2017年中考数学相似三角形专题练习(附答案)
初三数学相似三角形典型例题(附含答案解析)
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
2017中考数学真题汇编----相似三角形的性质(选择、填空题)
在 AB 边上移动时, DE始终与 AB 垂直, 若△ CEF与△ DEF相似,则 AD=
.
39.在平行四边形 ABCD的边 AB 和 AD 上分别取点 E 和 F,使
,
,
连接 EF交对角线 AC于 G,则 的值是
.
40.如图,点 A1,A2, A3,A4,…,An 在射线 OA 上,点 B1,B2, B3,…,Bn﹣1
A.2 B.3 C.4 D.5 19.如图,在等边△ ABC中, D 为 AC边上的一点,连接 BD,M 为 BD 上一点, 且∠ AMD=6°0 ,AM 交 BC于 E.当 M 为 BD 中点时, 的值为( )
A. B.
C. D.
20.将一张边长分别为 a, b( a> b)的矩形纸片 ABCD折叠,使点 C 与点 A 重
13.如图,在△ ABC中, D、 E 分别为 AB、 AC边上的点, DE∥ BC,点 F 为 BC边
上一点,连接 AF 交 DE于点 G,则下列结论中一定正确的是(
)
A. = B. = C. = D. =
14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,
问井深几何? ”这是我国古代数学《九章算术》中的 “井深几何 ”问题,它的题意
DE⊥BC于点 E,连结 AE,则△ ABE的面积等于
.
8
29.如图,⊙ O 为等腰△ ABC的外接圆,直径 AB=12,P 为弧 上任意一点(不
与 B,C 重合),直线 CP交 AB 延长线于点 Q,⊙ O 在点 P 处切线 PD交 BQ 于点
D,下列结论正确的是
.(写出所有正确结论的序号)
①若∠ PAB=30°,则弧 的长为 π;②若 PD∥BC,则 AP平分∠ CAB;
中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)
同上,AB可以与DE对应,也可以与DF对应,∴相似比可能是 ,也可能是 ,C不一定成立;
∵∠A=∠D,即∠A与∠D是对应角,∴它们的对边一定是对应比,即BC与EF是对应比,
∴相似比为 ,∴D一定成立,
故选D.
【考点知悉】
本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的.
17.如图,点D、E分别在 的边AB、AC上,且 ,若DE=3,BC=6,AC=8,则 _______.
18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
19.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=__.
∴这个三角形的边长扩大到原来的4倍,
故选B.
【考点知悉】
本题考查了相似三角形的相似比和周长比之间的关系,属于简单题,熟练掌握相似三角形的性质是解题关键.
10.D
【思路点拨】
根据①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项,进行判断即可.
30.如图, , , , ,则 ________.
31.如图,△ABC中,DE∥BC, ,△ADE的面积为8,则△ABC的面积为______
三、解答题
32.已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC= .设OP=x,△CPF的面积为y.
∴ ,
初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)
初中数学相似三角形题型归类——成比例线段专项练习 2(附答案详解)
1.已知线段 a 2cm , b 8cm ,它们的比例中项 c 是( )
A. 4cm
B. 4cm
C.16cm
D. 16cm
2.下列各组线段(单位:cm)中,成比例线段的是( )
A.1、2、2、3
B.1、2、3、4
C.1、2、2、4 D.3、5、9、13
金分割点( AP2 P1P2 ),点 P3 是线段 AP2 的黄金分割点( AP3 P2P3 ),..,依此类推,则线段
AP2020 的长度是(
)
A. (3 5 )2020 2
B. ( 5 1)2020 2
C. ( 1)2020 2
D. ( 5 2)1010
11.爱好骑行的小明想知道从淮北到首都北京的距离大约是多少,因此他从一张比例尺
AB AC AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.请
计算黄金比.
22.已知 x y z ,且 2x+3y﹣z=18,求 4x+y﹣3z 的值. 234
23.阅读理解:
如图①,点 C 将线段 AB 分成两部分,若 AC = BC ,则点 C 为线段 AB 的黄金分割点. AB AC
备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案
备考2023年中考数学一轮复习-图形的变换_图形的相似_相似三角形的应用-填空题专训及答案相似三角形的应用填空题专训1、(2017吉林.中考真卷) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.2、(2017顺义.中考模拟) 小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶________cm.3、(2017天津.中考模拟) 如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________cm.4、(2020南宁.中考模拟) 如图,某水平地面上建筑物的高度为AB,在点D和点F 处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是________ 米.5、(2019白山.中考模拟) 如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为________米.6、(2019宁江.中考模拟) 如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,测得落在地面上的影长BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度AB 为________米.7、(2017.中考模拟) 如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB=________米.8、(2017丽水.中考真卷) 如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.9、(2017历下.中考模拟) 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B、C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号).①∠NAP=45°;②当P为BC中点时,AE为线段NP的中垂线;③四边形AMCB的面积最大值为10;④线段AM的最小值为2 ;⑤当△ABP≌△ADN时,BP=4 ﹣4.10、(2017黄石.中考模拟) 如图,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为________米(结果保留根号)11、(2016福田.中考模拟) 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.12、(2017贵州.中考模拟) 赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.13、(2014遵义.中考真卷) “今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=________里.14、(2019金昌.中考模拟) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.15、(2020郑州.中考模拟) 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为________.16、(2020瑞安.中考模拟) 图1是小红在“淘宝·双11”活动中所购买的一张多档位可调节靠椅,档位调节示意图如图2所示。
相似三角形练习题及答案
相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
相似三角形经典练习题(4套)附带答案
练习(一)一、填空题:1. 已知a ba b+-=2295,则a b:=__________2. 若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是__________cm3. 如图,△ABC中,D、E分别是AB、AC的中点,BC=6,则DE=__________;△ADE与△ABC的面积之比为:__________。
题3 题7 题84. 已知线段a=4cm,b=9cm,则线段a、b的比例中项c为__________cm。
5. 在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________6. 已知三个数1,2,3,请你添上一个数,使它能构成一个比例式,则这个数是__________7. 如图,在梯形ABCD中,AD∥BC,EF∥BC,若AD=12cm,BC=18cm,AE:EB=2:3,则EF=__________8. 如图,在梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=6,BC=10,则梯形的面积为:__________二、选择题:1. 如果两个相似三角形对应边的比是3:4,那么它们的对应高的比是__________A. 9:16B. 3:2C. 3:4D. 3:72. 在比例尺为1:m的某市地图上,规划出长a厘米,宽b厘米的矩形工业园区,该园区的实际面积是__________米2A. 104mabB.1042mabC.abm104D.abm24103. 已知,如图,DE∥BC,EF∥AB,则下列结论:题3 题4 题5①AEECBEFC=②ADBFABBC=③EFABDEBC=④CECFEABF=其中正确的比例式的个数是__________A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点为顶点组成的三角形与△ABC相似,则AE的长是__________A. 16B. 14C. 16或14D. 16或95. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD,交CB的延长线于点E,则下列结论正确的是__________A. △AED∽△ACBB. △AEB∽△ACDC. △BAE∽△ACED. △AEC∽△DAC三、解答题:1. 如图,AD∥EG∥BC,AD=6,BC=9,AE:AB=2:3,求GF的长。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
