三角形中的边角关系

合集下载

三角形边角计算公式

三角形边角计算公式

三角形边角计算公式咱们在数学的世界里,三角形那可是个“常客”,今天就来好好聊聊三角形边角的计算公式。

说起三角形,我想起之前有一次去公园散步,看到几个小朋友在玩拼图游戏,其中就有三角形的拼图。

他们拼得可认真了,还争论着哪个三角形更大,哪个更小。

这让我意识到,对于三角形的理解和计算,从小朋友开始就充满了好奇和探索。

三角形的边角关系中,最基本的公式就是正弦定理和余弦定理啦。

正弦定理是这样的:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径。

用公式表示就是 a/sinA = b/sinB =c/sinC = 2R (其中 R 是三角形外接圆的半径)。

这个定理在解决三角形中的边和角的关系问题时,那可真是“大显身手”。

比如,已知一个三角形的两个角和一条边,要求另外两条边的长度。

这时候,正弦定理就能派上用场。

假设咱们有个三角形 ABC ,已知角A 是 30°,角B 是 60°,边 a 的长度是 5 。

那咱们可以先通过三角形内角和 180°求出角 C 是 90°。

然后根据正弦定理,b/sinB = a/sinA ,即 b / sin60° = 5 / sin30°,通过计算就能得出 b 的长度。

余弦定理也很重要哦!对于任意三角形,有 a² = b² + c² - 2bc·cosA ,b² = a² + c² - 2ac·cosB ,c² = a² + b² - 2ab·cosC 。

举个例子来说,如果知道一个三角形的三条边的长度,想求其中一个角的大小,余弦定理就能帮忙。

比如说有个三角形的三边分别是 a = 3 ,b = 4 ,c = 5 ,要求角 A 的大小。

那咱们就用余弦定理,cosA = (b²+ c² - a²) / (2bc) ,代入数值就能算出 cosA 的值,然后再通过反三角函数就能得出角 A 的度数。

《第13章三角形中的边角关系、命题与证明》学习指导

《第13章三角形中的边角关系、命题与证明》学习指导

《第13章三角形中的边角关系、命题与证明》学习指导编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《第13章三角形中的边角关系、命题与证明》学习指导)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《第13章三角形中的边角关系、命题与证明》学习指导的全部内容。

《第13章 三角形中的边角关系、命题与证明》学习要求:1.理解三角形的角平分线、中线、高线的概念及性质。

会用刻度尺和量角器画出任意三角形的角平分线、中线和高。

2.掌握三角形的分类,理解并掌握三角形的三边关系。

3.掌握三角形内角和定理及推论,三角形的外角性质与外角和。

4.了解三角形的稳定性。

知识要点:一、三角形中的边角关系1.三角形有三条内角平分线,三条中线,三条高线,它们都相交于一点。

注意:三角形的中线平分三角形的面积。

2。

三角形三边间的不等关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

注意:判断三条线段能否构成一个三角形时,就看这三条线段是否满足任何两边之和大于第三边,其简便方法是看两条较短线段的和是否大于第三条最长的线段。

3.三角形各角之间的关系:①三角形的内角和定理:三角形的三个内角和为180°.②三角形的外角和等于360°(每个顶点处只取一个外角); ③三角形的一个外角等于与它不相邻的两个内角的和; ④三角形的一个外角大于任何一个和它不相邻的内角。

4.三角形的分类①三角形按边的关系可以如下分类:②三角形按角的关系可以如下分类:5.三角形具有稳定性.知识结构:二、命题与证明1.判断一件事情的句子是命题,疑问句、感叹句不是命题,计算不是命题,画法不是命题。

三角形中的常见结论

三角形中的常见结论

三角形中的常见结论-CAL-FENGHAI.-(YICAI)-Company One12cAba D D CA三角形中的常见结论(高二理科数学)以下很多结论都是只有在三角形中才成立的,离开三.......................角形.. 这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。

1、内角和定理:A B C π++=。

2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。

3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +> a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。

内心:内切圆圆心,三内角角平分线的交点。

垂心:三边高线的交点。

重心:三边中线的交点。

重心G 的性质:(1)重心G 是中线的三等分点;(2)0GA GB GC ++=;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。

等腰三角形中顶角角平分线、底边中线、底边高线三线合一。

等边三角形四心合一。

5、正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径)。

正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a cA C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a BA b=;(3)2sin a R A =,2sin b R B =,2sin c R C =;(4)sin 2a A R =,sin 2b B R =,sin 2cC R=;(5)::sin :sin :sin a b c A B C =;(6)2sin sin sin sin a b c aR A B C A++==++。

