC BDE DCE ABD ACD ABC S S S S S S ∆∆∆∆∆∆=+=+=,∵BF 为△BEC 中线, ∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.5、54︒或99︒【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α是99︒的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到199=1802αα++︒︒,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是99︒;②当一个内角α是99︒的两倍时,则=299=198α⨯︒︒,不符合三角形的内角和关系,故舍去; ③当三角形中另两个角是“倍角”关系时,得到199=1802αα++︒︒,得α=54︒,故答案为:54︒或99︒.【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.三、解答题1、48AC =,28AB =【解析】【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =.由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=∵2AC BC =,D 为BC 中点∴244AC BC CD BD === ∴156044AC CD AC AC AC +=+== 即460485AC =⨯=则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.2、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC > ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90【解析】【分析】根据题意利用AB ∥CD 得∠ABC +∠BCD =180;等式的性质得∠DBC +∠ACB =12(∠ABC +∠ACD ),进而由三角形内角和为180°得∠BOC =90°.【详解】解:∵AB ∥CD (已知),∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补),∵BD平分∠ABC,AC平分∠BCD(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线定义),∴∠DBC+∠ACB=12(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.4、(1)115°,60°;(2)30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=65°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,若∠AOC=120°,则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;故答案为:115°;60°;(2)如图2,若∠AOC=150°,则∠BOD=360°-∠AOC-∠AOB-∠COD=360°-150°-90°-90°=30°;故答案为:30°;(3)∠AOC与∠BOD互补.理由如下:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补;(4)分四种情况讨论:当OD⊥AB时,∠AOD=90°-∠A=30°,t=30°÷15°=2(秒);当CD⊥OB时,∠AOD=∠D=45°,t=45°÷15°=3(秒);当CD⊥AB时,∠AOD=180°-60°-45°=75°,t=75°÷15°=5(秒);当OD⊥OA时,∠AOD=90°,t=90°÷15°=6(秒);综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.5、50︒【解析】【分析】根据外角的性质,求得20CAD ∠=︒,根据角平分线的定义可得20BAD ∠=︒,根据三角形的内角和求得60DBA ∠=︒,角平分线的性质可得30DBE ∠=︒,根据三角形内角和即可求解.【详解】解:∵100ADB C CAD ∠=∠+∠=︒,80C ∠=︒∴20CAD ∠=︒,∵AD 平分BAC ∠∴20BAD CAD ∠=∠=︒,由三角形内角和的性质可得,18060ABC ADB BAD ∠=︒-∠-∠=︒,∵BE 平分ABC ∠ ∴1302DBE ABC ∠=∠=︒,由三角形内角和的性质可得,18050BED ADB EBD ∠=︒-∠-∠=︒.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.。
2021-2022学年基础强化冀教版七年级数学下册第九章 三角形专题测试试卷(精选含答案)
冀教版七年级数学下册第九章 三角形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,4cm ,6cmB .2cm ,5cm ,9cmC .7cm ,8cm ,10cmD .6cm ,6cm ,13cm2、下列长度的三条线段能组成三角形的是( )A .3,6,9B .5,6,8C .1,2,4D .5,6,153、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个4、若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( )A .3<c <4B .2≤c ≤6C .1<c <7D .1≤c ≤75、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,96、将一副三角板按不同位置摆放,下图中α∠与β∠互余的是( )A .B .C .D .7、如图,点D 、E 分别在∠ABC 的边BA 、BC 上,DE ⊥AB ,过BA 上的点F (位于点D 上方)作FG ∥BC ,若∠AFG =42°,则∠DEB 的度数为( )A .42°B .48°C .52°D .58°8、如图,AD BC ⊥于点D ,GC BC ⊥于点C ,CF AB ⊥于点F ,下列关于高的说法错误的是( )A .