相似三角形专题练习(培优)附答案
相似三角形专题练习(培优)附答案一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
《相似三角形》经典练习题(附答案)
相似三角形经典练习题(附答案)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q 从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C 出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
相似三角形测试题及答案
相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。
以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。
答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。
答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。
答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。
答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。
已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。
因此,AC = 6.25cm。
8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。
答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。
已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。
相似三角形难题集锦(含答案)
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC 中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。
中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)
中考数学专题复习《二次函数与相似三角形综合压轴题》测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx经过点A(2,0)和点B(−1,m),顶点为点D.(1)求直线AB的表达式;(2)求tan∠ABD的值;(3)设线段BD与x轴交于点P如果点C在x轴上且△ABC与△ABP相似求点C的坐标.2.如图在平面直角坐标系中点A(1,2)B(5,0)抛物线y=ax2−2ax(a>0)交x轴正半轴于点C连结AO AB.(1)求点C的坐标和直线AB的表达式(2)设抛物线y=ax2−2ax(a>0)分别交边BA BA延长线于点D E.①若△CDB与△BOA相似求抛物线表达式②若△OAE是等腰三角形则a的值为______(请直接写出答案即可).3.如图拋物线经过A(4,0),B(1,0),C(0,−2)三点.(1)求出抛物线的解析式(2)若在直线AC上方的抛物线上有一点D使得△DCA的面积最大求出点D的坐标(3)若P是抛物线上一动点过P作PM⊥x轴垂足为M使得以A,P,M为顶点的三角形与△OCA相似请直接写出符合条件的点P的坐标.x2+bx+c与x轴交于A B(4,0)两点与y轴交于点C(0,2)连4.如图抛物线y=−12接BC交抛物线的对称轴于点D连接AC.(1)求抛物线的表达式(2)若点E在对称轴上①当AE+CE的值最小时求点E的坐标②以C D E为顶点的三角形与△ABC相似时求点E的坐标.5.如图已知A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4).点P是第一象限内抛物线上的一点连接AC BC.M为OB上的动点过点M作PM⊥x轴交抛物线于点P交BC于点Q.(1)求抛物线的函数表达式(2)过点P作PN⊥BC垂足为点N设点M的坐标为(m,0)请用含m的代数式表示线段PN的长并求出当m为何值时PN有最大值最大值是多少?(3)试探究M在运动过程中是否存在这样的点Q使得以O M Q为顶点的三角形与△AOC相似.若存在请求出此时点Q的坐标若不存在请说明理由.6.在平面直角坐标系xOy中已知抛物线y=ax2+bx+c(a≠0)的图像经过点B(4,0) D(5,3)设它与x轴的另一个交点为A(点A在点B的左侧)且△ABD的面积是3.(1)求该抛物线的表达式和顶点坐标(2)求∠DAB的度数(3)若抛物线与y轴相交于点C直线CD交x轴于点E点P在线段AD上当△APE与△ABD相似时求AP的长.7.如图抛物线y=−12x2+32x+2与x轴交于A B两点(点A在点B的左边)与y轴交于点C连接BC.(1)求点A B C的坐标(2)设x轴上的一个动点P的横坐标为t过点P作直线PN⊥x轴交抛物线于点N交直线BC于点M.①当点P在线段AB上时设MN的长度为s求s与t的函数关系式②当点P在线段OB上时是否存在点P使得以O P N三点为顶点的三角形与△COB相似?若存在请求出点P的坐标若不存在请说明理由.8.如图在同一直角坐标系中抛物线L1:y=ax2+bx+8与x轴交于A(−8,0)和点C 且经过点B(−2,12)若抛物线L1与抛物线L2关于y轴对称点A的对应点为A′点B的对应点为B′.(1)求抛物线L2的表达式(2)现将抛物线L2向下平移后得到抛物线L3抛物线L3的顶点为M 抛物线L3的对称轴与x轴交于点N 试问:在x轴的下方是否存在一点M 使△MNA′与△ACB′相似?若存在请求出抛物线的L3表达式若不存在说明理由.9.抛物线y=−x2+bx+3与x轴交于A(−3,0),B(1,0)两点与y轴交于点C点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标S△ACD求点P的坐标(2)在直线AC上方的抛物线上找一点P使S△ACP=12(3)在坐标轴上找一点M使以点B C M为顶点的三角形与△ACD相似直接写出点M 的坐标.(x+2)(ax+b)的图象过点A(−4,3),B(4,4).10.如图已知二次函数y=148(1)求二次函数的解析式(2)请你判断△ACB是什么三角形并说明理由.(3)若点P在第二象限且是抛物线上的一动点过点P作PH垂直x轴于点H试探究是否存在以P H D为顶点的三角形与△ABC相似?若存在求出P点的坐标.若不存在请说明理由.11.如图直线y=−x+4与x轴交于点A与y轴交于B抛物线y=−x2+bx+c经过A B两点与x轴负半轴交于点C连接BC抛物线对称轴与x轴交于点F P为y轴右侧抛物线上的动点直线BP交对称轴于点D.(1)求抛物线的解析式(2)当BD=3PD时求点P的坐标(3)作PQ⊥AB垂足为Q当△BPQ与△BCO相似时直接写出点Q的坐标.12.在平面直角坐标系中二次函数y=ax2+bx+2的图象与x轴交于A(-3 0)B (1 0)两点与y轴交于点C.(1)求这个二次函数的解析式(2)点Q是线段AC上方的抛物线上一动点过点Q作QE垂直于x轴垂足为E.是否存在点Q使以点B Q E为顶点的三角形与△AOC相似?若存在求出点Q的坐标若不存在说明理由(3)点M为抛物线上一动点在x轴上是否存在点Q使以A C M Q为顶点的四边形是平行四边形?若存在直接写出点Q的坐标若不存在说明理由.13.如图① 抛物线y=ax2+bx+c(a≠0)经过点A(−4,0)点B(2,0)和点C(0,−4)它的对称轴为直线l顶点为D.(1)求该抛物线的表达式(2)如图② 点P是直线AC下方该抛物线上的一个动点连接AP CP AC当△APC的面积取得最大值时求点P的坐标(3)如图③ 点E是直线AD下方该抛物线上的一个动点过E点作EF⊥直线l于F连接DE当以D E F为顶点的三角形与△BOC相似时求点E的坐标.14.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣3 0)B(1 0)两点与y轴交于点C(0 ﹣3m)(m>0)顶点为D.(1)如图1 当m=1时①求该二次函数的解析式②点P为第三象限内的抛物线上的一个动点连接AC OP相交于点Q求PQ的最大值OQ(2)如图2 当m取何值时以A D C为顶点的三角形与∠BOC相似.15.如图1 在平面直角坐标系中抛物线y=ax2+bx+c经过A(−2,0)B(8,0)C(0,4)三点.(1)求抛物线y=ax2+bx+c的表达式(2)如图2 设点P是抛物线上在第一象限内的动点(不与B C重合)过点P作PD⊥BC 垂足为点D点P在运动的过程中以P D C为顶点的三角形与△AOC相似时求点P 的坐标(3)在y轴负半轴上是否存在点N使点A绕点N顺时针旋转后恰好落在第四象限抛物线上的点M处且使∠ANM+∠ACM=180°若存在请求N点坐标若不存在请说明理由.(请在备用图中自己画图)16.抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点(A在B的左边)C是抛物线的顶点.(1)当m=2时直接写出A B两点的坐标:(2)点D是对称轴右侧抛物线上一点∠COB=∠OCD①如图(1)求线段CD长度②如图(2)当m>2T(t,0)(t>0)P为线段OC上一点.若△PCD与△POT相似并且符合条件的点P有2个求t和m之间的数量关系.17.如图1 抛物线y=−x2+bx+c经过A(0,3)和B(72,−94)两点直线AB与x轴相交于点C P是直线AB上方的抛物线上的一个动点PD⊥x轴交AB于点D抛物线与x轴的交点为F G.(1)求该抛物线的表达式.(2)当点P的坐标为(2,3)时求四边形APGO的面积.(3)如图2 若PE∥x轴交AB于点E且点P在直线AB上方求PD+PE的最大值.(4)若以A P D为顶点的三角形与△AOC相似请直接写出所有满足条件的点P的坐标.18.如图1 抛物线y=ax2+23x+c(a≠0)与x轴交于A(−2,0)B两点与y轴交于点C(0,4).(1)求抛物线的解析式(2)若点D是第一象限内抛物线上的一点AD与BC交于点E且AE=5DE求点D的坐标(3)如图2 已知点M(0,1)抛物线上是否存在点P使锐角∠MBP满足tan∠MBP=1若2存在求出点P的坐标若不存在说明理由.19.如图1 平面直角坐标系xOy中抛物线y=ax2+bx+c过点A(−1,0)B(2,0)和C(0,2)连接BC点P(m,n)(m>0)为抛物线上一动点过点P作PN⊥x轴交直线BC于点M交x 轴于点N.(1)直接写出抛物线和直线BC的解析式(2)如图2 连接OM当△OCM为等腰三角形时求m的值(3)当P点在运动过程中在y轴上是否存在点Q使得以O P Q为顶点的三角形与以B C N为顶点的三角形相似(其中点P与点C相对应)若存在直接写出点P和点Q的坐标若不存在请说明理由.20.如图(1)在平面直角坐标系中抛物线y=ax2+bx−4(a≠0)与x轴交于A B两点(点A在点B的左侧)与y轴交于点C点A的坐标为(−1,0)且OC=OB点D和点C关于抛物线的对称轴对称.