2015年一模名校联考数学试题及答案
山西省运城市2015年一模名校联考数学试题及答案
BA 'AB 'O第6题图山西省运城市2015年中考一模名校联考数学试题时间120分钟 满分120分 2015/3/19一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的平方根为( * ).A .2B .±2C .4D .±42. 对于样本数据1,2,3,2,2,以下判断:①平均数为5;②中位数为2;③众数为2;④极差为2.正确的有( * ). A .1个B .2个C .3个D .4个3.如图所示的几何体的主视图是( * ).4.如果代数式1-x x有意义,那么x 的取值范围是( * ). A .x ≥0 B .x ≠1 C .x >0 D .x ≥0且x ≠15. 已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( * ).A .30πcm 2B .50πcm 2C .60πcm 2D .391πcm 26.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB ', 若∠AOB=15°,则∠AOB'的度数是( * ). A .25° B .30° C .35° D .40°7.一次函数32-=x y 的大致图像为( * )A .B .C .D .第3题图B第8题图第10题图8.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是 小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小 正方形内,则∠APB 等于( * ).A .30°B .45°C .60°D .90°9.关于x 的二次函数2(1)2y x =--+,下列说法正确的是( * ).A .图象的开口向上B .图象与y 轴的交点坐标为(0,2)C .当1x >时,y 随x 的增大而减小D .图象的顶点坐标是(-1,2)10.如图,直角三角形纸片ABC 中,AB=3,AC=4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交与点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;如此类推,则AP 6的长为( * ).A .512532⨯B .69352⨯C .614532⨯D .711352⨯二、填空题(本大题共6小题,每小题3分,满分18分)11.点A (0,3)向右平移2个单位长度后所得的点A ’的坐标为 * .12.已知空气的单位体积质量为0.00124克/厘米3,将0.00124用科学记数法表示为* .13.如图,△ABC 与△DEF 是位似图形,相似比为2∶3,已知AB =4,则DE 的长为* .14.化简:=+-+1112a a a * . 15.如图,防水堤坝的轴截面是等腰梯形ABCD ,DA CB =,DC AB ∥,5=DA ,4=DC ,9=AB ,则斜坡DA 的坡角为 * __ 度.16.已知α ,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,第13题图CODEFA B且满足βα11+=﹣1,则m的值是 * .三、解答题(本大题共9小题,满分72 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分5分)解方程:xx 332=-.18.(本小题满分6分)如图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结AE ,交CD 于点F , 求证:△AFD ≌ △EFC .19.(本小题满分5分)已知1=-b a 且2=ab ,求代数式32232ab b a b a +-的值.20.(本小题满分6分)小强对自己所在班级的48名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.第18题图 ABCD第15题图21.(本小题满分8分)为支持失学儿童,某中学计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件? (2)若购买这批学习用品的钱不超过28000元,则最多能购买B 型学习用品多少件?22.(本小题满分10分)如图,在菱形ABCD 中,AB =23,∠BAD =60º,AC 交BD 于点O ,以点D 为圆心的⊙D 与边AB 相切于点E . (1)求AC 的长;(2)求证:⊙D 与边BC 也相切.23.(本小题满分10分)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数xky =)0(≠k 的图象经过点C .(1)求反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,△PAD 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.第23题图第20题图第22题图24.(本小题满分10分)如图1,在半径为2的扇形AOB 中,∠AOB =90°,点C 是 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为点D 、点E . (1)当BC =1时,求线段OD 的长;(2)在点C 的运动过程中,△DOE 中是否存在长度保持不变的边或度数保持不变的角?如果存在,请指出并求其长度或度数(只求一种即可......);如果不存在,请说明理由; (3)作DF ⊥OE 于点F (如图2),当DF 2+EF 取得最大值时,求sin ∠BOD 的值.25.(本小题满分12分)如图,已知直线l :2+-=x y 与y 轴交于点A ,抛物线k x y +-=2)1(经过点A ,其顶点为B ,另一抛物线h h x y -+-=2)(2(h >1)的顶点为D ,两抛物线相交于点C , (1)求点B 的坐标,并判断点D 是否在直线l 上,请说明理由; (2)设交点C 的横坐标为m .①请探究m 关于h 的函数关系式;②连结AC 、CD ,若∠ACD =90°,求m 的值.第25题图第24题图1第24题图2数学参考答案与评分标准一、选择题(本大题共有10小题,每小题3分,共30分)二、填空题(本大题共有6小题,每小题3分,共18分) 11.(2,3) 12.1.24×10-313.6 14.a ﹣1 15.60 16.3 (说明:此题写出“3或-1”作为答案,给2分)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分5分)解:方程两边同乘以()3-x x ,得()332-=x x ………………4分 解得9=x .………………8分检验: 当 x = 9时,()3-x x 0≠所以x = 9是原方程的解. ………………9分18.(本小题满分6分)解:(1)如图所示,线段CE 为所求; ………………3分 (2)证明:在□ABCD 中,A D ∥BC ,AD =BC .∴∠DAF =∠CEF ………………5分 ∵CE =BC , ∴AD =CE , ………………7分又∵∠DFA =∠CFE , ………………8分 ∴△AFD ≌ △EFC . ………………9分(说明:第(2)小题的解法较多,只要过程合理,同样给满分)19.(本小题满分5分) 解法一:∵1=-b a 且2=ab∴32232ab b a b a +-)2(22b ab a ab +-= ………………3分 2)(b a ab -= ………………6分212⨯=………………8分 2= ………………10分解法二:由1=-b a 且2=ab 解得⎩⎨⎧==12b a 或⎩⎨⎧-=-=21b a………………4分当⎩⎨⎧==12b a 时,32232ab b a b a +-2=;………………7分当⎩⎨⎧-=-=21b a 时,32232ab b a b a +-2= ………………10分(说明:解法二只算出一种情况共给5分)20. (本小题满分6分) 解:(1)m =48﹣6﹣25﹣3﹣2=12; ………………3分(2)记6~8小时的3名学生为A 1、A 2、A 3,8~10小时的两名学生为B 1、B 2,…8分(说明:列表法的评分标准与画树状图法一样) P (至少1人时间在8~10小时)=1072014=. ………………10分21.(本小题满分8分) 解:(1)解法一:设购买A 型学习用品x 件,则B 型学习用品为(1000)x -.根据题意,得2030(1000)26000x x +-=………3分 解方程,得x =400 ………5分 则10001000400600x -=-=答:购买A 型学习用品400件,购买B 型学习用品600件.………6分解法二:设购买A 型学习用品x 件, B 型学习用品y 件.根据题意,得⎩⎨⎧=+=+2600030201000y x y x………3分解方程组,得⎩⎨⎧==600400y x………5分答:购买A 型学习用品400件,购买B 型学习用品600件.………6分(2)设最多购买B 型学习用品z 件,则购买A 型学习用品为)1000(z -件.根据题意,得2800030)1000(20≤+-z z ………9分 解不等式,得800≤z………11分 答:最多购买B 型学习用品800件.………12分22.(本小题满分10分)解:(1)∵四边形ABCD 是菱形,∠BAD =60º ∴∠BAO =30º,∠AOB =90º,AC =2AO ………3分 ∴330cos 32cos =︒⨯=∠⋅=BAO AB AO ………5分∴AC =6.………6分(说明:第(1)小题的解法较多,只要过程合理、答案正确,同样给满分) (2)证明: 连接DE ,过点D 作DF ⊥BC ,垂足为点F ………7分 ∵四边形ABCD 是菱形,∴BD 平分∠ABC ………9分∵⊙D 与边AB 相切于点E ,∴DE ⊥AB∵DF ⊥BC ∴DF =DE………11分 ∴⊙D 与边BC 也相切. ………12分23.(本小题满分10分) 解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,﹣3), ∴AB =5, ∵四边形ABCD 为正方形, ∴点C 的坐标为(5,﹣3). ………………2分 ∵反比例函数xky =的图象经过点C , ∴53k=-,解得k =﹣15, ∴反比例函数的解析式为xy 15-=; ………………4分(2)设点P 到AD 的距离为h .∵△PAD 的面积恰好等于正方形ABCD 的面积, ∴25521=⨯⨯h , 解得h =10.………………6分① 当点P 在第二象限时,122=+=h y P ………………7分 此时,451215-=-=P x ∴点P 的坐标为(45-,12) ………………9分 ②当点P 在第四象限时,8)2(-=--=h y P ………………10分此时,815815=--=P x ∴点P 的坐标为(815,﹣8) ………………12分 综上所述,点P 的坐标为(45-,12)或(815,﹣8).24.(本小题满分10分)解:(1)∵点O 是圆心,OD ⊥BC ,BC =1,∴BD =12BC =12。
2015年中考一模名校联考数学试题及答案(一)
2015年中考一模名校联考数学试题(一)时间120分钟 满分120分2015、2、27一、填空题(每小题3分,共计24分)1.13-= .2.某班48名学生的年龄统计结果如下表所示:这个班学生年龄的众数是.3.我国南方一些地区的农民戴的斗笠是圆锥形.已知圆锥的母线长为30cm ,底面圆的半径为24cm ,则圆锥的侧面积为2cm .(结果用π表示)4.如图,AE AD =,要使ABD ACE △≌△,请你增加一个..条件是.(只需要填一个..你认为合适的条件) 5.若双曲线ky x=过点(32)P ,,则k 的值是 .6.因季节变换,某商场决定将一服装按标价的8折销售,此时售价为24元,则该服装的标价为元.7.按下列规律排列的一列数对:(21),,(54),,(87),,,则第5个数对中的两个数之和是 .8.已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值是.二、选择题(,每小题3分,共计30分)第4题图9.下列计算正确的是( ) A.110-+=B.110--=C.1313÷=D.236=10.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ) A.229a y +B.229a y -+C.229a y -D.229a y --11.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.24cm2C.2D.23cm12.左图是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确的是( )A.①②B.①③C.②③D.③13.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )A.B.C.D.①正视图②俯视图③左视图14.下列图形中,既是轴对称图形又是中心对称图形的是()15.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y 桶,则所列方程组中正确的是()A.8625075%x yy x+=⎧⎨=⎩B.8625075%x yx y+=⎧⎨=⎩C.6825075%x yy x+=⎧⎨=⎩D.6825075%x yx y+=⎧⎨=⎩16.将一张矩形纸片ABCD如图所示折叠,使顶点C落在C'点.已知2AB=,A.B.C.D.30DEC '∠=,则折痕DE 的长为( )A.2 B.23 C.4 D.117.2014年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进行竞猜,统计结果如图.若把认为巴西队将夺冠的这组学生人数作为一组的频数,则这一组的频率为( ) A.0.1B.0.15C.0.25D.0.318.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800 升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先Q第16题图 第17题图三、解答题(共计66分)19.(本题满分10分,每小题5分)(10+4sin60(51)(2)解方程:5311x x =-+20.(本题满分7分)先化简,再求值:262933mm m m ÷---+ 其中2m =21.(本题满分7分)如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张.(1)用列举法列举所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率.22.(本题满分9分)如图甲,四边形ABCD是等腰梯形,AB DC∥.由4个这样的等腰梯形可以拼出图乙所示的平行四边形.(1)求梯形ABCD四个内角的度数;(2)试探梯形ABCD四条边之间存在的数量关系,并说明理由.图甲图乙23.(本题满分9分)如图,小鹏准备测量学校旗杆的高度.他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得旗杆在水平地面上的影长20BC =米,在斜坡坡面上的影长8CD =米,太阳光线AD 与水平地面成30角,且太阳光线AD 与斜坡坡面CD 互相垂直.请你帮小鹏求出旗杆AB 的高度(精确到1米).1.4=1.7=)24.(本题满分12分)如图,在直角坐标系中,点O '的坐标为(20)-,,O '与x 轴相交于原点O 和点A ,又B C ,两点的坐标分别为(0)b ,,(10),. (1)当3b =时,求经过B C ,两点的直线的解析式;(2)当B 点在y 轴上运动时,直线BC 与O '有哪几种位置关系?并求每种位置关系时b 的取值范围.25.(本题满分12分)如图:已知抛物线213442y x x =+-与x 轴交于A ,B 两点,与y 轴 交于点C ,O 为坐标原点.(1)求AB C ,,三点的坐标; (2)已知矩形DEFG 的一条边DE 在AB 上,顶点F G ,分别在BC ,AC 上,设OD m =,矩形DEFG 的面积为S ,求S 与m 的函数关系式,并指出m 的取值范围;(3)当矩形DEFG 的面积S 取最大值时,连结对角线DF 并延长至点M ,使25FM DF =. 试探究此时点M 是否在抛物线上,请说明理由.参考答案及评分标准一、填空题1.132.15 3.720π 4.B C ∠=∠5.66.307.278.12二、选择题三、解答题19.(1)解:原式1= 1=(2)解:去分母得:5(1)3(1)x x +=-解之得4x =- 经检验,4x =-是原方程的根20.(1)所有可能出现的结果可用下表表示:(2)由上表可知牌面的数字之和不小于5的概率为:3193=.22.解:(1)如图123∠=∠=∠,123360∠+∠+∠=,即1120∠=,所以图甲中梯形的上底角均为120,下底角均为60.(2)由EF 既是梯形的腰,又是梯形的上底可知,梯形的腰等于上底.连结MN ,则30FMN FNM ∠=∠=,从而30HMN ∠=,90HNM ∠=,所以12NH MH =,因此梯形的上底等于下底长的一半,且等于腰长. 23.解:延长AD ,BC 相交于点E ,则30E ∠=,,16CE =∴. 在ABE △A中,36BE BC CE =+=,由tan ABAEB BE∠=,得3612 1.7203AB =⨯==⨯≈ 24.解:(1)经过B C ,两点的直线的解析式为:33y x =-+ (2)点B 在y 轴上运动时,直线BC 与O '的位置关系有相离、相切、相交三种.当点B 在y 轴上运动到点E 时,恰好使直线BC 切O '于点M ,连结O M ',则O M M C '⊥.在Rt CMO '△中,3CO '=,2O M '=,CM =∴由Rt Rt CMO COE '△∽△,可得OE COO M CM=',OE =∴EF HM123由圆的对称性可知,当5b =±时,直线BC 与圆相切;当5b >或5b <-时,直线BC 与圆相离;当55b -<<时,直线BC 与圆相交.25.解:(1)(20)A ,,(80)B -,,(04)C -, (2)由ADG AOC △∽△,可得AD OG AO OC =,2(2)DG m =-∴由BEF BOC △∽△得EF BEOC BO=,又2(2)E F D G m ==-,4(2)BE m =-∴,5DE m =∴22(2)52010S D G D E m m m m=⨯=-=-∴ S ∴与m 的函数关系式为21020S m m =-+,且02m <<.(3)由21020S m m =-+可知1m =时,S 有最大值10,此时(10)D ,,5DE =,2EF =.过点M 作MN AB ⊥,垂足为N ,则有MN FE ∥,DE EF DFDN MN DM==∴,又有57DF DM =,得7DN =,145MN =(60)N -,∴,14(6)5M --, 在二次函数213442y x x =+-中,当6x =-时,1445y =-≠-,∴点M 不在抛物线上.。
山西省2015年中考模拟考试名校联考第一次考试数学试题及答案
山西省2015年中考模拟考试名校联考第一次考试数学试题时间120分钟满分120分 2015、2、6一、选择题(每小题3分,共24分)1.2014的相反数是【】A.-2014 B.±2014 C.2014 D.-︱-2014︱2.如图,如图,已知AB∥CD,AD平分∠BAE,则∠AEC的度数是【】A.19° B.38°C.72°D.76°3.已知反比例函数-5y=x,下了结论中不正确的是【】A .图像必过点(1,-5) B.y随x的增大而增大C.图像在第二、四象限 D.若x>1,则-5<y<04. 将1、2、3三个数字随机生成的点的坐标,列成下表。
