新人教版八年级数学上册 第15章《分式》单元测试题及答案
人教版八年级上数学 第十五章分式 单元测试含解析答案
13.如图,点A、B在数轴上,它们所对应的数分别是-4、 ,且点A、B到原点的距离相等,则x=_______.
14.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做____个零件.
15.计算 (x+1)的结果是_____.
A. x<3B. x>3C. x≠3D. x=3
【答案】C
【解析】
【详解】试题分析:要使 有意义,则x-3≠0,即x≠3,故答案选C.
考点:分式有意义的条件.
2.下列等式成立的是( )
A. B. C. D.
【答案】B
【解析】
【详解】A. ≠ ,故A不成立;
B. = ,故B成立;
C. 不能约分,故C错误;
【答案】6.9×10﹣7.
【解析】
【详解】试题分析:对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000069=6.9×10﹣7.
4.化简 的结果是()
A. m+nB. n﹣mC. m﹣nD. ﹣m﹣n
【答案】A
【解析】
【详解】试题分析: = = = =m+n.故选A.
考点:分式的加减法.
5.当x=6,y=3时,代数式 · 的值是( )
A.2B.3C.6D.9
【答案】C
【解析】
【详解】( )· = · = ,
当x=6,y=3时,原式= =6.
C.乙先到达B地D.谁先到达B地与v有关
【答案】B
【解析】
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)
人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
新人教版八年级数学上册第十五章《分式》单元测试卷及答案
新人教版八年级数学上册第十五章《分式》单元测试试卷及答案一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若分式的值为0,则x的值为 ( )A.2 B.2 C.-2 D.03、分式、与的最简公分母是 ( )A. B. C. D.4、若中的和的值都缩小2倍,则分式的值()A.缩小2倍 B.缩小4倍 C.扩大2倍 D.扩大4倍5、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、(2017临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. B. C. D.7、方程的根为A.或3 B. C.3 D.1或8、(2016黑龙江省齐齐哈尔市)若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,39、3-去分母,得().A.3-2(5x+7)=-(x+17) B.12-2(5x+7)=-x+17 C.12-2(5x+7)=-(x+17) D.12-10x+14=-(x+17)10、某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.560二、填空题11、计算_______________.12、函数的自变量x的取值范围是________.13、计算的结果为__________.14、计算:=________.15、已知:,则=_________.16、某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________.17、(2017黄冈)化简:=______.18、当x=_____时,分式的值为0.19、已知9x-6x+1=0,则代数式3x+的值为________20、若代数式的值为零,则代数式(a+2)(a2-1)-24的值是_________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:.22、解方程:.23、先化简,再求值:,其中.24、先化简,再求值:其中x=.四、解答题(题型注释)25、为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?26、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.27、今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.参考答案1、D2、B3、B4、C5、D6、B7、C8、C9、C10、B11、12、x>213、x+114、2a+1215、1516、17、118、219、220、-2421、(1)-1 (2)22、x=0.23、2-24、25、实际每年绿化面积为54万平方米.26、1527、(1) ;(2)骑自行车的学生应提前出发.【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、分析:要使一个分式的值为零,则必须满足分式的分子为零,分母不为零,根据性质即可求出答案.详解:根据题意可得:,解得:x=2,故选B.点睛:本题主要考查的是分式的性质,属于基础题型.要使分式有意义,则必须满足分式的分母不为零;要使一个分式的值为零,则必须满足分式的分子为零,分母不为零.3、分析:最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积,根据定义即可得出答案.详解:根据题意可得最简公分母为:12abc,故选B.点睛:本题主要考查的就是最简公分母的求法,属于基础题型.理解最简公分母的定义是解决这个问题的关键.4、分析:依题意分别用和去代换原分式中的x和y,利用分式的基本性质化简即可.详解:分别用和去代换原分式中的x和y得,,∴分式的值变为原来的2倍.故选C.点睛:本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、x2-3x-4=0,(x-4)(x+1)=0,解得x1=4,x2=-1,∵x2-x-4≠0,∴x≠4,∴当x=-1时,原式=.故选D.点睛:本题在解出x代入分式的时候一定要考虑分式有意义的条件即分母不为0.6、解:设乙每小时做x个,则甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得:,故选B.7、分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3.故选C.点睛:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8、试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.9、试题解析:方程两边同乘以4得,12-2(5x+7)=-(x+17).A.第一项3没有乘以公分母4;B.等号右边去括号未变号;C.正确;D. 等号左边去括号未变号.故选C.点睛: 本题主要考查一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、试题分析:设第一次购进计算器x个,则第二次购进计算器3x个,根据每个进价比上次优惠1元,求出购进计算器的个数,再根据总售价﹣成本=利润,即可得出答案.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选B.考点:分式方程的应用.11、分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.12、根据题意得,x﹣2>0,解得x>2.故答案是:x>2.13、=.故答案是:x+1.14、原式====2a+12.故答案为2a+12.点睛:分式混合运算的步骤:先乘方,再乘除,最后加减,有括号的要先算括号内的.注意分式化简的最后结果是最简分式.15、【分析】利用等式性质两边除以a,得;同时平方得;再利用乘法公式,原式化为:,再代入求值.【详解】等式两边除以a,得:,所以,,所以,,所以,,所以,原式===15【点睛】此题考核知识点:等式的性质;整式乘法公式.解题的关键在于:灵活运用等式基本性质对等式进行变形,灵活运用整式乘法公式.16、分析:求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:第二个月的销售量比第一个增加了80件.等量关系为:第二个月的销售量-第一个月的销售量,算出后可得到此商品的进价.详解:解:设此商品进价是x元.,则有,故答案为:.点睛:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、原式===1,故答案为:1.18、=0,则19、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.20、因为=0,所以-1=0且a2+a-2≠0,解得a=±1,且a≠1,a≠-2,所以a=-1.将a=-1代入(a+2)(a2-1)-24得(-1+2)×(1-1)-24=-24.故答案为:-24.点睛:分式为零的条件是:分子为零且分母不为零.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、方程两边同时乘以:得:,解得:,检验:当时,,∴是原方程的解.点睛:解分式方程的“基本思想是去分母化分式方程为整式方程”,所以我们第一步要去分母,这时需注意方程两边各项要同时乘以最简公分母,不要漏乘;第二需注意解分式方程可能会产生增根,所以最后必须检验.23、试题分析:可先将小括号里的通分化简,然后将除法转化为乘法进行进一步化简。
最新人教版八年级初二数学上册第15章《分式》单元测试含答案解析
《第15章分式》一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠04.下列约分正确的是()A.B. =﹣1C. =D. =5.化简的结果是()A.B.a C.a﹣1 D.6.化简:的结果是()A.2 B.C.D.7.化简,可得()A.B.C.D.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 时,分式没有意义.10.化简: = .11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.12.已知x=2012,y=2013,则(x+y)•= .13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是千克.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.三、解答题(本大题共5小题,共36分)17.化简: +.18.已知x﹣3y=0,求•(x﹣y)的值.19.解方程:(1)+1=(2)=﹣2.20.已知:,试说明不论x为任何有意义的值,y值均不变.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?《第15章分式》参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选A.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠0【考点】分式有意义的条件.【分析】分式有意义的条件是分母不为0,则x2+y2≠0.【解答】解:只要x和y不同时是0,分母x2+y2就一定不等于0.故选C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列约分正确的是()A.B. =﹣1C. =D. =【考点】约分.【分析】根据约分的步骤把分子与分母中约去公因式,分别对每一项进行判断即可.【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;故选D.【点评】此题考查了约分,关键是找出分子与分母的公因式,当分子、分母是多项式时,要把分子与分母分解因式,然后再约分,同时要注意一个分式约分的结果应为最简分式即分子和分母没有公因式.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解: =×=a.故选B.【点评】分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.6.化简:的结果是()A.2 B.C.D.【考点】分式的混合运算.【分析】先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.【解答】解:=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.【点评】归纳提炼:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.7.化简,可得()A.B.C.D.【考点】分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ==.故选B.【点评】本题考查了分式的加减运算,题目比较容易.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.【解答】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.【点评】列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 3 时,分式没有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.10.化简: = x+y .【考点】分式的加减法.【专题】计算题.【分析】同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.【解答】解: ==x+y.【点评】本题考查了分式的加减法法则.11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.12.已知x=2012,y=2013,则(x+y)•= ﹣1 .【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=(x+y)•=,当x=2012,y=2013时,原式==﹣1.故答案为:﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .【考点】分式方程的应用.【专题】应用题.【分析】根据题意,得到甲、乙的工效都是.根据结果提前两天完成任务,知:整个过程中,甲做了(x﹣2)天,乙做了(x﹣4)天.再根据甲、乙做的工作量等于1,列方程求解.【解答】解:根据题意,得=1,解得x=6,经检验x=6是原分式方程的解.故答案是:6.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的公式有:工作总量=工作时间×工效.弄清此题中每个人的工作时间是解决此题的关键.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是24 千克.【考点】一元一次方程的应用.【专题】比例分配问题;压轴题.【分析】由题意可得现在A种饮料的重量为40千克,B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.【解答】解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得=,化简得(5a﹣5b)x=120a﹣120b,即(a﹣b)x=24(a﹣b),∵a≠b,∴x=24.∴从每种饮料中倒出的相同的重量是24千克.故答案为:24.【点评】此题考查的知识点是一元一次方程的应用,当一些必须的量没有时,可设出相应的未知数,只把所求的量当成未知数求解.找到相应的等量关系是解决问题的关键.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20%”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(1+20%)x(m),根据题意,得=30.或故答案为:或.【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=按原计划的工效铺设120m的天数+后来的工效铺设的天数.三、解答题(本大题共5小题,共36分)17.化简: +.【考点】分式的混合运算.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=+•=+==.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解: =(2分)=;当x﹣3y=0时,x=3y;原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.19.(2015秋•邢台期末)解方程:(1)+1=(2)=﹣2.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,故原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知:,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算.【专题】证明题.【分析】先把分子分母分解因式再化简约分即可.【解答】证明:==x﹣x+3=3.故不论x为任何有意义的值,y值均不变.【点评】本题主要考查了分式的混合运算能力.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【专题】应用题.【分析】设原计划每天修水渠x米.根据“原计划工作用的时间﹣实际工作用的时间=20”这一等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.【点评】本题考查了分式方程的应用,此题中涉及的公式:工作时间=工作量÷工效.学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