在ABC 中,AD 是BC 边上的高B .在GBC 中,CF 是BG 边上的高C .在ABC 中,GC 是BC 边上的高D .在GBC 中,GC 是BC 边上的高9、如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠COD =30°,则∠BOC 的度数是( )A .30°B .35°C .45°D .60°10、如图,BD 是ABC 的角平分线,∥DE BC ,交AB 于点E .若30A ∠=︒,50BDC ∠=︒,则BDE ∠的度数是( )A .10°B .20°C .30°D .50°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知BE 、CD 分别是 △ABC 的内角平分线,BE 和CD 相交于点O ,且∠A =40°,则∠DOE =____________2、已知a ,b ,c 是△ABC 的三边,化简:|a +b -c |+|b -a -c |=________.3、如图,AD 是BC 边上的中线,AB =5 cm ,AD =4 cm ,△ABD 的周长是12 cm ,则BC 的长是____cm.4、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且a=3,b=4,若三边长为连续整数,则c =______.5、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.三、解答题(5小题,每小题10分,共计50分)OA=,点B在点O的南偏东1、平面上有三个点A,B,O.点A在点O的北偏东80方向上,4cm30°方向上,3cmOB=,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);<+的依据:(2)写出AB OA OB(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.2、如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数.3、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).(1)在旋转过程中,当α为度时,A'B'∥OC,当α为度时,A'B'⊥CD;(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;拓展应用:(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由.4、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB 的度数.5、已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.∠=∠+∠;(1)如图1,连接GM,HM.求证:M AGM CHM(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形三条边的关系计算即可.【详解】解:A. ∵2+4=6,∴2cm ,4cm ,6cm 不能组成三角形;B. ∵2+5<9,∴2cm ,5cm ,9cm 不能组成三角形;C. ∵7+8>10,∴7cm ,8cm ,10cm 能组成三角形;D. ∵6+6<13,∴6cm ,6cm ,13cm 不能组成三角形;故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.2、B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.【详解】解:根据三角形的三边关系,得A、3+6=9,不能组成三角形,选项说法错误,不符合题意;B、6+5=11>8,能组成三角形,选项说法正确,符合题意;C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;故选B.【点睛】本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.3、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.4、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边a、b的长分别为3和4,∴其第三边c的取值范围是4334-<<+,c即17c<<.故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.5、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.6、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;故A符合题意;选项B:如图,3903,=,故B不符合题意;选项C:如图,9011,故C不符合题意;选项D:18045135,故D不符合题意;【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.7、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.8、C【解析】【详解】解:A 、在ABC 中,AD 是BC 边上的高,该说法正确,故本选项不符合题意;B 、在GBC 中,CF 是BG 边上的高,该说法正确,故本选项不符合题意;C、在ABC中,GC不是BC边上的高,该说法错误,故本选项符合题意;D、在GBC中,GC是BC边上的高,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.9、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.10、B【解析】【分析】由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.