如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是【】A.0.3 B.0.5 C.13D.235.下图中所示的几何体的主视图是【】6.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF的面积比是【】A.1:6 B.1:5C.1:4D.1:27. 已知 k1<0<k2,则函数 y=k1x 和 y=k2x的图象大致是【】A(第2题)BC DEAB CD(第5题)F (第6题) OBCDEAn=3(第14题)n=1n=28.如图,在四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=P 在四边形ABCD 的边上,若P 在BD 的距离为1,则点P 的个数为【 】 A .1 B. 2 C. 3 D. 4二、填空题 (每小题3分,共18分)9. 请写出一个比小的整数 .10. 国际统计局发布2013年宏观数据显示,2013年国内生产总值约为472000亿元,这个数据用科学记数法可表示为 .11..某长途汽车站的显示屏,每隔5分钟显示某班汽车的信息,显示时间持续1分钟,某人到汽车站时,显示屏上正好显示该班次信息的概率是 .12.如图,先将一平行四边形纸片ABCD 沿AE ,EF 折叠,使E ,B ’ ,C ’,在同一直线上,再将折叠的纸片沿EG 折叠,使AE 落在EF 上,则∠AEG= 度.13. 在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为14.如图,是用同样大小的正方形按一定的规律摆放而成的一系列图案,则第n 个图案中正方形的个数是 个.(第8题)ABCD(第12题)FABCDC'B' DFAGEA 'A B C D15.如图,在△ABC 中,AB=AC ,D ,E 分别是AB ,AC 的中点,M ,N 为BC 上的点,连接DN ,EM.若AB=10cm ,BC=12cm ,MN=6cm ,则图中阴影部分的面积为 2cm三、解答题 (本大题共8个小题,满分78分)16.(8分)先化简,再求值:221a -a-2a -4²22+a a -2a,其中17.(9分)我市某区对参加模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学会上的数学成绩(分数为整数)进行统计,绘制成频率分布直方图(如图10),已知从左到右五个小组的频数之比为6:7:11:4:2,第五小组的频数为40. (1)本次调查共抽调了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中及格的人数、优秀的人数各占所抽取人数的百分之多少?(3)根据(2)中的结论,该区所以参加市模拟考试的学生,及格、优秀人数各约是多少人?(第15题)18.(9分) 已知:如图在四边形ABCD 中,过对角线BD 的中点O 作直线EF 分别交DA 的延长线、AB DC BC 、、的延长线于点E M N F 、、、.(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明; (2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?19.(9分)甲、乙两条轮船同时从港口A 出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求: (1)港口A 与小岛C 之间的距离 (2)甲轮船后来的速度.EB MOD NFC(第18题)A20.(9分)已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.21.(10分)某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.(第20题)22.(10分)如图6,已知直线AB与x轴、y轴分别交于A和B,OA=4,且OA、OB长是关于x的方程x2-mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连结CM并延长交x 轴于N。
2015年中考一模名校联考数学试题及答案.com
2015年中考一模名校联考数学试题(卷)时间120分钟满分120分 2015/3/5 一、选择题(每小题3分,共24分)1.(3分)在0.1,﹣3,和这四个实数中,无理数是()A.0.1 B.﹣3 C. D.2.(3分)2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为()A. 3.75×104B.37.5×103C.0.375×105D. 3.75×1033.(3分)有一组数据:2,4,3,4,5,3,4,则这组数据的众数是()A. 5 B. 4 C. 3 D. 24.(3分)将“中国梦我的梦”六个字分别写在一个正方体的六个面上,这个正方体的展开图如图,那么在这个正方体中,和“我”字相对的字是()A.中 B.国 C.的 D.梦5.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1 C.x>﹣1 D.x≤16.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,则∠2的度数为()A.35° B 65°C.85°D.95°3题图6题图 7题图 8题图7.(3分)如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°8.(3分)如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(﹣1,0),点B的坐标为(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A.1 B 2 C.4 D.8二、填空题(每小题3分,共18分)9.(3分)计算:﹣2= .10.(3分)某饭店在2014年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了桌年夜饭(用含a的代数式表示).11.(3分)一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为度.11题图 12题图 13题图 14题图12.(3分)如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C 在⊙O上,若⊙O的半径为5,AB=4,则AD边的长为 6 .13.(3分)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为4,则k的值为.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是;(2)当n=2时,点B的纵坐标是;(3)点B的纵坐标是(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是.24.(12分)如图,在R t△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A 出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s 的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD 沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P 的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t 的值.参考答案一、选择题(每小题3分,共24分)1.C.2.A.3.B.4.B.5. A.6.D.7.D.8.C.二、填空题(每小题3分,共18分)9.1.10.(2a+4)11.30度.12.6.13.y=﹣x2+2x+3.14.4.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的都是A的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次抽取的都是A的有1种情况,∴两次抽取的都是A的概率为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.考点:分式方程的应用.分析:设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.解答:解:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作时间=工作总量÷工作效率.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.考点:矩形的性质;等腰直角三角形.分析:根据题意可得AD=DE,AE=AB,再根据矩形的性质可得∠D=∠ABC=∠DAB=90°,然后根据等腰三角形的性质分别算出∠DAE和∠EAB,再根据叫的和差关系可得答案.解答:解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB==67.5°,∴∠EBC=90°﹣67.5°=22.5°.点评:此题主要考查了矩形的性质,以及等腰三角形的性质,关键是掌握矩形的四个角都是直角.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出答案.解答:解:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,答:风筝离地面的高度约为10.1m.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用乘坐私家车的人数除以其所占的百分比即可确定a值;(2)总数减去其他交通方式出行的人数即可确定乘坐校车的人数,从而补全统计图;(3)用学生总数乘以乘坐校车的所占的百分比即可.解答:解:(1)观察两种统计图知:乘坐私家车上学的有600人,占20%,∴a=600÷20%=3000人;(2)乘坐校车的有3000﹣600﹣600﹣300﹣300=1200人,统计图为:乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数为×360°=120°;(3)初中学生15000名中,坐校车上学的人数有15000×=6000人.点评:本题考查了条形统计图及扇形统计题的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息,难度适中.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.考点:一次函数的应用.分析:(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.解答:解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,∴行驶的时间分别为:=3小时,则=2小时,∴t=3+2=5;∴轿车从乙地返回甲地时的速度是:=120(km/h);(2)∵t=5,∴此点坐标为:(5,0),设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,∴,解得:,∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);(3)设货车行驶图象解析式为:y=ax,则240=4a,解得:a=60,∴货车行驶图象解析式为:y=60x,∴当两图象相交则:60x=﹣120x+600,解得:x=,故﹣3=(小时),∴轿车从乙地返回甲地时与货车相遇的时间小时.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等边三角形,又由△BCE是等边三角形,可证得△BDC≌△EAC(SAS),即可得BD=AE;(2)由△BCE是等边三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的长,即可求得BD的长.解答:(1)证明:∵在△ADC中,AD=DC,∠ADC=60°,∴△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,在△BDC和△EAC中,,∴△BDC≌△EAC(SAS),∴BD=AE;(2)解:∵△BCE是等边三角形,∴BE=BC=3,∠CBE=60°.∵∠ABC=30°,∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,AE===,∴BD=AE=.点评:此题考查了全等三角形的判定与性质、等边三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是2;(2)当n=2时,点B的纵坐标是5;(3)点B的纵坐标是n2+1(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是2.考点:二次函数综合题.分析:探究;依据直角三角形的射影定理即可求得B点的坐标.应用:(1)依据全等三角形的性质即可求得C点的坐标,(2)通过(1)可求得C1、C2的坐标,从而得出矩形面积和三角形的面积,最后求得当1≤n≤5时,线段OC扫过的图形的面积.解答:解:探究(3)如图1所示:设点A的横坐标为n,点A是抛物线y=x2在第一象限上的一个点;∴A(n,n2);∴AD=n,OD=n2;在Rt△ACB中,AD2=OD•BD;设B点的纵坐标为y1,则n2=n2•(y1﹣n2),解得:y1=n2+1,∴点B的纵坐标是n2+1.应用:(1)点B的纵坐标是n2+1,A点的纵坐标是n2,∴BD=1,根据旋转的定义可知CE=AD=n,OE=BD=1;∴C点的坐标为:(﹣n,1);(2)当n=1时C点的坐标为C1(﹣1,1),当n=5时C点的坐标为C2(﹣5,1),如上图所示;S=S﹣S=×1×5﹣×1×1=2.∴当1≤n≤5时,线段OC扫过的图形的面积是2.点评:本题考查了直角三角形的射影定理的应用,全等三角形的性质,直角坐标系中面积求法是本题的关键.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.考点:相似形综合题;解一元一次不等式组;等腰三角形的判定与性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)易证△ADP∽△ACB,从而可得AD=4t,由折叠可得AA′=2AD=8t,由点A′与点C重合可得8t=8,从而可以求出t的值.(2)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(3)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(4)可分①S△A′PG:S四边形PBEG=1:3,如图7,②S△BPN:S四边形PNEA′=1:3,如图8,两种情况进行讨论,就可解决问题.解答:解:(1)如图1,由题可得:PA′=PA=5t,CQ=3t,AD=A′D.∵∠ACB=90°,AC=8,AB=10,∴BC=6.∵∠ADP=∠ACB=90°,∴PD∥BC.∴△ADP∽△ACB.∴==.∴==.∴AD=4t,PD=3t.∴AA′=2AD=8t.当点A′与点C重合时,AA′=AC.∴8t=8.∴t=1.(2)①当点F在线段BQ上(不包括点B)时,如图1,则有CQ≤CF<CB.∵四边形A′PBE是平行四边形,∴A′E∥BP.∴△CA′F∽△CAB.∴=.∴=.∴CF=6﹣6t.∴3t≤6﹣6t<6.∴0<t≤.此时QF=CF﹣CQ=6﹣6t﹣3t=6﹣9t.②当点F在线段CQ上(不包括点Q)时,如图2,则有0≤CF<CQ.∵CF=6﹣6t,CQ=3t,∴0≤6﹣6t<3t.∴<t≤1.此时QF=CQ﹣CF=3t﹣(6﹣6t)=9t﹣6.③当点F在线段BC的延长线上时,如图3,则有AA′>AC,且AP<AB.∴8t>8,且5t<10.∴1<t<2.同理可得:CF=6t﹣6.此时QF=QC+CF=3t+6t﹣6=9t﹣6.综上所述:当0<t≤时,QF=6﹣9t;当<t<2时,QF=9t﹣6.(3)①当0<t≤时,过点A′作A′M⊥PG,垂足为M,如图4,则有A′M=CQ=3t.∵==,==,∴=,∵∠PBQ=∠ABC,∴△BPQ∽△BAC.∴∠BQP=∠BCA.∴PQ∥AC.∵AP∥A′G.∴四边形APGA′是平行四边形.∴PG=AA′=8t.∴S=S△A′PG=PG•A′M=×8t×3t=12t2.②当<t≤1时,过点A′作A′M⊥PG,垂足为M,如图5,则有A′M=QC=3t,PQ=DC=8﹣4t,PG=AA′=8t,QG=PG﹣PQ=12t﹣8,QF=9t﹣6..∴S=S△A′PG﹣S△GQF=PG•A′M﹣QG•QF=×8t×3t﹣×(12t﹣8)×(9t﹣6)=﹣42t2+72t﹣24.③当1<t<2时,如图6,∵PQ∥AC,PA=PA′∴∠BPQ=∠PAA′,∠QPA′=∠PA′A,∠PAA′=∠PA′A.∴∠BPQ=∠QPA′.∵∠PQB=∠PQS=90°,∴∠PBQ=∠PSQ.∴PB=PS.∴BQ=SQ.∴SQ=6﹣3t.∴S=S△PQS=PQ•QS=×(8﹣4t)×(6﹣3t)=6t2﹣24t+24.综上所述:当0<t≤时,S=12t2;当<t≤1时,S=﹣42t2+72t﹣24:当1<t<2时,S=6t2﹣24t+24.(4)①若S△A′PG:S四边形PBEG=1:3,过点A′作A′M⊥PG,垂足为M,过点A′作A′T⊥PB,垂足为T,如图7,则有A′M=PD=QC=3t,PG=AA′=8t.∴S△A′PG=×8t×3t=12t2.∵S△APA′=AP•A′T=AA′•PD,∴A′T===t.∴S▱PBEA′=PB•A′T=(10﹣5t)×t=24t(2﹣t).∵S△A′PG:S四边形PBEG=1:3,∴S△A′PG=×S▱PBEA′.∴12t2=×24t(2﹣t).∵t>0,∴t=.②若S△BPN:S四边形PNEA′=1:3,如图8,同理可得:∠BPQ=∠A′PQ,BQ=6﹣3t,PQ=8﹣4t,S▱PBEA′=24t(2﹣t).∵四边形PBEA′是平行四边形,∴BE∥PA′.∴∠BNP=∠NPA′.∴∠BPN=∠BNP.∴BP=BN.∵∠BQP=∠BQN=90°,∴PQ=NQ.∴S△BPN=PN•BQ=PQ•BQ=(8﹣4t)×(6﹣3t).∵S△BPN:S四边形PNEA′=1:3,∴S△BPN=×S▱PBEA′.∴(8﹣4t)×(6﹣3t)=×24t(2﹣t).∵t<2,∴t=.综上所述:当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时,t的值为秒或秒.点评:本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、平行四边形的性质、解一元一次不等式组、勾股定理等知识,还考查了分类讨论的思想,有一定的综合性.。
2015年湖南省五市十校联考高考一模数学试卷(理科)【解析版】
