中国邮递员问题 PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其实可以通过连接匹配的奇点得到!
v1 2
v8 4
v7
5 v2 6
3 v9 4
3 v6
5
4
4
9
4
v3
v4
v5
图2
这样的可行方案是不是只有一种呢? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案?
若不是最优方案,如何调整这个方案?
第二步:调整可行方案
最优方案必须满足以下(1)(2)两个条件:
5
(v2,v3,v4,v5,v6,v
7,v8,v9)送货,如 图1所示。
v2 6
5
9 v3
v8 4
3 v9 4
4 4
v4 图1
v7 3
v6 4
v5
显然街区图上有奇点(4个),不满足“一笔画” 的条件,则必然有一些街道要被重复走过(添 加重复边)才能回到原出发点。此时得到的图 就无奇点。
那么该怎样添加重复边,使得图中全为偶点呢?
这个问题就是一笔画问题。
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
在一个多重边的连通图中,从某个顶点 出发,经过不同的线路,又回到原出发 点,这样的线路必是尤拉图,即能一笔 画出的图必是尤拉图。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
W iv0e1v1e2 eivi G Wi
e i1
e i1
vi
e i1
G Wi
O(| E(G)|2)
O(| E(G)|)
(1)在最优方案中,图的每一边最多有一条
重复边 (2)在最优方案中,图中每个圈上的重复边的
总权不大于该圈总权的一半。
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图3
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图4
v1
2
v8
4
中国邮递员问题
七桥问题与一笔画 中国邮递员问题 欧拉图及求欧拉回路的算法 求解中国邮递员问题的算法
18世纪著名古典数学问 题之一。在哥尼斯堡的 一个公园里,有七座桥 将普雷格尔河中两个岛 以及岛与河岸连接起来 (如图)。问是否可能从 这四块陆地中任一块出 发,恰好通过每座桥一 次,再回到起点?
v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9
v4
4 v5
图5
Baidu Nhomakorabea
一个邮递员送信,要走完他负责投递的 全部街道,投完后回到邮局,应该怎样 走,使所走的路程最短?
这个问题是我国管梅谷同志1960年首先 求出来的,因此在国际上通称为中国邮 递员问题。在物流活动中,经常会遇到 这样的问题,如:每天在大街小巷行驶 的垃圾车、洒水车、各售货点的送货车 等都需要解决一个行走的最短路程问题。
v1 a
b
c
v2
v3
v4
图1
图2
图1和图2当中哪一个图满足:从图中任何一点出 发,途径每条边,最终还能回到出发点?
试想:一个图应该满足什么条件才能达到上面要 求呢?
凡是能一笔画出的图,奇点的个数最多 有两个。始点与终点重合的一笔画问题, 奇点的个数必是0。
奇点:那个点的角度来看,数有多少条线从连接着那 个点,如果连接那个点的线的数量是奇数条,那这个 点就是奇点,反之,就是偶点。
举例说明
如图所示。
v1 2 v3
5 v5
3
4
26 8
v2
4 v4
4 v6
如果在某条路线中,边[vi,vj]上重复走几次, 我们就在图中vi,vj之间增加几条边,令每条 边的权和原来的权相等,并把所增加的边,称 为重复边,于是这条路线就是相应的新图中的 尤拉图。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
举个例子
车辆从某配送中心 (v1)出发,给街道
v1 2
边上的超市
欧拉于1736年研究并解决了 此问题, 他用点表示岛和陆
地,两点之间的连线表示连 接它们的桥,将河流、小岛 和桥简化为一个网络,把七 桥问题化成判断连通网络能 否一笔画的问题。之后他发 表一篇论文,证明了上述走 法是不可能的。并且给出了 连通网络可一笔画的充要条 件这一著名的结论。
一笔画问题:从某一点开始画画,笔不离纸, 各条线路仅画一次,最后回到原来的出发点。
O(|V(G)|2|E(G)|)
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
对于有奇点的街道图,该怎么办呢? 这时就必须在每条街道上重复走一次或多次。
v1 2
v8 4
v7
5 v2 6
3 v9 4
3 v6
5
4
4
9
4
v3
v4
v5
图2
这样的可行方案是不是只有一种呢? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案?
若不是最优方案,如何调整这个方案?
第二步:调整可行方案
最优方案必须满足以下(1)(2)两个条件:
5
(v2,v3,v4,v5,v6,v
7,v8,v9)送货,如 图1所示。
v2 6
5
9 v3
v8 4
3 v9 4
4 4
v4 图1
v7 3
v6 4
v5
显然街区图上有奇点(4个),不满足“一笔画” 的条件,则必然有一些街道要被重复走过(添 加重复边)才能回到原出发点。此时得到的图 就无奇点。
那么该怎样添加重复边,使得图中全为偶点呢?