【详解】解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,∴∠ABD=∠BDC−∠A=50°−30°=20°,∵BD是△ABC的角平分线,∴∠DBC=∠ABD=20°,∵DE∥BC,∴∠EDB=∠DBC=20°,故选:B.【点睛】本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.二、填空题1、110°##110度【解析】【分析】根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.【详解】解:如图,∵∠A=40°,∴∠ABC+∠ACB=180°-∠A=140°,∵BE、CD分别是△ABC的内角平分线,∴∠EBC=12∠ABC,∠BCD==12∠ACB,∴∠EBC+∠BCD=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=70°,∴∠BOC =180°-(∠EBC +∠BCD )=110°,∴∠DOE =∠BOC =110°.故答案为:110°【点睛】本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC +∠BCD =70°是解题关键.2、2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--<,然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边,∴00a b c b a c +->--<,, ∴||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a+b-c|+|b-a-c|3、6【解析】【分析】BD=.根据AD是BC边上的中线,得出D为BC的中点,可得2=,根据条件可求出3BC BD【详解】解:AD是BC边上的中线,D∴为BC的中点,∴=,BD CDAB AD==,△ABD的周长是12cm,5,4BD∴=--=,12543∴==⨯=,BC BD2236故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出D为BC的中点.4、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,∴c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.5、7【解析】【分析】由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.【详解】解:设第三边长是c,则9﹣4<c<9+4,即5<c<13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,∴c=7.故答案为:7.【点睛】本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题,理由见解析;(4)70°1、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.【解析】【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【详解】解:∵DF⊥AB,∠A=40°∴∠AEF=∠CED=50°,∴∠ACB=∠D+∠CED=45°+50°=95°.【点睛】本题考查了三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.3、(1)30,90;(2)105°;(3)不变,理由见解析【解析】【分析】(1)根据题意作出图形,根据所给的条件求解即可;(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.【详解】解:(1)当A'B'∥OC时,∴∠A′OC+∠A′=180°,∵∠A′=90°,∴∠A′OC=90°,∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;当A'B'⊥CD时,则OA′∥CD,∴∠AOA′=∠ODC=90°,即α=90°;故答案为:30;90.(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,∴∠AOB=∠A'OB'=45°,∵∠COD=60°,OB′平分∠COD,∴∠DOB'=30°,∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,即当α为105°时,OB'平分∠COD;(3)不变,理由如下:∵∠AOA′=α,∴∠B′OD=180°﹣45°﹣α=135°﹣α,∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,设∠A′DC=β,∴∠A′DO=90°﹣β,∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,解得∠B'A'D=180°﹣α﹣β,∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.