三角形边角关系-第3讲的角与边学

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边一、基础知识本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系.1.边与边的关系(1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?);(2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方.2.角与角的关系(1)三角形的内角和为180︒;(2)直角三角形中两锐角互余;(3)三角形的一个外角大于任何一个与它不相邻的内角;(4)三角形的一个外角等于与它不相邻的两内角之和.3.边和角的关系(1)在同一个三角形中,大边对大角,大角对大边;(2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大.4.不等式变形时常用的性质(1)若a>b,c>d,则a+c>b+d;(2)若a>b,c>d,则a-d>b-c;(3)若a>b,c>0,则ac>bc;若a>b,c<0,则ac<bc;(4)若a>b>0,则11 a b <;(5)总量大于任何一个部分量.5.三角形中的不等关系根源:(1)两点之间线段最短;(2)垂线段最短.二、例题第一部分边的问题例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( )A.31 4k<<B.113k<<C.12k<< D.112k<<例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( )A.17cmB.5cmC.17cm或5cmD.无法确定例5. (★★★)如图3-1,已知P为三角形ABC内一点,求证:1()2AB AC BC PA PB PC AB AC BC++<++<++.例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.例7. (★★★)若三角形ABC 的三边长是a,b,c,且满足:444224442244422,,a b c b c b c a a c c a b a b =+-=+-=+-,则ABC ∆是( )A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形第二部分 角的问题例8. (★★)如图3-4,在三角形ABC 中,042A ∠= ,ABC ∠和ACB ∠的三等分线分别交于D,E,求BDC ∠的度数.例9. (★★★1999年重庆市竞赛题)三角形的三个内角分别为,,αβγ,且αβγ≥≥,2αγ=.则β的取值范围是( )A.003645β≤≤B.004560β≤≤C.006090β≤≤D.004572β≤≤例10. (★★★)如图3-7,延长四边形ABCD 对边AD,BC 交于F ;DC,AB 交于E,若AED ∠,AFB ∠平分线交于O,求证:1()2EOF EAF BCD ∠=∠+∠第三部分边角综合24,例11. (★★★ 2000年江苏省竞赛题)在锐角三角形ABC中,AB>BC>AC,且最大内角比最小内角大0 的取值范围是( ).则A例12. (★★★★)如图3-2,在三角形ABC中,AB>AC>BC,P为三角形内任意一点,连结AP并延长交BC于点D.求证:(1)AB+AC>AD+BC;(2)AB+AC>AP+BP+CP.例13. (★★★★)如图,在三角形ABC中,角A=90度,AD垂直于BC,求证:AB+AC<AD+BC例14.(★★★★)如图,在三角形ABC中,AC>AB,在CA上截取CD=AB,E,F分别是BC,AD的中点,连接EF 并延长交BA的延长线于G,求证:AF=AG例15. (★★★★★)设三角形的三个内角度数分别为A,B,C,相应的对边长分别为a,b,c,求证:60 aA bB cCa b c︒++≥++三、练习题1. (★★)设m,n,p均为自然数,满足m n p≤≤,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?2.(★★ 1998年山东省竞赛题) 已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( )** B.7 C.6 D.43.(★★★)一个三角形的周长为偶数,其中的两条边长分别为4和2003,则满足上述条件的三角形的个数为( )A.1个B.3个C.5个D.7个4.(★ 2002,云南省中考题)两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长是acm,则a的取值范围是( ).5. (★)ABC 的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A.140︒B.80︒或100︒C.100︒或140︒D.80︒或140︒6. (★★★)如图3-5,在ABC ∆中,90ACB ︒∠=,D,E 为AB 上的两点,若AE=AC,45DCE ︒∠=则图中与BC 等长的线段是( ) A.CD B.BD C.CE D.AE-BE7. (★★★)如图3-6,在ABC ∆中,B ∠的平分线与C ∠的外角平分线相交于D,40D ︒∠=.则A ∠等于( )A.50︒B. 60︒C. 70︒D.80︒8. (★★ 第12届希望杯竞赛题)如图3-9,127.5︒∠=,295︒∠=,338.5︒∠=求4∠的大小.9. (★★★第5届希望杯竞赛题)如图3-8,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G,若140BDC ︒∠=,110BGC ︒∠=,求A ∠的度数.10. (★★★★)如图,三角形ABC 中,AB=BC=CA,AE=CD,AD,BE 相交于P,BQ 垂直于AD 于Q ,求证:BP=2PQ课外小故事五枚金币有个叫阿巴格的人生活在内蒙古草原上.有一次,年少的阿巴格和他爸爸在草原上迷了路,阿巴格又累又怕,到最后快走不动了.爸爸就从兜里掏出5枚硬币,把一枚硬币埋在草地里,把其余4枚放在阿巴格的手上,说:“人生有5枚金币,童年、少年、青年、中年、老年各有一枚,你现在才用了一枚,就是埋在草地里的那一枚,你不能把5枚都扔在草原里,你要一点点地用,每一次都用出不同来,这样才不枉人生一世.今天我们一定要走出草原,你将来也一定要走出草原.世界很大,人活着,就要多走些地方,多看看,不要让你的金币没有用就扔掉.”在父亲的鼓励下,那天阿巴格走出了草原.长大后,阿巴格离开了家乡,成了一名优秀的船长.珍惜生命,就能走出挫折的沼泽.。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系直角三角形是一种特殊的三角形,它的一个角是90度,另外两个角是锐角。

直角三角形的边角关系是指三条边和三个角之间的关系。

边角定义在直角三角形中,我们通常将底边称为底边,直角所对的边称为斜边,另外一个边称为高。

以直角三角形ABC为例,边AB为底边,边AC为高,边BC为斜边。

直角三角形中的两个锐角分别称为锐角A和锐角B。

锐角A位于底边AB的顶点A,锐角B位于直角C的顶点B。

边角关系直角三角形的边角关系非常重要,它们之间存在着多个重要的数学关系。

下面是直角三角形的边角关系的详细介绍:边与角的关系1. 底边与斜边的关系:根据勾股定理,底边的平方加上高的平方等于斜边的平方。

用公式表示为:AB² + AC² = BC²2. 斜边与锐角的关系:在直角三角形中,斜边与锐角的关系可以用三角函数来表示。

以锐角A为例,斜边BC与锐角A的正弦比等于底边AB 与斜边BC的比值,用公式表示为:sin(A) = AB / BC角与角的关系1. 直角和锐角的关系:直角是直角三角形的特殊角,它的度数为90度。

而锐角是小于90度的角。

2. 锐角之间的关系:直角三角形中的两个锐角之和等于90度。

用公式表示为:A +B = 90°边与角之间的关系1. 高与锐角的关系:直角三角形中的高与锐角之间存在正弦和余弦的关系。

以锐角A为例,高AC与锐角A的正弦比等于底边AB与斜边BC的比值,用公式表示为:sin(A) = AC / BC2. 底边与锐角的关系:直角三角形中的底边与锐角之间存在正切关系。