2015年湖南省五市十校联考高考数学一模试卷(理科)一、选择题:每小题5分,共50分.在四个选项中只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x>﹣2},B={x|x>1},则集合A∩(∁U B)=()A.{x|﹣2<x<1}B.{x|x≤1}C.{x|﹣2<x≤1}D.{x|x<﹣2} 2.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系3.(5分)下列选项叙述错误的是()A.命题“若x≠0,则e x≠1”的逆否命题是“若e x=1,则x=0”B.“x>2”是“<1”的充分不必要条件C.若命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,使得x02+x0+1≤0D.若p∧q为假命题,则p,q均为假命题4.(5分)某几何体的正视图与侧视图如图所示,若该几何体的体积为,则该几何体的俯视图可以是()A.B.C .D .5.(5分)如图所示的程序框图是给出计算+++…+的值,则判断框内应填入的条件是( )A .i ≤403?B .i <403?C .i ≤404?D .i >404?6.(5分)在等腰三角形ABC 中,AB =AC =1,∠BAC =90°,点E 为斜边BC的中点,点M 在线段AB 上运动,则•的取值范围是( )A .[,]B .[,1]C .[,1]D .[0,1] 7.(5分)设z =x +y ,其中实数x ,y 满足,若z 的最大值为6,则z的最小值为( )A .﹣3B .﹣2C .﹣1D .08.(5分)如图,矩形OABC 内的阴影部分是由曲线f (x )=sin x (x ∈(0,π))及直线x =a (a ∈(0,π))与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为,则a 的值是( )A .B .C .D .9.(5分)已知当x ∈[1,2)时,f (x )=|x ﹣|;当x ∈[1,+∞)时,f (2x )=2f (x ),则方程f (x )=log 8x (1≤x ≤12)的根的个数为( )A .4B .5C .6D .710.(5分)过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若=(+),则双曲线的离心率为()A.B.C.D.二、填空题:本大题共5分,每小题5分,共25分.11.(5分)已知复数z=(i是虚数单位),则复数z的共轭复数为.12.(5分)在二项式(+)10的展开式中,常数项是.13.(5分)若等差数列{a n}的前n项和为S n,且S9=24π,则tan a5=.14.(5分)已知函数f(x)=a sin x+b cos x(a,b∈R),∀x∈R,恒有f(x)≥f(),则的值为.15.(5分)已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x),则不等式的解集为.三、解答题:本大题共5个小题,共75分.请写出必要的文字说明和演算步骤.16.(12分)如图所示,在xOy平面上,点A(1,0),点B在单位圆上.∠AOB =θ(0<θ<π)(1)若点B(﹣,),求tan(2θ+)的值;(2)若+=,四边形OACB的面积用S四表示,求S四+•的取值范围.17.(12分)商场销售的某种饮品每件成本为20元,售价36元.现厂家为了提高收益,对该饮品进行促销,具体规则如下:顾客每购买一件饮品,当即从放有编号分别为1、2、3、4、5、6的六个规格的小球的密封箱中连续有放回地摸取三次,若三次取出的小球编号相同,则获一等奖;若三次取出小球的编号是连号(不考虑顺序),则获二等奖;其它情况无奖.(1)求某顾客购买1件该饮品,获得奖励的概率;(2)若奖励为返还现金,顾客获一次一等奖,奖金数是x元,若获一次二等奖,奖金是一等奖奖金的一半,统计表明:每天的销量y(件)与一等奖的奖金额x(元)的关系式y=+24.问:x设定为多少最佳?并说明理由.18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,平面P AB⊥平面ABCD,P A=PB=AB.(1)证明:PC⊥AB;(2)求二面角B﹣PC﹣D的余弦值.19.(13分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.20.(13分)如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)若△OEF2的面积为1,E为直线与曲线的切点,求抛物线C2的方程;(3)当λ∈[2,4]时,求椭圆的离心率e的取值范围.21.(13分)设函数f(x)=﹣.(1)判断函数f(x)在区间(0,2)上的单调性;(2)若函数f(x)在(0,2)上有两个零点x1,x2,求证:f()<0.2015年湖南省五市十校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题:每小题5分,共50分.在四个选项中只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x>﹣2},B={x|x>1},则集合A∩(∁U B)=()A.{x|﹣2<x<1}B.{x|x≤1}C.{x|﹣2<x≤1}D.{x|x<﹣2}【解答】解:∵B={x|x>1},∴∁U B={x|x≤1},则A∩(∁U B)={x|﹣2<x≤1},故选:C.2.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.3.(5分)下列选项叙述错误的是()A.命题“若x≠0,则e x≠1”的逆否命题是“若e x=1,则x=0”B.“x>2”是“<1”的充分不必要条件C.若命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,使得x02+x0+1≤0D.若p∧q为假命题,则p,q均为假命题【解答】解:对于A.“若x≠0,则e x≠1”的逆否命题是“若e x=1,则x=0”,正确;对于B.由<1,解得x>2或x<1,∴“x>2”是“<1”的充分不必要条件,因此正确;对于C.命题p:∀x∈R,x2+x+1>0,则¬p:∃x0∈R,使得x02+x0+1≤0,正确;对于D.若p∧q为假命题,则p与q至少有一个均为假命题,因此不正确.故选:D.4.(5分)某几何体的正视图与侧视图如图所示,若该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【解答】解:易知该几何体为锥体,故其底面面积为1;故俯视图可能为A,B,C三个选项中的图形,若俯视图为三角形,即选项A,则底面面积为,故不成立,若俯视图为扇形,即选项B,则底面面积为,故不成立,若俯视图为正方形,即选项C,则底面面积为1,故成立;故选:C.5.(5分)如图所示的程序框图是给出计算+++…+的值,则判断框内应填入的条件是()A.i≤403?B.i<403?C.i≤404?D.i>404?【解答】解:根据题意,模拟程序图的运行过程,得;该程序运行后是计算+++…+的值,累加变量是i=i+1,且在满足条件的情况下运行循环体,共运行了403次;∴判断框内应填入的条件是i≤403?.故选:A.6.(5分)在等腰三角形ABC中,AB=AC=1,∠BAC=90°,点E为斜边BC 的中点,点M在线段AB上运动,则•的取值范围是()A.[,]B.[,1]C.[,1]D.[0,1]【解答】解:以A为坐标原点,AB,AC所在直线为y,x轴建立直角坐标系,则A(0,0),B(0,1),C(1,0),E(,),设M(0,m),(0≤m≤1).则=(,﹣m),=(1,﹣m),=﹣m(﹣m)=m2﹣m+=(m﹣)2+,由于∈[0,1],则取得最小值,且为,当m=1时,取得最大值,且为1.则有•的取值范围是[,1].故选:B.7.(5分)设z=x+y,其中实数x,y满足,若z的最大值为6,则z的最小值为()A.﹣3B.﹣2C.﹣1D.0【解答】解:作出不等式对应的平面区域,由z=x+y,得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大为6.即x+y=6.经过点B时,直线y=﹣x+z的截距最小,此时z 最小.由得,即A(3,3),∵直线y=k过A,∴k=3.由,解得,即B(﹣6,3).此时z的最小值为z=﹣6+3=﹣3,故选:A.8.(5分)如图,矩形OABC内的阴影部分是由曲线f(x)=sin x(x∈(0,π))及直线x=a(a∈(0,π))与x轴围成,向矩形OABC内随机投掷一点,若落在阴影部分的概率为,则a的值是()A.B.C.D.【解答】解:由题意可得,是与面积有关的几何概率构成试验的全部区域是矩形OACB,面积为:a×记“向矩形OABC内随机投掷一点,若落在阴影部分”为事件A,则构成事件A 的区域即为阴影部分面积为∫0a sin xdx=﹣cos x|0a=1﹣cos a由几何概率的计算公式可得P(A)=a=故选:B.9.(5分)已知当x∈[1,2)时,f(x)=|x﹣|;当x∈[1,+∞)时,f(2x)=2f(x),则方程f(x)=log8x(1≤x≤12)的根的个数为()A.4B.5C.6D.7【解答】解:∵f(2x)=2f(x),∴f(x)=2f();故f(x)=;方程f(x)=log8x(1≤x≤12)的根的个数即函数y=f(x)与函数y=log8x的交点的个数,作函数图象如下,共有4个交点,故选:A.10.(5分)过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为坐标原点,若=(+),则双曲线的离心率为()A.B.C.D.【解答】解:∵|OF|=c,|OE|=a,OE⊥EF,∴|EF|==b,∵=(+),∴E为PF的中点,|OP|=|OF|=c,|PF|=2b,设F'(c,0)为双曲线的右焦点,也为抛物线的焦点,则EO为三角形PFF'的中位线,则|PF'|=2|OE|=2a,可令P的坐标为(m,n),则有n2=4cm,由抛物线的定义可得|PF'|=m+c=2a,m=2a﹣c,n2=4c(2a﹣c),又|OP|=c,即有c2=(2a﹣c)2+4c(2a﹣c),化简可得,c2﹣ac﹣a2=0,由于e=,则有e2﹣e﹣1=0,由于e>1,解得,e=.故选:A.二、填空题:本大题共5分,每小题5分,共25分.11.(5分)已知复数z=(i是虚数单位),则复数z的共轭复数为1+3i.【解答】解:复数z===1﹣3i,则复数z的共轭复数为1+3i,故答案为:1+3i.12.(5分)在二项式(+)10的展开式中,常数项是180.【解答】解:二项式(+)10的展开式的通项公式为T r+1=•2r•,令5﹣r=0,则r=2,∴常数项是=180,故答案为:180.13.(5分)若等差数列{a n}的前n项和为S n,且S9=24π,则tan a5=.【解答】解:在等差数列{a n}中,由S9=9a5=24π,得,∴tan a5====.故答案为:.14.(5分)已知函数f(x)=a sin x+b cos x(a,b∈R),∀x∈R,恒有f(x)≥f(),则的值为.【解答】解:∵由题意函数f(x)=a sin x+b cos x,恒有f(x)≥f(),∴可知:当x=时,函数f(x)取得最值|f()|,即|a+b|=,化为a=b,∴则的值为,故答案为:.15.(5分)已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x),则不等式的解集为{x|0<x<1}.【解答】解:设g(x)=,则g′(x)=,∵f(x)>xf′(x),∴xf′(x)﹣f(x)<0,∴g′(x)<0,∴g(x)在(0,+∞)为减函数,∵,x>0,∴,∴,∴,∴0<x<1.故答案为:{x|0<x<1}.三、解答题:本大题共5个小题,共75分.请写出必要的文字说明和演算步骤.16.(12分)如图所示,在xOy平面上,点A(1,0),点B在单位圆上.∠AOB =θ(0<θ<π)(1)若点B(﹣,),求tan(2θ+)的值;(2)若+=,四边形OACB的面积用S四表示,求S四+•的取值范围.【解答】解:(1)∵B(﹣,),∠AOB=θ,∴tanθ==﹣∴tan2θ===,则tan(2θ+)===﹣;(2)S=||||sin(π﹣θ)=sinθ,四∵=(1,0),=(cosθ,sinθ),∴=+=(1+cosθ,sinθ),∴•=1+cosθ,+•=sinθ+cosθ+1=sin(θ+)+1(0<θ<π),∴S四∵<<,∴﹣<sin()≤1,∴0<S+•.四17.(12分)商场销售的某种饮品每件成本为20元,售价36元.现厂家为了提高收益,对该饮品进行促销,具体规则如下:顾客每购买一件饮品,当即从放有编号分别为1、2、3、4、5、6的六个规格的小球的密封箱中连续有放回地摸取三次,若三次取出的小球编号相同,则获一等奖;若三次取出小球的编号是连号(不考虑顺序),则获二等奖;其它情况无奖.(1)求某顾客购买1件该饮品,获得奖励的概率;(2)若奖励为返还现金,顾客获一次一等奖,奖金数是x元,若获一次二等奖,奖金是一等奖奖金的一半,统计表明:每天的销量y(件)与一等奖的奖金额x(元)的关系式y=+24.问:x设定为多少最佳?并说明理由.【解答】解:(1)记事件:“一顾客购买一件饮品获得i等奖”为A i,i=1,2,则P(A1)=,P(A2)=,则一顾客一次购买一件饮品获得奖励的概率为P(A1+A2)=P(A1)+P(A2)=.…(4分)(2)设一顾客每购买一件饮品所得奖金额为X元,则X的可能取值为x,,0.由(Ⅰ)得P(X=x)=,P(X=)=,E(x)=.…(9分)该商场每天销售这种饮品所得平均利润Y=y[(36﹣20)﹣E(x)]=(=﹣(x﹣48)2+432.当x=48时,Y最大.故x设定为48(元)为最佳.…(12分)18.(12分)如图所示,四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,平面P AB⊥平面ABCD,P A=PB=AB.(1)证明:PC⊥AB;(2)求二面角B﹣PC﹣D的余弦值.【解答】(1)证明:取AB中点O,连结PO,CO,∵四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,P A=PB=AB.∴PO⊥AB,CO⊥AB,∵PO∩CO=O,∴AB⊥平面POC,∵PC∈平面POC,∴PC⊥AB.(2)解:∵平面P AB⊥平面ABCD,CO⊥AB,PO⊥AB,∴以O为原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,设P A=PB=AB=2,则B(1,0,0),P(0,0,),C(0,,0),D(﹣2,,0),=(1,0,﹣),=(0,),=(﹣2,),设平面BPC的法向量,则,取x=,得=(,1,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(0,1,1),设二面角B﹣PC﹣D的平面角为θ,cosθ=|cos<>|=||=.∴二面角B﹣PC﹣D的余弦值为.19.(13分)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.【解答】解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.20.(13分)如图所示,椭圆C:的焦点为F1(0,c),F2(0,﹣c)(c>0),抛物线x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A,B两点,且.(1)求证:切线l的斜率为定值;(2)若△OEF2的面积为1,E为直线与曲线的切点,求抛物线C2的方程;(3)当λ∈[2,4]时,求椭圆的离心率e的取值范围.【解答】(1)证明:∵抛物线x2=2py(p>0)的焦点与F1重合,∴.设切点为M(x0,y0)(x0>0).由抛物线x2=2py,可得y′=,∴切线l的斜率k=.∴切线的方程为:,联立,化为x2﹣2x0x+2pc=0,由于△=0,∴=0,把p=2c代入可得x0=2c,∴切线l的斜率k==1.∴切线l的斜率为定值1.(2)由(1)可得=1,∴x0=p.∵△OEF2的面积为1,∴===1,解得p=2.∴抛物线C1的方程为:x2=4y.(3)设A(x1,y1),B(x2,y2).由(1)可得x0=2c,p=2c,切线方程为y=x﹣c.联立,化为(a2+b2)x2﹣2b2cx﹣b4=0,∴,x1x2=.(*)∵,∴x2=﹣λx1.(λ∈[2,4]).代入(*)可得,∴=,化为=.∵λ∈[2,4],∴e∈.21.(13分)设函数f(x)=﹣.(1)判断函数f(x)在区间(0,2)上的单调性;(2)若函数f(x)在(0,2)上有两个零点x1,x2,求证:f()<0.【解答】解:∵函数f(x)=﹣,∴f′(x)==.当0<x<1时,∵2(x2﹣x)=2x(x﹣1)<0,x2﹣2x+2=(x﹣1)2+1>1>0,ln(x2﹣2x+2)=ln[(x﹣1)2+1]>ln1=0,∴f′(x)<0,函数f(x)在区间(0,1)上单调递减;当1<x<2时,记h(x)=2(x2﹣x)﹣(x2﹣2x+2)ln(x2﹣2x+2),则h′(x)=4x﹣2﹣(2x﹣2)ln(x2﹣2x+2)﹣(x2﹣2x+2)×=2x﹣(2x﹣2)ln(x2﹣2x+2)=2x[1﹣ln(x2﹣2x+2)]+2ln(x2﹣2x+2).∵1<x<2,∴x2﹣2x+2=(x﹣1)2+1∈(1,2),∴0<ln(x2﹣2x+2)<ln2<1,∴h′(x)>0.∵h(1)=0,∴h(x)>0,即f′(x)>0,∴函数f(x)在区间(1,2)上单调递增.∴函数f(x)在区间(0,2)上的单调减区间为(0,1);单调减区间为(1,2).(2)∵x>0,当x→0时,f(x)→+∞∴f(1)=﹣,f(2)=>0,∵函数f(x)在(0,2)上有两个零点x1,x2,∴不妨设x1<x2,则0<x1<1<x2<2,当x∈(0,x1)时,f(x)>0,当x∈(x1,x2)时,f(x)<0,当x∈(x2,2)时,f(x)>0,∵x1<<x2,∴f()<0.。
安徽省名校联盟2015届高考数学一模试卷理(含解析)