(1)分别求出a b的值和直线AD的解析式(2)直线AD下方的抛物线上有一点P过点P作PH⊥AD于点H作PM平行于y轴交直线AD 于点M交x轴于点E求△PHM的周长的最大值(3)在(2)的条件下 如图2 在直线EP 的右侧 x 轴下方的抛物线上是否存在点N 过点N 作NG ⊥x 轴交x 轴于点G 使得以点E N G 为顶点的三角形与△AOC 相似?如果存在 请直接写出点G 的坐标 如果不存在 请说明理由.参考答案1.(1)解:∠抛物线y =x 2+bx 经过点A (2 0) ∠22+2b =0 解得:b =−2 ∠抛物线解析式为y =x 2−2x 当x =−1 时 y =3 ∠点B 的坐标为B (−1,3)设直线AB 的解析式为y =kx +m (k ≠0) 把A (2 0) B (−1,3) 代入得: {2k +m =0−k +m =3 解得:{k =−1m =2 ∠直线AB 的解析式为y =−x +2 (2)如图 连接BD AD∠y =x 2−2x =(x −1)2−1 ∠点D 的坐标为D (1,−1) ∠A (2 0) B (−1,3)∠AB 2=(−1−2)2+32=18,AD 2=(2−1)2+(−1)2=2,BD 2=(−1−1)2+(−1−3)2=20∠AB 2+AD 2=BD 2 ∠∠ABD 为直角三角形 ∠tan∠ABD =ADAB =√2√18=13(3)设直线BD 的解析式为y =k 1x +b 1(k 1≠0) 把点D (1,−1) B (−1,3)代入得:{k 1+b 1=−1−k 1+b 1=3 解得:{k 1=−2b 1=1∠直线BD 的解析式为y =−2x +1当y =0 时 x =12 ∠点P 的坐标为P (12,0) 当∠ABP ∠∠ABC 时 ∠ABC =∠APB如图 过点B 作BQ ∠x 轴于点Q 则BQ =3 OQ =1∠∠ABP ∠∠ABC∠∠ABD =∠BCQ由(2)知tan∠ABD =13∠tan∠BCQ =13 ∠BQ CQ =13∠CQ =9∠OC =OQ +CQ =10∠点C 的坐标为C (−10,0)当∠ABP ∠∠ABC 时 ∠APB =∠ACB 此时点C 与点P 重合∠点C 的坐标为C (12,0)综上所述 点C 的坐标为C (−10,0)或(12,0).2.(1)解:∠x =−b 2a =1∠O C 两点关于直线x =1对称∠C (2,0)设直线AB :y =kx +b (k ≠0)把A (1,2) B (5,0) 代入得{k +b=25k +b=0解得{k =−12b =52则y =−12x +52 (2)①设D 的坐标为(p,q ) 则BD AB =q 2 若△CDB 与△BOA 相似 则BD AB =BC BO∠q 2=BC BO =35∠q =65 ∠D (p,q )在直线AB 上∠D (135,65) 代入抛物线解析式可得a =1013∠抛物线解析式为y =1013x 2−2013x .②∠A (1,2) B (5,0) O (0,0)∠OA =√5 OB =5 AB =2√5∠OA 2+AB 2=OB 2∠∠OAB=90°∠∠OAE=90° 设E 的坐标为(m,n )∠△OAE 是等腰三角形∠AE =AO =√5∠BE =3√5∠S △BEO =12BE ⋅OA =12BO ⋅n ∠12×3√5×√5=12×5n∠n =3∠E (m,n )在直线AB 上∠3=−12m +52 ∠m =−1又∠E (−1,3)在抛物线上∠3=a +2a故答案为:1.3.解:(1)设抛物线的解析式为y =a (x −4)(x −1)∵点C (0,−2)在抛物线上∴−4×(−1)a =−2∴a =−12∴抛物线的解析式为y =−12(x −4)(x −1)=−12x 2+52x −2(2)如图当点D 在抛物线上 且使△DCA 的面积最大 必有平行于直线AC 的直线DE且和抛物线只有一个交点设直线AC 解析式为y =kx +m∵A (4,0) C (0,−2)∠{4k +m =0m =−2解得{k =12m =−2∴直线AC 解析式为y =12x −2设直线DE 解析式为y =12x +b ①∵抛物线的解析式为y =−12x 2+52x −2②联立①②化简得 x 2−4x +4+2b =0∴ Δ=16−4(4+2b )=0∴b =0∴x 2−4x +4=0∴x =2∴D (2,1)过点P 作PM ⊥OAA (4,0) C (0,−2)∴OA =4 OC =2∴ OA OC =2设点P (p,ℎ)∴AM =|4−p|.PM =|ℎ| ℎ=−12p 2+52p −2③∵∠APM =∠AOB =90°∵以A P M 为顶点的三角形与△OAC 相似∴ PM AM=OA OC =2 ① ∴ |ℎ||4−p|=2④联立③④解得{p =4ℎ=0 (舍)或{p =5ℎ=−2或{p =−3ℎ=−14 ∴P (−3,−14)或(5,−2)②PM AM=OC OA =12 ∴ |ℎ||4−p|=12⑤联立③⑤解得 {p =2ℎ=1 或{p =4ℎ=0 (舍)或{p =0ℎ=−2∴P (2,1)或(0,−2)综上 得到点P (−3,−14)或(5,−2)或(2,1)或(0,−2).4.(1)解:将点B C 的坐标代入抛物线表达式得:{c =2−12×16+4b +c =0解得:{b =32c =2故抛物线的表达式为:y =−12x 2+32x +2(2)解:①∵B 是点A 关于抛物线对称轴的对称点 连接BC 交抛物线对称轴于点E 则点E 为所求点则点D E 重合设BC 的解析式为y =kx +b将B(4,0) C(0,2)代入解析式可得{0=4k +b b =2解得{k =−12b =2∴直线CB 的表达式为:y =−12x +2 由y =−12x 2+32x +2知 点D 的横坐标为−b 2a =32把x =32代入y =−12x +2 可得y =54∴E (32,54)②令y =−12x 2+32x +2=0 解得:x =−1或4 则点A(−1,0)由点A B C 的坐标得 AB =5 AC =√5 BC =√20∵AB 2=AC 2+BC 2∴△ABC 为直角三角形 且∠ACD =90°∵以C D E 为顶点的三角形与△ABC 相似则△CDE 为直角三角形当∠CE ′D 为直角时 如图则点E ′的坐标为E ′(32,2)当∠ECD 为直角时 如图∵∠ACB 为直角∴A,C,E 三点共线设AC 的解析式为y =k 1x +b 1把A (−1,0),C (0,2)代入可得{2=b 0=−x +b 解得{k =2b =2∴直线AC 的表达式为:y =2x +2当x =32时 y =2x +2=5即点E(32,5)综上点E的坐标为:(32,2)或(32,5).5.(1)解:∵A(−2,0)B(4,0)抛物线y=ax2+bx+c经过A B两点交y轴于点C(0,4)∴c=4{4a−2b+4=016a+4b+4=0解得{a=−12 b=1∴抛物线解析式为y=−12x2+x+4(2)解:设直线BC的解析式为y=kx+b1∵点C的坐标为(0,4)B点坐标为(4,0)∴{4k1+b=0b=4∴{k1=−1b=4∴直线BC的解析式为y=−x+4∴点P的坐标为(m,−12m2+m+4)点Q的坐标为(m,−m+4)∴PQ=−12m2+m+4−(−m+4)=−12m2+2m=−12(m−2)2+2∵OC=OB=4∴∠B=45°∠BQM=∠PQN=45°∴PN=√22PQ=−√22m2+√2m=−√22(m−2)2+√2∴当m=2时PN有最大值√2(3)解:存在Q(43,83)或Q(83,43)理由:如图所示OC=4OA=2Q的坐标为(m,−m+4)∠COA=∠OMQ=90°当△OAC∽△MOQ时MQOM =OCOA=2即−m+4m=2解得m=43此时Q的坐标为(43,83)当△OAC∽△MQO时MQOM =OAOC=12即−m+4m=12解得m=83此时Q的坐标为(83,43)综上Q点坐标为(43,83)或(83,43).6.解:(1)设A(m,0)∵B(4,0),D(5,3)∴AB=4−m AB边上的高为3则由ΔABD的面积是3可得:12(4−m)×3=3解得m=2∴A(2,0)设抛物线解析式为y=a(x−2)(x−4)将D(5,3)代入得:3a=3解得a=1∴y=(x−2)(x−4)=x2−6x+8∵y=x2−6x+8=(x−3)2−1∴顶点坐标为(3,−1)故该抛物线的表达式为y=x2−6x+8顶点坐标为(3,−1)(2)如图过点D作DF⊥x轴于点F∵A(2,0),B(4,0),D(5,3)∴DF =3,AF =5−2=3,AB =4−2=2∴DF =AF∴∠DAB =∠DAF =45°(3)如图∵抛物线的表达式为y =x 2−6x +8令x =0 则y =8∴ C(0,8)设直线CD 解析式为y =kx +b将C(0,8),D(5,3)代入得{b =85k +b =3解得{k =−1b =8直线CD 解析式为:y =-x +8当y =0时 −x +8=0 解得x =8∴E(8,0)∵A(2,0),B(4,0),D(5,3)∴AB =4−2=2 AD =√(5−2)2+32=3√2,BD =√(5−4)2+32=√10 ①若ΔADB ∽ΔAPE 则AP AE =AD AB∴AP =AE⋅AD AB =3√2×62=9√2>AD∵点P 在线段AD 上∴此种情形不存在 不合题意②若ΔADB ∽ΔAEP 则AP AB =AE AD∴AP =AE ⋅AB AD =3√2=2√2 综上所述 AP 的长为2√2.7.(1)解:当x =0时 y =2当y =0时 即−12x 2+32x +2=0 解得:x 1=−1 x 2=4∠A(−1,0) B(4,0) C(0,2)(2)解:①设直线BC 的解析式为y =kx +b (k ≠0)把B(4,0) C(0,2)代入 得{4k +b =0b =2解得:{k =−12b =2∠直线BC 的解析式为y =−12x +2 ∠点P 的横坐标为t∠M (t,−12t +2) N (t,−12t 2+32t +2) 当点P 在y 轴的左侧 即−1≤t <0时由题意得:s =−12t +2−(−12t 2+32t +2)=−12t +2+12t 2−32t −2=12t 2−2t 当点P 在y 轴的右侧(包含原点) 即0≤t ≤4时 由题意得:s =−12t 2+32t +2−(−12t +2)=−12t 2+32t +2+12t −2=−12t 2+2t 综上 s ={12t 2−2t (−1≤t <0)−12t 2+2t (0≤t ≤4)②如图 当△OP 1N 1∽△COB 时可得OP 1CO =N 1P 1BO 即t 2=−12t 2+32t+24∠−t 2+3t +4=4t整理得:t 2+t −4=0 解得:t 1=−1+√172 t 2=−1−√172(不合题意 舍去)当△OP2N2∽△BOC时可得OP2BO =N2P2CO即t4=−12t2+32t+22∠−2t2+6t+8=2t整理得:t2−2t−4=0解得:t3=1+√5t4=1−√5(不合题意舍去)综上点P的坐标为(−1+√172,0)和(1+√5,0).8.解:(1)将A(−8,0)B(−2,12)分别代入y=ax2+bx+8中得{a×(−8)2−8b+8=0a×(−2)2−2b+8=12解得{a=−12 b=−3∴抛物线L1的解析式为y=−12x2−3x+8=−12(x+3)2+252则:顶点为(−3,252)∵抛物线L1与抛物线L2关于y轴对称顶点也关于y轴对称开口方向及大小均相同即二次项系数相同∴抛物线L2的顶点为(3,252)∴抛物线L2的解析式为y=−12(x−3)2+252=−12x2+3x+8.