以锐角A 为例,底边AB与锐角A的正切比等于高AC与底边AB的比值,用公式表示为:tan(A) = AC / AB总结直角三角形的边角关系是数学中一种重要的关系,它涉及到边与角之间的联系。

通过掌握这些关系,我们可以在解决三角形相关问题时更加方便和高效。

一个直角三角形中,底边与斜边的关系可以由勾股定理给出,斜边与锐角之间的关系可以用正弦比来表示,高与锐角之间的关系可以用正弦比来表示,底边与锐角的关系可以用正切比来表示。

三角形中的边角关系

三角形中的边角关系

三角形中的边角关系知识点梳理一、 边1、根本概念〔三角形、边、 顶点的定义;三角形的符号表示〕2、按边对三角形的分类:≠⎧⎪⎨⎧⎨⎪⎩⎩不等边三角形三角形腰底等腰三角形等边三角形☆3、三边关系:〔1〕任意两边之和大于第三边 〔2〕任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角1、根本概念〔内角、外角〕2、按角对三角形的分类:⎧⎧⎪⎨⎩⎨⎪⎩锐角三角形斜三角形三角形钝角三角形直角三角形3、三角形的内角和〔1〕三角形三个内角和等于180°; 〔2)直角三角形的两个锐角互余; 〔3〕一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角。

三、线1、中线(1) 定义 〔2〕 重心 〔3〕中线是线段 〔4〕 表示方法 2、高线〔1〕定义 〔2〕垂心 (3〕高是线段,垂线是直线 〔4〕表示方法 〔5〕钝角三角形高的画法 3、角平分线〔1〕定义 (2)外心 〔3〕画法 〔4〕表示方法 四、方法技能归纳法在规律探索中的应用。

根底练习第1题-〔1〕 第1题-〔2〕 第1题-〔2〕1、〔1〕以AB 为边的三角形有______________;含∠ACB 的三角形有 ;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________.〔2〕图〔1〕中三角形的个数是____________;★图〔2〕中三角形的个数是____________。

2、三角形按角分类可以分为〔 〕A .锐角三角形、直角三角形、钝角三角形;B .等腰三角形、等边三角形、不等边三角形;C .直角三角形、等边直角三角形;D .以上答案都不正确3、一个等腰三角形的两边长分别是4和9,那么它的周长是___________________________4、假设三角形的三边长分别为3,4,x -1,那么x 的取值范围是_________________________5、有3cm,6cm,8cm,9cm 长的四条线段,任选其中的三条线段组成一个三角形,那么最多能组成_____个三角形6、,,a b c 是ABC 的三条边,且()()0a b c a b ++-=,那么ABC 是__________三角形7、以下说法正确的选项是_____________________〔1〕等边三角形是等腰三角形; 〔2〕三角形的两边之差大于第三边;〔3〕有两边相等的三角形一定是等腰三角形; 〔4〕一个钝角三角形一定不是等腰三角形。

三角形中的边角关系、命题与证明

三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。

第13章 三角形中的边角关系、命题与证明(总复习)

第13章 三角形中的边角关系、命题与证明(总复习)

证明三角形内角和定理的方法
添加辅助线思路:1、构造平角
A D E 1 2 F E A
A E 1
2
D
B 图2 C
1
2 D
B
图1
C
B
C
图3
添加辅助线思路:2、构造同旁内角
E A
E
A
F 4 C
1 2
B 图1 C
3
B
D
图2
9.三角形的外角
三角形的外角的定义: 三角形一边与另一边的延长线 组成的角,叫做三角形的外角.
4.三角形的分类:
1:按边分类
不等边三角形 三角形 腰与底不相等的等腰三角形 等腰三角形 腰与底相等的等边三角形
2:按角分类
直角三角形 三角形 锐角三角形 斜三角形 钝角三角形
5. 对“定义”的理解:
能明确界定某个对象含义的语句叫做定义 。 注意:明确界定某个对象有两种形式:
7.有关“公理、定理、证明、推论、演绎推理、 辅助线”等概念 (1)公理:从长期实践中总结出来的,不需要再作 证明的真命题。
(2)定理:从公理或其他真命题出发,用推理方法证明 为正确的,并被选作判断命题真假的依据的真命题 (3)推论:由公理、定理直接得出的真命题。 (4)演绎推理:从已知条件出发,依据定义、公理、 定理,并按照逻辑规则,推导出结论的方法。
(2)三角形中线:连结一个顶点和它对边中点的线段. 表示法: ① AD是△ABC的BC上的中线. ② BD=DC=½BC.
B A
注意: ①三角形的中线是线段;
D
C
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.

第13章,三角形的边角关系,命题与证明基础知识总结

第13章,三角形的边角关系,命题与证明基础知识总结

第13章,三角形的边角关系,命题与证明基础知识总结三角形的边角关系,命题与证明基础知识总结三角形作为几何学中的重要概念,其边角关系及命题与证明是我们学习几何的基础知识之一。