【点睛】本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.4、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.5、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒- ,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解. (1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI ∥AB ,∴∠AGM =∠GMI ,∵AB ∥CD ,∴MI ∥CD ,∴∠CHM=∠HMI,∴∠GMH=∠HMI+∠GMI= ∠AGM+∠CHM;(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH =∠HGQ +∠PHM ,∵∠GQH +∠HGQ +∠PHM =180°,∴∠GQH +∠GMH =180°(3)解:如图,过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒- , ∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠,∴12HGN αβαβ∠=+-=,即2HGN β∠=, ∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ , 解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.。
2021-2022学年冀教版七年级数学下册第九章 三角形定向训练试题(含解析)
冀教版七年级数学下册第九章 三角形定向训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把△ABC 绕顶点C 按顺时针方向旋转得到△A ′B ′C ′,当A ′B ′⊥AC ,∠A =50°,∠A ′CB =115°时,∠B ′CA 的度数为( )A .30°B .35°C .40°D .45°2、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .23、如图,AB 和CD 相交于点O ,则下列结论不正确的是( )A .12∠=∠B .1B ∠=∠C .2D ∠>∠ D .A D B C ∠+∠=∠+∠4、下列各图中,有△ABC 的高的是( )A .B .C .D .5、在△ABC 中,∠A =50°,∠B 、∠C 的平分线交于O 点,则∠BOC 等于( )A .65°B .80°C .115°D .50°6、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .7、小东要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选( )组.A .2,3,5B .3,8,4C .2,4,7D .3,4,58、已知三角形的两边长分别为4cm 和10cm ,则下列长度的四条线段中能作为第三边的是( )A .15cmB .6cmC .7cmD .5cm9、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°10、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E 为△ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,∠B =46°,∠C =30°,∠EFC =70°,则∠D =______.2、如图,在△ABC 中,点D 为BC 边延长线上一点,若∠ACD =75°,∠A =45°,则∠B 的度数为__________.3、△ABC 中,已知∠C =90°,∠B =55°,则∠A =_____.4、如图,已知AE ∥BD ,∠1=88°,∠2=28°.则∠C =_____.5、如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且4ABC S ∆=2cm ,则阴影部分的面积BEF S ∆=______.三、解答题(5小题,每小题10分,共计50分)1、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.∵AB∥CD(已知),∴∠ABC+ =180°().∵BD平分∠ABC,AC平分∠BCD,(已知),∴∠DBC=12∠ABC,∠ACB=12∠BCD(角平分线的意义).∴∠DBC+∠ACB=12()(等式性质),即∠DBC+∠ACB=°.∵∠DBC+∠ACB+∠BOC=180°(),∴∠BOC=°(等式性质).2、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.3、已知,如图1,直线AB CD ∥,E 为直线AB 上方一点,连接ED BE 、,ED 与AB 交于P 点.(1)若110,70ABE CDE ∠=∠=︒︒,则E ∠=_________︒(2)如图1所示,作CDE ∠的平分线交AB 于点F ,点M 为CD 上一点,BFM ∠的平分线交CD 于点H ,过点H 作HG FH ⊥交FM 的延长线于点G ,GF BE ∥,且2320E DFH ∠=∠+︒,求EDF G ∠+∠的度数.(3)如图2,在(2)的条件下,25FDC ∠=︒,将FHG △绕点F 顺时针旋转,速度为每秒钟3︒,记旋转中的FHG △为FH G '',同时FDE ∠绕着点D 顺时针旋转,速度为每秒钟5︒,记旋转中的FDE ∠为F DE ∠'',当FDE ∠旋转一周时,整个运动停止.设运动时间为t (秒),则当FH G ''其中一条边与F DE ∠''的边DF′互相垂直时,直接写出t 的值.4、如图,AD 是∠BAC 的平分线,CE 是△ADC 边AD 上的高,若∠BAC =80°,∠ECD =25°,求∠ACB 的度数.5、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C 岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?-参考答案-一、单选题1、B【解析】【分析】由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.