故抛物线L2的解析式为y=−12x2+3x+8.(2)如图存在点M 使△MNA′与△ACB′相似.由题意得:A′(8,0) B′(2,12) C (2,0) N (3,0) ∴ AC =10 B′C =12 A′N =5 ∵ ∠A′NM =∠ACB′=90°∴ △A′MN 与△AB′C 相似 可以分两种情况: ①当△AB′C ∽△A′MN 时 则MNNA′=B′C AC=1210=65∴ MN =6 即点M (3,−6)此时 抛物线L 3的表达式为y =−12(x −3)2−6=−12x 2+3x −212.②当△AB′C ∽△MA′N 时 同理可得:点M (3,−256)此时 抛物线L 3的表达式为y =−12(x −3)2−256=−12x 2+3x −263故:函数L 3的解析式为:y =−12x 2+3x −212或y =−12x 2+3x −263.9.解:(1)将A(−3,0),B(1,0)代入抛物线解析式中得:{9a −3b +3=0a +b +3=0解得:{b =−2c =3∠抛物线解析式为y =−x 2−2x +3=−(x 2+2x)+3 =−(x 2+2x +1−1)+3=−(x +1)2+4 当x =−1时 y =4 ∠顶点D(−1,4)(2)当x =0时 ∠点C 的坐标为(0,3)∠AC =√32+32=3√2,CD =√12+12=√2,AD =√22+42=2√5 ∠AC 2+CD 2=AD 2∠△ACD 为直角三角形 ∠ACD =90°. 设直线AC 的解析式为y =kx +b 根据题意得:{−3k +b =0b =3解得:{k =1b =3∠直线AC 的解析式为y =x +3 ∠A(−3,0) D(−1,4)∠线段AD 的中点N 的坐标为(−2,2) 过点N 作NP//AC 交抛物线于点P 设直线NP 的解析式为y =x +c 则−2+c =2 解得:c =4 ∠直线NP 的解析式为y =x +4由y =x +4,y =−x 2−2x +3联立得:−x 2−2x +3=x +4 解得:x 1=−3−√52,x 2=−3+√52∠P (−3−√52,5−√52)或(−3+√52,5+√52)(3)分三种情况: ①△CMB ∽△ACD∴CM CB =ACAD ∴CM √10=3√22√5∴CM =3此时M 恰好为原点 M(0,0) ②△MCB ∽△ACD∴MC AC =CBCD∴3√2=√10√2 ∴CM =3√10设M(x,0)∵OM 2+OC 2=CM 2 ∴x 2+32=(3√10)2∴x 2=81∴x =−9或x =9(舍去) 此时M(−9,0) ③△CBM ∽△ACD∴CB AC =CM AD∴√103√2=CM2√5 ∴CM =103设M(x,0)∴|CM −OC |=103−3=13∴x =−13或x =13(舍去)此时M 在y 轴负半轴上 M (0,−13)综上所述 点M 的坐标为(0,0)或(−9,0)或(0,−13).10.(1)解:由题意得 函数图象经过点A (﹣4 3) B (4 4) 故可得:{3=148(−4+2)(−4a +b )4=148(4+2)(4a +b )解得:{a =13b =−20故二次函数关系式为: y =148(x +2)(13x −20)=1348x 2+18x −56.故答案为:y =1348x 2+18x −56.(2)解:△ACB 是直角三角形 理由如下: 由(1)所求函数关系式y =1348x 2+18x −56当y =0时 0=1348x 2+18x −56解得x 1=−2 x 2=2013∠点C 坐标为(﹣2 0) 点D 坐标为(2013 0) 又∠点A (﹣4 3) B (4 4) ∠AB =√(4+4)2+(4−3)2=√65 AC =√(−2+4)2+(0−3)2=√13BC =√(4+2)2+(4−0)2=2√13∠满足AB 2=AC 2+BC 2 ∠△ACB 是直角三角形. (3)解:存在 点P 的坐标为(−50133513)或(−1221328413).设点P 坐标为(x 148(x +2)(13x ﹣20)) 则PH =148(x +2)(13x ﹣20) HD =﹣x +2013 若∠DHP ∠∠BCA 则PH AC=DH BC即148(x+2)(13x−20)√13=−x+20132√13解得:x =−5013或x =2013(因为点P 在第二象限 故舍去) 代入可得PH =3513即P 1坐标为(−50133513)若∠PHD ∠∠BCA 则PH BC=HD AC即148(x+2)(13x−20)2√13=−x+2013√13解得:x =−12213或 x =2013(因为点P 在第二象限 故舍去). 代入可得PH =28413即P 2坐标为:(−1221328413).综上所述 满足条件的点P 有两个 即P 1(−50133513)或P 2(−1221328413).11.(1)解:∠直线y =−x +4与x 轴交于点A 与y 轴交于B ∴当x =0时 y =4 当y =0时 ∴A (4,0) B (0,4)又抛物线y =−x 2+bx +c 经过A B 两点 把A (4,0) B (0,4)代入得:{−16+4b +c =0c =4解得:{b =3c =4∠抛物线的解析式是y =−x 2+3x +4 (2)解:作PE ⊥AC 垂足为E 如图所示∠∠DFA =∠PEA =∠BOA =90° ∠DF ∥PE ∥BO由(1)得:抛物线的解析式是y =−x 2+3x +4 抛物线对称轴是x =−b2a =−32×(−1)=32 ∠BD =3PD①当P 在对称轴右侧时 OF ∶OE =BD ∶BP =3∶4 点P 的横坐标是2 y =−4+6+4=6 ∠点P 的坐标是(2,6)②当P 在对称轴左侧时 OF ∶OE =BD ∶BP =3∶2 点P 的横坐标是1 y =−1+3+4=6 ∠点P 的坐标是(1,6)∠点P 的坐标是(2,6)或(1,6)(3)解:∠抛物线对称轴与x轴交于点F对称轴是x=−b2a =−32×(−1)=32∠F(32,0)∠点A C关于对称轴对称∠CF=AF=4−32=52∠C(−1,0)∠A(4,0)B(0,4)∠OC=1OA=OB=4∠△ABO是等腰直角三角形∠∠BAO=∠ABO=45°设P(t,−t2+3t+4)过点P作PM∥y轴交直线AB于点M过点M作MN⊥y轴于点N 当点P在AB上方点Q在点B的右侧时如图所示则M(t,−t+4)MN=t∠PM=−t2+3t+4−(−t+4)=−t2+4t∠△BMN是等腰直角三角形∠BM=√2MN=√2t∠∠PMQ=∠ABO=45°∠PQM=90°∠△PMQ是等腰直角三角形∠PQ=MQ=√22PM=√22(−t2+4t)∠BQ=BM−MQ=√2t−√22(−t2+4t)=√22t2−√2t若△BPQ∼△BCO则PQOB =BQOC∠√22(−t 2+4t )4=√22t 2−√2t 1解得:t 1=0(舍) t 2=125当t 2=125时 −t 2+3t+4=−(125)2+3×125+4=13625∠P (125,13625) M (125,85) ∠PM =13625−85=9625过点Q 作QK ⊥PM 轴于点K 则QK =12PM =12×9625=4825∠点Q 的横坐标为125−4825=1225 纵坐标为−1225+4=8825 ∠Q (1225,8825)若△BPQ ∼△CBO 则PQ OC =BQOB ∠√22(−t 2+4t )1=√22t 2−√2t 4解得:t 1=0(舍) t 2=185当t 2=185时 −t 2+3t+4=−(185)2+3×185+4=4625∠P (185,4625) M (185,25) ∠PM =4625−25=3625 同理可得:Q (7225,2825)当点P 在AB 上方 点Q 在点B 的左侧时 如图所示则M (t,−t+4) MN =t∠PM =−t 2+3t+4−(−t+4)=−t 2+4t同理可得:PQ =MQ =√22PM =√22(−t 2+4t ) BM =√2MN =√2t∠BQ =BM −MQ =−√22t 2+√2t 若△BPQ ∼△CBO 则PQOB =BQOC ∠√22(−t 2+4t )4=−√22t 2+√2t 1解得:t 1=0(舍) t 2=43当t 2=43时 −t 2+3t+4=−(45)2+3×43+4=569∠P (43,569)同理可得:Q (−49,329) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22(−t 2+4t )1=−√22t 2+√2t 4解得:t 1=0(舍) t 2=143(舍去)当点P 在AB 下方 对称轴左侧的抛物线上时 则t <0 如图所示∠PM =−t+4−(−t 2+3t+4)=t 2−4t ME =−t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =−√2t∠BQ =MQ −BM =√22t 2−√2t若△BPQ ∼△CBO 则PQOB =BQOC ∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQOC =BQOB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当点P 在AB 下方 对称轴右侧的抛物线上时 则t>4 如图所示∠PM =t 2−4t ME =t ∠PQ =MQ =√22PM =√22t 2−2√2t BM =√2ME =√2t∠BQ =BM+MQ =√22t 2−2√2t+√2t =√22t 2−√2t若△BPQ ∼△CBO 则PQOB=BQ OC∠√22t 2−2√2t 4=√22t 2−√2t 1解得:t 1=0(舍) t 2=43(舍) 若△BPQ ∼△BCO 则PQ OC=BQ OB∠√22t 2−2√2t 1=√22t 2−√2t 4解得:t 1=0(舍) t 2=143(舍)当t 2=143时 −t 2+3t+4=−(143)2+3×143+4=−349∠P (143,−349)同理可得:Q (569,−209)综上所述:点Q 的坐标为Q 1(7225,2825),Q 2(1225,8825),Q 3(569,−209),Q 4(−49,409) 12.解:(1)∠抛物线y =ax 2+bx +2过点A (-3 0) B (1 0)∠{9a −3b +2=0a +b +2=0 解得:{a =−23b =−43∠二次函数的关系解析式为y =−23x 2−43x +2.(2)存在点Q (-2 2)或(−34,218)使以点B Q E 为顶点的三角形与△AOC 相似.理由如下:如图①设点E 的横坐标为c 则点Q 的坐标为(c −23c 2−43c +2)∠BE =1-c QE =−23c 2−43c +2①OA 和BE 是对应边时 ∠∠BEQ ∠∠AOC ∠OA BE=OC QE即31−c =2−23c 2−43c+2整理得 c 2+c -2=0 解得c 1=-2 c 2=1(舍去)此时 −23×(−2)2−43×(−2)+2=2点Q (-2 2)②OA 和QE 是对应边时 ∠∠QEB ∠∠AOC ∠OA QE=OC BE 即3−23c 2−43c+2=21−c整理得 4c 2-c -3=0解得c 1=−34 c 2=1(舍去)此时−23×(−34)2−43×(−34)+2=218点Q(−34,21 8)综上所述存在点Q(-2 2)或(−34,218)使以点B Q E为顶点的三角形与∠AOC相似.