人教版八年级数学上册第十五章《分式》单元练习题(含答案)
则运算,若(-3) ? x = 2,则x 的值为( )《分式》单元练习卷•选择题要 使分式一=有意义,则x 的取值要满足(A. "■-如果把分式 ,中的x 和y 都扩大2倍,则分式的值(x+yb bea ac —2a =r (a 丰 0)aA . a > b >cB . c >a > bC . a >c > bD . c > b > a需要的天数为( C .1mn&若a 使关于x 的分式方程a+5 = 1的解为整数,且使关于y 的不等式组“^2^D . 213b = ,这里等式右边是通常的四a -ab3. A .扩大4倍 B .扩大2倍 C . 不变 D .缩小2倍F 列式子从左到右变形正确的是(4.如果 a = (- 2019) 0, b =( - 0.1) 1,c =')-2,那么* b 、c 三数的大小为 () 5. 已知丄- a A A . ,=2,则.的值是(b abB .-<C . 26. 分式方程 3 Y -3:.-::1--:.-的解是(A . x =-x = 2D . x = 4一项工程,甲单独做需要 m 天完成,乙单独做需要 n 天完成,「则甲、乙合作完成工程有解且最多有3个整数解,则所有符合条件的整数a 的值之和是( 2. 2 2 2A . (a+b ) = a +b2 2 2C . a - b =( a - b )竽430-7y^>-aA . m+n18 9.对于实数 a 、b ,定义一种新运算“ ? ”为:a?-C. §D.-—2 2 2丄 2 -10•已知x -—= 2,则x+—匸的值为()玄 K A . 2B . 4C . 6D . 811. “绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在 2019年3月 12日植树节前植树2000棵,在植树400棵后,为了加快任务进程, 采用新设备,植树效 率比原来提升了 25%,结果比原计划提前 5天完成所有计划,设原计划每天植树 x 棵,依题意可列方程()x (14-25%) x 2000 2000-400= 5 x '(1+25%)= 2000-4002000-400二.填空题13 .若 x — 2y : — 3z ,则 的值是___________ .y-z11 爲亠卜I —14已知- 一则的值等于16 .若关于x 的分式」方程」・=—+1有增根,增根是 17 .为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用 450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为 ______________ 18 .某班学生从学校出发前往科技馆参观,学校距离科技馆15km , 一部分学生骑自行车先走,过了 15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度 是自行车速度的1.5倍,那么学生骑自行车的速度是 __________ km/h.2000 2000 「 — — 5 X 工(1+25 那)— 2000-400 2000-400 口 12.若分式方程:! = a 无解,则a 的值为(C . 0 或- 1D . 1 或-115 .当 x时,分式,无意义,当x =K +2 时,分式 亠的值是0.x+2解答题19. 解分式方程(1)―町7 q —20. 先化简,再求值:-- —*( a - 1),其中a=f^- 2.a+1 a+121. 某工地有72m2的墙面需要粉刷•若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完•已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面 ________m2(用含x的式子表示);(2 )求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少______ 名二级技工(直接写出结果)22. 若数a使关于x的分式方程—「一^ = 4的解为正数,且使关于y的不等式组{ 3 2 的解集为y v- 2,求符合条件的所有整数a的和I 2(y-a)<023. 2019年8月,因暴雨某县受灾,某市抗灾基金会组织一批救灾物资用15列车厢组成的一列火车运到该县,两地相距180km,为了更快的到达目的地. 列车以原速的1.5倍行驶, 这样提前了半小时到达.(1 )求提速后列车的速度;(2 )若车厢分A、B两种组成,每个A种车厢能运送5万元的救灾物资,每个B种车厢能运送7万元的救灾物资,总物资不低于是85万,那么最多可安排多少个A种车厢?24•阅读下列资料,解决问题:定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:,’,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:'!'X'l 分式也可以化为带分式(即:整式与真分式的和的形式)将假分式一".丁 |分别化为带分式;三一丄这样的分式就是假分式,假2x+l如: (1)工+2 (蓝亠1)+32分式亠是2K ----------(填“真分式”或“假分式”);(3)x-1 x+2如果分式上第亠二一卜’的值为整数,求所有符合条件的整数x的值.K+3(3)•:选择题1解:要使分式有意义, 3x^5贝3x — 5 工 0, 解得:X 「. 故选:A . 6xy s+y故选:B .2 2 23.解:A .根据完全平方公式,(a+b ) = a +2ab+b ,即A 项不合题意,B .若c = 0,则.无意义,即B 项不合题意, ac2 2 2c .根据完全平方公式,a — 2ab+b =( a — b ),即C 项不合题意, 2 1 D .根据负整数指数幕的定义, a—2=一耳(a 工0),即D 项符合题意,茁故选:D .1— 432 q4.解:a = 1, b =( •说)=—10,c =(匸)=—,••• a > c > b , 故选:C .••原式=-2, 故选:D .6.解:去分母得: 3 — x+3 = x — 2,解得:x = 4,经检验x = 4是分式方程的解,参考答案2•解:原式=2x+2y5.解:丄丄bpab•・ x = —7•解:甲单独做需要 m 天完成,则甲的工作效率为乙单独做需要n 天完成,则乙的工作效率为,故选:D .&解」:方程为 a+5 = 1两边同时乘以(x -2),可得1方34x - a - 5= x - 2, • x = 1+ a ,3•••分式方程的解为整数, ••• a 是3的倍数;由不等式组「•有解且最多有 3个整数解,• 3 v 「.a w 6,9v a w 12;• a 的取值为-6,— 3, 0, 3, 6, 9, 12; 当a = 3时,分式方程有增根,•所有符合条件的整数 a 的值之和是18 ; 故选:C .39.解:T a? b =,且(-3) ? x = 2,a -ab••• 2 (9+3x )= 3 •・ 6x =— 15经检验,x =-,是原方程的解.所以甲、乙合作完成工程需要的天数为-= m ninnirrFn由分式方程有增根,得到x - 3 = 0,即x = 3,11. 解:由题意可得,Ndix= 5,x ~x (l+25%)J 故选:D . 12.解:去分母得: x -a = ax+a ,即(a -1) x =- 2a ,显然a = 1时,方程无解;由分式方程无解,得到 x+1 = 0,即x =- 1, 把x =- 1代入整式方程得:- a+1 =- 2a ,解得:a =- 1, 综上,a 的值为1或-1, 故选:D .二.填空题(共6小题) 13. 解:••• x = 2y = 3z ,11…y = x , z = x ,y 2 3故答案为:9.故对答案为:—5故答案为:=-2, 2.16. 解:去分母得: m = 2 +x - 3,15.解:当x+2 = 0时,解得:x =- 当4 - x 2= 0且x+2工0时, 解得: 22时,分式.:无意义;x = 2时,分式二2—的值是0.x+210.解:原式= 故选:C .1 2 2—)+2 = 2 +2= 6,14. 解:已知等式整理得:■^―L = 2, 即卩 a - b =- 2ab ,ab 则原式=-5甜 ab-5,3把x = 3代入整式方程得: m = 2, 故答案为:x = 3, 217. 解:设A 种树苗的单价为x 元,贝U B 种树苗的单价为(X - 10)元,所以用600元购"买由题意,得二=丄丄x x-10 故答案是:一=:'.x x~1018. 解:设骑车学生每小时走 x 千米,解得:x _ 20,经检验x _ 20是原方程的解, 答:骑车学生每小时行 20千米. 故答案是:20. 三.解答题(共6小题)19. 解:(1)去分母得:2x+4_ 3x , 解得:x _ 4,经检验x _ 4是分式方程的解; (2)去分母得:x 2+2x - 1 _x 2- 4, 解得:x _- 1.5,经检验x _- 1.5是分式方程的解. 20•解:原式_a+1 a+11 a+2当a _ 一- 2时,原式_V3-2+2 V3A 种树苗的棵数是 —,用450元购买B 种树苗的棵数是450 x-10据题意得:1515 _ 15x 1.5K 60221 •解:(1)由题意得,每名二级技工一天粉刷墙面( x - 3) m ;故答案为:(x - 3)(2 )依题意列方程:「=—;解得x = 15经检验x = 15是原万程的解,99即每名一级技工和二级技“工一天分别能粉刷15m 、12m 墙面; (3)设需要m 名一级技工,需要 n 名二级技工,故答案为:5. + =4的解为 xT 1-y•••关于x 的分式方程 ——= 4的解为正数,X-1 1~聲[2(y-a)<0解不等式①得:y v- 2; 解不等式②得:y w a .•••关于y 的不等式组-「「的解集为y v- 2,\ 2(y-a)<0a 》一2.•/ a 为整数,•・ a = - 2、- 1、0、1、3、4、5, (—2) + (- 1) +0+1+3+4+5 = 10. 故符合条件的所有整数 a 的和是10. 23.解:(1)设提速前列车的速度为 xkm/h ,则提速后列车的速度为 1.5xkm/h ,依题意,得: -"=0.5 ,解得:x = 120,1 Bird-12n= 540 300m+200n=1060C , 一 i 一 - n=5答:至少需要 根据题意得, 解得:5名二级技工,22 •解:分式方程经检验,x= 120是所列分式方程的解,且符合题意,••• 1.5x= 180 •答:提速后列车的速度为180km/h •(2)设安排m个A种车厢,则安排(15 - m)个B种车厢,依题意,得:5m+7 (15 - m)> 85,解得:m w 10.答:最多可安排10个A种车厢.24•解:(1)v分子的次数大于分母的次数,2•分式兰—是假分式2x故答案为:假分式3+—=x - 2+——x+2(3)zF+弘声=(加—3)(x+3)+3 x+3K+33=2x- 3+ —x+3当x =- 6、- 4、- 2、0时,分式的值为整数.x+3。
【新人教版】八年级上册数学:第15章分式单元测试(含答案)
A 、x 工 1B 、x 工一2C 、x > 1D 、x >- 2 1 ”汁1H 一 "卄 XV = XVhr ifc-a b~ 8、要使分式 古有意义,则 x 应满足条件(第十五章分式单元测试、单选题(共10题;共30 分)h1、化简分式 的结果为(abvb- 1 ab^b2、若分式一的值为零,贝U x 的值为(A 、-1B 、1C 、1 或-1 DA 、5、下列式子是分式的是(xB 、——X + 1A 、①②B 、②③C 、③④D 、②④ 7、下列分式从左至右的变形正确的是( )A、 3、如果分式豊的值为。
,则x 的值是A 、1B 、0C 、一 1D 、土4、若 x = -1 , y=2,则—TT- …占的值等于x A 、 6、有下列方程:①2x+—^=10;②x-去 -;=G :④匚• 一=0.属于分式方程的有(-匚; ③A 、x 工 1B 、X M 2C 、x 工 1 或 X M 2D 10、下列分式从左到右边形正确的是( )A b 6+1B b 贡卄 1)C bfN b DA 、B 、 E Ml a 和汁1) 匕、 ------ —— - am — a D--- - ab _ b二、填空题(共8题;共24分)11、 化简(x -牛!)i-¥)的结果是 ___________________ •12、 随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯使现在世界上最薄的纳米材料,其理论厚度 应是0.00000000034m ,用科学记数法表示是14、我国医学界最新发现的一种病毒其直径仅为 0.000512mm,这个数字用科学记数法可表示为关于X 的方程斗-〕的解是正数,贝U a 的取值范围是、解答题(共5题;共40 分)19、( 2015?潜江)先化简,再求值: ,其中a=5.9、使分式 有意义, x 应满足的条件是(X M 1 且 X M 213、已知X 为正整数,当时 X =时,分式匸-的值为负整数. mm15、 16、 在等式〒-亍-丁中,f 2M 2F ,则「= 分式十,当X =(用F 、f 2的式子表示)时分式的值为零.17、 利用分式的基18、20、阅读并理解下面解题过程:因为为实数,所以,八以〔,所以;〕叮士婆IF 一」工—百请你解决如下问题:求分式的取值范围.x亠-4x-?21、某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款 1.5万元,乙工程队工程款1.1 万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用 5 天;(3)若甲、乙两队合作 4 天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?22、扬州建城2500 年之际,为了继续美化城市,计划在路旁栽树1200 棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前 4 天完成,求实际每天栽树多少棵?23、某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲单独完成这项工程所需时间比规定时间多32 天,乙队单独完成这项工程所需时间比规定时间多12 天,如果甲乙两队先合作20 天,剩下的甲单独做,则延误两天完成,那么规定时间是多少天?四、综合题(共1题;共6 分)24、从2017 年起,昆明将迎来“高铁时代”,这就意味着今后昆明的市民外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从昆明到某市的高铁行驶路程是400 千米,普通列车的行驶路程是高铁行驶路程的 1.3 倍,请完成以下问题:(1)普通列车的行驶路程为_________________________________ 千米;(2)若高铁的平均速度(千米/ 时)是普通列车平均速度(千米/ 时)的 2.5 倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短 3 小时,求普通列车和高铁的平均速度.、单选题1、 【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分•判断的方法是把分子、分 母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约 分.【解答】原式=—.故选:A .【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题•在解题 中一定要引起注意.2、 【答案】A【考点】分式的值为零的条件【解析】【解答】由x 2-1=0 ,得 x= ± 1 .① 当 x=1 时,x-1=0 ,••• x=1不合题意;② 当 x=-1 时,x-1=-2 工 0,• x=-1时分式的值为0.故选:A .【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x .分式是0的条件中特别需要注 意的是分母不能是 0,这是经常考查的知识点.3、【答案】A【考点】分式的值为零的条件【解析】【分析】根据分式分子为 点;胃:二;—故选A 。