【详解】解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',∴∠A′CA=90°﹣50°=40°,∴∠BCB′=∠A′CA=40°,∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.故选:B.【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.2、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.3、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;∠+∠=∠+∠,故选项D不符合题意;选项D、∵1A D∠+∠=∠,1∠+∠=∠,∴A D B CB C故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、C【解析】【分析】根据题意画出图形,求出∠ABC+∠ACB=130°,根据角平分线的定义得到∠CBD=12∠ABC,∠ECB=12∠ACB,再根据三角形内角和定理和角的代换即可求解.【详解】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°-∠A=130°,∵BD、CE分别是∠ABC、∠ACB的平分线,∴∠CBD=12∠ABC,∠ECB=12∠ACB,∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- 12(∠ABC+∠ACB)=180°- 12×130°=115°.故选:C【点睛】本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.6、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.7、D【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解:根据三角形的三边关系,得A、2+3=5,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+4<7,不能够组成三角形,不符合题意;D、3+4>5,不能够组成三角形,不符合题意.故选:D.【点睛】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8、C【解析】【分析】根据三角形的三边关系可得104104x -<<+,再解不等式可得答案.【详解】解:设三角形的第三边为xcm ,由题意可得:104104x -<<+,即614x <<,故选:C .【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,∵//a b ,∴31115∠=∠=︒,∵3230∠=∠+︒,∴21153085∠=︒-︒=︒;故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.10、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.二、填空题1、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.2、30°##30度【解析】【分析】根据三角形的外角的性质,即可求解.【详解】∠=∠+∠,解:∵ACD A B∴B ACD A ∠=∠-∠ ,∵∠ACD =75°,∠A =45°,∴30B ∠=︒ .故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、35°【解析】【分析】根据三角形的内角和定理列式计算即可得解.【详解】∵∠C =90°,∠B =55°,∴∠A =180°-∠B -∠C =180°-55°-90°=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.4、60°【解析】【分析】根据平行线的性质可得∠3=88°,根据三角形的外角性质即可求得∠C【详解】解:∵AE BD ∥∴∠1=∠3=88°,∵∠3=∠2+∠C,∴∠C=∠3﹣∠2=88°﹣28°=60°,故答案为:60°.【点睛】本题考查了平行线的性质与判定,三角形的外角的性质,求得∠3=88°是解题的关键.5、21cm【解析】【分析】根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,12BEC ABCS S∆∆=,根据BF为△BEC中线,1124BEF BEF ABCS S S∆∆∆==即可.【详解】解:∵AD为△ABC中线∴S△ABD=S△ACD,又∵E为AD中点,故1122 ABE DBE ABD ACE DCE ACDS S S S S S∆∆∆∆∆∆====,,∴111222 BEC BDE DCE ABD ACD ABCS S S S S S∆∆∆∆∆∆=+=+=,∵BF为△BEC中线,∴ΔΔΔ11141244BEF BEC ABC S S S ===⨯=cm 2.故答案为:1cm 2.【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.三、解答题1、∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90【解析】【分析】根据题意利用AB ∥CD 得∠ABC +∠BCD =180;等式的性质得∠DBC +∠ACB =12(∠ABC +∠ACD ),进而由三角形内角和为180°得∠BOC =90°.