(3)①如图2当MC//AQ且MC=AQ时M与C关于对称轴x=-1对称∠AQ=MC=2∠Q1(-1 0)Q2(-5 0)②如图3当AC//MQ且AC=MQ时因为平行四边形是中心对称图形并且中心对称点在x轴上所以点M到x轴的距离为2.设M(m23m2−43m+3)∠2 3m2−43m+3=-2∠m2+2m-6=0∠m=-1±√7∠QG=3∠Q 3(2+√7 0) Q 4(2−√7 0).综上所述 满足条件的点Q 的坐标为:Q 1(-5 0) Q 2(-1 0) Q 3(2+√7 0) Q 4(2−√7 0).13.解:(1)将点A (−4,0) 点B (2,0) 点C (0,−4)代入y =ax 2+bx +c得{c =−416a −4b +c =04a +2b +c =0∠{a =12b =1c =−4∠y =12x 2+x −4(2)如图 过P 点作x 轴垂线交AC 于点Q设直线AC 的解析式为y =kx +b∠{−4k +b =0b =−4∠{k =−1b =−4∠y =−x −4设P (t,12t 2+t −4) 则Q (t,−t −4) ∠PQ =−t −4−12t 2−t +4=−12t 2−2t∠S △ACP =12×4×(−12t 2−2t)=−t 2−4t =−(t +2)2+4∠当t =−2时 S △ACP 有最大值∠P (−2,−4)(3)抛物线的对称轴为x =−1 顶点D (−1,−92)设E (m,12m 2+m −4) 则F (−1,12m 2+m −4)∠EF =−1−m DF =12m 2+m −4+92=12m 2+m +12∠点E 是直线AD 下方该抛物线上的一个动点∠−4<m <−1∠B (2,0) C (0,−4)∠OB =2 OC =4∠tan∠OCB =12当∠EDF =∠OCB 时 △EDF ∼△BCO∠EF FD =12∠2(−1−m)=12m 2+m +12解得m =−1(舍)或m =−5(舍)当∠FED =∠OCB 时 △EDF ∼△DBO∠EF FD =2∠2(12m 2+m +12)=−1−m解得m =−1(舍)或m =−2∠E (−2,−4)综上所述:当以D E F 为顶点的三角形与△BOC 相似时 E 点坐标(−2,−4).14.(1)解:①由m =1可知点C (0 ﹣3)∵抛物线与x 轴交点为A(−3,0) B(1,0)∴抛物线解析式为:y =a(x +3)(x −1)将点C(0,−3)代入上式 得a ×3×(−1)=−3∴a =1∴抛物线的解析式为:y =(x +3)(x −1)=x 2+2x −3②由①可知抛物线解析式为y =x 2+2x −3 则设P(x,x 2+2x −3) 设直线AC 的解析式为y =kx +b由题意可得{−3k +b =0b =−3解得{k =−1b =−3∴直线AC 的解析式为y =−x −3如图1 过点P 作PN ⊥x 轴 交AC 于N 则PN//OC∴点N(x,−x −3)∴PN =(−x −3)−(x 2+2x −3)=−x 2−3x∵PN//OC∴△PQN ∽△OQC∴ PQ OQ =PN OC∴ PQ OQ =−x 2−3x 3=−(x+32)2+943 ∴当x =−32时 PQ OQ 的最大值为34 (2)解:∵y =mx 2+2mx −3m =m(x +1)2−4m∴顶点D 坐标为(−1,−4m)如图2 过点D 作DE ⊥x 轴于点E 则DE =4m OE =1 AE =OA −OE =2 过点D 作DF ⊥y 轴于点F 则DF =1 CF =OF −OC =4m −3m =m由勾股定理得:AC2=OC2+OA2=9m2+9CD2=CF2+DF2=m2+1AD2=DE2+AE2=16m2+4∵ΔACD与ΔBOC相似且ΔBOC为直角三角形∴ΔACD必为直角三角形i)若点A为直角顶点则AC2+AD2=CD2即:(9m2+9)+(16m2+4)=m2+1整理得:m2=−12∴此种情形不存在ii)若点D为直角顶点则AD2+CD2=AC2即:(16m2+4)+(m2+1)=9m2+9整理得:m2=12∵m>0∴m=√2 2此时可求得ΔACD的三边长为:AD=2√3CD=√62AC=3√62ΔBOC的三边长为:OB=1OC=3√22BC=√222两个三角形对应边不成比例不可能相似∴此种情形不存在iii)若点C为直角顶点则AC2+CD2=AD2即:(9m2+9)+(m2+1)=16m2+4整理得:m2=1∵m>0∴m=1此时可求得ΔACD的三边长为:AD=2√5CD=√2AC=3√2ΔBOC的三边长为:OB=1OC=3BC=√10∵ADBC =ACOC=CDOB=√2∴满足两个三角形相似的条件∴m=1.综上所述当m=1时以A D C为顶点的三角形与ΔBOC相似.15.(1)解:将A(−2,0),B(8,0),C(0,4)三点坐标代入y=ax2+bx+c中得{4a−2b+c=0c=464a+8b+c=0解得{a=−14b=32c=4所以抛物线表达式为:y=−14x2+32x+4.(2)解:根据题意得:∵A(−2,0),B(8,0),C(0,4)∠OA=2,OB=8,OC=4∴AOOC=COBO=12又∠AOC=∠COB=90°∴△AOC∽△COB∴∠ACO=∠CBO∴∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°当△AOC∽△PDC时∴∠ACO=∠PCD∵∠ACO+∠OCB=90°∴∠PCD+∠OCB=90°∴PC⊥OC∴点P的纵坐标为4当y=4时有−14x2+32x+4=4解得x=6或x=0(舍)∴点P的坐标为(6,4)当△AOC∽△CDP时∠P′CD′=∠CAO作P′G⊥y轴于点G过点P′作P′H∥y轴交BC于点H如图∴∠P′HC=∠BCO∵AOOC=COBO=12,∠AOC=∠BOC=90°∴△AOC∽△COB∴∠OCB=∠OAC∴∠P′CH=∠P′HC∴P′C=P′H设直线BC的解析式为y=k′x+b′把点B(8,0),C(0,4)代入得:{8k ′+b′=0b′=4解得:{k′=−12b′=4∠直线BC的解析式为y=−12x+4设P′(m,−14m2+32m+4)则H(m,−12m+4)∴P′C=P′H=−14m2+32m+4−(−12m+4)=−14m2+2m在Rt△P′GC中由勾股定理得P′C2=P′G2+GC2即(−14m2+2m)2=m2+(−14m2+32m)2解得m=3∴P′(3,254)综上点P的坐标为:(6,4)或(3,254).(3)解:过N作NF⊥MC交MC于点F过N点作NG⊥AC交CA的延长线于点G则∠G=∠CFN=90°∴∠ACM+∠GNF=180°设CM与x轴交于K由旋转得:AN=MN∵∠ANM+∠ACM=180°∴∠ANM=∠GNF∴∠ANG=∠MNF∵∠G=∠MFN=90°∴△NGA≌△NFM∴NG=NF∴NC平分∠ACM∵CO⊥AB ∴OK=OA=2∴K(2,0)∴CK的解析式为:y=−2x+4∴−2x+4=−14x2+32x+4解得:x1=0,x2=14∴M(14,−24)设N(0,n)∵AN=MN∴(−2)2+n2=142+(−24−n)2解得:n=−16所以点N坐标为(0,−16).16.解:(1)∠抛物线y=−x2+2mx−m2+2m(m>0)交x轴于A B两点∠当m=2∠y=−x2+4x∠x1=0x2=4∠A(0,0)B(4,0).(2)①∠y=−x2+2mx−m2+2m∠对称轴x=−b2a=m∠顶点坐标C(m,2m)延长CD交x轴于点E设点E(a,0)a>m∠∠COB=∠OCD∠|OE|=|CE|∠a2=(a−m)2+(2m)2解得:a=52m∠点E的坐标为:(52m,0)设直线CE的解析式为:y=k1x+b1(k≠0)∠{2m=km+b 0=52mk+b解得:{k=−43b=103m∠y=−43x+103m∠−43x+103m=−x2+2mx−m2+2m解得:x1=m(舍)x2=m+43∠点D(m+43,2m−169)∠CD=209.②设直线OC的解析式为:y=k1x(k≠0)∠y=2x∠设点P(b,2b)∠OP=√b+24b2=√5b CP=√(m−b)2+(2m−2b)2=√5(m−b)当△OPT∼△CDP∠OP CD =OTCP∠√5b×920=√5(m−b)整理得:9b2−9mb+4t=0∠Δ>0∠81m2−4×9×4t>0∠9m2−16t>0当△OTP∼△CDP∠OT CD =OPCP∠t×920=√5b√5(m−b)整理得:b =9tm 20+9t∠仅存在一个点P∠不符合题意∠综上 t 和m 之间的数量关系为:9m 2−16t >0.17.(1)解:∵抛物线y =−x 2+bx +c 经过A (0,3)和B (72,−94)两点∴将A (0,3)和B (72,−94)代入y =−x 2+bx +c 得{c =3−(72)2+72b +c =−94 解得{b =2c =3 ∴抛物线的解析式为y =−x 2+2x +3(2)解:在 y =−x 2+2x +3中 当y =0时 −x 2+2x +3=0 解得x =3或x =−1 ∠G(3,0)∠OG =3∠A(0,3),P(2,3)∠OA =3,AP =2,AP ∥x 轴∠S 四边形APGO =AP+OG 2⋅OA =2+32×3=7.5(3)解:设直线AB 的解析式为y =kx +n 把A (0,3)和B (72,−94)代入得{n =372k +n =−94解得{k =−32n =3∴直线AB 的解析式为y =−32x +3 在y =−32x +3 当y =0时 −32x +3=0 解得x =2 ∴C (2,0)联立{y =−x 2+2x +3y =−32x +3 解得x 1=0 x 2=72 ∵PD ⊥x 轴 PE ∥x 轴∴∠ACO =∠DEP∴Rt △DPE ∽Rt △AOC∴ PD PE =OA OC =32 即PE =23PD∴PD +PE =53PD设点P (a,−a 2+2a +3) 0<a <72 则D (a,−32a +3)∴PD =(−a 2+2a +3)−(−32a +3)=−(a −74)2+4916 ∴PD +PE =−53(a −74)2+24548∵−53<0 抛物线开口向下 PD +PE 有最大值 0<a <72 ∴当a =74时 PD +PE 有最大值为24548(4)解:∵PD ⊥x 轴∴PD ∥y 轴 即∠OAC =∠PDA根据题意 分两种情况:①当△AOC ∽△DPA 时∴∠DPA =∠AOC =90°∵PD ⊥x 轴 ∠DPA =90° A (0,3)∴点P 纵坐标是3 横坐标x >0 即−x 2+2x +3=3 解得x =2∴点D 的坐标为(2,0)∵PD ⊥x 轴∴点P 的横坐标为2∴点P (2,3)②当△AOC ∽△DAP 时∴ ∠APD =∠ACO过点A 作AG ⊥PD 于点G 如图所示:∴△APG ∽△ACO∴ PG AG =OC AO设点P (n,−n 2+2n +3) 则D (n,−32n +3) 则−n 2+2n+3−3n =23 解得n =43 ∠P (43,359)综上所述 P (2,3)或P (43,359).18.