2015年安徽省名校联盟高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分,只有一个选项符号题目要求)1.已知集合A={x|x2﹣2x<0},B={x|>0},则A∩(∁R B)=()A.{x|0<x<1} B.{x|1≤x<2} C.{x|0<x≤1}D.{x|1<x<2}2.已知i是虚数单位,则复数等于()A.﹣ +i B.﹣ +i C.﹣i D.﹣i3.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种4.执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为()A.3 B.126 C.127 D.1285.某几何体的三视图如图所示,该几何体的体积是()A.B.C. D.6.在数列{a n}中,a1=3,a n+1a n+2=2a n+1+2a n(n∈N+),则该数列的前2015项的和是()A.7049 B.7052 C.14098 D.141017.已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则该双曲线的方程为()A.﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣=18.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.9.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)10.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x二、填空题(共5小题,每小题5分,满分25分)11.已知α为钝角,sin(+α)=,则sin(﹣α)= .12.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.13.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是.14.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.15.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题(共6小题,满分75分)16.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.17.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:由于表格被污损,数据x,y看不清,统计人员只记得x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.18.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.19.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD 上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.20.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.21.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n >1时[a n]=2.2015年安徽省名校联盟高考数学一模试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,只有一个选项符号题目要求)1.已知集合A={x|x2﹣2x<0},B={x|>0},则A∩(∁R B)=()A.{x|0<x<1} B.{x|1≤x<2} C.{x|0<x≤1}D.{x|1<x<2}【考点】交、并、补集的混合运算.【专题】集合.【分析】分别求出A与B中不等式的解集,确定出A与B,根据全集R求出B的补集,找出A与B补集的交集即可.【解答】解:∵集合A={x|x2﹣2x<0},B={x|>0},∴A={x|0<x<2},B={x|x>1,或x<﹣1},∴∁R B═{x|﹣1≤x≤1},∴A∩(∁R B)={x|0<x≤1},故选:C【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知i是虚数单位,则复数等于()A.﹣ +i B.﹣ +i C.﹣i D.﹣i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===,故选:A.【点评】本题考查了复数的运算法则,属于基础题.3.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种【考点】计数原理的应用.【专题】排列组合.【分析】分类讨论:①甲部门要2个电脑特长学生和一个英语成绩优秀学生;②甲部门要1个电脑特长学生和1个英语成绩优秀学生.分别求得这2个方案的方法数,再利用分类计数原理,可得结论.【解答】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.4.执行如图所示的程序框图,若输入的x的值为2,则输出的x的值为()A.3 B.126 C.127 D.128【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算x值并输出,模拟程序的运行过程,即可得到答案.【解答】解:当输出的x=2时,执行循环体后,x=3,不满足退出循环的条件,当x=3时,执行循环体后,x=7,不满足退出循环的条件,当x=7时,执行循环体后,x=127,满足退出循环的条件,故输出的x值为127故选:C【点评】本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.5.某几何体的三视图如图所示,该几何体的体积是()A.B.C. D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】根据已知中的三视图可分析出该几何体的直观图,代入棱锥体积公式可得答案.【解答】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.6.在数列{a n}中,a1=3,a n+1a n+2=2a n+1+2a n(n∈N+),则该数列的前2015项的和是()A.7049 B.7052 C.14098 D.14101【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】a n+1a n+2=2a n+1+2a n(n∈N+),变形(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,两式相除可得a n+1=a n﹣1,可得数列{a n}是周期为2的周期数列.即可得出.【解答】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.7.已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则该双曲线的方程为()A.﹣=1 B.﹣y2=1 C.x2﹣=1 D.﹣=1【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】首先根据双曲线的焦点和抛物线的焦点重合,建立a,b,c的关系式,进一步利用双曲线的渐近线建立关系式,进一步确定a和b的值,最后求出双曲线的方程.【解答】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.8.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【专题】概率与统计.【分析】总的事件数是C83,而从正方体的8个顶点中任取3个顶点可形成的等腰直角三角形的个数按所选取的三个顶点是只能是来自于该正方体的同一个面.根据概率公式计算即可.【解答】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.9.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,若x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是()A.(0,1) B.(e﹣1,1)C.(0,e﹣1)D.(1,e)【考点】函数零点的判定定理;导数的运算.【专题】函数的性质及应用.【分析】由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,再用零点存在定理验证,【解答】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.10.如图,已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x【考点】双曲线的简单性质.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①运用对称性和切线的性质可得m﹣1=n,②,可得a=1,再由c=2,可得b,结合渐近线方程即可得到.【解答】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有m﹣(n﹣1)=2a,①由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m﹣1=n,②由①②解得a=1,由|F1F2|=4,则c=2,b==,由双曲线﹣=1的渐近线方程为y=±x,即有渐近线方程为y=x.故选D.【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键.二、填空题(共5小题,每小题5分,满分25分)11.已知α为钝角,sin(+α)=,则sin(﹣α)= ﹣.【考点】两角和与差的正弦函数;运用诱导公式化简求值.【专题】计算题;三角函数的求值.【分析】运用的诱导公式求出cos()的值,根据α为钝角,求出的取值范围,确定sin()的符号,运用同角三角函数的平方关系即可得到结果.【解答】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.12.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是[4,16] .【考点】参数方程化成普通方程.【专题】直线与圆;坐标系和参数方程.【分析】把直线与圆的参数方程化为普通方程,画出图形,结合图形,求出直线被圆截得的弦长的最大值与最小值即可.【解答】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.13.设等差数列{a n}的前n项和为S n,若﹣1<a3<1,0<a6<3,则S9的取值范围是(﹣3,21).【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】利用等差数列的通项公式和前n项和公式及其“待定系数法”即可得出.【解答】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.14.若正数m、n满足mn﹣m﹣n=3,则点(m,0)到直线x﹣y+n=0的距离最小值是.【考点】点到直线的距离公式.【专题】直线与圆.【分析】把已知的等式变形,得到(m﹣1)(n﹣1)≥4,写出点到直线的距离,然后利用基本不等式得答案.【解答】解:点(m,0)到直线x﹣y+n=0的距离为d=,∵mn﹣m﹣n=3,∴(m﹣1)(n﹣1)=4,(m﹣1>0,n﹣1>0),∴(m﹣1)+(n﹣1)≥2,∴m+n≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.15.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为①②④.【考点】命题的真假判断与应用;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】空间位置关系与距离.【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD′B′.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N 分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.三、解答题(共6小题,满分75分)16.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值;(Ⅱ)若a ﹣c=﹣1,求△ABC 的面积. 【考点】正弦定理;余弦定理.【专题】解三角形.【分析】(Ⅰ)利用已知5(a 2+b 2﹣c 2)=3ab 代入余弦定理公式求得cosC 的值,利用同角三角函数关系求得sinC 的值,进而利用二倍角公式求得cos2C 的值;通过cosA 求得sinA 的值,最后利用两角和公式取得sin (A+C )的值,进而取得sinB 的值,求得B .(Ⅱ)利用正弦定理求得a 和c 的关系式,代入a ﹣c=﹣1求得a 和c ,最后利用三角形面积公式求得答案.【解答】解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a 2+b 2﹣c 2)=3ab ,∴cosC==, ∵0<C <π,∴sinC==,∴cos2C=2cos 2C ﹣1=,∴cosB=﹣cos (A+C )=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B <π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.17.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A和B两班中各随机抽5名学生进行抽查,其成绩记录如下:由于表格被污损,数据x,y看不清,统计人员只记得x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【专题】综合题;概率与统计.【分析】(Ⅰ)分别求出A和B的平均数和方差,由,得x+y=17,由,得(x﹣8)2+(y﹣8)2=1,由x<y,得x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,由此能求出2名学生颁发了荣誉证书的概率.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,分别求出相应的概率,由此能求出X的期望.【解答】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.18.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.【考点】直线与圆锥曲线的综合问题.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b 截得的线段长等于椭圆C1的短轴长,建立方程,求出几何量,即可求C1、C2的方程;(Ⅱ)设直线MA、MB的方程与y=x2﹣1联立,求得A,B的坐标,进而可表示S1,直线MA、MB的方程与椭圆方程联立,求得D,E的坐标,进而可表示S2,利用,即可求直线AB 的方程.【解答】解:(Ⅰ)∵椭圆C1:的离心率为,∴a2=2b2,令x2﹣b=0可得x=±,∵x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长,∴2=2b,∴b=1,∴C1、C2的方程分别为,y=x2﹣1;…(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x2﹣1联立得x2﹣k1x=0∴x=0或x=k1,∴A(k1,k12﹣1)同理可得B(k2,k22﹣1)…∴S1=|MA||MB|=•|k1||k2|…y=k1x﹣1与椭圆方程联立,可得D(),同理可得E()…∴S2=|MD||ME|=••…∴若则解得或∴直线AB的方程为或…【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.19.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD 上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)由已知得∠CDB=30°,∠DCE=30°,∠BCE=90°,从而EC⊥BC,由平面ABC⊥平面BCD,得EC⊥平面ABC,由此能证明EC⊥AB.(Ⅱ)取BC的中点O,BE中点F,连结OA,OF,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,求出平面ACD的法向量和平面BCD的法向量,由此利用向量法能注出二面角A﹣CD﹣B的余弦值.【解答】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.20.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有(Ⅰ)<;(Ⅱ)0<a n<1.【考点】数列递推式.【专题】等差数列与等比数列.【分析】(Ⅰ)由已知得a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,由此能证明对一切n∈N*,<.(Ⅱ)由已知得,当n≥2时,=>,由此能证明对一切n∈N*,0<a n <1.【解答】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,∴,∴对一切n∈N*,<.(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,∴,∴当n≥2时,=>3﹣[1+]=3﹣[1+]=3﹣(1+1﹣)=,∴a n<1,又,∴对一切n∈N*,0<a n<1.【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.21.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n >1时[a n]=2.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值;数列递推式.【专题】分类讨论;导数的综合应用;等差数列与等比数列.【分析】(Ⅰ)利用导数,对a讨论,当a≤0时,当a>0时,即可求得f(x)的单调区间;(Ⅱ)(i)利用(Ⅰ)的结论即可求得a的值;(ii)利用归纳推理,猜想当n≥3,n∈N时,2<a n<,利用数学归纳法证明,即可得出结论.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.。
【真卷】2015年安徽省名校联盟高考数学一模试卷(理科)及答案
C.{x|0<x≤1} 等于( C. ﹣ i )
2. (5 分)已知 i 是虚数单位,则复数 A.﹣ + i B.﹣ + i
D. ﹣ i
3. (5 分)某校在暑假组织社会实践活动,将 8 名高一年级学生,平均分配甲、 乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑 特长学生也不能分给同一个公司,则不同的分配方案有( A.36 种 B.38 种 C.108 种 ) D.114 种
C.y=± x
D.y=±
x
二、填空题(共 5 小题,每小题 5 分,满分 25 分) 11. (5 分)已知 α 为钝角,sin( 12. (5 分)直线 l: +α)= ,则 sin( ﹣α)= . (θ 为参数)
(t 为参数)与圆 C: .
相交所得的弦长的取值范围是
13. (5 分)设等差数列{an}的前 n 项和为 Sn,若﹣1<a3<1,0<a6<3,则 S9 的取值范围是 .
C2:y=x2﹣b 截得的线段长等于椭圆 C1 的短轴长.C2 与 y 轴的交点为 M,过 点 M 的两条互相垂直的直线 l1,l2 分别交抛物线于 A、B 两点,交椭圆于 D、 E 两点, (Ⅰ)求 C1、C2 的方程; (Ⅱ)记△MAB,△MDE 的面积分别为 S1、S2,若 ,求直线 AB 的方程.
19. (13 分)如图,四面体 ABCD 中,平面 ABC⊥平面 BCD,AC=AB,CB=
第 4 页(共 22 页)
CD,∠DCB=120°,点 E 在 BD 上,且 CE=DE. (Ⅰ)求证:AB⊥CE; (Ⅱ)若 AC=CE,求二面角 A﹣CD﹣B 的余弦值.
20. (12 分) 已知数列{an}满足 a1= , an+1=an+ 有 (Ⅰ) < ;
蓉城名校联盟高2015级高三第一次联考数学(理科)答案
x 1
1 x 3 x 3
2x 4 6或2 6 或2x 4 6 ,
解得: x 1或x 5
故不等式 f (x) 6 的解集为 ,1 5,.