这个问题就是一笔画问题。
管梅谷教授。
上海市人。1957年毕业于华 东师范大学数学系。历任 山东师范大学讲师、副教 授、教授、校长,中国运 筹学会第一、二届常务理 事,山东省数学学会第四 届副理事长,山东省运筹 学会第一届副理事长,山 东省世界语协会理事长。 是第六届全国政协委员。 从事运筹学及其应用的研 究,对最短投递路线问题 的研究取得成果。所提模 型在国外称为中国投递问 题。
在一个多重边的连通图中,从某个顶点 出发,经过不同的线路,又回到原出发 点,这样的线路必是尤拉图,即能一笔 画出的图必是尤拉图。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
W iv0e1v1e2 eivi G Wi
e i1
e i1
vi
e i1
G Wi
O(| E(G)|2)
O(| E(G)|)
(1)在最优方案中,图的每一边最多有一条
重复边 (2)在最优方案中,图中每个圈上的重复边的
总权不大于该圈总权的一半。
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图3
v1 2 v8 4 v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9 v4
4 v5
图4
v1
2
v8
4
中国邮递员问题
七桥问题与一笔画 中国邮递员问题 欧拉图及求欧拉回路的算法 求解中国邮递员问题的算法
18世纪著名古典数学问 题之一。在哥尼斯堡的 一个公园里,有七座桥 将普雷格尔河中两个岛 以及岛与河岸连接起来 (如图)。问是否可能从 这四块陆地中任一块出 发,恰好通过每座桥一 次,再回到起点?
v7
5
3
3
v2
6
v9 4
v6
5
4
4
v3
9
v4
4 v5
图5
Baidu Nhomakorabea
一个邮递员送信,要走完他负责投递的 全部街道,投完后回到邮局,应该怎样 走,使所走的路程最短?
这个问题是我国管梅谷同志1960年首先 求出来的,因此在国际上通称为中国邮 递员问题。在物流活动中,经常会遇到 这样的问题,如:每天在大街小巷行驶 的垃圾车、洒水车、各售货点的送货车 等都需要解决一个行走的最短路程问题。
v1 a
b
c
v2
v3
v4
图1
图2
图1和图2当中哪一个图满足:从图中任何一点出 发,途径每条边,最终还能回到出发点?
试想:一个图应该满足什么条件才能达到上面要 求呢?
凡是能一笔画出的图,奇点的个数最多 有两个。始点与终点重合的一笔画问题, 奇点的个数必是0。
奇点:那个点的角度来看,数有多少条线从连接着那 个点,如果连接那个点的线的数量是奇数条,那这个 点就是奇点,反之,就是偶点。
举例说明
如图所示。
v1 2 v3
5 v5
3
4
26 8
v2
4 v4
4 v6
如果在某条路线中,边[vi,vj]上重复走几次, 我们就在图中vi,vj之间增加几条边,令每条 边的权和原来的权相等,并把所增加的边,称 为重复边,于是这条路线就是相应的新图中的 尤拉图。
原来的问题可以叙述为在一个有奇点的图中, 要求增加一些重复边,使新图不含奇点,并且 重复边的总权为最小。
我们把使新图不含奇点而增加的重复边简称为 可行(重复边)方案,使总权最小的可行方案 为最优方案。
现在的问题是第一个可行方案如何确定? 在确定一个可行方案后,怎么判断这个方案是
否为最优方案? 若不是最优方案,如何调整这个方案?
举个例子
车辆从某配送中心 (v1)出发,给街道
v1 2
边上的超市
欧拉于1736年研究并解决了 此问题, 他用点表示岛和陆
地,两点之间的连线表示连 接它们的桥,将河流、小岛 和桥简化为一个网络,把七 桥问题化成判断连通网络能 否一笔画的问题。之后他发 表一篇论文,证明了上述走 法是不可能的。并且给出了 连通网络可一笔画的充要条 件这一著名的结论。
一笔画问题:从某一点开始画画,笔不离纸, 各条线路仅画一次,最后回到原来的出发点。
O(|V(G)|2|E(G)|)
解决这样的问题,可以采用奇偶 点图上作业法:如果在配送范围 内,街道中没有奇点,那么他就 可以从配送中心出发,走过每条 街道一次,且仅一次,最后回到 配送中心,这样他所走的路程也 就是最短的路程。
对于有奇点的街道图,该怎么办呢? 这时就必须在每条街道上重复走一次或多次。