人教版八年级数学上册第十五章《分式》单元同步检测试题(含答案)
第十五章《分式》单元检测题一、选择题(共10小题,每小题3分,共30分) 1.下列各式,,,,,中,是分式的共有( )A.1个B.2个C.3个D.4个2.如果分式242--x x 的值等于0,那么( )A.2±=xB.2=xC.2-=xD.2≠x3.下列等式中不一定成立的是( )A 、 2x xy x y =B 、x y x y ππ=C 、xzyzx y = D 、()()2x x 2x y x y 22++= 4.计算a 1a 11a+--的结果为( ) A .﹣1B .1C .a 1a 1+- D .a 11a+-5.化简的结果是( ).A .B .aC .a -1D .6.化简·(x -3)的结果是( ).A .2B .C .D .7.分式除法计算:m 1m -÷2m 1m-的结果是( ) A .m B .1mC .m ﹣1D .1m 1-A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( ) A.m <-6 B.m >-6 C.m >-6且m≠-4 D.m≠-410.已知2x x -x+1=12,则2x +21x 的值为( ) A 、12 B 、14C 、7D 、4二、填空题(共6小题,每小题3分,共18分)11.当x ____________时,分式有意义.12.利用分式的基本性质填空:(1) (2)13.要使分式2x 93x 9-+的值为0,则x 可取___________14.(2014·山西)化简1x +3+6x 2-9的结果是________.15.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是________.16.数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(共8题,共72分)17.(9分)计算或化简:xx2121-+())0(,10 53≠=a axy xy a () 1422=-+a a(1)(-2016)0-2-2-⎝ ⎛⎭⎪⎫-12-3-(-3)2;(2)⎝ ⎛⎭⎪⎫1x 2-4+4x +2÷1x -2;(3)⎝ ⎛⎭⎪⎫a +1a +2÷⎝ ⎛⎭⎪⎫a -2+3a +2.18.(8分)解方程:(1)2x +1-1x =0; (2)x -2x +2-16x 2-4=1.19.(10分)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1+x 2-4x 2-4x +4÷x 2x -2,其中x =1;(2)⎝⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的值代入x 求值.20.(8分)以下是小明同学解方程1-x x -3=13-x -2的过程.解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步 解得x =4. ……………………………………第二步 检验:当x =4时,x -3=4-3=1≠0. ………第三步 所以,原分式方程的解为x =4. …………………第四步 (1)小明的解法从第______步开始出现错误; (2)写出解方程1-x x -3=13-x-2的正确过程.21.(10分)某新建的商场有3000m 2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的工程.甲工程队平均每天比乙工程队多铺50m 2,甲工程队单独完成该工程的工期是乙工程队单独完成该工程所需工期的34.求甲、乙两个工程队完成该工程的时间.22.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分);(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家的时间的2倍,那么小明家与图书馆之间的路程最多是多少米?23.(11分)观察下列方程的特征及其解的特点.①x +2x =-3的解为x 1=-1,x 2=-2;②x +6x =-5的解为x 1=-2,x 2=-3;③x +12x =-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程为____________,其解为____________; (2)根据这类方程的特征,写出第n 个方程为________________,其解为____________;(3)请利用(2)的结论,求关于x 的方程x +n 2+nx +3=-2(n +2)(n 为正整数)的解.参考答案一、选择题1. C2. C3. C4. B5. B6. B7.A8. B9. C 10. C 二、填空题11、21x 12、(1)26a 13. 3 14.1x -3 15.-32 16.2三、解答题(共8题,共72分)17.解:(1)原式=1-14+8-9=-14.(3分)(2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(6分)(3)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(9分)18.解:(1)方程两边同乘x (x +1),得2x -(x +1)=0,解得x =1.(3分)检验:当x =1时,x (x +1)≠0.所以原分式方程的解为x =1.(4分)(2)方程两边同乘(x +2)(x -2),得(x -2)2-16=x 2-4,解得x =-2.(7分)检验:当x =-2时,(x +2)(x -2)=0,因此x =-2不是原分式方程的解.所以原分式方程无解.(8分)19.解:(1)原式=⎝ ⎛⎭⎪⎫1+x +2x -2·x -2x 2=2x x -2·x -2x 2=2x .(3分)当x =1时,原式=2.(5分)(2)原式=⎝ ⎛⎭⎪⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1.(8分)∵x 从不大于4的正整数中选取,∴x =1,2,3,4.∵要使原式有意义,则x ≠±1,3,∴可取x =4,则原式=23.(10分)20.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以原分式方程的解为x =4.(8分)21.解:设乙工程队平均每天铺x m 2,则甲工程队平均每天铺(x +50)m 2.由题意得3000x +50=3000x ·34,解得x =150.(5分)经检验,x =150是原分式方程的解.(6分)3000x =20(天),20×34=15(天).(9分)答:甲工程队完成该工程需15天,乙工程队完成该工程需20天.(10分)22.解:(1)设小明步行的速度是x 米/分.由题意得900x =9003x +10,解得x =60.(4分)经检验,x =60是原分式方程的解.(5分)答:小明步行的速度是60米/分.(6分) (2)设小明家与图书馆之间的路程是y 米.由(1)知小明骑自行车的速度为3×60=180(米/分),根据题意可得y 60≤900180×2,解得y ≤600.(9分)答:小明家与图书馆之间的路程最多是600米.(10分)23.解:(1)答案不唯一,如x +20x =-9 x 1=-4,x 2=-5(3分)(2)x +n 2+nx =-(2n +1) x 1=-n ,x 2=-n -1(6分)(3)∵x+n2+nx+3=-2(n+2),∴x+3+n2+nx+3=-2(n+2)+3,∴(x+3)+n2+nx+3=-(2n+1),∴x+3=-n或x+3=-n-1,即x1=-n-3,x2=-n-4.(10分)检验:当x=-n-3时,x+3=-n≠0,当x=-n-4时,x+3=-n-1≠0,∴原分式方程的解是x1=-n-3,x2=-n-4.(11分)。
人教版八年级数学上册 第十五章 分式 单元练习题及答案
第十五章 分式 单元练习一、选择题1.若分式x 2-1x -1的值为零,则x 的值为( ) A .0 B .1 C .-1 D .±12.下列式子计算错误的是( )A.0.2a +b 0.7a -b =2a +b 7a -bB.x 3y 2x 2y 3=x yC.a -b b -a=-1 D.1c +2c =3c 3.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-74.化简a +1a 2-2a +1÷⎝⎛⎭⎫1+2a -1的结果是( ) A.1a 2-1 B.1a +1C.1a -1D.1a 2+15.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50B.2500x =3000x +50C.2500x -50=3000xD.2500x +50=3000x 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-34二、填空题7.若分式3x x -2有意义,则x 应满足的条件是________. 8.方程12x =1x +1的解是________. 9.若3x -1=127,则x =________. 10.已知a 2-6a +9与(b -1)2互为相反数,则式子⎝⎛⎭⎫a b -b a ÷(a +b )的值是________.11.关于x 的方程2a x -1=a -1无解,则a 的值是________. 12.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________. 三、13.计算(1)-(-1)2016-(π-3.14)0+⎝⎛⎭⎫-12-2;(2)13a 2+12ab.14.化简:(1)⎝⎛⎭⎫1x 2-4+4x +2÷1x -2;(2)⎝⎛⎭⎫a +1a +2÷⎝⎛⎭⎫a -2+3a +2.15.先化简,再求值:⎝⎛⎭⎫x x +1-1÷1x 2-1,其中x =2016.16.解方程:(1)3x -1-x +3x 2-1=0;(2)2x +1+3x -1=6x 2-1.17.先化简,再求值:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1,x 在1,2,-3中选取合适的数.四、18.先化简,再求值:x 2+2x +1x +2÷x 2-1x -1-x x +2,其中x 是不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1的整数解.19.以下是小明同学解方程1-x x -3=13-x-2的过程. 解:方程两边同时乘(x -3),得1-x =-1-2. …………………………第一步解得x =4. ……………………………………第二步检验:当x =4时,x -3=4-3=1≠0. ………第三步所以,原分式方程的解为x =4. …………………第四步(1)小明的解法从第________步开始出现错误;(2)写出解方程1-x x -3=13-x-2的正确过程.20.某中学组织学生到离学校15km 的东山游玩,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,结果先遣队比大队早到0.5h ,先遣队的速度是多少?大队的速度是多少?五、21.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:⎝ ⎛⎭⎪⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?22.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟.(1)由此估算这段路长约________千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a 米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了另一种方案,将原计划的a 扩大一倍,则路的两侧共计减少400棵树,请你求出a 的值.六、23.观察下列方程的特征及其解的特点.①x +2x=-3的解为x 1=-1,x 2=-2; ②x +6x=-5的解为x 1=-2,x 2=-3; ③x +12x=-7的解为x 1=-3,x 2=-4. 解答下列问题:(1)请你写出一个符合上述特征的方程:____________,其解为____________;(2)根据这类方程特征,写出第n 个方程:____________________,其解为________________;(3)请利用(2)的结论,求关于x 的方程x +n 2+n x +3=-2(n +2)(其中n 为正整数)的解.参考答案与解析1.C 2.A 3.C 4.C 5.C6.B 解析:去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92.∵关于x 的方程x +m x -3+3m 3-x=3的解为正数,∴-2m +9>0,解得m <92.当x =3时,即-2m +92=3,解得m =32.故m 的取值范围是m <92且m ≠32.故选B. 7.x ≠2 8.x =1 9.-2 10.2311.1或0 12.12 -12 1021 解析:1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1)=2n (a +b )+a -b (2n -1)(2n +1),∴⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎨⎧a =12,b =-12.∴1(2n -1)(2n +1)=122n -1+-122n +1=12⎝⎛⎭⎫12n -1-12n +1,∴m =11×3+13×5+15×7+…+119×21=12⎝⎛⎭⎫1-13+13-15+15-17+…+119-121=12⎝⎛⎭⎫1-121=1021. 13.解:(1)原式=-1-1+4=2.(3分)(2)原式=2b 6a 2b +3a 6a 2b =3a +2b 6a 2b.(6分) 14.解:(1)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2.(3分) (2)原式=a 2+2a +1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1.(6分) 15.解:原式=x -x -1x +1·(x 2-1)=-(x -1)=-x +1.(3分) 当x =2016时,原式=-2015.(6分)16.解:(1)方程两边同乘x 2-1,得3(x +1)-(x +3)=0,解得x =0.(2分)检验:当x =0时,x 2-1≠0,∴原分式方程的解为x =0.(3分)(2)方程两边同乘x 2-1,得2(x -1)+3(x +1)=6,解得x =1.(5分)检验:当x =1时,x 2-1=0,∴x =1不是原分式方程的解,∴原分式方程无解.(6分)17.解:⎝⎛⎭⎫x 2x -1+91-x ÷x +3x -1=x 2-9x -1·x -1x +3=(x +3)(x -3)x -1·x -1x +3=x -3.(3分)∵当x =1和x =-3时,原分式无意义,∴选取x =2.当x =2时,原式=2-3=-1.(6分)18.解:原式=(x +1)2x +2·1x +1-x x +2=x +1x +2-x x +2=1x +2.(2分)解不等式组⎩⎪⎨⎪⎧2-(x -1)≥2x ,2x -53-x ≤-1,得-2≤x ≤1.(4分)∵x 是整数,∴x =-2,-1,0,1.当x =-2,-1,1时,原分式无意义,故x 只能取0.(6分)当x=0时,原式=12.(8分) 19.解:(1)一(2分)(2)方程两边同时乘(x -3),得1-x =-1-2x +6,解得x =4.(7分)检验:当x =4时,x -3≠0.所以,原分式方程的解为x =4.(8分)20.解:设大队的速度为x km/h ,则先遣队的速度是1.2x km/h.(1分)根据题意得15x =151.2x+0.5,解得x =5.(5分)经检验,x =5是原分式方程的解且符合实际.(6分)1.2x =1.2×5=6.(7分)答:先遣队的速度是6km/h ,大队的速度是5km/h.(8分)21.解:(1)设所捂部分化简后的结果为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1.(4分) (2)原代数式的值不能等于-1.(5分)理由如下:若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0.当x =0时,除式x x +1=0,故原代数式的值不能等于-1.(9分) 22.解:(1)3(3分)(2)由题意可得3000a -30002a =12×400.(6分)解方程得a =7.5.经检验,a =7.5满足方程且符合题意.(8分) 答:a 的值是7.5.(9分)23.解:(1)x +20x=-9 x 1=-4,x 2=-5(3分) (2)x +n 2+n x=-(2n +1) x 1=-n ,x 2=-n -1(6分) (3)x +n 2+n x +3=-2(n +2),x +3+n 2+n x +3=-2(n +2)+3,(x +3)+n 2+n x +3=-(2n +1),由(2)知x +3=-n 或x +3=-(n +1),即x 1=-n -3,x 2=-n -4.(10分)检验:∵n 为正整数,当x 1=-n -3时,x +3=-n ≠0;当x 2=-n -4时,x +3=-n -1≠0.∴原分式方程的解是x 1=-n -3,x 2=-n -4.(12分)。