…………5 分
(2)因为: f (x) x 1 x a (x 1) (x a) a 1 (当 x 1时等号成立)
解:(1)设公差为 d ,由题意知: s3 a1 a2 a3 3a2 9 a2 3 又 a2 , a5 , a14 成等比数列
a52 a2a14
3 3d 2 33 12d
9d 2 18d d 0d 2
an 2n 1
…………6 分
1
又 PM QM ,MR PQ, 则 b 4k 2 1 1 即3b 4k 2 b2 ,解得 3 b 0 , 由②得 4k 2 3b 1 0,解得b<- 1 3
故所求的 b 取值范围是 (3, 1) 3
蓉城名校联盟高 2015 级高三第一次联考试卷 7 数学理科答案
一、选择题(每题 5 分,共 60 分)
1—6,DBDCBD;7—12,CACACD
二、填空题(每题 5 分,共 20 分)
13.1 3i ;
14. 10 ;
15.
2;
16.
(1,
e e
2) 1
三、简答题(共 70 分)
17.(12 分)
PD 面 ABCD
以 D 为原点, DA, DC, DP 所在直线为 x, y, z 轴建立空间直角坐标系.
z
y
x 则 P(0,0,3),C(0,6,0), A(3,0,0), B(3,3,0) .
2015年河南省中原名校、豫南九校联考高考一模数学试卷(理科)【解析版】
第 3 页(共 22 页)
19. (12 分)从棱长为 1 的正方体的 8 个顶点中任取 3 个点,设随机变量 X 是以 这三点为顶点的三角形的面积. (1)求概率 P(X= ) ; (2)求 X 的分布列,并求其数学期望 E(X) 20. (12 分)已知椭圆 M 的对称轴为坐标轴,离心率为 ( ,0) . ,且一个焦点坐标为
3. (5 分)记数列{an}的前 n 项和为 Sn,且 Sn=2(an﹣1) ,则 a2=( A.4 B.2 C.1 D.﹣2
4. (5 分) “m<0”是“函数 f(x)=m+log2x(x≥1)存在零点”的( A.充分不必要条件 C.充要条件 5. (5 分)在( A.C + B.必要不充分条件 D.既不充分又不必要条件 )12 的展开式中,x 项的系数为( B.C C.C ) D.C
(1)求椭圆 M 的方程; (2)设直线 l 与椭圆 M 相交于 A、B 两点,以线段 OA、OB 为邻边作平行四边 形 OAPB,其中点 P 在椭圆 M 上,O 为坐标原点,求点 O 到直线 l 的距离的 最小值. 21. (12 分)已知函数 f(x)=ln(x+ ) ,且 f(x)在 x= 处的切线方程为 y =g(x) . (1)求 y=g(x)的解析式; (2)证明:当 x>0 时,恒有 f(x)≥g(x) ; (3) 证明: 若 ai>0, 且
D. (4,8)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13. (5 分)设五个数值 31,37,33,a,35 的平均数是 34,则这组数据的方差 是 . (a 为常数)表示的平面 .
14. (5 分)在平面直角坐标系中,不等式组 区域的面积是 9,那么实数 a 的值为
2015数学(理)全国I大联考(一)附参考答案
全国大联考2015届高三第一次联考·数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:集合与常用逻辑用语、函数与导数.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x∈Z|-3<x<2},N={x∈Z|-1≤x≤3},则M∩N等于A.{0,1}B.{-1,0,1,2}C.{0,1,2}D.{-1,0,1}2.命题p:∀x∈R,x2+1≥1,则p是A.∀x∈R,x2+1<1B.∃x0∈R,+1≤1C.∃x0∈R,+1<1D.∃x0∈R,+1≥13.下列函数中,是偶函数且在(0,+∞)上为增函数的是A.y=cos xB.y=-x2+1C.y=log2|x|D.y=e x-e-x4.一元二次方程ax2+2x+1=0(a∈R且a≠0)有一正根和一负根的充分不必要条件是A.a<0B.a>0C.a<-1D.a>15.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为A.B. C. D.16.已知a=0.-,b=sin ,c=log2.51.7,则a,b,c的大小关系是A.a<b<cB.c<b<aC.c<a<bD.b<c<a17.函数f(x)=x+sin x在x=处的切线与两坐标轴围成的三角形的面积为A.B. C. D.+18.设函数y=x3与y=()x-2的图象的交点为(x0,y0),且x0∈(m,m+1),m∈Z,则m的值为A.1B.2C.3D.49.已知“f(x)=xln x在定义域内单调递增”的否定为p,“已知f(x),g(x)的定义域都是R,若f(x),g(x)都是奇函数,则y=f(x)+g(x)是奇函数”的否命题为q,则下列命题为真命题的是A.p∨qB.p∧qC.p∧qD.p10.设函数y=f(x)在全体实数集R内有定义,对于给定的正数k,定义函数f k(x)=取函数f(x)=a-|x|(0<a<1),当k=时,函数f k(x)的值域为A.(0,a)∪(,+∞)B.[a,1]∪(,+∞)C.(0,a)∪[1,)D.(0,a]∪[1,)11.函数f(x)=的图象可能是A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)12.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若x0是方程f(x)-f'(x)=2的一个解,则x0可能存在的区间是A.(0,1)B.(1,2)C.(2,3)D.(3,4)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.已知函数f(x)=则f[f(2)]=▲.214.(x+)dx=▲.15.已知函数f(x)=2ax2-ax+c的部分图象如图所示,且f'(x)是f(x)的导函数,若函数y=f'(x)的零点为m,则-m a+c=▲.16.给出下列命题:①若y=x3+ax在R上单调递增,则a≥0;②若p是q的充分必要条件,则p可能是q的必要不充分条件;③若函数f(x)是奇函数,则函数f(x+1)的图象关于点A(1,0)对称;④已知函数y=f(x)满足f(x+2)=2f(x),且当x∈[-1,1]时,f(x)=-|x|+1,则当x∈(0,5]时,函数y=f(x)与g(x)=lg x的图象有4个交点.其中真命题的序号为▲.(把所有真命题的序号都填上)三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=-的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(R B);(2)若A∩B={x|-1<x<4},求实数m的值.18.(本小题满分12分)已知p:函数f(x)=(x-2)e x(e是自然对数的底数)在(m,2m)上是单调函数;q:“x2-2x≤0”是“x2-2mx-3m2≤0”的充分不必要条件.若p∨q为真,p∧q为假,求实数m的取值范围.319.(本小题满分12分)对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”. (1)已知二次函数f(x)=ax2+2bx-4a(a≠0,b∈R),试判断f(x)是否为“局部奇函数”,并说明理由;(2)设f(x)=2x+m是定义在[-1,1]上的“局部奇函数”,求实数m的取值范围.20.(本小题满分12分)已知函数f(x)=(其中e是自然对数的底数,常数a>0).-(1)当a=1时,求曲线在(0,f(0))处的切线方程;(2)若存在实数x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范围.21.(本小题满分12分)在2014年南京“青奥会”来临之际,某礼品加工厂计划加工一套“青奥会”纪念礼品投入市场.已知每加工一套这样的纪念品的原料成本为30元,且每套礼品的加工费用为6元,若该纪念品投放市场后,每套礼品出厂的价格为x(60≤x≤100)元,根据市场调查可知,这种纪念品的日销售量q与成反比,当每套礼品的出厂价为81元时,日销量为200个.(1)若每天加工产品个数根据销量而定,使得每天加工的产品恰好销售完,求该礼品加工厂生产这套“青奥会”纪念品每日获得的利润y元与该纪念品出厂价格x元的函数关系;(2)若在某一段时间为了增加销量,计划将每套纪念品在每天获得最大利润的基础上降低t元进行销售,但保证每日的利润不低于9000元,求t的取值范围.22.(本小题满分12分)已知函数f(x)=ln x-ax2-bx(a,b∈R,且a≠0).(1)当b=2时,若函数f(x)存在单调递减区间,求a的取值范围;(2)当a>0且2a+b=1时,讨论函数f(x)的零点个数.42015届高三第一次联考·数学试卷参考答案1.D∵M={-2,-1,0,1},N={-1,0,1,2,3},∴M∩N={-1,0,1}.2.C全称命题的否定是特称命题,所以p是∃x0∈R,+1<1,故选C.3.C函数y=cos x为偶函数,但是在(0,+∞)上不单调;y=-x2+1为偶函数,在(0,+∞)上为减函数;y=e x-e-x 为奇函数;只有函数y=log2|x|符合题意.4.C设x1,x2是方程两个根,则满足题意的充要条件是x1·x2=<0,则由选项知充分不必要条件是a<-1.5.B由f(x)=ln(ax-1)可得f'(x)=-,由f'(2)=2可得-=2,解之得a=.6.D由指数函数y=0.6x的图象可知,当x<0时,y>1,∴0.->1;由于函数y=sin x在(0,)上单调递增,又0<<<,∴sin <sin =;函数y=log2.5x在(0,+∞)上单调递增,又<1.7<2.5,∴=log2.5<log2.51.7<1,∴b<c<a.7.A f(x)=x+sin x,则f'(x)=1+cos x,则f'()=1,而f()=+1,故切线方程为y-(+1)=x-.令x=0,可得y=1;令y=0,可得x=-1.故切线与两坐标轴围成的三角形面积为×1×1=.8.A令f(x)=x3-()x-2,易得函数f(x)在R上单调递增.又函数y=x3与y=()x-2的图象的交点为(x0,y0),所以f(x0)=0,即x0为f(x)的零点.又f(1)=1-()1-2=-1<0,f(2)=8-()2-2=7>0,且函数f(x)在R上单调递增,所以x0∈(1,2),所以m=1.9.C f(x)=xln x的定义域为(0,+∞),且f'(x)=ln x+1,当0<x<时,f'(x)<0,故f(x)在定义域上不是单调递增函数,故p是真命题;命题q为“已知f(x),g(x)的定义域都是R,若f(x),g(x)不都是奇函数,则5y=f(x)+g(x)不是奇函数”,这是假命题,例如f(x)=x+x2,g(x)=x-x2都不是奇函数,但y=f(x)+g(x)=2x是奇函数,故正确的命题为p∧q.10.B依题意,当k=时,由a-|x|≤(0<a<1),得|x|≤1,此时f k(x)==a|x|∈[a,1];由a-|x|>(0<a<1),得|x|>1,此时f k(x)=f(x)=a-|x|∈(,+∞).因此,当k=时,函数f k(x)的值域为[a,1]∪(,+∞).11.C取a=0,可知(4)正确;取a<0,可知(3)正确;取a>0,可知(2)正确;无论a取何值都无法作出(1).12.B由题易知f(x)-log2x为常数,令f(x)-log2x=k(常数),则f(x)=log2x+k,由f[f(x)-log2x]=3得f(k)=3.又f(k)=log2k+k=3,所以k=2,所以f(x)=log2x+2.再用零点存在定理验证可知选B.13.2因为2≤2,所以f[f(2)]=f(4)==2.14.(e2+1) (x+)dx=(x2+ln x)=e2+ln e-=(e2+1).15.-由图象可知f(1)=0,即2a-a+c=0,即a+c=0,又f'(x)=4ax-a,由图可知a<0,故y=f'(x)的零点为m=,故-m a+c=(-m0=--1=()-2-1=3-2-1=-.16.①④对于①,由y=x3+ax可得y'=3x2+a,要使函数单调递增,只需y'=3x2+a≥0恒成立,故a≥-3x2,可得a≥0,故①正确;对于②,若p是q的充分必要条件,则p一定是q的充分必要条件,故②错误;对于③,根据图象平移的“左加右减”的规律可知,f(x+1)的图象是由f(x)的图象向左平移了一个单位长度,故对称中心为(-1,0);对于④,作出函数图象可知在x∈(0,5]上,f(x)与g(x)有4个交点,则④正确.17.解:(1)由已知可得A={x|-1<x≤5}.当m=3时,B={x|-1<x<3},则R B={x|x≤-1或x≥3},∴A∩(R B)={x|3≤x≤5}. .............................................................. 5分(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},故4是方程-x2+2x+m=0的一个根,∴-42+2×4+m=0,解得m=8.此时B={x|-2<x<4},符合题意,因此实数m的值为8. ....................................... 10分18.解:由f(x)=(x-2)e x,可得f'(x)=(x-1)e x.由f'(x)>0,可得x>1,即f(x)在(1,+∞)上单调递增;由f'(x)<0,可得x<1,即f(x)在(-∞,1)上单调递减.若p为真,则或解之得0<m≤或m≥1. .................................. 4分6若q为真,分m大于0与小于0,可得m≥或m≤-2. ........................................ 6分由p∨q为真,p∧q为假,可得p,q一真一假.若p假q真,则m∈(-∞,-2]∪[,+∞)且m∈(-∞,0]∪(,1),即实数m的取值范围是(-∞,-2]∪[,1);.................................................. 8分若p真q假,则m∈(-2,)且m∈(0,]∪[1,+∞),即实数m的取值范围是(0,]. ................... 10分综上可知,若p∨q为真,p∧q为假,则实数m的取值范围是(-∞,-2]∪(0,]∪[,1). .............. 12分19.解:(1)f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解,即f(x)+f(-x)=0⇒2a(x2-4)=0,........................................................... 3分解得x=±2,∴f(x)为“局部奇函数”.................................................... 5分(2)当f(x)=2x+m时,f(x)+f(-x)=0可转化为2x+2-x+2m=0,∵f(x)的定义域为[-1,1],∴方程2x+2-x+2m=0在[-1,1]上有解,令t=2x∈[,2],则-2m=t+.∵g(t)=t+在[,1)上递减,在[1,2]上递增,∴g(t)∈[2,],∴-2m∈[2,],即m∈[-,-1]. ........................................................... 12分20.解:(1)f(x)的定义域为{x|x≠a}.当a=1时,f(x)=-,f'(x)=--,∴f(0)=-1,f'(0)=-2,∴曲线在(0,f(0))处的切线方程为2x+y+1=0. .............................................. 4分(2)f'(x)=--,令f'(x)=0,得x=a+1,∴f(x)在(-∞,a),(a,a+1)上递减,在(a+1,+∞)上递增. ........................................ 6分若存在实数x∈(a,2],使不等式f(x)≤e2成立,只需在x∈(a,2]上,f(x)min≤e2成立.①当a+1≤2,即0<a≤1时,f(x)min=f(a+1)=e a+1≤e2,∴0<a≤1符合条件.................................................................. 10分②当a+1>2,即1<a<2时,f(x)min=f(2)=-≤e2,解得a≤1,又1<a<2,∴a∈⌀.综上,a的取值范围是(0,1]. ........................................................... 12分721.解:(1)根据条件可设q=,由条件可知,当x=81时,q=200,即200=,k=1800,∴q=,∴生产这套“青奥会”纪念品每日可以获得的利润为y=(x-30-6)·=(60≤x≤100). ........ 4分(2)由(1)可知y=,∴y'=--=.显然,当x>0时,y'>0,∴函数在[60,100]上单调递增,∴当x=100时,每日获得的利润最大,且最大值为y=-=11520(元),........................................................... 8分∴每套纪念品的价格降低t元后,每套纪念品的价格为100-t元,可以获得的利润为y=-,由条件只需-≥9000,令-=m,则可得m2-5m-36≥0,结合m>0可解得m≥9,即-≥9,解之得t≤19,结合条件可知t 的取值范围是(0,19]. ................................................................ 12分22.解:(1)当b=2时,函数f(x)=ln x-ax2-2x,其定义域是(0,+∞),∴f'(x)=-2ax-2=--.∵函数f(x)存在单调递减区间,∴f'(x)=--≤0在x∈(0,+∞)上有无穷多个解.∴关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上有无穷多个解.①当a>0时,函数y=2ax2+2x-1的图象为开口向上的抛物线,关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上总有无穷多个解.②当a<0时,函数y=2ax2+2x-1的图象为开口向下的抛物线,其对称轴为x=->0.要使关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上有无穷多个解.必须Δ=4+8a>0,解得a>-,此时-<a<0.综上所述,a的取值范围为(-,0)∪(0,+∞). ............................................... 6分(2)当b=1-2a时,函数f(x)=ln x-ax2-(1-2a)x,其定义域是(0,+∞),∴f'(x)=-2ax-(1-2a)=---,令f'(x)=0,得8--=0,即2ax2+(1-2a)x-1=0,(x-1)(2ax+1)=0,∵x>0,a>0,则2ax+1>0,∴x=1,当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.∴当x=1时,函数f(x)取得最大值,其值为f(1)=ln 1-a-b=-a-1+2a=a-1.①当a=1时,f(1)=0,若x≠1,则f(x)<f(1),即f(x)<0.此时,函数f(x)与x轴只有一个交点,故函数f(x)只有一个零点;②当a>1时,f(1)>0,又f()=ln-a·()2-(1-2a)×=-a(-1)2-<0,f(e)=ln e-ae2-(1-2a)e=1-ea(e-2)-e<0,函数f(x)与x轴有两个交点,故函数f(x)有两个零点;③当0<a<1时,f(1)<0,函数f(x)与x轴没有交点,故函数f(x)没有零点. ....................... 12分9。
2015年山东省19所名校联考高考一模数学试卷(文科)【解析版】
2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C.