(1)解:把点A(−2,0) C(0,4)代入y =ax 2+23x +c (a ≠0)得:{4a −43+c =0c =4 解得:{a =−23c =4 ∠抛物线的解析式为y =−23x 2+23x +4 (2)解:过点D 作DF∥AB 交BC 于点F当y =0时 有−23x 2+23x +4=0 解得x 1=−2,x 2=3∠B (3,0)设直线BC 的解析式为:y =kx +b代入B (3,0) C(0,4)得:{3k +b =0b =4解得{k =−43b =4∠直线BC 的解析式为:y =−43x +4 设点D 的横坐标为t 则D (t ,−23t 2+23t +4) ∠F (12t 2−12t,−23t 2+23t +4) ∠DF =t −(12t 2−12t)=−12t 2+32t∠A(−2,0) B(3,0)∠AB =5∠DF∥AB∠△DEF∽△AEB∠DF AB =DE AE∠−12t 2+32t 5=DE 5DE =15 ∠−12t 2+32t =1解得:t 1=1 t 2=2∠点D 的坐标为(1,4)或(2,83)(3)解:存在点P 使tan∠MBP =12 ①当PB 在MB 上方时 过点M 作IM ⊥PB 交PB 于I 过I 作IJ ⊥y 轴于J则tan∠MBI =MI MB =12∠∠JMI +∠JIM =90° ∠JMI +∠OMB =90°∠∠JIM =∠OMB又∠∠IJM =∠MOB =90°∠△MIJ∽△BMO∠IJ MO=JM OB =IM MB ∠IJ 1=JM 3=12 ∠IJ =12 JM =32∠OJ =JM +OM =52∠I (12,52)设直线BI 的解析式为:y =mx +n代入B(3,0) I (12,52)得:{3m +n =012m +n =52 解得:{m =−1n =3∠直线BI 的解析式为:y =−x +3联立{y =−23x 2+23x +4y =−x +3解得:{x =−12y =72或{x =3y =0 (不合题意 舍去)∠此时点P 的坐标为(−12,72)②当PB 在MB 下方时 过点M 作KM ⊥P ′B 交P ′B 于K 过K 作KL ⊥y 轴于L 同理可得 点P 的坐标为(−3114,−7398)综上所述 点P 的坐标为(−12,72)或(−3114,−7398).19.(1)解:∠抛物线y =ax 2+bx +c 过点A (−1,0) B (2,0)∠抛物线的表达式为y =a (x +1)(x −2)将点C (0,2)代入y =a (x +1)(x −2) 得:2=−2a解得:a =−1∠抛物线的表达式为y =−(x +1)(x −2) 即y =−x 2+x +2设直线BC 的表达式为y =kx +t 过点B (2,0) C (0,2)∠{2k +t =0t =2解得:{k =−1t =2∠直线BC 的表达式为y =−x +2(2)∠点M 在直线BC 上且P (m,n )(m >0) PN ⊥x 轴 C (0,2)∠M (m,−m +2) OC =2∠CM 2=(m −0)2+(−m +2−2)2=2m 2 OM 2=m 2+(−m +2)2=2m 2−4m +4 当△OCM 为等腰三角形时①若CM =OM 则CM 2=OM 2即2m 2=2m 2−4m +4解得:m =1②若CM =OC 则CM 2=OC 2即2m2=4解得:m=√2或m=−√2(舍去)③若OM=OC则OM2=OC2即2m2−4m+4=4解得:m=2或m=0(舍去)综上所述m=1或m=√2或m=2(3)∠B(2,0)C(0,2)∠COB=90°∠OC=OB=2∠∠OCB=∠OBC=45°CB=√OC2+OB2=√22+22=2√2∠点P与点C相对应P(m,n)(m>0)∠△POQ∽△CBN或△POQ∽△CNB①若点P在点B的左侧则∠CBN=45°BN=2−m CB=2√2∠CNB=∠CON+∠OCN=90°+∠OCN>90°如图当△POQ∽△CBN即∠POQ=45°时∠P(m,m)此时直线OP的表达式为y=x∠直线OP:y=x与抛物线y=−x2+x+2交于点P(m,m)(m>0)∠−m2+m+2=m解得:m=√2或m=−√2(负值舍去)∠OP=√(√2)2+(√2)2=2∠OP BC =OQBN即2√2=2−√2解得:OQ=√2−1∠P(√2,√2)Q(0,√2−1)如图当△POQ∽△CNB即∠PQO=45°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−m2+m+2∠PQ=KPsin∠PQO =msin45°=√2m OQ=KQ−KO=m−(−m2+m+2)=m2−2∠PQ CB =OQNB即√2m2√2=m2−22−m解得:m=1+√133或m=1−√133(负值舍去)∠P(1+√133,7+√139)Q(0,4−2√139)②若点P在点B的右侧则∠CBN=135°BN=m−2如图当△POQ∽△CBN即∠POQ=135°时过点P作PK⊥y轴于K点∠P(m,−m)此时直线OP的表达式为y=−x PK=KQ=m KO=−(−m2+m+2)=m2−m−2∠m2−m−2=m解得:m=1+√3或m=1−√3(负值舍去)∠OP=PKsin∠POK =msin45°=√2m=√2(1+√3)=√2+√6∠OP BC =OQBN即√2+√62√2=1+√3−2解得:OQ=1∠P(1+√3,−1−√3)Q(0,1)如图当△POQ∽△CNB即∠PQO=135°时过点P作PK⊥y轴于K点∠PK=KQ=m KO=PN=−(−m2+m+2)=m2−m−2∠PQ=KPsin∠PQK =msin45°=√2m OQ=KO−KQ=m2−m−2−m=m2−2m−2∠PQ CB =OQNB即√2m2√2=m2−2m−2m−2解得:m=1+√5或m=1−√5(负值舍去)∠P(1+√5,−3−√5)Q(0,−2)综上所述P(√2,√2)Q(0,√2−1)或P(1+√133,7+√139)Q(0,4−2√139)或P(1+√3,−1−√3)Q(0,1)或P(1+√5,−3−√5)Q(0,−2).20.解:(1)∵点A的坐标为(−1,0)∴OA=1.令x=0则y=−4∴C(0,−4)OC=4∵OC=OB∴OB=4∴B(4,0)设抛物线的解析式为y=a(x+1)(x−4)∵将x=0y=−4代入得:−4a=−4解得a=1∴抛物线的解析式为y=x2−3x−4∴a=1b=−3∵抛物线的对称轴为x=−−32×1=32C(0,−4)∵点D和点C关于抛物线的对称轴对称∴D(3,−4)设直线AD的解析式为y=kx+b.∵将A(−1,0)D(3,−4)代入得:{−k+b=03k+b=−4解得k=−1b=−1∴直线AD的解析式y=−x−1(2)∵直线AD的解析式y=−x−1∴直线AD的一次项系数k=−1∴∠BAD=45°.∵PM平行于y轴∴∠AEP=90°∴∠PMH=∠AME=45°.∴△MPH的周长=PM+MH+PH=PM+√22MP+√22PM=(1+√2)PM.设P(a,a2−3a−4)则M(a,−a−1)则PM=−a−1−(a2−3a−4)=−a2+2a+3=−(a−1)2+4.∴当a=1时PM有最大值最大值为4.∴△MPH的周长的最大值=4×(1+√2)=4+4√2(3)在直线EP的右侧x轴下方的抛物线上存在点N过点N作NG⊥x轴交x轴于点G使得以点E N G为顶点的三角形与△AOC相似理由如下:设点G的坐标为(a,0)则N(a,a2−3a−4)①如图2.1若OAOC =EGGN时△AOC∠△EGN.则a−1−a2+3a+4=14整理得:a2+a−8=0.得:a=−1+√332(负值舍去)∴点G为(−1+√332,0)②如图2.2若OAOC =GNEN时△AOC∠△NGE则a−1−a2+3a+4=4整理得:4a2−11a−17=0得:a=11+√3938(负值舍去)∴点G为(11+√3938,0)综上所述点G的坐标为(−1+√332,0)或(11+√3938,0).。
初中数学经典相似三角形练习题(附参考答案)
初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。
本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。
本文附有详细的参考答案,供学生进行自我检测和复习。
二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。
2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。
3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。
若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。
4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。
若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。
5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。
6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。
如果小树的影子长度为10cm,求大树的影子长度。
7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。
如果航拍无人机的长度为120cm,求离地面的垂直距离。
8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。
如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。
求这两个旅游小组的总年龄之比。
三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。
即 EF/AC = DE/BC。
代入已知值,得 EF/10 = 9/8。
相似三角形经典练习题及答案
相似三角形经典练习题及答案一、选择题1、若两个相似三角形的面积之比为 1∶4,则它们的周长之比为()A 1∶2B 1∶4C 1∶5D 1∶16答案:A解析:相似三角形面积的比等于相似比的平方,相似三角形周长的比等于相似比。
因为两个相似三角形的面积之比为 1∶4,所以相似比为 1∶2,那么它们的周长之比为 1∶2。
2、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,DE∥BC,若 AD∶DB = 1∶2,则下列结论中正确的是()A AE∶EC = 1∶2B AE∶EC = 1∶3 C DE∶BC = 1∶2 DDE∶BC = 1∶3答案:B解析:因为 DE∥BC,所以△ADE∽△ABC。
因为 AD∶DB =1∶2,所以 AD∶AB = 1∶3。
因为相似三角形对应边成比例,所以AE∶AC = AD∶AB = 1∶3,所以 AE∶EC = 1∶2。
3、已知△ABC∽△A'B'C',相似比为 3∶4,△ABC 的周长为 6,则△A'B'C'的周长为()A 8B 7C 9D 10答案:A解析:因为相似三角形周长的比等于相似比,所以△ABC 与△A'B'C'的周长之比为3∶4。
设△A'B'C'的周长为x,则6∶x =3∶4,解得 x = 8。