人教版八年级上册数学第十五章分式测试题带答案
人教版八年级上册第十五章测试题带答案15.1《分式》一.选择题1.下列式子:①,②,③,④,其中是分式的有()A.1个B.2个C.3个D.4个2.若有意义,则a的取值范围是()A.a=﹣1B.a≠﹣1C.a=D.a≠3.若分式的值为0,则x的值为()A.﹣3B.2C.3D.04.下列属于最简分式的是()A.B.C.D.5.下列分式约分正确的是()A.B.C.D.6.如果把分式中的x,y都扩大2倍,那么分式的值()A.不变B.缩小2倍C.扩大2倍D.无法确定7.若分式的值为正数,则x的取值范围是()A.x>B.x<C.x≥D.x取任意实数8.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1D.(a﹣1)4二.填空题9.下列各式中,最简分式有个.①②③④⑤⑥10.化简=.11.分式化为最简分式的结果是.12.当x=时,分式无意义.13.要使分式有意义,则x的取值范围是.14.若代数式的值等于零,则x=.15.若分式的值为0,则x的值为.16.分式,的最简公分母是.三.解答题17.下列分式中的x满足什么条件时.分式有意义?(1)(2)(3)(4)18.不改变分式的值,把下列分式的分子与分母的各项系数化为整数.(1)(2)19.约分:(1)(2)(3)(4)(5)20.通分:(1),(2),(3),(4),21.把下列分式化为最简分式.(1)(2)(3)22.指出下列各式的最简公分母.(1)、(2)、、(3)、、(4)与参考答案一.选择题1.解:①,③,④是分式,故选:C.2.解:由题意知,2a﹣1≠0.所以a≠.故选:D.3.解:∵分式的值为0,∴x+3=0,x﹣2≠0,解得,x=﹣3,故选:A.4.解:A、分子、分母中含有公因式(1﹣x),不是最简分式,故本选项不符合题意;B、该分式符合最简分式的定义,故本选项符合题意;C、分子、分母中含有公因式(1+x),不是最简分式,故本选项不符合题意;D、分子、分母中含有公因数17,不是最简分式,故本选项不符合题意.故选:B.5.解:A、已是最简不用约分;B、=;C、已是最简不用约分;D、==ab;故选:D.6.解:分式中的x,y都扩大2倍,则原分式变为,因为=,所以把分式中的x,y都扩大2倍,分式的值缩小2倍.故选:B.7.解:∵分式的值为正数,∴x2+5>0,2x﹣1>0,解得:x>.故选:A.8.解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.二.填空题9.解:②的分子、分母中含有公因数2,不是最简分式,不符合题意;④的分子、分母中含有公因式(5+2a),不是最简分式,不符合题意;⑥的分子、分母中含有公因式(2y+5),不是最简分式,不符合题意;③、⑤不是分式,不符合题意;①符合最简分式的定义,符合题意.故答案是:1.10.解:=;故答案为:.11.解:=.故答案是:.12.解:∵分式无意义,∴2x﹣7=0,解得:x=.故答案为:.13.解:∵要使分式有意义,∴x﹣2≠0,解得:x≠2.故答案为:x≠2.14.解:由题意得:x+3=0,且x﹣5≠0,解得:x=﹣3,故答案为:﹣3.15.解:根据题意,得x2+5x+6=0,且x+2≠0,所以(x+2)(x+3)=0且x+2≠0,所以x+3=0,解得x=﹣3.故答案是:﹣3.16.解:故答案为:12x2y3三.解答题17.解:(1),则x≠0;(2),则x﹣2≠0,解得:x≠2;(3),则x(x﹣1)≠0,解得:x≠0,且x﹣1≠0;(4),则x2﹣9≠0,则x≠±3.18.解:(1)==;(2)==.19.解:(1)原式=﹣3yz10;(2)原式==;(3)原式==a•=;(4)原式==;(5)原式===.20.解:(1)=,=;(2)=﹣,=;(3)=,=﹣;(4)=,=.21.解:(1);(2);(3).22.解:(1)最简公分母为10x3y2;(2)最简公分母为12x3z2y;(3)最简公分母为(1﹣a)3;(4)最简公分母为x (x ﹣3)(x +3).15.2分式的运算一、选择题 1.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)2.下列运算结果为x -1的是( )A .11x -B .211x x x x -⋅+ C .111x x x +÷- D .2211x x x +++3.计算2222246x x xx x +⋅-的结果是( ) A .163x - B .163x--C .163x+ D .163x-+ 4.计算1÷11m m+-(m 2-1)的结果是( ) A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-15.如果32223()()3a ab b÷=,那么84a b 等于( (A .6B .9C .12D .816.计算()22ba a -⨯ 的结果为 A .bB .b -C . abD .ba7.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).A .2a cB .2c aC .2c aD .2a c 8.计算()232b a b a,结果是( ) A .55a b B .45a bC .5abD .56a b9.化简211m mm m--÷是A .mB .-mC .1mD .-1m10.甲杯中盛有m 毫升红墨水,乙杯中盛有m 毫升蓝墨水,从甲杯中倒出a 毫升到乙杯里(0<a <m ),搅匀后,又从乙杯倒出a 毫升到甲杯里,则这时( ) A .甲杯中混入的蓝墨水比乙杯中混入的红墨水少 B .甲杯中混入的蓝墨水比乙杯中混入的红墨水多 C .甲杯中混入的蓝墨水和乙杯中混入的红墨水相同D .甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定 二、填空题 11.化简2221111x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果为________. 12.已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2012S =_______(用含a 的代数式表示).13.若a 0≠,1s 3a =-,213s s =,323s s =,433s s =,⋯,202020193s s =,则2020s =________.14.如果023a b=≠,那么代数式()225224a b a b a b---的值是_____________. 15.若22124x M x x x ÷=+-,则M 应为________.三、解答题16.计算下列各题:(1)0.25×(-2)-2÷16-1-(π-3)0(2)22225103621x y yy x x÷17.化简:2144a a a --+÷2224a a --×2.18.先化简,再求2222121324x x x x x x x x 的值,其中12x =-( 19.计算:(1)3(1)5(2)3475225311x y x y ++-=⎧⎪--⎨=⎪⎩ (2)(222x x x -+-2144x x x -++)÷344x x x --20.计算:(1(222692693x x x x x x-+-÷-+ (2( ()()22634423x x x x x x --÷-+-+ 21.有一客轮往返于重庆和武汉之间,第一次做往返航行时,长江的水流速度为a 千米/小时;第二次做往返航行时,正遇上长江发大水,水流速度为b 千米/小时(b>a(.已知该船在两次航行中,静水速度都为V 千米/小时,问该船两次往返航行所花时间是否相等,若你认为相等,请说明理由;若你认为不相等,请分别表示出两次航行所花的时间,并指出哪次时间更短些?22.化简22112x x x x x--÷+,并判断当x 满足不等式()x 212x 16+--<>时该代数式的符号. 23.计算:(-)【参考答案】1.A 2.B 3.A 4.B 5.B 6.A 7.A 8.A 9.B 10.C 11.11x x -+ 12.1a13.1a- 14.1215.2x -16.(1)0;(2)3276x y17.22244a a a a +--+.18.1xx +,1- 19.(1)27x y =⎧⎨=⎩;(2)-22x x -+.20.(1(2x -((2(262x x +-- 21.第一次的时间要短些.22.12xx++,负号23.原式=-.15.3分式方程一.选择题(共10小题)1.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=2.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.3.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=404.若x=3是分式方程﹣=0的解,则m的值是()A.﹣5B.5C.﹣3D.35.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=6.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.7.方程=的解为()A.B.﹣C.1D.﹣18.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣209.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣210.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8二.填空题(共6小题)11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程.12.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程.13.关于x的分式方程:﹣2=有增根,则k的值是.14.2020年初,全国口罩紧缺,某口罩生产企业准备开通A,B两条口罩生产线,总日产量5万只,已知A生产线生产75万只口罩与B生产线生产25万只口罩所用天数相同.设A 生产线的口罩日产量是x万只,则可列出分式方程.15.2020年新冠肺炎疫情影响全球各国感染人数持续攀升.医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来.长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍.两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求乙厂房每天生产多少箱口罩?设乙厂房每天生产x箱口罩,依题意可得方程为:.16.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学一共有x人,则可列分式方程.三.解答题(共10小题)17.解下列方程:(1)(2)18.某公司打算购买一批相同数量的玻璃杯和保温杯,计划用2000元购买玻璃杯,用2800元购买保温杯.已知一个保温杯比一个玻璃杯贵10元,求一个玻璃杯的价格.19.某社区计划对1200m2的区域进行绿化,经投标由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲、乙两队在分别独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.甲、乙两施工队每天分别能完成绿化的面积是多少?20.车间有甲、乙两个小组,甲组的工作率比乙组的高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少12分钟,问两组每小时各加工多少零件?21.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?22.工厂要装配96台机器,在装配好24台后采用了新的技术,工作效率提高了50%.结果总共只用9天就完成任务,原来每天能装配机器多少台?23.某水果店购进A、B两种不同产地的苹果,分别花费了540元和500元,其中A种苹果的进货单价比B种苹果的进货单价低10%,A种苹果的进货数量比B种苹果的进货数量多20千克.求A种苹果的进货单价.24.某商家预测一种应季T恤能畅销市场,就用15840元购进了一批这种T恤,面世后果然供不应求,商家又用34080元购进了第二批这种T恤,所购数量是第一批购进数量的2倍,但单价贵了10元,该商家第一批购进T恤多少件?25.某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.26.某校开展以爱国为主题的大阅读活动,计划选购《红心照耀中国》和《红岩》两种书籍,已知《红心照耀中国》每本价格是《红岩》每本价格的1.5倍,用1080元购买《红心照耀中国》比用800元购买《红岩》要少5本.问两种书籍的单价分别为多少元?人教版初中数学八年级上册15.3分式方程参考答案与试题解析一.选择题(共10小题)1.成都西站至成飞工业园之间在建的9号地铁,现有甲、乙两个工程队从两头开始施工,已知,每天甲队比乙队多修8米,甲施工150米所用的时间与乙施工120米所用的时间相等,设甲每天施工x米,下列方程正确的是()A.=B.=C.=D.=【解答】解:根据题意得,=,故选:C.2.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,依题意,得:=.故选:C.3.“绿水青山就是金山银山”.为改造太湖水质,某工程队对2400平方公里的水域进行水质净化,实际工作时每天的工作效率比原计划提高了20%,结果提前了40天完成任务.设实际每天净化的水域面积为x平方公里,则下列方程中正确的是()A.﹣=40B.﹣=40C.﹣=40D.﹣=40【解答】解:设实际每天净化的水域面积为x平方公里,根据题意可得:﹣=40.故选:A.4.若x=3是分式方程﹣=0的解,则m的值是()A.﹣5B.5C.﹣3D.3【解答】解:把x=3代入分式方程得,解得m=5.故选:B.5.南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同,求甲、乙两种兰花每株成本分别为多少元?若设乙种兰花的成本是x元.则下列方程正确的是()A.=B.=C.=D.=【解答】解:设乙种兰花的成本是x元,则甲种兰花的成本为(x+100)元,根据题意可得:=.故选:B.6.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为()A.B.C.D.【解答】解:设乙车间每天生产x个,则=.故选:C.7.方程=的解为()A.B.﹣C.1D.﹣1【解答】解:两边都乘以x(x﹣1),得:3(x﹣1)=6x,解得x=﹣1,检验:当x=﹣1时,x(x﹣1)=﹣1×(﹣2)=2≠0,∴分式方程的解为x=﹣1,故选:D.8.