在这一章节中,我们将总结三角形的边角关系以及相关的命题和证明方法。

1. 三角形的基本概念在开始讨论三角形的边角关系之前,我们先来回顾一下三角形的基本概念。

三角形是由三条线段组成的闭合图形,其中三条线段被称为三角形的边,而通过边连接的角则是三角形的内角。

三角形的内角和为180度。

2. 三角形的边角关系在三角形中,有一些重要的边角关系需要我们掌握。

首先是三角形的内角和定理,即三角形的三个内角之和为180度。

这个定理应用广泛,可以帮助我们推导出其他三角形的性质。

另外一个重要的边角关系是三角形的对角线和比例定理。

根据该定理,如果在两个三角形中,三个角分别相等,那么三个边的比例也应该相等。

这个定理可以用来解决一些三角形的相似性问题。

3. 三角形的命题与证明在几何学中,命题与证明是必不可少的。

在三角形中,我们可以通过命题来表达一些三角形的性质,然后通过证明来证明这些性质的真实性。

举个例子,假设我们有一个三角形ABC,命题可以是“三角形ABC 的两边之和大于第三边”。

然后我们可以通过构造具体的图形以及运用基础几何性质来进行证明。

具体的证明过程可以通过构造辅助线、利用三角形的内角和等性质等方法来进行。

此外,还有一些常见的三角形命题,比如角平分线定理、垂直平分线定理等。

通过学习这些命题并能够熟练地进行证明,有助于我们进一步掌握三角形的性质和理解几何推理的过程。

总结:三角形的边角关系、命题与证明是几何学中的基础知识。

我们需要掌握三角形的内角和定理、对角线和比例定理等重要的边角关系,并且能够应用这些关系解决三角形的相似性问题。

同时,我们还需要学会通过命题来表达三角形的性质,并能够通过证明来验证这些性质的真实性。

通过不断的练习和应用,我们可以更好地掌握三角形的边角关系以及命题与证明的基础知识,为学习更高级的几何学知识奠定坚实的基础。

三角形中的常见结论

三角形中的常见结论

c CBAba三角形中的常见结论(高二理科数学)以下很多结论都是只有在三角形中才成立的,离开三角形......................... 这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。

1、内角和定理:A B C π++=。

2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立, 即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。

3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +> a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。

内心:内切圆圆心,三内角角平分线的交点。

垂心:三边高线的交点。

重心:三边中线的交点。

重心G 的性质:(1)重心G 是中线的三等分点; (2)0GA GB GC ++=;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。

等腰三角形中顶角角平分线、底边中线、底边高线三线合一。

等边三角形四心合一。

5、正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径)。

正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a cA C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a BA b=;(3)2sin a R A =,2sin b R B =,2sin c R C =; (4)sin 2a A R =,sin 2b B R =,sin 2cC R=; (5)::sin :sin :sin a b c A B C =; (6)2sin sin sin sin a b c aR A B C A++==++。

直角三角形的边角关系知识点总结

直角三角形的边角关系知识点总结

直角三角形的边角关系知识点总结
嘿,宝子们!今天咱就来好好唠唠直角三角形的边角关系知识点,这可真是超级重要的呢!
咱先说说正弦吧。

正弦就是一个角的对边与斜边的比值哟!比如说,在
一个直角三角形里,那个角就像是我们努力的方向,对边就是我们朝着这个方向前进的距离,斜边呢就是总的路程。

就像你考试想拿高分,那高分就是你的“角”,你努力学习的成果就是对边,而整个学习的过程就是斜边呀!
还有余弦呢!余弦是邻边与斜边的比值。

可以把它想象成在一个团队里,邻边就是你身边一起努力的小伙伴,斜边依然是整个团队的力量。

是不是一下子就好理解啦?
正切就更有意思啦!正切是对边与邻边的比值。

就像是一场比赛中你的
速度和竞争对手速度的比较。

好比你和朋友一起跑步,你跑过的距离和你旁边朋友跑过的距离之比,这就是正切呀!
在直角三角形中,这些边角关系可太有用啦!知道这些,咱就能解决好
多实际问题呢!比如说,工程师盖房子的时候,就需要用这些知识来确保房子的结构稳定呀!
学习直角三角形的边角关系就像是打开了一扇通往数学奇妙世界的大门!能让我们更清楚地看到世界的规律和美好。

大家一定要好好掌握哟!我的观点就是,直角三角形的边角关系是数学中非常重要且有趣的一部分,我们一定要深入理解和运用它!。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系直角三角形是指其中一个角是90度的三角形。

在直角三角形中,三条边有着特殊的关系,我们可以通过三角函数来描述这种关系。

本文将详细介绍直角三角形中的边角关系。

首先,我们来看直角三角形的边,分别记为a、b和c。

其中,a和b是直角的两条边,而c是斜边。

在直角三角形中,边长有着特定的关系。

根据勾股定理,我们知道a、b和c之间的关系可以表示为:c² = a² + b²这个关系告诉我们,在直角三角形中,斜边的平方等于直角边的平方和。

这是直角三角形的基本性质之一。

接下来,我们来介绍直角三角形中的角度关系。

在直角三角形中,较小的角被称为锐角,较大的角被称为钝角。

而直角角度为90度,是三角形中的最大角度。

由于直角三角形中的三个角度之和始终为180度,因此其他两个角的和必然是90度。

在直角三角形中,我们还可以利用三角函数来描述边和角之间的关系。

下面是一些常用的三角函数:正弦函数(sin):sinθ = 对边/斜边 = a/c余弦函数(cos):cosθ = 邻边/斜边 = b/c正切函数(tan):tanθ = 对边/邻边 = a/b这些函数将角度与边长之间建立了一种关系。

通过这些三角函数,我们可以根据已知的边长计算角度,或者根据已知的角度计算边长。

这些函数在数学和物理学中经常被使用。

此外,在直角三角形中还有一个特殊的比值,被称为勾股数。

在一个直角三角形中,如果两边的长度都是正整数,并且满足勾股定理,那么这个直角三角形被称为勾股数。

例如,3、4、5是一个勾股数,因为3²+4²=5²。

上面我们介绍了直角三角形的边角关系。

通过勾股定理、角度关系和三角函数,我们可以研究和解决直角三角形的各种问题。

直角三角形的边角关系在数学和实际应用中都具有重要的地位,并且被广泛应用于各个领域的计算和测量中。

总结起来,直角三角形的边角关系包括边长关系、角度关系和三角函数。

全等三角形的对应关系

全等三角形的对应关系

全等三角形的对应关系全等三角形是指具有相等的三边和三个对应的相等的角的两个三角形。

全等三角形之间存在着多种对应关系,包括边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)和对角线(HL)等。