4、如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且DE∥BC,如果 AD = 2cm,DB = 1cm,AE = 15cm,则 EC =()A 05cmB 1cmC 15cmD 3cm答案:B解析:因为 DE∥BC,所以△ADE∽△ABC,所以 AD∶AB =AE∶AC。
因为 AD = 2cm,DB = 1cm,所以 AB = 3cm。
所以 2∶3= 15∶(15 + EC),解得 EC = 1cm。
5、下列各组图形一定相似的是()A 两个直角三角形B 两个等边三角形C 两个菱形D 两个矩形答案:B解析:等边三角形的三个角都相等,都是 60°,所以两个等边三角形一定相似。
中考数学专题训练:相似三角形(附参考答案)
中考数学专题训练:相似三角形(附参考答案)1.若a3=b2,则a+bb的值为( )A.32B.53C.52D.232.如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )A.3 B.4C.5 D.63.如图,AD∥BE∥FC,直线l1,l2分别与三条平行线交于点A,B,C和点D,E,F.若AB=3,BC=5,DF=12,则EF的长为( )A.4.5 B.6C.7.5 D.84.如图,小雅同学在利用标杆BE测量建筑物的高度时,测得标杆BE高1.2 m,又知AB∶BC=1∶8,则建筑物CD的高是( )A.9.6 m B.10.8 mC.12 m D.14 m5.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2).现以原点O为位似中心,在第一象限内作与△ABC的相似比为2的位似图形△A′B′C′,则顶点C′的坐标是( )A.(2,4) B.(4,2)C.(6,4) D.(5,4)6.如图(单位:mm),小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5 m时,标准视力表中最大的“E”字高度为72.7 mm,当测试距离为3 m时,最大的“E”字高度为( )A.121.17 mm B.43.62 mmC.29.08 mm D.4.36 mm7.如图,AC是□ABCD的对角线,点E在CD的延长线上,连接BE分别交AC,AD 于点F,G,则下列式子一定正确的是( )A.AFCF =AGDGB.ABCE=CFAFC.BFFG =EFBFD.ADDG=ABDE8.如图,在△ABC中,D,E分别为边AB,AC上的点,试添加一个条件:________________________,使得△ADE与△ABC相似.(任意写出一个满足的条件即可)9.如图,已知在梯形ABCD中,AD∥BC,S△ABDS△BCD =12,则S△BOCS△BCD=______.10.如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为_____.11.如图,为了测量山坡的护坡石坝高,把一根长为4.5 m 的竹竿AC斜靠在石坝旁,量出竿上AD长为1 m时,它离地面的高度DE为0.6 m,则坝高CF为________m.12.已知在平面直12角坐标系中,△AOB的顶点分别为A(2,1),B(2,0),O(0,0).若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为__________________________.13.如图,在△ABC中,点D,E分别是AB,AC的中点.若S△ADE=2,则S△ABC=_____.14.如图,在平面直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是____________.15.如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.16.如图,在△ABC中,AB=4,BC=5,点D,E分别在BC,AC上,CD=2BD,CE =2AE,BE交AD于点F,则△AFE面积的最大值是______.17.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布前形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高为6 cm,小孔O到物体和实像的水平距离BE,CE分别为8 cm,6 cm,则实像CD的高度为________cm.18.如图,在正方形ABCD中,点E是边CD上一点,连接BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连接AF,有以下五个结论:①∠ABF=∠DBE;②△ABF∽△DBE;③AF⊥BD;④2BG2=BH·BD;⑤若CE∶DE=1∶3,则BH∶DH=17∶16.你认为其中正确的是____________.(填写序号)19.已知,如图1,若AD是△ABC中∠BAC的内角平分线,通过证明可得ABAC =BDCD,同理,若AE是△ABC中∠BAC的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在△ABC中,BD=2,CD=3,AD是△ABC的内角平分线,则△ABC的BC边上的中线长l的取值范围是_____________.20.如图,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB 上,且CF=BE,AE2=AQ·AB.求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ.21.在等腰三角形ABC中,AB=AC,点D是边BC上一点(不与点B,C重合),连接AD.(1)如图1,若∠C=60°,点D关于直线AB的对称点为点E,连接AE,DE,则∠BDE=________.(2)若∠C=60°,将线段AD绕点A顺时针旋转60°得到线段AE,连接BE.①在图2中补全图形;②探究CD与BE的数量关系,并证明.(3)如图3,若ABBC =ADDE=k,且∠ADE=∠C,试探究BE,BD,AC之间满足的数量关系,并证明.参考答案1.C 2.B 3.C 4.B 5.C 6.B 7.C8.ADAB =AEAC(答案不唯一) 9.2310.1 11.2.712.(4,2)或(-4,-2)13.8 14.(4,2) 15.(1)证明略(2)EC=916.43 17.4.5 18.①②③④ 19.12<l<25220.(1)证明略(2)证明略21.(1)30°(2)①图略②CD与BE的数量关系为CD=BE,证明略(3)AC=k(BD+BE),证明略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学相似三角形专题练习(附答案)相似三角形50题一、选择题: 1.如图,DE∥BC,在下列比例式中,不能成立的是() A. = B. = C. = D. =2.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为() A.1:2 B.1:3 C.1:4 D.1:13.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为( )4.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()5.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) A. B. C. D.6.下列各组数中,成比例的是() A.-7,-5,14,5 B.-6,-8,3,4 C.3,5,9,12 D.2,3,6,127.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)() A.4m B.6m C.8m D.12m8.下列四组图形中,一定相似的是( ) A.正方形与矩形 B.正方形与菱形 C.菱形与菱形 D.正五边形与正五边形9.如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有() A.3对 B.4对 C.5对 D.6对10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC 交AB于点E,则DE的长为() A.6 B.5 C.4 D.311.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于() A.6 B.5 C.9 D.12.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y 与x(0≤x≤8)之间函数关系可以用图象表示为( ) A. B. C. D.13.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C 的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( ) A. B. C. D.14.如图,△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,BC分别与AD、AE相交于点F、G.图中共有n对三角形相似(相似比不等于1),则n的值是() A.2 B.3 C.4 D.5 15.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴,y 轴的正半轴上,正方形A/B/C/D/与正方形ABCD是以AC的中点O/为中心的位似图形,已知AC=3 ,若点A/的坐标为(1,2),则正方形A/B/C/D/与正方形ABCD的相似比是( ) A. B. C. D.16.如图,三个正六边形全等,其中成位似图形关系的有() A.4对 B.1对 C.2对 D.3对17.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为() A. B. C. D.18.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF 中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为() A. B. C. D.19.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是() A.一直不变 B.一直减小 C.一直增大 D.先减小后增大 20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是() A.①③⑤ B.②④⑤C.①②⑤D.①③④二、填空题: 21.若△ABC与△A1B1C1的相似比为2:3,△A1B1C1与△A2B2C2的相似比为2:3,那么△ABC与△A2B2C2的相似比为22.如图,(1)若AE:AB=________,则△ABC∽△AEF;(2)若∠E=_______,则△ABC∽△AEF.23.如图,在□ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD于点Q. 则的值为________.24.在△ABC中,已知AB=3,BC=5。