【详解】解:∵AB ∥CD (已知),∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补),∵BD 平分∠ABC ,AC 平分∠BCD (已知),∴∠DBC =12∠ABC ,∠ACB =12∠BCD (角平分线定义),∴∠DBC +∠ACB =12(∠ABC +∠BCD )(等式性质),即∠DBC +∠ACB =90°,∴∠DBC +∠ACB +∠BOC =180°(三角形内角和等于180°),∴∠BOC =90°(等式性质),故答案为:∠BCD ,两直线平行,同旁内角互补,∠ABC +∠BCD ,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.2、(1)30F ∠=︒;(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75PAC ∠=︒,45ABC ACB ∠=∠=︒,由各角之间的关系及三角形内角和定理可得30PCD ∠=︒,60PDC ∠=︒,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得30CBE ∠=︒,得出DCB CBE ∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC ∠=︒,15BAE ∠=︒,AB AC =,∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE ⊥,∴90ADC ∠=︒,18015ACD ADC DAC ∠=︒-∠-∠=︒,∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.3、 (1)40;(2)EDF G ∠+∠=70°;(3)t 的值为10.【解析】【分析】(1)根据平行线性质求出∠EPB =∠CDE =70°,根据∠ABE 是△BEP 的外角可求∠E =∠ABE -∠EPB =110°-70°=40°即可;(2)根据GF BE ∥,得出∠GFB =∠FBE ,∠HDF =∠PFD ,根据FH 平分BFM ∠,得出∠GFH =∠HFP ,可得∠GFB =2∠HFB =2∠HFD +2∠DFP ,根据DF 平分CDE ∠,得出∠FDH =∠FDE =∠PFD ,可得∠EPB =∠PDH =2∠PDF =2∠PFD ,根据∠EBF 为△EBP 的外角,可证∠E =2∠DFH ,根据2320E DFH ∠=∠+︒,解方程得出∠DFH =20°,根据HG FH ⊥,得出∠G +∠GFH =90°,得出∠G +∠PFD =90°-∠HFD =90°-20°=70°即可;(3)当25FDC ∠=︒时,∠HFP =∠HFD +∠DFP =45°,可得∠GFH =∠HFP =45°,∠G =45°,当FH G ''其中一条边与F DE ∠''的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD 与S ,FH′∥F′D ,∠CDF′=25°+5t ,∠FSC =45°+3°t ,列方程25°+5t =45°+3°t ,当GF ⊥F′D 时,GF 交CD 于R ,交DF′于Q ,∠HDF ′=25°+5t ,∠CRG =∠GFA =3t -90°,∠QRD +∠QDR =90°,列方程3t-90°+180°-(25+5t )=90°,当H′F ⊥DF ′,H′F 交CD 于U ,交DF′于V ,∠HDF′=25°+5°t ,∠CUF =∠AFH′=3°t -90°-45°,∠VUD +∠UDV =90°,列方程180°-(25°+5°t )+3°t -90°-45°=90°即可.(1)解:∵AB CD ∥,70CDE ∠=︒,∴∠EPB =∠CDE =70°,∵∠ABE 是△BEP 的外角,110ABE ∠=︒, ∴∠E =∠ABE -∠EPB =110°-70°=40°, 故答案为:40;(2)解:∵GF BE ∥,∴∠GFB =∠FBE ,∠HDF =∠PFD ∵FH 平分BFM ∠,∴∠GFH =∠HFP ,∴∠GFB =2∠HFB =2∠HFD +2∠DFP ∵DF 平分CDE ∠,∴∠FDH =∠FDE =∠PFD ,∴∠EPB =∠PDH =2∠PDF =2∠PFD ∵∠EBF 为△EBP 的外角,∴∠EBF =∠E +∠EPB =∠E +2∠PFD , ∴2∠HFD +2∠DFP =∠E +2∠PFD , ∴∠E =2∠DFH ,∵2320E DFH ∠=∠+︒,∴4∠DFH =3∠DFH +20°,∴∠DFH=20°,∵HG FH⊥,∴∠FHG=90°,∴∠G+∠GFH=90°,∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,∴EDF G∠+∠=70°;(3)当25∠=︒时,∠HFP=∠HFD+∠DFP=45°,FDC∴∠GFH=∠HFP=45°,∴∠G=45°,当FH G''其中一条边与F DE∠''的边DF′互相垂直,分三种情况,当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,∴25°+5t=45°+3°t,解得t=10,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,解得t=-12.5<0舍去,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∵∠VUD+∠UDV=90°,∴180°-(25°+5°t)+3°t-90°-45°=90°,解得t=-35<0舍去,综合t的值为10.【点睛】本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,根据余角性质列方程是解题关键.4、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.5、90°【解析】【分析】根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.【详解】解:由题意得,∠DAB=80°,∵DA∥EB,∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,∴∠ABC=∠EBA﹣∠EBC=60°,∵∠DAB=80°,∠DAC=50°,∴∠CAB=30°,∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.