本文将分别介绍这些对应关系及其性质。

一、边边边(SSS)对应关系在两个三角形中,如果它们的三条边分别相等,则这两个三角形是全等的。

这种对应关系被称为边边边(SSS)对应关系。

对于两个全等三角形来说,它们的对应边长是一一对应的,即对应边长相等。

二、边角边(SAS)对应关系在两个三角形中,如果它们的一对对应边和夹角分别相等,则这两个三角形是全等的。

这种对应关系被称为边角边(SAS)对应关系。

对于两个全等三角形来说,它们的对应边长和夹角都是一一对应的,即对应边长和夹角相等。

三、角边角(ASA)对应关系在两个三角形中,如果它们的一对对应角和夹边分别相等,则这两个三角形是全等的。

这种对应关系被称为角边角(ASA)对应关系。

对于两个全等三角形来说,它们的对应角和夹边都是一一对应的,即对应角和夹边相等。

四、角角边(AAS)对应关系在两个三角形中,如果它们的两对对应角和一对对应边分别相等,则这两个三角形是全等的。

这种对应关系被称为角角边(AAS)对应关系。

对于两个全等三角形来说,它们的对应角和对应边都是一一对应的,即对应角和对应边相等。

五、对角线(HL)对应关系在两个直角三角形中,如果它们的一对锐角和斜边分别相等,则这两个三角形是全等的。

这种对应关系被称为对角线(HL)对应关系。

对于两个全等直角三角形来说,它们的锐角和斜边都是一一对应的,即对应锐角和斜边相等。

全等三角形的对应关系具有一些重要的性质和应用。

首先,全等三角形的对应边长和对应角度相等,因此可以通过已知的边长或角度来确定未知的边长或角度。

其次,全等三角形的对应边和对应角可以用来证明两个三角形全等。

这在几何证明中起着重要的作用。

此外,全等三角形的对应关系还可以应用于解决实际问题,如测量高度、距离、角度等。

人教a版必修5学案:第1章《解三角形》本章回顾(含答案)

人教a版必修5学案:第1章《解三角形》本章回顾(含答案)