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【解答】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.9.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1B.=﹣1C.=+2D.=﹣2【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.10.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8【解答】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.二.填空题(共6小题)11.甲、乙两组学生去距学校4千米的敬老院开展慰问活动,甲组学生步行出发20分钟后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知骑自行车速度是步行速度的3倍,设步行速度为x千米/时,则根据题意可以列出方程﹣=.【解答】解:设步行速度为x千米/时,则骑自行车速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.12.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟,若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程﹣=.【解答】解:设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为(1+60%)x千米/小时,依题意,得:﹣=.故答案为:﹣=.13.关于x的分式方程:﹣2=有增根,则k的值是2.【解答】解:两边都乘以x﹣3,得:x﹣1﹣2(x﹣3)=k①,∵分式方程有增根,∴增根为x=3,将x=3代入①,得:3﹣1=k,解得k=2,故答案为:2.14.2020年初,全国口罩紧缺,某口罩生产企业准备开通A,B两条口罩生产线,总日产量5万只,已知A生产线生产75万只口罩与B生产线生产25万只口罩所用天数相同.设A生产线的口罩日产量是x万只,则可列出分式方程=.【解答】解:设A生产线的口罩日产量是x万只,则B生产线的口罩日产量是(5﹣x)万只,依题意,得:=.故答案为:=.15.2020年新冠肺炎疫情影响全球各国感染人数持续攀升.医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来.长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍.两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求乙厂房每天生产多少箱口罩?设乙厂房每天生产x箱口罩,依题意可得方程为:﹣=5.【解答】解:∵乙厂房每天生产x箱口罩,∴甲厂房每天生产1.5x箱口罩.依题意,得:﹣=5.故答案为:﹣=5.16.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学一共有x人,则可列分式方程﹣=10.【解答】解:依题意,得:﹣=10.故答案为:﹣=10.三.解答题(共10小题)17.解下列方程:(1)(2)【解答】解:(1)两边都乘以x(x﹣2),得:3x=9(x﹣2),解得x=3,检验:当x=3时,x(x﹣2)=3≠0,∴分式方程的解为x=3;(2)两边都乘以3(x﹣2),得:3(5x﹣4)=4x+10﹣3(x﹣2),解得x=2,检验:当x=2时,3(x﹣2)=0,∴x=2是分式方程的增根,∴分式方程无解.18.某公司打算购买一批相同数量的玻璃杯和保温杯,计划用2000元购买玻璃杯,用2800元购买保温杯.已知一个保温杯比一个玻璃杯贵10元,求一个玻璃杯的价格.【解答】解:设一个玻璃杯的价格是x元,则一个保温杯的价格是(x+10)元,依题意,得:=,解得:x=25,经检验,x=25是原方程的解,且符合题意.答:一个玻璃杯的价格是25元.19.某社区计划对1200m2的区域进行绿化,经投标由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且甲、乙两队在分别独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.甲、乙两施工队每天分别能完成绿化的面积是多少?【解答】解:设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,依题意,得:﹣=3,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲施工队每天能完成绿化的面积是100m2,乙施工队每天能完成绿化的面积是50m2.20.车间有甲、乙两个小组,甲组的工作率比乙组的高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少12分钟,问两组每小时各加工多少零件?【解答】解:设乙组每小时加工x个零件,则甲组每小时加个(1+25%)x个零件,依题意,得:﹣=,解得:x=1000,经检验,x=1000是方程的解,且符合题意,∴(1+25%)x=1250.答:甲组每小时加工1250个零件,乙组每小时加工1000个零件.21.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?【解答】解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.22.工厂要装配96台机器,在装配好24台后采用了新的技术,工作效率提高了50%.结果总共只用9天就完成任务,原来每天能装配机器多少台?【解答】解:设原来每天能装配机器x台,则改进技术后每天能装配机器(1+50%)x台,依题意,得:+=9,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:原来每天能装配机器8台.23.某水果店购进A、B两种不同产地的苹果,分别花费了540元和500元,其中A种苹果的进货单价比B种苹果的进货单价低10%,A种苹果的进货数量比B种苹果的进货数量多20千克.求A种苹果的进货单价.【解答】解:设B种苹果的进货单价为x元/千克,则A种苹果的进货单价为(1﹣10%)x元/千克,依题意,得:﹣=20,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴(1﹣10%)×5=4.5(元/千克).答:A种苹果的进货单价是4.5元/千克.24.某商家预测一种应季T恤能畅销市场,就用15840元购进了一批这种T恤,面世后果然供不应求,商家又用34080元购进了第二批这种T恤,所购数量是第一批购进数量的2倍,但单价贵了10元,该商家第一批购进T恤多少件?【解答】解:设该商家第一批购进T恤x件,则第二批购进T恤2x件,依题意,得:﹣=10,解得:x=120,经检验,x=120是原方程的解,且符合题意.答:该商家第一批购进T恤120件.25.某校组织学生步行到科技展览馆参观,学校与展览馆相距6千米,返回时由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.【解答】解:设学生返回时步行的速度为x千米/小时,则去时步行的速度为(x+1)千米/小时,依题意,得:﹣=,整理,得:x2+x﹣12=0,解得:x1=3,x2=﹣4,经检验,x1=3,x2=﹣4是原方程的解,x1=3符合题意,x2=﹣4不符合题意,舍去.答:学生返回时步行的速度为3千米/小时.26.某校开展以爱国为主题的大阅读活动,计划选购《红心照耀中国》和《红岩》两种书籍,已知《红心照耀中国》每本价格是《红岩》每本价格的1.5倍,用1080元购买《红心照耀中国》比用800元购买《红岩》要少5本.问两种书籍的单价分别为多少元?【解答】解:设《红岩》的单价为x元,则《红心照耀中国》的单价为1.5x元,依题意,得:﹣=5,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:《红岩》的单价为16元,《红心照耀中国》的单价为24元.。
人教版八年级上册数学第15章分式单元测试卷(含答案详细解析)
第15章分式单元测试卷(有答案新人教版)一、 选择题(本题共10小题,每小题3分,共30分) 1. 在,中,是分式的有( )A 、1个B 、2个C 、3个D 、4个2. 使分式有意义的a 的取值是( )A 、a ≠1B 、a ≠±1C 、a ≠-1D 、a 为任意实数 3. 如果把分式中的x 和y 都扩大2倍,那么分式的值( ). A .不变 B .扩大2倍 C .扩大4倍D .缩小2倍4. 若分式的值为 ,则 的值为( )A 、B 、2C 、-2D 、05. 用科学计数法表示的数-3.6×10-4写成小数是 ( )A 、0.00036B 、-0.0036C 、-0.00036D 、-36000 6. 下列分式中,计算正确的是( ).A .B .C .D .7. 分式的最简公分母是( )A 、B 、C 、D 、8. 下列公式中是最简分式的是( )A 、21227b aB 、22()a b b a --C 、22x y x y ++D 、22x y x y--9. 化简,可得( ). A .B .C .D . 10. 小亮从家出发去距离9千米的姥姥家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,设骑自行车的平均速度为x 千米/小时,根据题意列方程得( )1122+-a a 2xx y+2()23()3b c a b c a +=+++222a b a b a b+=++22()1()a b a b -=-+2212x y xy x y y x-=---1111x x -+-221x -221x --221xx -221xx --、、 、 、二、 填空题(本题共6小题,每小题3分,共18分)11. 计算:12. 当x 时,分式313+-x x 有意义13. 已知x =2 012,y =2 013,则(x +y )·=__________. 14. 分式方程1111112-=+--x x x 去分母时,两边都乘以 15. 观察下列各等式:,,,…,根据你发现的规律计算:=__________(n 为正整数). 16. 若当 时,分式的值为 ,当 时,分式无意义,则a+b 的值为三、 解答题(本题共2小题,每小题6分,共12分)17. 计算:(1) bc c b ab b a +-+ (2)÷+--4412a a a 214a a -- 18. 先化简,再求值:其中四、 解答题(本题共5小题,每小题8分,共40分)19. 解分式方程:(1)(2)1412112-=-++x x x20. 观察下面一列单项式:x , ,161,81,41,215432x x x x --(1)计算这列单项式中,一个单项式与它前一项的商,你有什么发现?(2)根据你发现的规律写出第n 个单项式.21. 已知y =.试说明不论x 为任何有意义的值,y 的值均不变.22. 小明用12元买软面笔记本,小丽用21元买硬面笔记本。
人教版八年级数学上《第15章分式》单元测试含答案解析
《第15章分式》一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣3.下列分式是最简分式的是()A.B.C.D.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=06.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1098.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1二、填空题11.若分式的值为零,则x=______.当x=______时,分式的值为0.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是______m.13.计算: =______.14.,,的最简公分母为______.15.已知3m=4n≠0,则=______.16.若解分式方程产生增根,则m=______.17.当x=______时,分式无意义;当x______时,分式有意义.18.将下列分式约分:(1)=______;(2)=______;(3)=______.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为______千米/时.20.要使分式有意义,则x应满足的条件是______.三、解答题21.计算(1)(2)(3)1﹣(4).22.解方程(1)(2)(3)(4).23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.《第15章分式》参考答案与试题解析一、选择题1.下列各式中,分式的个数为();A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】判断分式的依据是分式的定义,主要是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分式不含等号.【解答】解:,, x+y,的分母中均不含有字母,因此它们是整式,而不是分式.含有等号,不是分式.,﹣,分母中含有字母,因此是分式.故选C.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A 叫做分式的分子,B叫做分式的分母.注意分式不含等号,也不含不等号.2.下列各式正确的是()A. =﹣B. =﹣C. =﹣D. =﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.【点评】本题考查了分式的性质,分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,注意分式的分子分母都乘或都除以同一个整式(0除外),不能遗漏.3.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.4.将分式中的x、y的值同时扩大2倍,则分式的值()A.扩大2倍 B.缩小到原来的C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据已知得出=,求出后判断即可.【解答】解:将分式中的x、y的值同时扩大2倍为=,即分式的值扩大2倍,故选A.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.5.若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式的值为零:分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.下列计算正确的是()A.2÷2﹣1=﹣1 B.C.(﹣2x﹣2)﹣3=6x6D.【考点】负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、合并同类项法则结合负整数指数幂的计算公式可得答案.【解答】解:A、2÷2﹣1=4,故此选项错误;B、2x﹣3÷4x﹣4=,故此选项错误;C、(﹣2x﹣2)﹣3=﹣x6,故此选项错误;D、3x﹣2+4x﹣2=,故此选项正确;故选:D.【点评】本题主要考查了负指数幂的运算.负整数指数为正整数指数的倒数.7.为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.运动会上,初二(3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】压轴题.【分析】若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解.【解答】解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:﹣=20.故选B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.9.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时间=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是: =25.故选B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.分式方程的解为()A.x=1 B.x=﹣3 C.x=3 D.x=﹣1【考点】解分式方程.【专题】方程思想.