【点睛】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章达标检测卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列命题中,是真命题的是()A.三角形的角平分线与角的平分线都是射线B.三角形的角平分线与角的平分线都是线段C.三角形的角平分线是射线,角的平分线是线段D.三角形的角平分线是线段,角的平分线是射线2.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9C.4,6,8 D.5,5,113.如图,D,E分别是△ABC的边AC,BC的中点,则下列说法错误的是() A.DE是△BCD的中线B.BD是△ABC的中线C.AD=CD,BE=CE D.只有DE是∠C的对边4.一个三角形的两个内角分别是55°和65°,下列度数的角不可能是这个三角形的外角的是()A.130°B.125°C.120°D.115°5.如图,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有() A.1条B.2条C.3条D.5条6.下列说法中错误的是()A.一个三角形中至少有一个角不小于60°B.直角三角形只有一条高C.三角形的中线不可能在三角形外部D.三角形的一条中线把三角形分成面积相等的两部分7.某等腰三角形的两边长分别为7 cm和13 cm,则它的周长是() A.27 cm B.33 cmC.27 cm或33 cm D.6 cm或20 cm8.如图,在△ABC中,AD平分∠BAC,∠C=30°,∠DAC=45°,则∠B的度数为()A.60°B.65°C.70°D.75°9.如图,AB∥CD,∠A=48°,∠C=22°,则∠E等于()A.70°B.26°C.36°D.16°10.如图,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠111.具备下列条件的△ABC,不是直角三角形的是()A.∠A=2∠B=3∠C B.∠A-∠B=∠CC.∠A:∠B:∠C=2:3:5 D.∠A=12∠B=13∠C12.如图,∠B+∠C+∠D+∠E-∠A等于()A.360°B.300°C.180°D.240°13.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.414.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°15.如图,P是等边三角形ABC中AC边上的任意一点,AD是△ABC的高,PE ⊥AB于点E,PF⊥BC于点F,则()A.PE+PF>AD B.PE+PF<ADC.PE+PF=AD D.以上都有可能16.如图,△ABC的角平分线CD,BE相交于F,∠A=90°,EG∥BC,且CG ⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=12∠CGE.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(17,18题每题3分,19题4分,共10分)17.已知a,b,c为△ABC的三边长,化简:|a+b-c|-|a-b-c|+|a-b+c|=______________.18.若一个三角形的三个内角的度数之比为1:2:3,则相应的三个外角的度数之比为______________.19.如图,AD,AE分别是△ABC的中线和高,BC=6 cm,AE=4 cm,△ABC 的面积为____________,△ABD的面积为__________.三、解答题(20,21题每题8分,22~25题每题10分,26题12分,共68分) 20.已知:如图,AC∥DE,∠ABC=70°,∠E=50°,∠D=75°.求∠A和∠ABD的度数.21.已知一等腰三角形的周长是16 cm.(1)若其中一边长为4 cm,求另外两边的长;(2)若其中一边长为6 cm,求另外两边的长.22.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.23.如图,在△ABC中,∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC的度数.24.如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2.(1)求△CDE的面积;(2)求△BEF的面积.25.如图,△ABC的角平分线BE,CF相交于点P,过点P作直线MN∥BC,分别交AB和AC于点M和N.若∠A=α,试用含α的代数式来表示∠MPB+∠NPC的度数.若直线MN与BC不平行,上述结论仍成立吗?试说明理由.26.如图,在△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB=70°.(1)试说明∠BAD:∠CAD=1:2;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.答案一、1.D 2.C 3.D 4.A 5.D 6.B 7.C 8.A 9.B 10.B11.A 点拨:本题运用了方程思想.由∠A =2∠B =3∠C 可得∠B =12∠A ,∠C =13∠A ,又因为∠A +∠B +∠C =180°,所以∠A +12∠A +13∠A =116∠A=180°,所以∠A =⎝ ⎛⎭⎪⎫1 08011°,故△ABC 不可能是直角三角形;由B 选项可得∠A =∠B +∠C =12(∠A +∠B +∠C )=90°;C 选项中∠C =52+3+5(∠A +∠B +∠C )=12×180°=90°; 由D 选项可得2∠A +3∠A +∠A =180°,所以∠A =30°,所以∠C =3∠A =90°.所以选A.12.C13.B 点拨:易得S △ABE =13×12=4,S △ABD =12×12=6,所以S △ADF -S △BEF =S △ABD-S △ABE =2.14.B 点拨:正方形每个内角为90°,等边三角形每个内角为60°.