本章回顾识结构点回放1.三角形中的边角关系设△ABC中,边a,b,c的对角分别为A,B,C.(1)三角形内角和定理A+B+C=π.(2)三角形中的诱导公式sin(A+B)=sin C,cos(A+B)=-cos C,tan(A+B)=-tan C,sin A+B2=cosC2,cosA+B2=sinC2,tan A+B2=cotC2.(3)三角形中的边角关系a=b⇔A=B;a>b⇔A>B;a+b>c,b+c>a,c+a>b.(4)三角形中几个常用结论①在△ABC中,a=b cos C+c cos B(其余两个略);②在△ABC中,sin A>sin B⇔A>B;③在△ABC中,tan A+tan B+tan C=tan A tan B tan C. 2.正弦定理(1)正弦定理在△ABC中,角A,B,C的对边边长分别为a,b,c,则asin A=bsin B=csin C=2R.其中R 是△ABC 外接圆半径. (2)正弦定理的变形公式正弦定理反映了三角形的边角关系.它有以下几种变形公式,解题时要灵活运用. ①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =a 2R ,sin B =b 2R ,sin C =c2R;③sin A ∶sin B ∶sin C =a ∶b ∶c ; ④sin A sin B =a b ,sin B sin C =b c ,sin C sin A =c a . 3.余弦定理 (1)余弦定理三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bc cos A ; b 2=a 2+c 2-2ac cos B ; c 2=a 2+b 2-2ab cos C . (2)余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.4.三角形的面积 三角形面积公式S △=12ah a =12bh b =12ch c ;S △=12ab sin C =12ac sin B =12bc sin A ;S △=12(a +b +c )r (r 为△ABC 内切圆半径);S △=abc4R (R 为△ABC 外接圆半径);S △=p (p -a )(p -b )(p -c ) ⎝⎛⎭⎫其中p =12(a +b +c ).5.解三角形的常见类型及解法在三角形的六个元素中,若知道三个,其中至少一个元素为边,即可求解该三角形,按6.已知两边及一边对角解三角形,解的个数的判断在△ABC 中,以已知a ,b ,A 为例想方法一、构建方程(组)解三角问题 例1如图所示,设P 是正方形ABCD 内部的一点,P 到顶点A 、B 、C 的距离分别是1,2,3,求正方形的边长.解 设边长为x ,x >0, 在△ABP 中,cos ∠ABP =x 2+22-124x =x 2+34x,在△CBP 中,cos ∠CBP =x 2+22-324x =x 2-54x,又cos 2∠ABP +cos 2∠CBP =1, ∴⎝⎛⎭⎫x 2+34x 2+⎝⎛⎭⎫x 2-54x 2=1.∴x 2=5+22或x 2=5-2 2.所以,x =5±22, 即正方形的边长为5±2 2. 例2如图所示,测量人员沿直线MNP 的方向测量,测得塔尖A 处的仰角分别是∠AMB =30°,∠ANB =45°,∠APB =60°,且MN =PN =500 m ,求塔高AB .分析 设AB =h ,则MB ,NB ,PB 都可用h 来表示,在底面△BMP 中,MN =PN =500 m ,借助△MNB 与△MPB ,利用公共角∠PMB ,结合余弦定理的推论得出方程可求解.解 设AB =h ,∵AB ⊥MB ,AB ⊥NB ,AB ⊥PB , 又∠AMB =30°,∠ANB =45°,∠APB =60°,∴MB =3h ,NB =h ,PB =33h .在△MPB 中,cos ∠PMB =MP 2+MB 2-BP 22MP ·MB=1 0002+3h 2-13h 22×1 000×3h. 在△MNB 中,cos ∠NMB =MN 2+MB 2-BN 22MN ·MB=5002+3h 2-h 22×500×3h. ∴1 0002+83h 22 0003h =5002+2h 21 0003h. 整理,得h =250 6.∴塔高AB 为250 6 m. 二、构建目标函数解三角问题例3 如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数; (2)求四边形OPDC 面积的最大值.分析 四边形OPDC 可以分成△OPC 与△PCD .S △OPC 可用12OP ·OC ·sin θ表示;而求△PCD 的面积关键在于求出边长PC ,在△POC 中利用余弦定理即可求出;至于面积最值的获得,则可通过三角函数知识解决.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ·OC ·cos θ=5-4cos θ, 所以y =S △OPC +S △PCD=12×1×2sin θ+34×(5-4cos θ)=2sin ⎝⎛⎭⎫θ-π3+534. (2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.例4 甲船在A 处、乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?分析 利用余弦定理构建甲、乙两船的距离关于时间t 的目标函数,注意到t =2时,乙到达A 处,此时,甲地、乙地、A 地三处构不成三角形,要注意分类讨论.如下图所示:解 设甲、乙两船经t 小时后相距最近,且分别到达P 、Q 两处,因乙船到达A 处需2小时.①当0≤t ≤2时,在△APQ 中,AP =8t ,AQ =20-10t , 所以PQ =AQ 2+AP 2-2AP ·AQ cos 120°= (20-10t )2+(8t )2-2(20-10t )×8t ×⎝⎛⎭⎫-12 =84t 2-240t +400=221t 2-60t +100.②当t >2时,在△APQ 中,AP =8t ,AQ =10t -20, ∴PQ =AQ 2+AP 2-2AQ ·AP cos 60°=221t 2-60t +100. 综合①②知,PQ =221t 2-60t +100 (t ≥0).当且仅当t =3021=107时,PQ 最小.答 甲、乙两船行驶107小时后,相距最近.三、利用等价转化思想解三角问题例5 在△ABC 中,已知sin 2A +sin 2B -sin 2C sin 2A -sin 2B +sin 2C =1+cos 2C1+cos 2B,求证:△ABC 是等腰三角形或直角三角形.分析 从题中的等式结构来看,情况较为复杂,且求证的是判定△ABC 为等腰三角形或直角三角形两种情况.因此,应综合应用正、余弦定理,先进行化简,再讨论.证明 应用正弦定理及二倍角公式,将已知等式变形为:a 2+b 2-c 2a 2-b 2+c 2=2cos 2C2cos 2B,再由余弦定理将其变形为:2ab cos C 2ac cos B =cos 2Ccos 2B,整理得cos C cos B ⎝⎛⎭⎫b c -cos C cos B =0.∴cos C cos B =0或b c -cos Ccos B =0,若cos C cos B =0,则C =90°; 若b c -cos C cos B =0,依据正弦定理得sin B sin C =cos C cos B , 即sin B cos B =sin C cos C .所以sin 2B =sin 2C . 所以2B =2C 或2B +2C =180°,即B =C 或B +C =90°. 综上所述,△ABC 是等腰三角形或直角三角形.例6 在△ABC 中,角A ,B ,C 所对的三边长分别为a ,b ,c ,若a 3+b 3-c 3a +b -c=c 2,a =43,B =45°,求△ABC 的面积.分析 解决本题的突破口是由a 3+b 3-c 3a +b -c=c 2联想到余弦定理,这就需要降次,自然就得进行等式的变形.变形后自然容易发现它与余弦定理的关系,进而应用余弦定理解决问题.解 因为a 3+b 3-c 3a +b -c=c 2,所以变形得(a +b )(a 2+b 2-c 2-ab )=0.因为a +b ≠0,所以a 2+b 2-c 2-ab =0,即a 2+b 2-c 2=ab .根据余弦定理的推论得cos C =a 2+b 2-c 22ab =ab 2ab =12.又因为0°<C <180°,所以C =60°. 因为B =45°,A +B +C =180°,所以A =180°-(60°+45°)=75°.根据正弦定理得a sin A =bsin B,所以b =a sin Bsin A =43×226+24=12-4 3.根据三角形的面积公式得S △ABC =12ab sin C =12×43×(12-43)×32=36-12 3.四、构建辅助圆解三角应用题例7 (能力创新题)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ ⎝⎛⎭⎫其中sin θ=2626,0°<θ<90° 且与点A 相距1013海里的位置C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.分析 第(1)问实际上就是求BC 长度,在△ABC 中,利用余弦定理求解即可;第(2)问警戒区域是以E 为中心的一个圆,半径为7(海里),问题实质上可以看作直线BC 与圆E 是否有交点,因此可以构建辅助圆E 来求解.解 (1)如图所示,AB =402, AC =1013,∠BAC =θ,sin θ=2626.由于0°<θ<90°,所以cos θ=1-⎝⎛⎭⎫26262=52626.由余弦定理得BC =AB 2+AC 2-2AB ·AC ·cos θ=10 5. 所以船的行驶速度为 1054060=10523=155(海里/小时). (2)如图所示,以A 为原点建立平面直角坐标系,设点B 、C 的坐标分别是B (x 1,y 1)、C (x 2,y 2),BC 与x 轴的交点为D .由题设有,x 1=y 1=22AB =40,x 2=AC cos ∠CAD =1013cos(45°-θ)=30, y 2=AC sin ∠CAD =1013sin(45°-θ)=20.所以过点B 、C 的直线l 的斜率k =2010=2,直线l 的方程为y =2x -40.又点E (0,-55)到直线l 的距离d =|0+55-40|1+4=35<7,所以船会进入警戒水域.五、利用正、余弦定理解平面几何问题例8 (竞赛竞技题)(斯特瓦尔特定理)在△ABC 中,D 是BC 边上一点,若BD =p ,DC=q ,求证:AD 2=b 2p +c 2q p +q-pq .证明 如图所示, 在△ABD 中, 由正弦定理:cos B =c 2+p 2-AD 22cp.在△ABC 中,由余弦定理:cos B =c 2+a 2-b 22ac.∴c 2+p 2-AD 22cp =c 2+a 2-b 22ca.∴c 2+p 2-AD 2=pa (c 2+a 2-b 2).∴AD 2=c 2+p 2-pa(c 2+a 2-b 2)把a =p +q 代入后整理得:AD 2=c 2-pp +q (c 2-b 2)-pq .即AD 2=b 2p +c 2q p +q-pq .注 当D 为BC 中点时,p =q ,此时,AD =122b 2+2c 2-a 2,即三角形中线长定理.斯特瓦尔特定理是三角形中线长定理推广,中线长定理是该定理的特例.思妙解1.构造三角形巧求代数式的值例1 设a ,b ,c 为正实数,且⎩⎪⎨⎪⎧a 2+ac +c 2=16b 2+3c 2=27a 2+ab +13b 2=25,求ab +2bc +3ac 的值.解 a 2+ac +c 2=a 2+c 2-2ac cos 120°=42; 13b 2+c 2=⎝⎛⎭⎫b 32+c 2=32; a 2+ab +13b 2=a 2+⎝⎛⎭⎫b 32-2a ·⎝⎛⎭⎫b 3cos 150°=52.三个条件式的结构都类似余弦定理,于是可以构造直角三角形ABC ,使∠C =90°.AB =5,BC =3,CA =4,在直角三角形ABC 内作一点O ,使∠AOB =150°,∠BOC =90°,则∠COA =120°,如图所示.OA =a ,OB =b3,OC =c .一方面:S △ABC =S △AOB +S △BOC +S △COA =12a ·b 3·sin 150°+12·b 3·c +12·ca sin 120° =143(ab +2bc +3ac ). 另一方面:S △ABC =12AC ·BC =12×4×3=6.∴143(ab +2bc +3ac )=6. 即ab +2bc +3ac =24 3. 2.构造四面体巧证不等式例2 设x >0,y >0,z >0,求证:x 2-xy +y 2+y 2-yz +z 2>z 2-zx +x 2. 证明如图所示,构造四面体V —ABC , 使∠AVB =∠BVC=∠CVA=60°,且VA=x,VB=y,VC=z,由余弦定理得AB=x2+y2-2xy cos 60°=x2-xy+y2同理,BC=y2-yz+z2,CA=z2-zx+x2,在△ABC中,由于AB+BC>CA,故有:x2-xy+y2+y2-yz+z2>z2-zx+x2.。