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3)(x﹣1),得x(x﹣1)=(x﹣3)(x+1),x2﹣x=x2﹣2x﹣3,解得x=﹣3.检验:把x=﹣3代入(x﹣3)(x﹣1)=24≠0.∴原方程的解为:x=﹣3.故选B.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二、填空题11.若分式的值为零,则x= ﹣3 .当x= ﹣3 时,分式的值为0.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣3=0且x﹣3≠0,解得x=﹣3.由题意可得x2﹣9=0且x﹣3≠0,解得x=﹣3.故答案为:﹣3;﹣3.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.计算: = .【考点】分式的乘除法.【专题】计算题.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故答案为:【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.14.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15.已知3m=4n≠0,则= .【考点】分式的化简求值.【分析】首先化简分式,再进一步用n表示m,代入求得数值即可.【解答】解:∵3m=4n≠0,∴,∴原式======.故答案为:.【点评】此题考查分式的化简求值,注意先化简,再代入求值.16.若解分式方程产生增根,则m= ﹣5 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.【点评】此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.当x= 1 时,分式无意义;当x ≠±3 时,分式有意义.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列式计算即可得解;根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1=0,解得x=1;x2﹣9≠0,解得x≠±3.故答案为:1;≠±3.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.18.将下列分式约分:(1)= ;(2)= ;(3)= 1 .【考点】约分.【分析】根据约分的定义,把分子分母同时约去它们的公因式,即可得出答案.【解答】解:(1)=;(2)=﹣;(3)==1;故答案为:,﹣,1.【点评】此题主要考查了分式的约分,关键是正确的找出分子分母的公因式.19.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10千米/时,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2千米所用时间,与以最大速度逆流航行1.2千米所用时间相等.请你计算出该冲锋舟在静水中的最大航速为40 千米/时.【考点】分式方程的应用.【专题】行程问题.【分析】设该冲锋舟在静水中的最大航速为x千米/时.等量关系:洪水顺流以最大速度航行2千米所用时间与以最大速度逆流航行1.2千米所用时间相等,根据等量关系列式.【解答】解:设该冲锋舟在静水中的最大航速为x千米/时.根据题意,得,即2(x﹣10)=1.2(x+10),解得x=40.经检验,x=40是原方程的根.所以该冲锋舟在静水中的最大航速为40千米/时.故答案为:40.【点评】此题中用到的公式有:路程=速度×时间,顺流速=静水速+水流速,逆流速=静水速﹣水流速.20.要使分式有意义,则x应满足的条件是x≠﹣1,x≠2 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,(x+1)(x﹣2)≠0,解得x≠﹣1,x≠2.故答案为:x≠﹣1,x≠2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.三、解答题21.计算(1)(2)(3)1﹣(4).【考点】分式的混合运算.【专题】计算题.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(3)原式第二项利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算即可得到结果;(4)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式==;(2)原式=÷=•=;(3)原式=1﹣•=1﹣==﹣;(4)原式=﹣÷=﹣•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.解方程(1)(2)(3)(4).【考点】解分式方程.【专题】计算题.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:4+(x+3)(x+2)=(x﹣1)(x﹣2),去括号得:4+x2+5x+6=x2﹣3x+2,移项合并得:8x=﹣8,解得:x=﹣1,经检验x=﹣1是分式方程的解;(3)去分母得:x(x+2)+2=x2﹣4,去括号得:x2+2x+2=x2﹣4,移项合并得:2x=﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解;(4)去分母得:7(x﹣1)+x+1=6x,去括号得:7x﹣7+x+1=6x,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.“先化简,再求值:,其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x=﹣3与x=3代入进行计算即可.【解答】解:原式=(+)•(x+2)(x﹣2)=•(x+2)(x﹣2)=x2+4,∵(﹣3)2+4=32+4=9+4,∴她的计算结果也是正确的.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.先化简下列分式,再选一个你认为合适的数字代入并求代数式的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=•=•=,当x=1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、应用题25.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B两人的速度.【考点】分式方程的应用.【专题】应用题.【分析】本题中有两个相等关系:“B的速度是A的速度的3倍”以及“B比A少用3小时20分钟”;根据等量关系可列方程.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.【点评】利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.26.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分到达目的地.求前一小时的行驶速度.【考点】分式方程的应用.【分析】用到的关系式为:路程=速度×时间.由题意可知:加速后用的时间+40分钟+1小时=原计划用的时间.注意加速后行驶的路程为180千米﹣前一小时按原计划行驶的路程.【解答】解:设前一个小时的平均行驶速度为x千米/时.依题意得:1++=,3x+2(180﹣x)+2x=3×180,3x+360﹣2x+2x=540,3x=180,x=60.经检验:x=60是分式方程的解.答:前一个小时的平均行驶速度为60千米/时.【点评】本题考查了列分式方程解应用题,与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.27.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【考点】分式方程的应用.【专题】工程问题;压轴题.【分析】如果设甲工厂每天加工x件产品,那么根据乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍,可知乙工厂每天加工1.5x件产品.然后根据等量关系:甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10列出方程.【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得﹣=10,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【点评】本题考查了分式方程在实际生产生活中的应用.理解题意找出题中的等量关系,列出方程是解题的关键.注意分式方程一定要验根.28.某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【考点】分式方程的应用.【专题】方案型.【分析】关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得++=1,.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.。
八年级数学上册《第十五章 分式》单元测试卷附答案-人教版
八年级数学上册《第十五章 分式》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.若分式xx+1的值等于0,则x 的取值可以是( ) A .0 B .−1C .x ≠−1D .12.计算x−1x ÷1−x x 2的结果是( )A .x 2B .−x 2C .xD .−x3.下列各式从左到右的变形中,正确的是( ) A .x 2+y 2x 2y 2=x+y xyB .yx =y 2x 2 C .a+b a−b =a 2−b 2(a−b)2D .−a+b a=−a+b a4.若实数m ,n 满足2m −3n =0,且mn ≠0,则mn −nm 的值为( ) A .−136B .−56C .136D .565.将(14)−1,(−3)0,(−4)2这三个数按从小到大的顺序排列,正确的结果是( ) A .(−3)0<(14)−1<(−4)2 B .(14)−1<(−3)0<(−4)2 C .(−4)2<(−3)0<(14)−1 D .(−3)0<(−4)2<(14)−16.下列计算正确的是( ) A .1a +1b =1a+b B .1a ÷1b =1ab C .a 2−b 2a−b =a −bD .aa−b −ba−b =17.已知实数a 、b 满足a +b =0,且ab ≠0,则ba +ab 的值为( ) A .-2B .-1C .1D .28.2022年,新型冠状肺炎病毒奥密克戎变异毒株影响全球,各国感染人数持续攀升,该企业决定增加甲、乙两个厂房生产N95型医用口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍;两厂房各加工6000箱N95型医用口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱N95型医用口罩.根据题意可列方程为( )A.6000x+2−6000x=5B.60002x−6000x=5C.6000x −6000x+2=5D.6000x−60002x=59.若关于x的分式方程x+3x−5=2−m5−x无解,则m的值为()A.4 B.5 C.6 D.8 二、填空题10.约分:3a(a+b)6a2=.11.计算(12)−1+(−3)0=.12.要使分式xx−7有意义,则x的取值范围是.13.计算:6x 2y ⋅yx=.14.甲、乙两个服装厂加工一批校服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套校服,甲厂比乙厂少用2天,设乙厂每天加工x套校服,则可列方程为.三、解答题15.计算:(a+1a−1+1−aa+1)⋅a+1a.16.解分式方程:2xx+2−xx−1=1.17.先化简,再求值:1−x2−1x2+2x+1÷x−1x,其中x=√5−1.18.若关于x的分式方程2x+ax−1+x−5x−1=2的解为正数,求正整数a的值.19.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾桶,学校先用2400元购买了一批给班级使用的小号垃圾桶,再用3200元购买了一批放在户外使用的大号垃圾桶,已知一个大号垃圾桶的价格是小号垃圾桶的4倍.且大号垃圾桶购买的数量比小号垃圾桶少50个,求一个小号垃圾桶的价格.20.某工程队修建一条1800米的道路,由于施工过程中采用了新技术,所以工作效率提高了20%,结果提前3天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)这项工程,如果要求工程队提前6天完成任务,那么这个工程队实际每天修建道路多少米?参考答案 1.A 2.D 3.C 4.D 5.A 6.D 7.A 8.D 9.D 10.a+b2a 11.3 12.x ≠7 13.6x 14.600x −6001.5x=215.解:原式=[(a+1)2(a−1)(a+1)−(a−1)2(a−1)(a+1)]⋅a+1a=[(a 2+2a+1)−(a 2−2a+1)(a−1)(a+1)]⋅a+1a=4a(a−1)(a+1)⋅a+1a=4a−1.16.解:方程两边同乘最简公分母(x +2)(x −1) ,得: 2x(x −1)−x(x +2)=(x +2)(x −1) 解得:x =25检验:当x =25时 (x +2)(x −1)≠0. 所以x =25是原方程的解. 17.解:1−x 2−1x 2+2x+1÷x−1x=1−(x+1)(x−1)(x+1)2⋅xx−1=1−xx+1 =x+1−x x+1=1x +1当x =√5−1时,原式=√5−1+1=√5=√55. 18.解:原方程可化为:2x +a +x −5=2(x −1) ∴x =3−a . ∵原方程的解为正数∴3−a >0 ∴a <3 ∵x −1≠0 ∴x ≠1 ∴3−a ≠1 ∴a ≠2∴a 的取值范围为a <3且a ≠2 ∴正整数a 的值为1.19.解:设一个小号垃圾桶的价格为x 元,则:一个大号垃圾桶的价格是4x 元 由题意,得:32004x+50=2400x解得:x =32经检验:x =32是原方程的解; ∴一个小号垃圾桶的价格为32元.20.(1)解:设这个工程队原计划每天修建道路x 米 根据题意,有:1800x−3=1800x×(1+20%)解得:x =100经检验,x =100是原方程的根答:这个工程队原计划每天修建道路100米;(2)解:设这个工程队实际每天修建道路y 米,且这个工程队原计划每天修建道路100米 根据题意,有:(1800100−6)×y =1800解得:y=150答:这个工程队实际每天修建道路150米.。
八年级数学上册《第十五章 分式》单元测试卷及答案(人教版)
八年级数学上册《第十五章分式》单元测试卷及答案(人教版)班级姓名学号一、单选题1.下列各式中属于最简分式的是()A.2x2x B.a+b C.12x+1D.2x−2x−12.已知分式(x−1)(x+3)(x+1)(x−3)有意义,则x的取值为()A.x≠-1 B.x≠3 C.x≠-1且x≠3 D.x≠-1或x≠3 3.下列约分正确的是()A.x6x2 =x3;B.x+yx+y=0;C.x+yx2+xy =1x;D.2xy24x2y=124.将分式x 2x+y中的x、y的值同时扩大3倍,则扩大后分式的值()A.扩大3倍B.扩大9倍C.保持不变D.缩小到原来的135.如果a+b=2,那么代数式4aa2−b2−4ba2−b2的值是()A.-2 B.2 C.−12D.126.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为A.1030+8x=1B.10+8+x=30C.1030+8(130+1x)=1D.(1−1030)+x=87.已知关于x的分式方程1−ax2−x +3x−2− 1=0有整数解,且关于x的不等式组{4x≥3(x−1)2x−x−12<a有且只有3个负整数解,则符合条件的所有整数a的个数为( )A.1 B.2 C.3 D.48.为了提升学习兴趣,数学老师采用小组竞赛的方法学习分式,要求每小组的四个同学合作完成一道分式计算题,每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,每做对一步得10分,从哪一步出错,后面的步骤无论对错,全部不计分.某小组计算过程如下所示,该组最终得分为()x−3 x2−1+1 1−x=x−3(x−1)(x+1)−1(x−1)………………甲=x−3(x−1)(x+1)−x+1(x−1)(x+1)………乙=x−3−(x+1)………………………丙=—2……………………………………丁A.10分B.20分C.30分D.40分二、填空题9.计算:x−yx ÷(x﹣2xy−y2x)= .10.若关于x的分式方程5x =x+2kx(x−1)﹣6x−1有增根,则k的值为11.关于x的分式方程2x+mx−3=3解为正数,则m的取值范围是.12.若关于x的方程3x +6x−1=mx+mx2−x无解,则m=。