在△A/B/C/中,已知A/B/=6,若△ABC∽△A/B/C/,则B/C/=25.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且3DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.26.如图,在平行四边形ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有对.27.如图所示,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比是 .28.如图,AB与CD相交于点O,AD∥BC,AD∶BC=1∶3,AB=10,则AO的长是___________.29.如图,已知AD∥EF∥BC,AE=3BE,AD=2,EF=5,那么BC= . 30.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC=0.75,则矩形ABCD的周长为31.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.32.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为.33.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= .34.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,AE⊥CD于点E,交BC边于点F,若AF=4,AB=8,则线段EF的长为. 35.在平面直角坐标系中,正方形ABCD的位置如图,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是. 36.如图,已知两点A (6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是___________.37.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为______m.38.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是.39.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.40.如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB 上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE 于点H.点M为AD的中点,若MH= ,则EG .三、解答题: 41.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.42.如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.(1)∠E= 度;(2)写出图中现有的一对不全等的相似三角形,并说明理由;(3)求弦DE的长.43.小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。
(根据光的反射定律:反射角等于入射角)44.如图△ABC中,AB=8,AC=6,如果动点D以每秒2个单位长的速度,从点B出发沿BA方向向点A运动,同时点E以每秒1个单位的速度从点A出发测AC方向向点C运动,设运动时间为t(单位:秒).问t为何值时△ADE与△ABC相似.45.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CD=3CE,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.46.如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:∠FBC=∠FCB;(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.47.如图,抛物线y=ax2+2.5x-2与x轴相交于点A(1,0)与点B,与y 轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC 与△COB相似吗?并说明理由;(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.48.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°,【操作1】将三角板 DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.在旋转过程中,如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.【操作2】在旋转过程中,如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.【总结操作】根据你以上的探究结果,试写出当时,EP与EQ满足的数量关系是什么?其中m的取值范围是什么?(直接写出结论,不必证明).49.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?50.如图,抛物线y=0.5x2+mx+n与直线y=�0.5x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作P Q⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M 从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?参考答案 1.B 2.B 3.A 4.A 5.B 6.B 7.C 8.D 9.D 10.D 11.A 12.B 13.B 14.B 15.B 16.D 17.B 18.C 19.B 20.D 21.略 22.略 23. 24.略 25.答案为:8. 26.答案为:4. 277. 28.答案为:2.5 29.答案为:6 30.答案为:36; 31.答案为:112; 32.解:如图1,当点P在CD上时,∵PD=3,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是正方形,EF过点C,∴EF=6 ,如图2,当点P在AD上时,过E作EQ⊥AB 于Q,∵PD=3,AD=6,∴AP=3,∴PB= = =3 ,∵EF垂直平分PB,∴∠1=∠2,∵∠A=∠EQF,∴△ABP∽△EFQ,∴ ,∴ ,∴EF=2 ,综上所述:EF长为6 或2 .故答案为:6 或2 . 33.答案为:1或4或2.5; 34.解:如图,取BF的中点H,连接DH.设EF=x,CE=y.∵∠ACB=90°,AD=DB,∴CD=AD=DB=4,∵AD=DB,FH=HB,∴DH= AF=2,DH∥EF,∴ = ,∴ = ,∴y=2x,∵AF⊥CE,∴∠CEA=∠CEF=90°,∵∠ACE+∠CAE=90°,∠ACE+∠ECF=90°,∴∠ECF=∠CAE,∴△ACE∽△CFE,∴ = ,∴y2=x(4�x),∴4x2=x (4�x),∵x≠0,∴x=0.8,∴EF=0.8,故答案为0.8. 35.答案为5×(1.5)4030 36.答案为:(2,1)或(�2,�1) 37.答案为:1.8; 38.答案是(�2,0)或(,). 39.解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E= .△B′EN∽△AB′M, = ,即 = ,x2= ,BE=B′E= = .②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M, = ,即 = ,解得x2= ,BE=B′E= = ,故答案为:或. 40.答案为:41.证明:∵∠BAC=90°,点M是BC的中点,∴AM=CM,∴∠C=∠CAM,∵DA⊥AM,∴∠DAM=90°,∴∠DAB=∠CAM,∴∠DAB=∠C,∵∠D=∠D,∴△DBA∽△DAC. 42.【解答】解:(1)∵∠ACD=45°,∠ACD=∠E,∴∠E=45°.(2)△ACP∽△DEP,理由:∵∠AED=∠ACD,∠APC=∠DPE,∴△ACP∽△DEP.(3)∵△ACP∽△DEP,∴ .∵P为CD边中点,∴DP=CP=1,∵AP= ,AC= ,∴DE= . 43.略 44.略 45. 46.(1)证明:∵四边形AFBC内接于圆,∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC 的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB;(2)解:由(1)得:∠FBC=∠FCB,又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠B FD,∴△AFB∽△BFD,∴ ,∴BF2=FA•FD=12,∴BF=2 ,∵FA=2,∴FD=6,AD=4,∵AB为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA= = = ,∴∠FBA=30°,又∵∠FDB=∠FBA=30°,∴CD=AD•cos30°=4× =2 . 47.解:(1)∵把A(1,0)代入得:a+2.5�2=0,解得a=-0.5,∴y=-0.5x2+2.5x-2;(2)相似.∵令�0.5x2+2.5x�2=0,解得x1=1,x2=4,∴A(1,0),B(4,0).∵x=0时,y=�2,∴C(0,�2).∴OC=2,OA=1,OB=4 ∴ = =0.5.又∵∠COA=∠BOC=90°,∴△AOC∽△COB;(3)存在.对称轴为x=2.5,交x轴于点Q,顶点坐标为(2.5,9/8).①如图1,AB为对角线,若四边形AMBN为平行四边形,则QM=QN,∴M(2.5,9/8),N(2.5,�9/8);②如图2,AB为一边,若四边形ABMN为平行四边形,则MN∥AB,MN=AB=3,设N(2.5,n)则有M(�0.5,n)或(5.5,n)将M坐标代入解析式:n=�27/8.综上所述,M(2.5, 9/8),N(2.5,�9/8)或M(�0.5,�27/8),N(2.5,�27/8)或M (5.5,�27/8),N(2.5,�27/8). 48.(操作1)EP=EQ,证明:连接BE,根据E是AC的中点和等腰直角三角形的性质,得:BE=CE,∠PBE=∠C=45°,∵∠BEC=∠FED=90°∴∠BEP=∠CEQ,在△BEP和△CEQ中,∴△BEP ≌△CEQ(ASA),∴EP=EQ;如图2,EP:EQ=EM:EN=AE:CE=1:2,理由是:作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;如图3,过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠MPE=180°,∴∠MPE=∠EQN,∴Rt△MEP∽Rt△NEQ,∴ = ,Rt△AME∽Rt△ENC,∴ =m= ,∴ =1:m= ,EP与EQ满足的数量关系式1:m,即EQ=mEP,∴0<m≤2+ ,(因为当m>2+ 时,EF和BC变成不相交).。