3. (5 分)已知正数组成的等比数列{an},若 a1•a20=100,那么 a7+a14 的最小值 为( A.20 ) B.25 C.50 D.不存在
4. (5 分)若变量 x,y 满足约束条件 别为( A.4 和 3 ) B.4 和 2
【解答】解:由 x2﹣2x﹣3≤0,解得:﹣1≤x≤3. ∴A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}. 由 ∴B={x| ,解得:﹣2<x<2. }={x|﹣2<x<2}.
∴A∩B={x|﹣1≤x≤3}∩{x|﹣2<x<2}=[﹣1,2) . 故选:A. 2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C. ) D.ac2≤bc2
A. (﹣∞,e4)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11. (5 分)已知 tan(π﹣α)=﹣ ,则 tanβ= . .
12. (5 分)已知正数 x,y 满足 3x+4y=xy,则 x+3y 的最小值为 13. (5 分)已知幂函数 f(x)=
(m∈Z)在(0,+∞)上为增函数,
第 4 页(共 17 页)
2015 年山东省 19 所名校联考高考数学一模试卷(文科)
参考答案与试题解析
一、选择题:本大题共 10 小题.每小题 5 分,共 50 分.在每小题给出的四个 选项中.只有一项是符合题目要求的. 1. (5 分)已知集合 A.[﹣1,2) B. (﹣2,2) C. (﹣1,3) ,则 A∩B=( D. (2,3] )
. (把你认为正确的命题的序号都填
(2)令 bn=an•an+1,求{bn}的前 n 项的和 Sn. 17. (12 分)已知向量 =(cosωx,sinωx) , =(cosωx, <ω<2) .函数, 其图象的一条对称轴为 cosωx) ,其中(0 .
2015年广东省深圳市十校联考中考一模数学试卷(解析版)
2015年广东省深圳市十校联考中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条2.(4分)2cos45°的值等于()A.B.C.D.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13 7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和48.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2 9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第象限.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为米.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.三、解答题(共7小题,满分0分)17.计算:.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.2015年广东省深圳市十校联考中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)一个正方形的对称轴共有()A.1条B.2条C.4条D.无数条【考点】LE:正方形的性质;P3:轴对称图形.【解答】解:一个正方形的对称轴共有4条,故选C.2.(4分)2cos45°的值等于()A.B.C.D.【考点】T5:特殊角的三角函数值.【解答】解:∵cos45°=,∴2cos45°=.故选:B.3.(4分)小明从正面观察如图所示的物体,看到的是()A.B.C.D.【考点】U2:简单组合体的三视图.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选:C.4.(4分)在同一平面直角坐标系中,函数y=﹣与函数y=x的图象交点个数是()A.0个B.1个C.2个D.3个【考点】G8:反比例函数与一次函数的交点问题.【解答】解:∵y=x的图象是过原点经过一、三象限,的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交.故选:A.5.(4分)如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为()A.80°B.75°C.65°D.45°【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【解答】解:已知AB=AC,∠A=30°可得∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD所以∠A=∠ACD=30°所以∠BCD=∠ACB﹣∠ACD=45°.故选:D.6.(4分)一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或12C.13D.11和13【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系.【解答】解:由(x﹣2)(x﹣4)=0解得x=2或4,由三角形三边关系定理得6﹣3<x<6+3,即3<x<9,因此,本题的第三边应满足3<x<9,所以x=4,即周长为3+4+6=13.故选C.7.(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【考点】L5:平行四边形的性质.【解答】解:∵AE平分∠BAD∴∠BAE=∠DAE∵▱ABCD∴AD∥BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD﹣BE=2故选:B.8.(4分)如图,点A和B都在反比例函数的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为点C,P是线段OB上的动点,连接CP,设△ACP的面积为S,则下列说法正确的是()A.S>1B.S>2C.1<S<2D.1≤S≤2【考点】G5:反比例函数系数k的几何意义.【解答】解:根据题意可得:k=2,故可知S△ACO=1,∵S△OPC <S△ACO=1,故△ACP的面积1≤S≤2.故选:D.9.(4分)如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是()A.B.C.D.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【解答】解:设AC与DM的交点为G,∵△AMG∽△CDG,AM=AB=CD.∴AG=CG.∵△AMC的面积为.∴S△AMG=∵S阴影=S△ADM+S△ACM﹣2S△AMG∴S阴影=+﹣=因此图中的阴影部分的面积是;故选:B.10.(4分)已知一次函数y=ax+b的图象过点(﹣2,1),则关于抛物线y=ax2﹣bx+3的三条叙述:①过定点(2,1);②对称轴可以是x=1;③当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A.0B.1C.2D.3【考点】H3:二次函数的性质.【解答】解:由y=ax+b过(﹣2,1),可得﹣2a+b=1,即2a﹣b=﹣1.①当x=2时,代入抛物线的右边得到4a﹣2b+3=2(2a﹣b)+3=﹣2+3=1,故①正确;②由题意得b=2a+1,由对称轴x=﹣,对称轴为x=﹣≠1,故②错误.③由2a﹣b=﹣1得到:b=2a+1.抛物线的顶点坐标公式可知纵坐标===3﹣,因此当a<0时,即顶点的纵坐标的最小值是3,故③正确.故选:C.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【考点】G7:待定系数法求反比例函数解析式.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.(5分)在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为12.【考点】L8:菱形的性质.【解答】解:读图可知,AC=4,BD=6,则该菱形的面积为4×6×=12.故答案为12.13.(5分)已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第一象限.【考点】D1:点的坐标;H4:二次函数图象与系数的关系.【解答】解:从图象得出,二次函数的对称轴在一,四象限,且开口向上,∴a>0,>0,因此b<0,∵二次函数的图象与y轴交于y轴的负半轴,∴c<0,∴a>0,bc>0,则点P(a,bc)在第一象限.故答案为:一.14.(5分)如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长13米,且tan∠BAE=,则河堤的高BE为12米.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【解答】解:因为tan∠BAE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:AB2=BE2+AE2,即:132=(12x)2+(5x)2,169=169x2,解得:x=1或﹣1(负值舍去);所以BE=12x=12(米).故答案为:12.15.(5分)关于x的一元二次方程(m﹣1)x2﹣mx+1=0有两个不相等的实数根,则m的取值范围是m≠2且m≠1.【考点】AA:根的判别式.【解答】解:∵方程为一元二次方程,∴(m﹣1)≠0,即m≠1,∵方程有两个不相等实数根,∴△=(﹣m)2﹣4(m﹣1)=(m﹣2)2>0,∴m≠2,综合得m≠1且m≠2.故答案为:m≠1且m≠2.16.(5分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.【考点】L6:平行四边形的判定;X4:概率公式.【解答】解:从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,其中只有①②、①③和③④可以判断ABCD是平行四边形,所以其概率为=.故答案为:.三、解答题(共7小题,满分0分)17.计算:.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【解答】解:原式=1﹣4××+2×=1﹣+2=1+.18.小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.【考点】X6:列表法与树状图法.【解答】解:(1)树状图为:(答对一组得1分);(4分)(2)由(1)中的树状图可知:P(一个回合能确定两人先上场)==.(8分)19.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【考点】LA:菱形的判定与性质.【解答】解:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.20.在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2,已知床单的长是2m,宽是1.4m,求花边的宽度.【考点】AD:一元二次方程的应用.【解答】解:设花边的宽度为x米,依题意得:(2﹣2x)(1.4﹣2x)=1.6解得:x1=1.5(舍去),x2=0.2.答:花边的宽度为0.2米.21.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【考点】TB:解直角三角形的应用﹣方向角问题.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)22.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.(1)求证:△MED为等腰三角形;(2)求证:∠EMD=2∠DAC.【考点】KI:等腰三角形的判定;KX:三角形中位线定理.【解答】证明:(1)∵M为AB边的中点,AD⊥BC,BE⊥AC,∴ME=AB,MD=AB,∴ME=MD,∴△MED为等腰三角形;(2)∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC.23.如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x轴上的动点.(1)求抛物线的解析式;(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.【考点】HF:二次函数综合题.【解答】解:∵抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,∴解得:,∴此抛物线的解析式为:y=﹣x2+2x+2;(2)∵A(3,3.5)、B(4,2)、C(0,2),∴AC=,AB=,①若PC∥AB,则过点B作BE∥x轴,过点A作AE∥y轴,交点为E,∴AE=1.5,BE=1,当时,AB∥PC,∴,∴OP=,∴点P的坐标为:(,0),∴BP=,∴AP≠BC,∴此点不符合要求,舍去;②若BP∥AC,则过点A作AE∥y轴,过点C作CE∥x轴,相交于点E,过点B作BF∥y轴,当时,BP∥AC,∴,解得:PF=4,∴点P与点O重合,∴PC=2≠AB.∴此点不符合要求,舍去;(3)过A作对称轴的对称点A′,过B作x轴对称点B′,连接A′B′,分别交对称轴与x轴于H点、P点,则这两点即为所求.∴AH=A′H,PB=PB′,∴AB+AH+PH+PB=AB+A′H+HP+PB′=AB+A′B′,∵抛物线的y=﹣x2+2x+2的对称轴为:x=2,∵A(3,3.5),B(4,2),∴A′(1,3.5),B′(4,﹣2),∴AB=,A′B′=,∴四边形AHPB周长的最小值为:+.。
山西省2015年中考模拟考试一模名校联考数学试题及答案
山西省2015年中考模拟考试一模名校联考数学试题考试时间:120分钟 满分:120分一、选择题(每小题3分共18分) 2015、2、101.13-的倒数是A .13B .3-C .3D . 13-2. 下列计算正确的是 A .()623a a -=- B .222()ab a b -=- C .235325a a a += D .336a a a =÷3.地球与月球的平均距离大约为384000千米.将数384000用科学记数法表示为 A .60.38410⨯B .63.8410⨯C .53.8410⨯D .338410⨯4.已知一元二次方程的两根分别是3和-5,则这个一元二次方程是A .x 2-2x+15=0B .x 2+2x -15=0C .x 2-x -6=0D .x 2-2x -15=0 5.如图,在Rt△ABC 中,∠C=90°,sinA=32,那么tanB 的值是 A .25B .35 C .552 D .326.已知二次函数2(0)y ax bx c a =++≠的图像如图所示,且关于x一元二次方程20ax bx c m ++-=有实数根,下列结论: ①abc >0;②24b ac ->0;③m >2- 其中,正确的个数是A .0B .1C .2D .3二、填空题(每小题3分共30分):7.使式子有意义的x 的取值范围是 .8.一组数据3、-4、1、-2的极差为 . 9.因式分解:a 3-a =_____________.10.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为 . 11.如图,四边形ABCD 是⊙O 的内接四边形,如果∠AOC +∠ABC =90°,那么∠ADC 的度数为 .(第11题)(第12题) (第13题)(第5题)(第6题)12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为等腰三角形的概率是 .13.如图,AB 为半圆的直径,且AB=3,半圆绕点B 顺时针旋转45°,点A 旋转到A′的位置,则图中阴影部分的面积为 (结果保留π).14.Rt△ABC 中,∠C=90°,AB=9,点G 是△ABC 的重心,则CG 的长为 . 15.抛物线2y x =-沿y 轴向上平移若干个单位长度后,新抛物线与x 轴的两个交点和顶点构成等腰直角三角形,则新抛物线的解析式为 . 16.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE∥AC,若S △DEC :S △ADC =1:3,则S △BDE :S △ACD = .三、解答题(共72分)17.(本题12分)计算: (1)21()4sin 60tan 452--- 21)218.(本题8分)先化简,再求值:22111121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭,其中1x =19.(本题8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计九月份(30天)共租车多少万车次; (3)市政府在公共自行车建设项目中共投入7650万元,若 2014年 各月份的租车量与九月份的租车量基本相同,每车次平均收入租 车费0.1元,请估计2014年租车费收入占总投入的百分率.20.(本题8分)(1)如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.(2)在你所作的图中,①AB与⊙O的位置关系是______;(直接写出答案)②若AC=6,BC=8,求⊙O的半径.21.(本题10分)在一个不透明的箱子里,装有2个红球和2个黄球,它们除了颜色外均相同.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.(本题10分)我国深潜器目前最大的深潜极限为7062.68m,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C 的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B 点,此时测得海底沉船C 的俯角为60°。
2015年中考安徽名校大联考(一)数学试题(附答案解析)