人教版八年级上册数学第十五章分式单元测试题(含答案)
人教版八年级上册数学第十五章分式单元测试题(含答案)一、选择题1.若x为任意有理数,下列分式中一定有意义的是()A. B. C. D.2.下列各式:(﹣m)2,,,x2+y2,5,,中,分式有()A. 1个B. 2个C. 3个D. 4个3.下面是分式方程的是()A. B. C. D.4.下列四个分式中,是最简分式的为()A. B. C. D.5.若分式的值为,则( )A. B. C. 或 D.6.若a=﹣0.22,b=﹣2﹣2,c=(﹣)﹣2,d=(﹣)0,则它们的大小关系是()A. a<b<c<dB. b<a<d<cC. a<d<c<bD. c<a<d<b7.化简÷(﹣x﹣2)的结果()A. B. C. D.8.关于方程(a+1)x=1,下列结论正确的是()A. 方程无解B. x=C. a≠-1时方程解为任意实数D. 以上结论都不对9.化简的结果是()A. x﹣2B.C.D. x+210.化简的结果是()A. B. a C. D.11.若关于x的方程无解,则()A. m=1B. m=﹣1C. m=0或﹣1D. m=1或﹣1二、填空题12.当x=________时,分式的值等于零.13.计算:()2=________ .14.分式,,,中,最简分式的个数是________个.15.分式的值为0,则x=________.16.约分:=________;=________17.当x=2时,分式(﹣1)÷ 的值是________.18.分式,,的最简公分母为________.19.若分式的值为零,则x的值为________ .20.已知关于x的方程的解是正数,则m的取值范围为:________.21.当m________时,方程= 无解.三、解答题22.通分:(1);(2),;(3);(4).23.计算:.24.化简:(1);(2).25.26.化简:(a+1﹣)÷ ,然后给a从1,2,3中选取一个合适的数代入求值.27.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分到的药品让我们卖,可卖得7500元.”若设零售部所得的药品是a箱,则:(1)该药品的零售价是每箱多少元?(2)该药品的批发价是每箱多少元?28.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?参考答案一、选择题1. B2. B3. D4. D5. D6.B7. A8. D9.D 10. B 11. D二、填空题12.﹣2 13. 14.3 15.-3 16.;17.-2 18.12a 2b 2c 2 19.1 20.m >﹣3且m≠﹣2 21.m=3﹣1=2三、解答题22.(1)解: = , =(2)解: = ; =(3)解: = ; =(4)解: = = ; = =23.解:原式= + == .24.(1)解:原式= = =(2)解:原式= = =25.解:1+3(x ﹣2)=x ﹣1 整理得:1+3x ﹣6=x ﹣1解得;x=2经检验x=2是原方程的增根,原方程无解26.解:原式= • = • =2(a+2)=2a+4,当a=3时,原式=6+4=1027.解:零售部所得到的药品是a 箱时,批发部所得到的药品是(300﹣a )箱.由题意,得(1)零售(300﹣a )箱药品,可得7500元,所以该药品的零售价是元.(2)批发a 箱药品,可得3500元,所以该药品的批发价是元. 28.解:设规定日期是x 天.则甲单独做需要x 天,乙单独做需要(x+3)天,根据题意得:( + )×2+ =1,解得:x=6,经检验,x=6是原方程的根.答:规定的日期是6天人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2) C .a -2(a ≠2) D .-a-2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2 B .-2 C .1 D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x+-=-1.19.(8分)先化简2249x x --÷(1-13x -),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.人教版八年级上第十五章《分式》单元检测卷(含答案)(7)一、选择题(每题3分,共18分)1.下列运算错误的是( )A.()()122=-a b b a -B.1-=+--ba b a C.b a b a b a b a 321053.02.05.0-+=-+ D.ab a b b a b a +-=+- 2.若分式43+-x x 的值为0,则( ) A .3=x B .0=x C .3-=x D .4-=x3.化简aa 3,正确的结果为( ) A .a B .a 2 C .a -1 D .a -24.分式方程121+=x x 的解为( ) A. 3=x B. 2=x C. 1=x D. 1-=x5.若1-=x , 2=y ,则y x y x x 8164222---的值等于( ) A. 171- B. 171 C. 161 D. 151 6.某电子元件厂准备生产4 600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )A .333.123002300=+x xB .333.123002300=++x x xC .333.146002300=++x x xD .333.123004600=++xx x 二、填空题(每题4分,共32分)7.在代数式2x ,1+x x ,y x +2,3x 中,是分式的是_________________.8.使式子111-+x 有意义的x 的取值范围是___________. 9.计算:=+++1212x x x _____________.10.已知x =1是分式方程xkx 311=+的根,则实数k =_________. 11.观察下列按顺序排列的等式:a 1=311-,a 2=4121-,a 3=5131-,a 4=6141-,…,试猜想第n 个等式(n 为正整数)a n =_________.12.对于非零的两个实数a ,b ,规定a ⊗b =ab 11-,若1⊗(x +1)=1,则x 的值为__________.13.已知k acb bc a c b a =+=+=+,则k 的值是__________. 14.若关于x 的方程xmx x 21051-=--无解,则m =_________. 三、解答题(16题6分,19、20题每题10分,其余每题8分,共50分)15.(1)计算:a a a a a 1212+-÷⎪⎭⎫ ⎝⎛-;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.46222---+x x x )2)(2(6)2)(2()2(2-+---+-=x x x x x x ………第一步6)22+--=x x (………………………第二步642+--=x x …………………………第三步2+=x ……………………………………第四步小明的解法从第______步开始出现错误,请写出正确的化简过程.16.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造分式,然后进行化简,并求当a =6,b =3时该分式的值.17.如果实数x 满足0322=-+x x ,求代数式11212+÷⎪⎪⎭⎫ ⎝⎛++x x x 的值.18.解方程:(1)14122=---x x x ;(2)xx x x x x x 22222222--=-+-+.19.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%的价格销售.乙超市销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.20.一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案及点拨第十五章过关自测卷一、1.D 点拨:根据添括号法则、分式的符号变化法则、分式的基本性质逐一验证四个选项进行选择.因为()()()()12222=--=--b a b a a b b a ,所以排除A ;因为()1-=++-=++-=+--ba ba b a b a b a b a ,所以排除B ;因为()()b a b a b a b a b a ba 32105103.02.0105.03.02.05.0-+=⨯-⨯+=-+,所以排除C ;因为-=+-b a b a ab a b +-,所以应选D. 2.A 点拨:分式43+-x x 的值为0的条件是分子03=-x ,分母04≠+x ,∴3=x .分式的值为0,则分式的分子为0,分母不为0.3.B 点拨:利用分式的基本性质进行约分.分式的约分,先确定公因式,然后把公因式约去.4.C 点拨:去分母化为整式方程求解,并进行检验.5.D 点拨:先化简,再求值. 原式()()()()()yx y x y x y x y x y x y x x 818888882+=-+-=-++-=,当2,1=-=y x 时,原式1512811=⨯+-=.故选D.6.B 点拨:甲车间每天生产电子元件x 个,则乙车间每天生产电子元件 1.3x 个,甲、乙两车间每天共生产电子元件(x +1.3x )个,根据题意可得方程为333.123002300=++xx x . 二、7. 1+x x 点拨:因为3,2,2xy x x +的分母不含字母,所以它们都不是分式,而是整式;因为1+x x的分母含有字母,所以它是分式.8. x ≠1 点拨:分式有意义的条件是分母不为0,故1-x ≠0,所以x ≠1.9.2 点拨:原式()2112122=++=++=x x x x . 10.61 点拨:把x =1代入分式方程得13111k =+,所以61=k . 11.211+-n n 12.21- 点拨:根据规定,得()11111-+=+⊗x x ,所以1111=-+x ,解得21-=x .经检验,21-=x 是原分式方程的解.13.1-或2 点拨:(1)当a ,b ,c 不相等时,由已知可得,22c ac b ab +=+①,22a ac b bc +=+②;①-②得,()a c b +-=,代入原式得1-=k ; (2)当a =b =c 时,2=k .所以1-=k 或2. 14. 8- 点拨:原方程可化为()5251--=--x mx x ,方程两边都乘()52--x ,得()m x =--12,解得22--=m x ,∵方程无解,∴()052=--x ,∴5=x ,∴522=--m ,解得8-=m . 分式方程无解的情况就是出现了增根,而这个增根产生的原因就是在从分式方程转化为整式方程时方程两边都乘了个0,据此可以得出增根的值,从而可以求得未知字母的值.三、15.解:(1)原式()111122-+=-⋅-=a a a a a a . (2)二;()()()()()()()()()22222642226222246222-++=-++--=-+---+-=---+x x x x x x x x x x x x x x x x .21-=x 16.解:共有六种计算方法,分别是:(1)333222ba b a b ab a -=-+-,当a =6,b =3时,原式=1.(2)交换(1)中分式的分子和分母的位置,结果也为1.(3)33322ba b a b a +=--,当a =6,b =3时,原式=3.(4)交换(3)中分式的分子和分母的位置,结果为31.(5)22222b a b ab a -+-b a b a +-=,当a =6,b =3时,原式=31.(6)交换(5)中分式的分子和分母的位置,结果为3.点拨:任写一种即可.17.解:原式()22112222++=+⋅+++=x x x x x x ,∵0322=-+x x ,∴322=+x x ,∴原式=3+2=5.18.解:(1)方程两边同乘()()22-+x x ,去分母得()()()2212-+=-+x x x x . 解得23-=x .检验:当23-=x 时,()()022≠-+x x ,所以23-=x 是原分式方程的解. (2)方程两边同乘()2-x x ,去分母得()()()222222-=+-+-x x x x x ,解得21-=x . 经检验,21-=x 是原分式方程的根. 19.解:(1)设苹果进价为每千克x 元. 由题意,得x 400+10%21004003000=⎪⎭⎫⎝⎛-x x ,解得x =5.经检验,x =5是原方程的根.答:苹果进价为每千克5元.(2)由(1)知:每个超市苹果总量为60053000=(千克),甲超市大、小苹果售价分别为10元和5.5元. ∴乙超市获利:1650525.510600=⎪⎭⎫⎝⎛-+⨯(元).∵2 100>1 650, ∴甲超市的销售方式更合算.点拨:(1)由题意得等量关系“大苹果的利润+小苹果的利润=2 100元”,其中“利润=数量×每千克的利润”. 在这个问题中,涉及基本数量关系“进价=数量×每千克的进价”,据此可直接设未知数,即设苹果进价为每千克x 元,并用未知数表示出所进苹果的数量,即两超市分别购进苹果x3000千克,从而利用等量关系构建方程模型解决问题;(2)先计算乙超市的获利,再进行比较即可. 20.解:(1)设乙队单独做需要z 天才能完成任务,由题意得120140130=⨯⎪⎭⎫⎝⎛++z z . 解得z =100.经检验,z =100是原方程的解. 答:乙队单独做需要100天才能完成任务.(2)由题意得⎪⎪⎩⎪⎪⎨⎧=+,70,15,110040<<y x y x (x ,y 都是正整数)∴⎪⎩⎪⎨⎧-,15,7025100<<x x (x 是正整数) 解得12<x <15(x 是正整数). ∴正整数x =13或14.当x =13时,x y 25100-=不是整数,应舍去;当x =14时,6525100=-=x y ,符合条件.∴甲实际做了14天,乙实际做了65天.点拨:(1)根据甲、乙的工作量的和等于工作总量,列方程求解; (2)结合已知条件分别列出不等式、等式,最后求出满足题意的解.人教版八年级数学上册第十五章分式单元测试题(2)一、选择题1.如果分式有意义,则x的取值范围是()A. 全体实数B. x≠1C. x=1D. x>12.如果把分式中的x和y都扩大3倍,那么分式的值是( )A. 扩大3倍;B. 不变;C. 缩小3倍;D. 缩小6倍.3.下列分式中,最简分式是()A. B. C. D.4.若分式的值为零,则()A. x=3B. x=﹣3C. x=2D. x=﹣25.计算的结果是( )A. a-bB. a+bC. a2-b2D. 16.计算的结果是()A. B. C. D.7.(- )-1=()A. B. C. 3 D. -38.已知x2﹣3x+1=0,则的值是()A. B. 2 C. D. 39.化简=()A. B. C. D.10.若关于的方程无解,则的值是()A. 1B. 2C. 3D. 411.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x个,那么所列方程是()A. B. C. D.二、填空题12.当x________时,分式的值为0.13.若把分式的x、y同时扩大10倍,则分式的值________(填变大,变小,不变)14.约分:________.15.计算:=________.16.已知,则=________17.计算:= ________ .18.当x=2018时,分式的值为________.19.________.20.若关于x的分式方程有增根,则________.21.关于x的方程的解是________.三、计算题22.化简:(1)(2)23.解方程:.24.先化简( -a+1)÷ ,并从0,-1,2中选一个合适的数作为a的值代入求值.四、解答题25.甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同。
八年级数学上册《第十五章 分式》单元检测卷附答案-人教版