直角三角形的边角关系知识点

直角三角形的边角关系知识点

直角三角形的边角关系知识考点知识讲解:1.锐角三角函数的概念如图,在ABC 中,∠C 为直角,则锐角A 的各三角函数的定义如下:(1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =bc (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =ab (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =ba 2.直角三角形中的边角关系(1)三边之间的关系:a 2+b 2=c 2(2)锐角之间的关系:A +B =90°(3)边角之间的关系:sinA =cosB =a c , cosA =sinB =bc t an A =c ot B =a b , cot A =t an B =ba3.三角函数的关系(1)同角的三角函数的关系1)平方关系:sinA 2+cosA 2=12)倒数关系:t an A·c ot A =13)商的关系:t an A =sinA cosA ,c ot A =cosA sinA(2)互为余角的函数之间的关系sin(90°-A)=cosA , cos(90°-A)=sinAt an (90°-A)=c ot A , cot (90°-A)=t an A4.一些特殊角的三角函数值0°30° 45° 60° 90° sin α0 1 cos α1 0 tan α0 1 ----- cot α----- 15.锐角α的三角函数值的符号及变化规律.(1)锐角α的三角函数值都是正值(2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小.6.解直角三角形(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角.(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.7.解直角三角形的应用,解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰角、俯角视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角(2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,即i=hl(3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=hl (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

三角形的边角性质

三角形的边角性质

三角形的边角性质甲内容提要三角形边角性质主要的有:1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。

用式子表示如下:a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-⇔⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>+>+>+⇔<推广到任意多边形:任意一边都小于其他各边的和2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个内角和。

推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180六边形内角和=4×180 n 边形内角和=(n -2) 1803. 边与角的关系① 在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。

② 在直角三角形中,△ABC 中∠C=Rt ∠222c b a =+⇔(勾股定理及逆定理) △ABC 中⇔⎭⎬⎫=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中⇔⎭⎬⎫=∠∠=∠ 45A Rt C a :b :c=1:1:2 乙例题例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。

(1988年泉州市初二数学双基赛题)解:根据三角形任意两边和大于第三边,得不等式组 ⎪⎩⎪⎨⎧+>-+-->-++->++-141312131214121413a a a a a a a a a 解得⎪⎩⎪⎨⎧<->>51135.1a a ∴1.5<a<5答当1.5<a<5时,三条线段3a -1,4a+1,12-a 能组成一个三角形例2.如图A B C DAB=x ,AC=y, AD=z 若以AB 和CD 分别绕着点B 和点C 旋转,使点A 和D 重合组成三角形,下列不等式哪些必须满足?① x<2z , ②y<x+2z , ③y<2z 解由已知AB=x, BC=y -x, CD=z -x 要使AB ,BC ,CD 组成三角形,必须满足下列不等式组:⎪⎩⎪⎨⎧>-+-->-+->-+x y z x y x y y z x y z x y x 即⎪⎩⎪⎨⎧>>+>x z y z x z y 2222∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<>222z x z x y z y 答y<x+2z 和y<2z 必须满足。