百度文库wjb005制作2015年中考安徽名校大联考(一)数学试题(附答案解析)(考生注意:本卷计23小题,满分150分,考试时间120分钟)一.选择题(共10小题,满分40分,每小题4分)C3.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是()4.如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则+2x=().D5.如图,将一张圆形纸片对折两次后,然后沿图③中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是()7.已知点P1(﹣2,y1),P2(﹣1,y2),P3(3,y3)是反比例函数y=图象上的三点,则y1、y2、y3的大小关系8.如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,若过A点的对角线长为20cm,则每个菱形的面积为()cm 2 C. cm 29.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( ).CD ..C D . 或二.填空题(共4小题,满分20分,每小题5分)11.因式分解:3a 2﹣6a+3=_________ .12.计算:(ab 2)2÷(﹣ab )2= _________ .13.如图,∠AOB=45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,…的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别 为S 1,S 2,S 3,S 4,….观察图中的规律,第n (n 为正整数)个黑色梯形的面积是S n = _________ .(第13题图) (第14题图)14.二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简|b ﹣a ﹣c|﹣+|a ﹣b|= _________ .三.解答题(共9小题,满分90分) 15.(8分)计算:.16.(8分)在水果店里,小李买了5kg 苹果,3kg 梨,老板少要2元,收了50元;老王买了11kg 苹果,5kg 梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元?17.(8分)如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且,求∠ABC+∠ADC 的度数.18.(8分)如图,在平面直角坐标系中,(1)分别写出△ABC的顶点坐标;(2)画出△ABC关于x轴对称的图形△A1B1C1;(3)在该平面直角坐标系中,画出一次函数y=2x﹣5的图象.19.(10分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.20.(10分)某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图.(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的_________%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表所示.若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客21.(12分)在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为_________km,a=_________;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.22.(12分)如图,A,B,C,D,E,F,M,N是某公园里的8个独立的景点,D,E,B三个景点之间的距离相等;A,B,C三个景点距离相等.其中D,B,C在一条直线上,E,F,N,C在同一直线上,D,M,F,A也在同一条直线上.游客甲从E点出发,沿E→F→N→C→A→B→M游览,同时,游客乙从D点出发,沿D→M→F→A→C→B→N游览.若两人的速度相同且在各景点游览的时间相同,甲、乙两人谁最先游览完?请说明理由.23.(14分)如图,△ABC是等腰直角三角形,AB=,D为斜边BC上的一点(D与B、C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;(2)当△DCE的面积为1.5时,求x的值;(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x的取值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)二.填空题(共4小题,满分20分,每小题5分)11.3(a﹣1)212.b213.8n﹣4解析:个黑色梯形的面积为:14.﹣3b﹣cx=+|a﹣×﹣,,∵)和点(出口的被调查游客人数的.不合题意.≥.所以≤≤≤,≤时或当中,,AC=AB=,的面积为:CE=∴(<。
天津市2015年中考一模名校检测数学试题
天津市2015年中考一模调研检测数学试题时间120分钟 满分120分 2015.4.8一.选择题:(每小题3分,共36分)1.-+︒60tan 2Sin450的值等于( )(A) 1 (2+ (D) 33-2 2. 下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )3.在下列图形中,既是轴对称图形,又是中心对称图形的是( )4.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白 四个球,现分别从两只口袋中各取一个球,求取出的两个球都是黄球的概率 ( ) (A )13(B )16(C )19(D )1125.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的表面积为( )cm 2. (A )6π+6 (B )12π (C )27π (D )18π6. 如图,⊙O 的两条弦AB 、CD 相交于点E ,AC 与DB 的延长线交于点P ,下列结论中成立的是( ) (A )CE 〃CD =BE 〃BA (B )CE 〃AE =BE 〃DE(C )PC 〃CA =PB 〃BD (D )PC 〃PA =PB 〃PD7. 已知二次函数 y =ax 2+bx +c ,且a <0,a -b +c >0,则一定有( )(A )b 2-4ac >0 (B) b 2-4ac =0 (C) b 2-4ac <0 (D) b 2-4ac ≤0(A ) (B ) (C ) (D )8.如图,所示物体的左视图是 ( )(A ) (B ) (C ) (D )9. 如图,已知等腰ABC ∆中,顶角∠A =36°,BD 为∠ABC 的平分线,则ADAC的值等于( ) (A)12 (B (C) 1 (D10.正六边形半径为R,则它的边长、边心距、面积分别为( ) (A)232,,332R R R (B) 232,2,R R R (C) 232,,33R R R (D)R,R 23,2233R11.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )(A )1 (B )-1 (C )1或-1 (D ) 212.如图,正△ABC 内接于⊙O,P 是劣弧BC 上任意一点,PA 与BC 交于点E ,有如下结论:① PA =PB +PC ; ② 111PA PB PC=+; ③∠BPC=120゜; ④PA 〃PE =PB 〃PC ;⑤图中共有6对相似三角形.其中,正确结论的个数为( )(A )5个 (B )4个 (C )3个 (D ) 2个二.填空题:(每小题3分,共18分)13.已知关于x 的方程x 2-3x +m =0的一个根是另一个根的2倍,则m 的值为________.14. 已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数为 _____.15. 如图,M 为双曲线y =x1上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B .则AD 〃BC 的值为___________.16. 如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上.若sin ∠DFE=13,则 tan ∠EBC 的值为_________。
2015年湖南省长沙市长郡中学等十三校联考高考一模数学试卷(理科)【解析版】
2015年湖南省长沙市长郡中学等十三校联考高考数学一模试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设复数e iθ=cosθ+i sinθ,则复数e的虚部为()A.B.C.i D.i2.(5分)已知p,q是简单命题,那么“p∧q是真命题”是“¬p是真命题”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)已知α,β是两个不同平面,m,n是两条不同直线,则下列命题不正确的是()A.α∥β,m⊥α,则m⊥βB.m∥n,m⊥α,则n⊥αC.n∥α,n⊥β,则α⊥βD.m∥β,m⊥n,则n⊥β4.(5分)函数的单调增区间是()A.k∈Z B.k∈ZC.(2kπ,π+2kπ)k∈Z D.(2kπ+π,2kπ+2π)k∈Z5.(5分)执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16B.8C.4D.26.(5分)已知空间几何体的三视图如图所示,则该几何体的各侧面图形中,是直角三角形的有()A.0个B.1个C.2个D.3 个7.(5分)已知两不共线向量=(cosα,sinα),=(cosβ,sinβ),则下列说法不正确的是()A.||=||=1B.(+)⊥(﹣)C.与的夹角等于α﹣βD.与在+方向上的投影相等8.(5分)设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N*,有S2n<3S n,则q的取值范围是()A.(0,1]B.(0,2)C.[1,2)D.9.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.10.(5分)已知函数y=f(x)为定义在R上的奇函数,且x>0时,f(x)=lg (x2﹣ax+10),若函数y=f(x)的值域为R,则实数a的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣2,2)C.(﹣2,﹣6]D.[6,2)二、填空题(共6小题,每小题4分,满分25分)11.(4分)已知曲线C:(θ为参数),直线l的极坐标方程为ρsinθ+3=0(以直角坐标原点O为极点,x轴非负半轴为极轴建立极坐标系),则C 被l截得弦长为.12.(4分)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,则BC的长为.13.(4分)若A,B,C为△ABC的三个内角,则的最小值为.14.(4分)|x2﹣1|dx=.15.(4分)已知双曲线=1(b>0,a>0)的两条渐近线为l1,l2,过右焦点F作垂直l1的直线交l1,l2于A,B两点,若|OA|,|AB|,|OB|成等差数列,则双曲线的离心率为.16.(5分)若,z=x+2y,则z的取值范围是.三、解答题(共6小题,满分75分)17.(12分)已知向量=(cos,﹣1),=(sin,cos2),设函数f(x)=•.(1)求函数f(x)的单调递增区间;(2)求函数f(x)在x∈[0,π]上的零点.18.(12分)由于雾霾日趋严重,政府号召市民乘公交出行,但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如表所示:(1)现从这10人中随机取3人,求至少有一人来自第二组的概率;(2)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布及数学期望.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC =2.(Ⅰ)若D为AA1中点,求证:平面B1CD⊥平面B1C1D;(Ⅱ)在AA1上是否存在一点D,使得二面角B1﹣CD﹣C1的大小为60°.20.(13分)已知数列{a n}(n∈N*)的前n项和为S n,数列{}是首项为0,公差为的等差数列.,b2k,b2k+1}(1)设b n=•(﹣2)n(n∈N*),对任意的正整数k,将集合{b2k﹣1中的三个元素排成一个递增的等差数列,其公差为d k,求证:数列{d k}为等比数列;(2)对(1)题中的d k,求集合{x|d k<x<d k+1,x∈Z}的元素个数.21.(13分)已知点D(0,﹣2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图(Ⅰ)求切点A的纵坐标;(Ⅱ)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.22.(13分)已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<对任意x>1恒成立,求k的最大值.2015年湖南省长沙市长郡中学等十三校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)设复数e iθ=cosθ+i sinθ,则复数e的虚部为()A.B.C.i D.i【解答】解:由e iθ=cosθ+i sinθ,得e=,∴复数e的虚部为.故选:B.2.(5分)已知p,q是简单命题,那么“p∧q是真命题”是“¬p是真命题”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:p,q是简单命题,那么“p∧q是真命题”说明p.q都是真命题,推不出¬p是真命题,反之¬p是真命题则p是假命题,则p∧q是假命题,所以“p∧q是真命题”是“¬p是真命题”既不充分也不必要条件.故选:D.3.(5分)已知α,β是两个不同平面,m,n是两条不同直线,则下列命题不正确的是()A.α∥β,m⊥α,则m⊥βB.m∥n,m⊥α,则n⊥αC.n∥α,n⊥β,则α⊥βD.m∥β,m⊥n,则n⊥β【解答】解:A、由一条直线垂直平行平面中的一个,则垂直于另一个正确;B、由平行线中的一条垂直于一个平面,则另一条也垂直于这个平面得正确;C、过n作平面γ,γ∩α=m,∵n∥α∴n∥m,又因为n⊥β,∴m⊥β,又因为m⊂α,∴α⊥β正确;D、m∥β,m⊥n,则n⊥β,或n⊂β,n∥β不正确.故选:D.4.(5分)函数的单调增区间是()A.k∈Z B.k∈ZC.(2kπ,π+2kπ)k∈Z D.(2kπ+π,2kπ+2π)k∈Z【解答】解:函数=cos2x,因为y=cos x的单调减区间为:[2kπ,π+2kπ]k∈Z,函数的单调增区间是k∈Z.故选:A.5.(5分)执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16B.8C.4D.2【解答】解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选:B.6.(5分)已知空间几何体的三视图如图所示,则该几何体的各侧面图形中,是直角三角形的有()A.0个B.1个C.2个D.3 个【解答】解:由三视图可知原几何体是一个四棱锥,并且顶点P在下底面的射影点为正方形边AD的中点O,所以PO⊥底面ABCD,可得PO⊥AB,又AB⊥AD,AB∩PO=O,由线面垂直的判定可得AB⊥平面P AD,可证AB⊥AP,故△P AB为直角三角形,∵CD∥AB,∴CD⊥平面P AD,CD⊥PD,即△PCD也为直角三角形.故左右侧面均为直角三角形,而前后侧面PBC与P AD均为非直角的等腰三角形.所以侧面中直角三角形个数为2个,故选:C.7.(5分)已知两不共线向量=(cosα,sinα),=(cosβ,sinβ),则下列说法不正确的是()A.||=||=1B.(+)⊥(﹣)C.与的夹角等于α﹣βD.与在+方向上的投影相等【解答】解:由模长公式可得==1,==1,即=,故A正确;∵()•()=||2﹣||2=0,∴()⊥(),故B正确;由夹角公式可得.当α﹣β∈[0,π]时,<>=α﹣β;当α﹣β∉[0,π]时,<>≠α﹣β,故C不正确;由投影相等可得,故D正确.故选:C.8.(5分)设等比数列{a n}的各项均为正数,公比为q,前n项和为S n.若对∀n∈N*,有S2n<3S n,则q的取值范围是()A.(0,1]B.(0,2)C.[1,2)D.【解答】解:当q=1时,S2n<3S n成立当q≠1时,由S2n<3S n恒成立∴∵q>1,显然不恒成立,则q2n﹣3q n+2<0,解得q n<1(q n>2舍去),∵等比数列{a n}的各项均为正数,∴q>0,∴0<q<1综上可得0<q≤1故选:A.9.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.B.C.D.【解答】解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx+2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=4与直线y=kx+2有公共点即可.设圆心C(4,0)到直线y=kx+2的距离为d,则d=≤2,即3k2≤﹣4k,∴﹣≤k≤0.∴k的最小值是.故选:A.10.(5分)已知函数y=f(x)为定义在R上的奇函数,且x>0时,f(x)=lg (x2﹣ax+10),若函数y=f(x)的值域为R,则实数a的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣2,2)C.(﹣2,﹣6]D.[6,2)【解答】解:要使函数f(x)有意义,只需满足x2﹣ax+10>0在(0,+∞)上恒成立,即a<由基本不等式:故:其次:要使函数f(x)的值域为R,只需满足f(x)=lg(x2﹣ax+10)≥0,即可.故:x2﹣ax+9≥1在[0,+∞)上有解,由a≥≥6得到a≥6,所以:a的取值范围为:故选:D.二、填空题(共6小题,每小题4分,满分25分)11.(4分)已知曲线C:(θ为参数),直线l的极坐标方程为ρsinθ+3=0(以直角坐标原点O为极点,x轴非负半轴为极轴建立极坐标系),则C 被l截得弦长为2.【解答】解:把曲线C的参数方程化为普通方程,得(x﹣2)2+(y+2)2=4…①;把直线l的极坐标方程化为普通方程,得y+3=0…②;由①、②解得x1=2+,x2=2﹣,∴弦长|AB|=|x1﹣x2|=|(2+)﹣(2﹣)|=2.故答案为:2.12.(4分)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,则BC的长为3.