八年级数学上册《第十五章 分式》单元检测卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式中:−3x ,5xy ,6π,1m ,x−13分式的个数是( )A .2B .3C .4D .52.分式a 2−1a 2−2a+1的值等于0,则a 的值为( )A .0B .1C .-1D .±13.下列变形正确的是( ) A .xy =x+1y+1 B .x 2+y 2x+y =x +yC .−x+y x−y =−1D .xy =yx4.下列运算正确的是( ) A .(ab)2=a 2bB .a 3÷1a =a 4 C .−x−y x−y =−1D .1a +1b =2a+b5.若a ,b 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .a2a+bB .a+32a+bC .a 2a+bD .a−32a−b6.如果a +b =2,那么代数式(a −b 2a)⋅aa−b 的值是( ) A .2B .−2C .1D .−17.李强同学借了一本书,共480页,要在一周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是( ) A .480x+480x−21=7 B .240x+240x+21=7C .240x+240x−21=7D .480x+480x+21=78.如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >−1B .m >−1且m ≠0C .m <−1D .m <−1且m ≠−29.约分:−18xy27x 2y 2= . 10.计算:(−a 2b )2÷(−a 23b )= .11.若式子x x−3+(x ﹣4)0有意义,则实数x 的取值范围是 . 12.若关于x 的方程2x−1=axx−1+1无解,则a 的值是 . 13.已知1x +1y =3,则2x−xy+2y x−2xy+y = . 三、解答题14.计算:(x−4x−1+x)÷x−2x−1. 15.解方程: (1)2x−2=1x (2)12x−4−xx−2=12 16.先化简,再求值x 2−4x+3÷x−2x 2+6x+9,其中x =−1.17.小李从A 地出发去相距4.5千米的B 地上班,他每天出发的时间都相同.第一天步行去上班结果迟到了5分钟.第二天骑自行车去上班结果早到10分钟.已知骑自行车的速度是步行速度的1.5倍.(1)求小李步行的速度和骑自行车的速度;(2)有一天小李骑自行车出发,出发1.5千米后自行车发生故障.小李立即跑步去上班(耽误时间忽略不计)为了至少提前3分钟到达.则跑步的速度至少为多少千米每小时?18.某班组织登山活动,同学们分甲乙两组从山脚下沿着一条道路同时向山顶进发.设甲乙两组行进同一段路所用的时间之比为2:3. (1)直接写出甲乙两组行进的速度之比.(2)当甲组到达山顶时,乙组行进到山腰A 处,且A 处离出顶的路程尚有1.2千米.试问山脚离山顶的路程有多远.(3)在题(2)的基础上,设乙组从A 处继续登山,甲组再从原路下山,下山速度与上山速度相同,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答.(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件.)1.A2.C3.C4.B5.A6.A7.B8.D9.−23xy10.−34b11.x≠3且x≠4 12.-1或2 13.514.解:原式=x−4+x(x−1)x−1⋅x−1 x−2=x−4+x2−xx−2=(x−2)(x+2)x−2 =x+2.15.(1)解:2x−1=1x2x=x−1x=−1检验:当x=−1时x(x−1)≠0∴原分式方程的解为x=−1.(2)解:12x−4−xx−2=1212(x−2)−xx−2=121−2x=x−2−2x−x=−2−1−3x=−3x=1检验:当x=1时2(x−2)≠0∴原分式方程的解为x=1.16.解:x2−4x+3÷x−2x2+6x+9=(x+2)(x−2)x+3×(x+3)2x−2=(x+2)(x+3)=x2+5x+6当x=−1时,原式=x2+5x+6=(−1)2+5×(−1)+6=217.(1)解:设小李步行的速度为x千米/小时,则骑自行车的速度为1.5x千米/小时由题意得: 4.5x −560= 4.51.5x+1060解得:x=6经检验,x=6是原方程的解,且符合题意则1.5x=9答:小李步行的速度为6千米/小时,则骑自行车的速度为9千米/小时;(2)解:小李骑自行车出发1.5千米所用的时间为1.5÷9=16(小时)小李每天出发的时间都相同,距离上班的时间为:4.5÷9+10÷60=23(小时)设小李跑步的速度为m千米/小时由题意得1.5+(23−1.59−360)m≥4.5,解得:m≥203答:为了至少提前3分钟到达.则跑步的速度至少为203千米/小时.18.(1)3:2.(2)解:设山脚到山顶的路程为x千米根据题意可列方程:xx−1.2=32解得:x=3.6经检验:x=3.6是原方程的解.答:山脚到山顶的路程为3.6千米.(3)解:可提问题:“B处到山顶的路程是多少千米?”设B处到山顶的路程为y( y>0)千米根据题意得:y1.2−y =32解得:y=0.72经检验:y=0.72是原方程的解.答:B处到山顶的路程是0.72千米.。
新人教版数学八年级上册第十五章分式单元达标检测试题及其答案
新人教版数学八年级上册第十五章分式单元达标检测试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.若关于x 的分式方程2233x m x x++=--有增根,则m 的值是 ( ) A .1m =- B .0m = C .3m = D .0m =或=3m 2.分式方程:03632=+-+-x x x x 的根是 ( ) A .-3 B .5/12 C .3 D .12/53.若x+=3,则的值为 ( )A .1B .1/8C .8D .1/104.分式28,9,12zy x xy z x x z y -+-的最简公分母是 ( ) A 72xyz 2 B 108xyz C 72xyz D 96xyz 25.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx 上述方程,正确的有( )个 A.1 B.2 C.3 D.46.下列运算错误的是 ( ) A.()()122=-a b b a - B.1-=+--b a b a C.b a b a b a b a 321053.02.05.0-+=-+ D.ab a b b a b a +-=+- 7.若分式43+-x x 的值为0,则 ( ) A .3=x B .0=x C .3-=x D .4-=x8.对于分式32x a x +-,当x a =-时,( ) A .分式的值为零 B .并且23a ≠-时,分式的值为零 C .分式无意义 D .并且23a =时,分式无意义 9.已知252008x x --,则代数式32(2)(1)12x x x ---+-的值是 ( ) A .2012 B .2013 C .2015 D .201610.从甲市到乙市乘坐高速列车的路程为180千米, 乘坐普通列车的路程为240千米.高速列 车的平均速度是普通列车的平均速度的3倍. 高速列车的乘车时间比普通列车的乘车时间 缩短了2小时.高速列车的平均速度是每小时多少千米?设普通列车平均速度每小时x 千米, 则高速列车平均速度每小时3x 千米,根据题意,得到的方程为 ( )A.240/x-180/3x=2B. 180/x-240/3x=2C. 240/3x-180/x=2D. 180/3x-240/x=2二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11.分式方程352+=x x 的解是 12.分式方程121x x=+的根是 . 13.= . 14.若分式有意义,则x 应满足 .15.一列数x 1,x 2,x 3,…,其中x 1=,x n =(n 为不小于2的整数),则x 2016= . 16.已知x =1是分式方程xk x 311=+的根,则实数k =_________. 17.观察下列按顺序排列的等式:a 1=311-,a 2=4121-,a 3=5131-, a 4=6141-,…,试猜想第n 个等式(n 为正整数)a n =_________. 18.若1-=x , 2=y ,则y x yx x 8164222---的值等于________ 19.若关于x 的方程xm x x 21051-=--无解,则m =_________. 20. 已知当x=-2时,分式无意义;x=4时,分式值为0.则a+b=______. 三、解答题(共9题,每题10分,满分90分)21.先化简,再求值:⎝ ⎛⎭⎪⎫a 2 a ―1 +1 1―a · 1 a,其中a =- 1 2.22.先化简,再求值:(﹣)÷,其中x=.23.解方程:423532=-+-x x x24.已知222111x x x A x x ++=---. (1)化简A ;(2)x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.25.已知x ﹣3y=0,求•(x ﹣y )的值.26.先化简,再求值:2232237()5102a b a b ab a b +÷,其中,b=-1227.先化简,再求值:÷(a ﹣),其中a ,b 满足|a ﹣3|+(b ﹣2)2=0.28.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m %,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m 的值是多少?29.甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?新人教版数学八年级上册第十五章分式单元达标检测试题答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.A2.D3.B4.A5.C6.D7.A8.B9.A 10.A二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上)11. x=2 12. x=-2 13.x+2 14.x≠5 15.-1 16. 1/620.217. 略18. 略19. 8三、解答题(共9题,每题10分,满分90分)21.原式=-1 22.解:原式=x2+1=323.经检验x1=1与x2=都为分式方程的解.24.(1)略 (2)x=2时,原式=125.3.5 26.-1/827.-2 28. 590,m的值是25.29. 24和21个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级上学期《分式》单元测试复习试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.式子3x2,4x-y ,x+y ,2x +1π,5b 3a中是分式的有( )A 、 1个B 、2个C 、3个D 、4个2.若分式x-2x+1的值为0,则x 的值为( ) A .﹣1 B .0 C .2D .﹣1或23.下列等式中不一定成立的是( )A 、 2x xy x y =B 、x y x y ππ=C 、xzyzx y = D 、()()2x x 2x y x y 22++= 4.计算a 1a 11a+-- ) A .﹣1B .1C .a 1a 1+- D .a 11a+-5.化简分式2x 1-÷(22x 1-11+)的结果是( ) A .2B .x 1+ C .2x 1- D .﹣26.使分式2x +11-3x的值为负的条件是( )A 、 x <0B 、x >0C 、x >13D 、x <137.分式除法计算:m 1m -÷2m 1m-的结果是( ) A .m B .1m C .m ﹣1 D .1m 1-8.已知a 、b 为实数,且ab=1,设M=a a+1+b b+1,N=1a+1+1b+1,则M 、N 的大小关系是( ) A 、 M >N B 、M=N C 、M <N D 、不确定9.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()A.4800x=5000x20-B.4800x=5000x20+C.4800x20-=5000xD.4800x20+=5000x10.已知2xx-x+1=12,则2x+21x的值为()A、12B、14C、7D、4二、填空题(共6小题,每小题3分,共18分)11.计算:xx1-﹣1x1-=.12.计算a3•(1a)2的结果是______13.要使分式2x93x9-+的值为,则x可取___________14.若分式3a+22b- 4b+1=0,那么ab=___15.计算:m m12m12m1++++=.16.要使方式x-1x+2的值是非负数,则x的取值范围是____________三、解答题(共8题,共72分)17.(本题8分)计算:(12-a2a2+)÷aa1+18.(本题8分)计算:-2-2-12-a b c3⎛⎫⎪⎝⎭÷22-23-a b2⎛⎫⎪⎝⎭19.(本题8分)先化简:(2x+1x -x -2x x -2x+1)÷1x,然后取一个你喜欢的数x ,求值20.(本题8分)已知123==x y z,求2y+z14x21.(本题8分)若x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.求:1﹣x yx 2y-+÷2222x y x 4xy 4y -++的值22.(本题10分)化简2a a 4-•2a 2a 3a +-﹣12a-,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.23.(本题10分)2+2x x+x+(1)(2)=A x +B x+1+Cx+2,试求A+B+2C 的值.24.(本题12分)市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等. (1)求去年购进的文学书和科普书的单价各是多少元? (2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?参考答案一、选择题1. B2. C3. C4. B5. A6. C7.A8. B9. B 10. C二、填空题11. 1 12. a 13. 3 14.1-215. 1 16. x≥1或x<-2三、解答题(共8题,共72分)17.解:原式=12×aa1+﹣()a2a1+×aa1+=a12a+-12=a12a+-a2a=12a.18.解:原式=-22-3⎛⎫⎪⎝⎭()-2-2a()-2-1b-2c÷[23-2⎛⎫⎪⎝⎭()22a()2-2b]=44a2b-2c÷944a-4b=(94÷94)(4a÷4a)(2b÷-4b)-2c=62bc19.解:原式=x+1-x-2x+1)÷1x=[x+1x x-(1)-2xx-(1)] ·x =x+1x-1-22xx-(1)=22x+x--xx-(1)(1)(1)=222x-1-xx-(1)= -21x-(1)注意,x的取值不能使分母为0,∴x取3,∴原式= -21-(31)=1-420.解:设123==x y z =k ,∴x=1k ,y=2k ,z=3k,∴2y+z 14x =43+k k 14k=1221.解:原式=1﹣x yx 2y -+•()()()2x 2y x y x y ++-=1﹣x 2yx y++ 2yx y + ﹣y x y+,∵|x ﹣2|+(2x ﹣y ﹣3)2=0, ∴x-2=0,2x-y=3,, 解得:x=2,y=1,当x=2,y=1时,原式=﹣1.22.解:原式= ()()a a 2a-2+•()a+2a a 3-+1a 2-= ()()1a 2a 3--+1a 2-= ()()1a 3a 2a 3+--- = ()()a 2a 2a 3---=1a 3- ∵a 与2、3构成△ABC 的三边,且a 为整数, ∴1<a <5,即a=2,3,4,当a=2或a=3时,原式没有意义, 则a=4时,原式=1.23.解:∵2x +2x x+x+(1)(2)=A x +B x+1+Cx+2∴2x+2x x+x+(1)(2)=A x+x++x x++x x+x x+x+(1)(2)B(2)C(1)(1)(2)∴2x+2x x+x+(1)(2)=2x x+x x+x+(A+B+C)+(3A+2B+C)2A(1)(2)∴A B C1 3A2B C0 2A2++=⎧⎪++=⎨⎪=⎩∴A=1,B= - 3 ,C=3∴A+B+2C=424.解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得15001000x4x=+,解得x=8.经检验:x=8是原分式方程的解,∴x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.。