利用平角定义可得以下三个式子:∠BAC =180°-90°-∠1=90°-∠1,∠ABC =180°-60°-∠3=120°-∠3,∠ACB =180°-60°-∠2=120°-∠2,在△ABC 中,∠BAC +∠ABC +∠ACB =180°,∴90°-∠1+120°-∠3+120°-∠2=180°,∴∠1+∠2=150°-∠3=150°-50°=100°.15.C 点拨:本题运用巧添辅助线法和等面积法.如图所示,连接BP ,则S △ABC=S △ABP +S △CBP ,即12BC ·AD =12AB ·PE +12BC ·PF .因为△ABC 是等边三角形,所以AB =BC ,所以PE +PF =AD .16.C 点拨:① ∵EG ∥BC ,∴∠CEG =∠ACB .又∵CD 是△ABC 的角平分线,∴∠ACB =2∠DCB ,∴∠CEG =2∠DCB .故①正确;② ∵∠CEG =∠ACB ,而∠GEC 与∠GCE 不一定相等,∴CA 不一定平分∠BCG ,故②错误;③ ∵∠A =90°,∴∠ADC +∠ACD =90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠ADC +∠BCD =90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB =90°,即∠GCD +∠BCD =90°,∴∠ADC =∠GCD ,故③正确;④ ∵∠ABC +∠ACB =90°,CD 平分∠ACB ,BE 平分∠ABC ,∴∠EBC =12∠ABC ,∠DCB =12∠ACB , ∴∠DFB =∠EBC +∠DCB =12(∠ABC +∠ACB )=45°.∵∠CGE =90°,∴∠DFB =12∠CGE ,故④正确.故选C.二、17.3a -b -c18.5:4:319.12 cm 2;6 cm 2三、20.解:∵AC ∥DE ,∠E =50°,∠D =75°,∴∠ACB =∠E =50°,∠BFC =∠D =75°.又∵∠ABC =70°,∴∠A =180°-∠ABC -∠ACB =180°-70°-50°=60°,∠ABD =∠BFC -∠A =75°-60°=15°.21.解:(1)当底边长为4 cm时,腰长为(16-4)÷2=6(cm).当腰长为4 cm时,底边长为16-4×2=8(cm).∵4+4=8,∴不能组成三角形.∴另外两边的长分别是6 cm,6 cm.(2)当底边长为6 cm时,腰长为(16-6)÷2=5(cm).当腰长为6 cm时,底边长为16-6×2=4(cm).∴另外两边的长分别是5 cm,5 cm或6 cm,4 cm.22.解:∵∠A+∠ABC+∠ACB=180°,且∠ABC=66°,∠ACB=54°,∴∠A=60°.在△ABE中,∵∠AEB=90°,∴∠ABE=90°-∠A=30°.又∠CFB=90°,∴∠BHF=60°.∵∠BHF+∠BHC=180°,∴∠BHC=120°.在△ACF中,∵∠AFC=90°,∴∠ACF=90°-∠A=30°.23.解:在△ABD中,由三角形外角的性质知:∠ADC=∠B+∠BAD,∵∠BAD=40°,∴∠EDC+∠1=∠B+40°.①同理,得∠2=∠EDC+∠C.∵∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B.②将②代入①得2∠EDC+∠B=∠B+40°,∴∠EDC=20°.24.解:(1)∵△ABD和△ADC不等底、等高,BD:CD=2:3,∴S△ABD=25S△ABC=25×20=8(cm2),S△ADC=20-8=12(cm2).∵E 是AD 的中点,∴S △CDE =12S △ADC =12×12=6(cm 2).(2)∵S △BDE =12S △ABD =12×8=4(cm 2),∴S △BCE =S △BDE +S △CDE =4+6=10(cm 2).∵F 是CE 的中点,∴S △BEF =12S △BCE =12×10=5(cm 2).25.解:∵BP ,CP 分别平分∠ABC ,∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB .∵∠A =α,∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°-α,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=90°-12α.∵MN ∥BC ,∴∠MPB =∠PBC ,∠NPC =∠PCB ,∴∠MPB +∠NPC =∠PBC +∠PCB =90°-12α.若MN 与BC 不平行,上述结论仍成立.理由如下:∵∠MPB +∠BPC +∠NPC =180°,∠BPC +∠PBC +∠PCB =180°,∴∠MPB +∠NPC =180°-∠BPC =180°-[180°-(∠PBC +∠PCB )]=∠PBC +∠PCB =90°-12α.点拨:本题运用了整体思想.尤其当MN 与BC 不平行时,利用整体代换更能体现∠PBC +∠PCB 与∠A 的恒定关系.26.解:(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°.∵AD ⊥BC ,∴∠ADB =∠ADC =90°.∴∠BAD =90°-∠ABD =90°-64°=26°.∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-∠C =90°-38°=52°.∴∠BAD:∠CAD=26°:52°=1:2.(2)分两种情况:①当∠EFC=90°时,如图①所示,则∠BFE=90°.∴∠BEF=90°-∠EBC=90°-32°=58°;②当∠FEC=90°时,如图②所示,则∠EFC=90°-∠C=90°-38°=52°.∴∠BEF=∠EFC-∠EBF=52°-32°=20°..综上所述,∠BEF的度数为58°或20°11 / 11。