直角三角形的边角关系知识点

直角三角形的边角关系知识点

直角三角形的边角关系知识点1. 直角三角形的一个重要知识点就是勾股定理呀!你看,就像一个稳固的架子,两直角边的平方和等于斜边的平方,这好神奇的呢!比如说,一个直角三角形的两条直角边分别是 3 和 4,那斜边不就可以通过 3 的平方加上 4 的平方等于 25,开个根号得到 5,对吧。

2. 还有呢,直角三角形中锐角的正弦值。

哎呀,这就像一把钥匙,可以打开很多解题的大门哟!比如在一个直角三角形中,一个锐角的对边是 5,斜边是 13,那这个锐角的正弦值不就是 5 除以 13 嘛。

3. 直角三角形里锐角的余弦值也很重要呀!就像是给你指引方向的指南针呢!像是一个直角三角形中,一个锐角相邻的直角边是 12,斜边是 13,那这个锐角的余弦值就是 12 除以 13 呀。

4. 那锐角的正切值呢,这可不能落下呀!它就像一个小火箭,能快速让你找到答案呢!比如一个直角三角形中,一个锐角的对边是6,相邻直角边是8,正切值不就是 6 除以 8 嘛。

5. 直角三角形中还有互为余角的三角函数关系呢!哇哦,这可太有意思了,就像好朋友互相帮助一样。

比如一个锐角的正弦值和它的余角的余弦值是相等的呢。

6. 斜边与直角边的比例关系也很关键呢!这就像找到了一个巧妙的规律!例如,一个斜边是 10,直角边是 5 的直角三角形,它们之间的比例不就很明显嘛。

7. 直角三角形特殊角的三角函数值,那可是必须要知道的呀!好比是特别的宝藏。

比如 30 度角的正弦值是二分之一,是不是很特别。

8. 你知道吗,直角三角形中角和边是相辅相成的呀!这就像一对好搭档。

边的长度变化,角也会跟着变呢。

9. 直角三角形的这些知识点真的非常有用呀,在生活中很多地方都能用得到,不管是建房子还是算距离,都离不开它们呢!所以一定要好好掌握啊!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中的边角关系
1、 A+B+C=π ,
2C =
2
π-(
2A +
2
B )
2、 sinC=sin(A+B), cosC=-cos(A+B) sin
2
C =cos(
2
A +2
B ), cos 2
C =sin(
2
A +
2
B ), tan
2
C =cot(
2
A +
2
B )
sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ∆=
12
absinC=
12
bcsinA=
12
casinB
p=
12
(a+b+c )
4、 正弦定理sin sin sin a b c A
B C
=
=
=2R
sinA ׃sinB ׃ sinC ׃a = b ׃ c sinA=
2a R
,sinB=2b R
,sinC=
2c R
a=2RsinA , b=2RsinB , c=2RsinC
适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+-
2
2
2
co s 2b c a
A b c
+-=
适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解)
5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ⇔∆ABC 是锐角三角形
2
c =2
a +2
b ⇔∆ABC 是直角三角形 2
c >2
a +2
b ⇔∆ABC 是钝角三角形
6、 tanA+tanB+tanC=tanAtanBtanC
cotAcotB+cotBcotC+cotCcotA=1
tan
2
A tan
2
B +tan
2
B tan
2
C +tan
2
C tan
2
A =1
7*
、若三角形三内角成等差数列,则B=3
π
三边成等差数列,则0<d<a (a 为最小边)
三边成等差数列,则B ≤
3
π2
2
q <<
若R t ∆ABC 三边成等差数列C=
2
π,则׃a b ׃c=3׃4׃5
若R t ∆ABC , C=2
π三边成等比数列,则最小内角A=arcsin 2
7、 若sinA=sinB ⇔A=B ,若cosA=cosB ⇔A=B ,若tanA=tanB ⇔A=B 8、 若sin2A=sin2B ,则A=B 或A+B=
2
π
cos2A=cos2B ,则A=B
9、∆ABC 中A>B ⇔sinA>sinB ,A>B ⇔cosA<cosB 10、(1)在锐角∆ABC 中,任意一个角的正弦大于另一个角的余弦;
即 sinA >cosB , 但sinA > cosA 不一定成立,
⇒sinA +sinB +sinC > cosA +cosB+cosC
(2)反之,若任意一个角的正弦大于另一个角的余弦,则∆ABC 是锐角三角形; (3)若某一个角的正弦大于另一个角的余弦,不一定是锐角三角形;
(4)若某一个角的余弦大于另一个角的正弦,cosA>sinB ,则∆ABC 是钝角三角形。

11、在锐角三角形中,任意一个角的正切大于另一个角的余切,
tanA>cotB , tanA·tanB>1, tanA+tanB+tanC>cotA+cotB+cotC 练习 (1) 已知cos cos cos a b c A B
C
=
=
,则∆ABC 是 三角形。

(2)如果
co s co s a b B
A
=
,则∆ABC 是 三角形。

(3)∆ABC 中,A ׃B ׃C=1׃2׃3,则a ׃b ׃c=
(4) 如果cosAtanBtanC<0,则∆ABC 是 三角形。

(5)若sinAsinB<cosAcosB ,则∆ABC 是 三角形。

(6)∆ABC 中,若a=2bcosC ,则∆ABC 是( )三角形
A 、锐角三角形
B 、直角三角形
C 、等边三角形
D 、钝角三角形 (7)∆ABC 中,已知sin sin sin co s co s A B C A B
+=+,判定三角形的形状。

(8)∆ABC 中,已知53co s ,sin 13
5
A B ==
,求cosC
(9)已知三角形两边之和为8,其夹角为
3
π,求这个三角形周长的最小值和面积的最大值。

相关文档
最新文档