【解答】解:连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△ADE∽△ABD,∴,∵AD=2,AE=1,∴,∴r=,∵∠B=90°,∴CB为⊙O切线,∴CB2+AB2=AC2,∴CB2+42=(2+CB)2,∴CB=3.故答案为:3.13.(4分)若A,B,C为△ABC的三个内角,则的最小值为.【解答】解:A+B+C=π,且,因此,当且仅当,即A=2(B+C)时等号成立.故答案为:.14.(4分)|x2﹣1|dx=2.【解答】解:原式=(1﹣x2)dx+(x2﹣1)dx=(x﹣x3)+(x3﹣x)故答案为:2.15.(4分)已知双曲线=1(b>0,a>0)的两条渐近线为l1,l2,过右焦点F作垂直l1的直线交l1,l2于A,B两点,若|OA|,|AB|,|OB|成等差数列,则双曲线的离心率为.【解答】解:双曲线=1(b>0,a>0)的两条渐近线方程分别为y=±x,不妨设,同向,则渐近线的倾斜角为(0,),∴渐近线斜率k′<1,∴=e2﹣1<1,∴1<e2<2,若|OA|,|AB|,|OB|成等差数列,则|OA|+|OB|=2|AB|,∵|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)2|AB|,∴|AB|=2(|OB|﹣|OA|),∵|OA|+|OB|=2|AB|,∴|OA|=|AB|,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=而由对称性可知:OA的斜率为k=tan∠AOB,∴=,∴2k2+3k﹣2=0,∴k=(k=﹣2舍去);∴=,∴=,即c2=a2,∴e==.故答案为:.16.(5分)若,z=x+2y,则z的取值范围是.【解答】解:作出可行域如图所示,可得直线l:z=x+2y与y轴交于点.观察图形,可得直线l:z=x+2y经过原点时,z达到最小值0直线l:z=x+2y与曲线相切于点A时,z达到最大值.∵由得,∴代入函数表达式,可得,由此可得z max==.综上所述,可得z的取值范围为.故答案为:三、解答题(共6小题,满分75分)17.(12分)已知向量=(cos,﹣1),=(sin,cos2),设函数f(x)=•.(1)求函数f(x)的单调递增区间;(2)求函数f(x)在x∈[0,π]上的零点.【解答】解:(1)函数f(x)=•=sin cos﹣=sin x﹣=sin(x﹣)﹣,令2kπ﹣≤x﹣≤2kπ+,求得2kπ﹣≤x≤2kπ+,k∈z,可得函数的增区间为[2kπ﹣,2kπ+],k∈z.(2)由f(x)=sin(x﹣)﹣=0,求得sin(x﹣)=,∴x﹣=2kπ+,或x﹣=2kπ+,即x=2kπ+或x=2kπ+π,∴函数f(x)在x∈[0,π]上的零点为和π.18.(12分)由于雾霾日趋严重,政府号召市民乘公交出行,但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如表所示:(1)现从这10人中随机取3人,求至少有一人来自第二组的概率;(2)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布及数学期望.【解答】解:(1)设“至少有一人来自第二组”为事件A,由P(A)=1﹣=.(2)由题意A的可能取值为1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:EX==.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=BC=2AC =2.(Ⅰ)若D为AA1中点,求证:平面B1CD⊥平面B1C1D;(Ⅱ)在AA1上是否存在一点D,使得二面角B1﹣CD﹣C1的大小为60°.【解答】解法一:(Ⅰ)证明:∵∠A1C1B1=∠ACB=90°∴B1C1⊥A1C1又由直三棱柱性质知B1C1⊥CC1(1分)∴B1C1⊥平面ACC1A1.∴B1C1⊥CD(2分)由AA 1=BC=2AC=2,D为AA1中点,可知,∴DC2+DC12=CC12=4即CD⊥DC1(4分)又B1C1⊥CD∴CD⊥平面B1C1D又CD⊂平面B1CD故平面B1CD⊥平面B1C1D(6分)(Ⅱ)解:当时二面角B1﹣CD﹣C1的大小为60°.(7分)假设在AA1上存在一点D满足题意,由(Ⅰ)可知B1C1⊥平面ACC1A1.如图,在平面ACC1A1内过C1作C1E⊥CD,交CD或延长线或于E,连EB1,则EB1⊥CD所以∠B1EC1为二面角B1﹣CD﹣C1的平面角(8分)∴∠B1EC1=60°由B1C1=2知,(10分)设AD=x,则∵△DCC1的面积为1∴解得,即∴在AA1上存在一点D满足题意(12分)解法二:(Ⅰ)如图,以C为原点,CA、CB、CC1所在直线为x、y、z轴建立空间直角坐标系.则C(0,0,0),A(1,0,0),B1(0,2,2),C1(0,0,2),D(1,0,1).即(2分)由得由得(4分)又DC1∩C1B=C1∴CD⊥平面B1C1D又CD⊂平面B1CD∴平面B1CD⊥平面B1C1D(6分)(Ⅱ)当时二面角B1﹣CD﹣C1的大小为60°.(7分)设AD=a,则D点坐标为(1,0,a),设平面B 1CD的法向量为则由令z=﹣1得(8分)又∵为平面C 1CD的法向量则由(10分)解得,故.∴在AA1上存在一点D满足题意(12分)20.(13分)已知数列{a n}(n∈N*)的前n项和为S n,数列{}是首项为0,公差为的等差数列.,b2k,b2k+1}(1)设b n=•(﹣2)n(n∈N*),对任意的正整数k,将集合{b2k﹣1中的三个元素排成一个递增的等差数列,其公差为d k,求证:数列{d k}为等比数列;(2)对(1)题中的d k,求集合{x|d k<x<d k+1,x∈Z}的元素个数.【解答】(1)证明:∵数列{}是首项为0,公差为的等差数列,∴,即.当n≥2时,,a1=0适合上式,∴a n=n﹣1.又b n=•,∴,∴,,由2b2k=b2k+b2k+1及b2k<b2k﹣1<b2k+1,得b2k,b2k﹣1,b2k+1依次成递增的等差﹣1数列.∴=.满足为常数,∴数列{d k}为等比数列;(2)解:①当k为奇数时,=.同样可得:=.∴集合{x|d k<x<d k+1,x∈Z}的元素个数为=;②当k为偶数时,同理可得集合{x|d k<x<d k+1,x∈Z}的元素个数为.综上,当k为奇数时,集合{x|d k<x<d k+1,x∈Z}的元素个数为;当k为偶数时,集合{x|d k<x<d k+1,x∈Z}的元素个数为.21.(13分)已知点D(0,﹣2),过点D作抛物线C1:x2=2py(p>0)的切线l,切点A在第二象限,如图(Ⅰ)求切点A的纵坐标;(Ⅱ)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.【解答】解:(Ⅰ)设切点A(x0,y0),且,由切线l的斜率为,得l的方程为,又点D(0,﹣2)在l上,∴,即点A的纵坐标y0=2.…(5分)(Ⅱ)由(Ⅰ)得,切线斜率,设B(x1,y1),切线方程为y=kx﹣2,由,得a2=4b2,…(7分)所以椭圆方程为,且过,∴b2=p+4…(9分)由,∴,…(11分)=将,b2=p+4代入得:p=32,所以b2=36,a2=144,椭圆方程为.…(15分)22.(13分)已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<对任意x>1恒成立,求k的最大值.【解答】解:(1)求导数可得f′(x)=a+lnx+1∵函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3∴f′(e)=3,∴a+lne+1=3,∴a=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(2)由(1)知,f(x)=x+xlnx,令g(x)==,则g′(x)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)令h(x)=x﹣lnx﹣2(x>1),则h′(x)=>0,所以函数h(x)在(1,+∞)上单调递增.…(7分)因为h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,…(9分)所以函数g(x)=在(1,x0)上单调递减,在(x0,+∞)上单调递增.所以[g(x)]min=g(x0)=x0,因为k<对任意x>1恒成立,所以k<x0∈(3,4),所以k的最大值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6题 P B AOx2015中考一模名校联考数学试题时间:120分钟 满分150分2015、2、12一、 选择题(每小题3分,共24分.)1的值等于( )A .一2 C . D 2、下列运算中,结果正确的是 ( ) A .a 6÷a 3=a 2B .(2ab 2)2=2a 2b 4C . a ·a 2=a 3D .(a+b)2=a 2+b 23、一组数据按从小到大排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据4、的是 ( )A .∠CDB =∠CBA B .∠CBD =∠AC .BC ·AB =BD ·AC D . BC 2=CD ·AC5、若圆的半径是5,圆心的坐标是(0,0),点P 的坐标是(-4,3),则点P 与⊙O 的位置关系是 ( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .点P 在⊙O 外或⊙O 上6、如图, AB 是⊙O 的直径, CD 是弦, 且CD ⊥AB, 若BC=4, AC=2, 则sin ∠ABD 的值为A.15( )7、如图,直线1y kx b =+过点(0,2)且与直线2y mx =交于点(1,)P m --,则关于x 的不等式组2mx kx b mx >+>-的解集为 ( ) A .x<-1 B .-2<x<0 C .-2<x<-1 D .x<-28、如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙O 于C 、D ,交AB 于E ,AF 为⊙O 的直径,有下列结论: ( ) ①∠ABP =∠AOP ;; ③AC 平分∠PAB ; ④2BE 2=PE ·BF ,其中结论正确的有A .1个B .2个C .3个D .4个二、填空题(每小题3分,共30分)第7题 A 第4题 第8题9、截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元. 10、函数x y 23+=中自变量x 的取值范围是 . 11、分解因式:2282b a -=_______.12、设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是 .13、圆锥的母线长为6cm ,底面圆半径为4cm ,则这个圆锥的侧面积为___________cm 2. 14、已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个实数根,则k 的取值范围是 。
15、 一山坡的的坡比为3:4,一人沿山坡向上走了20米,那么这人垂直高度上升了_ _米。
16、已知二次函数y=ax 2+bx+c 的图像过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数y=ax 2+bx+c 的图像上,则y 1、y 2、y 3的从小到大的关系是17、如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =经过斜边OA 的中点C ,与另一直角边交于点D .若S △OCD =12,则S △OBD 的值为 .18、二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1), 其中正确结论的个数有 个 。
三、解答题(共96分)19、计算:(本题满分8分)第16题第18题21、(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大。
环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,(1)统计表中的a= _ ,b= _ ,c= _ ;(2)在扇形统计图中,A类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22、(本题满分8分)在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数l、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P 的纵坐标,请用所学的知识求出点P 落在△AOB 内部(不包括边界)的概率.23、(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24、(本题满分10分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x 档次的产品一天的总利润为y 元(其中x 为正整数,且1≤x≤10),求出y 关于x 的函数关系式;(2)若生产第x 档次的产品一天的总利润为1120元,求该产品的质量档次.25.(本题满分10分)如图,AB 为的直径,点C 在⊙O 上,点P 是直径AB 上的一点(不与A ,B 重合),过点P 作AB 的垂线交BC 的延长线于点Q .(1)在线段PQ 上取一点D ,使DQ =DC ,连接DC ,试判断CD 与⊙O 的位置关系,并说明理由.(2)若cosB=35,BP =6,AP =1,求QC 的长.26、(本题满分10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A ,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t (分)后甲、乙两遥控车与B 处的距离分别为d 1,d 2,则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题: (1)填空:乙的速度v 2= 米/分; (2)写出d 1与t 的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?27、(本题满分12分)定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当 45=α时, 点P 的横坐标为 45cos =22, 纵坐标为 45sin =22即P (22,22). 又如:在图2中,α-=∠ 90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证O P N OQM ∆≅∆, 则Q 点的纵坐标)90sin(α- 等于点P 的横坐标cos α,得 )90sin(α- = cos α. 解决以下四个问题:(1)当60α=时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α 1(用>或<填空),(sin α)2 + (cos α)2= ; (3)求证:sin(90)cos αα+=(α为锐角);(4)求证:tan 2α=ααsin cos 1-(α为锐角);28.(本题满分12分)如图,在平面直角坐标系中,直线3342y x=-与抛物线214y x bx c=-++交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方..的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.一、选择题(每小题3分,共24分)答案9、1.853 ×1011 10、23-≥x 11、2(a+2b)(a-2b) 12、4113、24π 14、 k ≥-2且k ≠-1 15、12 16、y 2<y 1<y 3 17、8 18、 3 三、解答题21、(本题满分8分3+2+3) (1)5,0.20,0.24; (2)72°;(3)PM2.5日平均浓度值符合安全值的城市的个数约为60个.22、(本题满分8分)解:当x=1时,y=2; 当x=2时,y=1; 当x=3时,y=0; 当时,,当时,,用列表法可得点P 落在△AOB 内的概率为1。
海里-180x-400 (其中是x 正整数,且1x ≤≤10)25、(本题满分10分5+5)解:(1)CD 与⊙O 相切.理由如下: 连结OC ,如图, ∵OC=OB , ∴∠2=∠B , ∵DQ=DC , ∴∠1=∠Q , ∵QP ⊥PB , ∴∠BPQ=90°, ∴∠Q+∠B=90°, ∴∠1+∠2=90°,∴∠DCO=180°-∠1-∠2=90°, ∴OC ⊥CD ,而OC 为⊙O 的半径, ∴CD 为⊙O 的切线;(2)连接AC ,如图, ∵AB 为⊙O 的直径, ∴∠ACB=90°,在Rt △ABC 中,cosB= AB BC =BP AP BC =53而BP=6,AP=1,∴BC= 521在Rt △BPQ 中,cosB= BQ PB =53 ∴BQ= 10 ∴QC=BQ-BC=10-521 = 529综上所述:当或1≤t时,两遥控车的信号不会产生相互干扰.27、(本题满分12分2+2+4+4)(1)(21,23)(2)>,1 (3)略(4)略 28、(本题满分12分4+5+3) 解:(1)对于,当y=0,x=2.当x=﹣8时,y=﹣.∴A 点坐标为(2,0),B 点坐标为.26、(本题满分10分2+4+4)(1)乙的速度v 2=120÷3=40(米/分),(2)v 1=1.5v 2=1.5×40=60(米/分),60÷60=1(分钟),a =1,d 1=;(3)d 2=40t ,当0≤t ≤1时,d 2﹣d 1>10, 即﹣60t +60﹣40t >10,解得0;当0时,两遥控车的信号不会产生相互干扰;当1≤t ≤3时,d 1﹣d 2>10, 即40t ﹣(60t ﹣60)>10, 当1≤时,两遥控车的信号不会产生相互干扰由抛物线经过A 、B 两点, 得解得. ∴.(2)①设直线与y 轴交于点M , 当x=0时,y=.∴OM=.∵点A 的坐标为(2,0),∴OA=2.∴AM=. ∵OM :OA :AM=3:4:5.由题意得,∠PDE=∠OMA ,∠AOM=∠PED=90°,∴△AOM ∽△PED .∴DE :PE :PD=3:4:5.∵点P 是直线AB 上方的抛物线上一动点,∴PD=y P ﹣y D =, =. ∴=. ∴. ∴x=﹣3时,l 最大=15.②满足题意的点P 有三个,分别是,.。